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Abstract

The context of this work is the development of large time step TVD IMEX Runge-Kutta schemes
to approximate the solution of hyperbolic multi-scale equations. A key feature of our newly proposed
TVD schemes is that the resulting CFL condition does not depend on the large-scale eigenvalues
of the multi-scale PDE, as long as they are treated implicitly. However, a result from Gottlieb et
al. [15] states that unconditionally stable implicit TVD or L∞ stable RK schemes can only be of first
order. We show that this result is also valid for IMEX-RK schemes, which have a CFL restriction only
depending on the explicitly treated scales. Therefore, the goal of this work is to improve the precision
of a first-order IMEX-RK scheme, while retaining its L∞ stability and TVD properties. In this work
we extend and generalize the approach introduced in [9] based on a convex combination between
a first-order TVD IMEX Euler scheme and a potentially oscillatory high-order IMEX-RK scheme.
We derive and analyse the method for a scalar multi-scale equation and we numerically assess the
performance of our TVD schemes compared to standard L-stable and SSP IMEX RK schemes from
the literature. Finally, we combine our TVD schemes with the MOOD framework to increase their
applicability. For numerical validation, we apply the schemes to the isentropic Euler equations and
compare the results with [9] where a second order scheme is used as a basis of the TVD scheme.

1 Introduction

Multi-scale equations arise in a wide range of applications, such as shallow water equations
studied e.g. in [3], magnetohydrodynamics [25], multi-material [?] or atmospheric flows [23]. When
developing numerical methods for such applications, it is of prime importance to obtain physically
admissible solutions under these multi-scale constraints.

In order to numerically treat these different scales, one must assess whether the fast scales are
relevant to the physical solution. Indeed, accurately capturing these fast scales requires a very
restrictive time step. This issue is discussed e.g. in [16] for the Euler equations. When the impact of
the fast scales on the physical solution is less important, numerical methods which do not accurately
capture all scales but follow only the slow dynamics are necessary. One option, which we will study
in this paper, is to use Implicit-Explicit (IMEX) schemes, where the terms associated to the fast
wave propagation are treated implicitly. Those schemes are well studied in the literature, see for
instance [2] for efficient IMEX schemes applied on hyperbolic-parabolic problems, [31] for IMEX
schemes adapted to stiff relaxation source terms, or [29, 10, 4] for IMEX schemes designed for the

∗Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France; victor.michel-dansac@inria.fr
†Institut für Mathematik, Johannes Gutenberg-Universität Mainz, Germany; athomann@uni-mainz.de

1



low Mach regime of the Euler equations, as well as the references given therein. Therefore, in this
work, we are concerned with hyperbolic systems whose stiffness comes from the flux, rather than a
source term. Let us emphasise that we will not consider hyperbolic systems with stiff source terms
typically arising from relaxation processes. For their treatment, we refer for instance to [31].

Higher order schemes are known to introduce spurious oscillations in the solution away from
smooth regions. This is an issue, especially when considering non-linear hyperbolic equations, as the
solution can develop discontinuities even when starting with a smooth initial condition. This was
already observed by Harten in [17], who introduced the notion of total variation diminishing (TVD)
schemes, and constructed non-oscillatory explicit and implicit second-order TVD schemes. Those
schemes are non-linear, even when applied on linear equations, as from Godunov’s theorem follows
that linear TVD schemes can only be of first-order [11]. Since non-linear implicit schemes are very
computationally costly, especially when applied to non-linear systems of equations, the construction
of higher order explicit TVD schemes remained an active area of research, see e.g. [34, 36, 14] and
references therein. Later, in the more general framework of strong stability preserving (SSP) implicit
and explicit schemes [15], the stability property is achieved by relying on convexity arguments
regarding forward and backward Euler schemes, rather than adding artificial viscosity to achieve
the TVD property, as was done in [17, 36, 32]. The high-order explicit and implicit SSP schemes
developed in [13, 12, 15] have a CFL restriction of the order of the CFL restriction of a forward Euler
scheme. This makes the use of high-order implicit SSP schemes rather costly and impractical in
applications compared to high-order explicit SSP schemes, as was remarked in [13]. Regarding IMEX
SSP schemes, we refer to [18, 7, 19]. All high-order SSP schemes mentioned above require the time
step to depend on all scales to achieve stability, but are provably of high order. Unfortunately, they
are not well suited for the multi-scale setting, where the time step is strongly restricted by the fast
scale leading, in extreme cases, to a vanishing time step.

In contrast, our focus here is the construction of large time step IMEX TVD schemes, which means
that the CFL restriction solely stems from the explicitly treated terms. The work presented in this
manuscript is greatly motivated by the seminal work by Gottlieb et al. [15], where it was proven that
an unconditionally TVD implicit RK scheme is at most first-order accurate. Unfortunately, this result
holds also for IMEX discretisations with a scale-independent CFL restriction, whose proof we have
included for completeness in Appendix A. In fact, this discouraging result is also observed in [9, 5]
when attempting to construct second-order TVD IMEX schemes for the Euler equations.

In the present work, we seek in a first step the design of first-order TVD IMEX RK schemes that
have a higher resolution than the standard first-order backward/forward Euler IMEX scheme. The
approach given here builds on the results from [9, 28], where the increase in precision is achieved by
introducing a convex combination of said first-order TVD scheme with an oscillatory second-order
scheme. In [9], the ARS(2,2,2) scheme from [2] is used as a basis for the convex combination, and this
result was extended to a general class of second-order IMEX RK schemes in [28]. Here, we generalize
and extend the results from [9, 28] further, to a convex combination with arbitrarily high order
schemes. Note that convex combinations have already been used to recover first-order properties
lost at higher orders, see for instance [20] to recover the positivity property or [27] for well-balanced
problems.

As the TVD property is crucial to accurately capture discontinuities in the numerical solution,
it is of less importance in smooth regions. In order to achieve a high-order approximation of the
solution in such regions, while keeping the solution oscillation-free in the vicinity of discontinuities,
we adapt a MOOD-like procedure, introduced in [6], to the case of IMEX schemes. In this framework,
our first-order TVD schemes can be used as a correction when the solution computed with a high-
order IMEX scheme of the reader’s choice leaves the physical admissibility domain. This makes our
TVD-IMEX-MOOD schemes interesting for applications, as a higher order approximation in smooth
regions and an oscillation-free shock description can be achieved.
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The paper is organised as follows. In section 2, we describe the problem of multi-scale equations,
illustrated by a scalar linear hyperbolic equation. We shortly recall the IMEX formalism to numerically
approximate those stiff equations, and prove the order restriction for the construction of high-order
TVD IMEX-RK schemes with a scale independent time step restriction. In section 3, we derive a
TVD IMEX scheme based on a convex combination between a second-order and a first-order IMEX
update. The problem of a TVD space discretisation is also addressed in this section. The extension
to TVD schemes based on arbitrarily high order Butcher tableaux is discussed in section 4. Therein,
we show that the convex combination on the time updates of the the first- and high-order IMEX
schemes is not enough to find a TVD scheme. Instead, we also apply a convex combination at each
stage of the IMEX scheme. This novel method is illustrated by the construction of a TVD scheme
based on third-order tableaux, combined with a third-order limiting procedure for the explicit space
discretisation. Section 5 is devoted to numerical experiments to verify the necessity of large time step
TVD IMEX RK methods for multi-scale problems. First, we introduce a MOOD procedure adapted to
our TVD IMEX schemes. We give a strategy on how to find optimal values for the free parameters of
the underlying TVD schemes, by compromising between precision and CPU time. To numerically
validate that our TVD-IMEX-MOOD schemes are a noticeable improvement over widely used L-stable
IMEX and the SSP IMEX schemes, we compare the performance of the schemes in terms of accuracy,
CPU times and CFL restrictions on continuous and discontinuous solutions of the scalar multi-scale
equation. We finally apply the scheme to the isentropic Euler equations. To complete this manuscript,
a conclusion is presented in section 6.

2 Problem description

We consider the scalar linear two-scale initial value problemwt + cmwx +
ca

ε
wx = 0,

w(0, x) = w0(x),
(2.1)

where w : (R+,Ω) → R, Ω ⊂ R. In (2.1), cm and ca/ε respectively represent a slow and a fast
transport velocity. Note that the fast velocity can be adjusted by different choices of ε > 0. Thereby,
cm and ca are considered independent of ε. Without loss of generality, we consider only the positive
transport direction, i.e. cm, ca > 0.

The toy model (2.1) mimics, in a simplified linear manner, the wave structure of e.g. the Euler
equations, see for instance [9]. In this case, the system is characterised by a large pressure gradient in
the lowMach number regime, resulting in fast acoustic wave speeds. These fast speeds are represented
by ca/ε in our toy model, where ε acts as the Mach number squared. The Mach number independent
advection speeds are described by the velocity cm in our toy model (2.1).

Nevertheless, when developing numerical methods for the simplified scalar case (2.1) with small
ε > 0, one faces similar challenges as for hyperbolic equations with large gradients in the flux function.
Treating both derivatives in (2.1) explicitly leads to the following CFL condition, which depends on ε

to ensure stability:

∆t 6 ε C
∆x

ε cm + ca
,

whereC is a CFL coefficient independent of ε. Thus, when ε tends to zero, the time step∆t tends to zero
as well. Using an explicit scheme in this regime becomes very costly in terms of computational time.
Therefore, we adopt an IMEX approach and treat the derivative associated with the fast speed ca/ε

implicitly, whereas the one associated with the slow speed cm remains explicit, to yield the following
time step restriction independent of ε:

∆t 6 C̃
∆x

cm
.
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Since ourmain goal is to derive an L∞ stable and TVD scheme, we have to use an upwind discretisation
for both derivatives. This is motivated by the results in [10], where it is shown that for a non-linear
system centred differences destroy the L∞ stability. Although our setting is linear, we avoid centred
differences to be able to apply the approach developed here on non-linear systems such as the
isentropic Euler equations discussed in Section 5.4.

The space and time discretisation follows the usual finite difference framework, although it can
be easily translated into the finite volume setting. The space domain Ω is partitioned in N uniformly
spaced points (xj)j∈{1,...,N} with the step size ∆x. We discretise the time variable with tn = n∆t,
where ∆t denotes the time step. Then the solution w(t, x) at (tn, xj) is approximated by wn

j . A
semi-discrete first-order approximation of (2.1) in space, with ∆j(t) = wj(t) −wj−1(t), is given by

∂twj(t) +
cm

∆x
∆j(t) +

ca

ε∆x
∆j(t) = 0. (2.2)

Later on, to extend the space discretisation in (2.2) to higher orders, we will use a high-order recon-
struction combined with a limiting procedure to ensure the TVD property.

We first discuss the time integration in section 2.1. Then, we introduce the technique that we will
use to derive more precise TVD first-order schemes in section 2.2.

2.1 High-order IMEX Runge Kutta time integration

For the time integration of (2.2), we use the IMEX-RK framework. The time update for an s-stage
IMEX-RK scheme for equation (2.2) is given by

wn+1
j = wn

j − λ

s∑
k=1

b̃k∆
(k)
j − µε

s∑
k=1

bk∆
(k)
j , (2.3)

where we have set

λ =
∆t

∆x
cm, µε =

∆t

∆x

ca

ε
, ∆

(k)
j = w

(k)
j −w

(k)
j−1,

and where the stages are defined as

w
(k)
j = wn

j − λ

k−1∑
l=1

ãkl∆
(l)
j − µε

k∑
l=1

akl∆
(l)
j . (2.4)

Theweights ãkl,akl appearing in the definition (2.4) of the stagesw(k), and b̃k,bk in the updatewn+1

given by (2.3), are summarized in two triplets (Ã, b̃, c̃) and (A,b, c), with Ã,A ∈ Rs×s, b̃,b ∈ Rs. The
coefficients c̃, c ∈ Rs contain the intermediate time steps associated to the respective computational
stages. Here, we consider the matrix associated to the explicit part Ã to be lower triangular with zeros
on the diagonal, and the matrix connected to the implicit part A to be lower triangular, resulting into
a DIRK (diagonally implicit RK) scheme. Since we are considering multi-scale equations, we wish,
for computational efficiency, for the CFL restriction of the resulting scheme to only depend on the
slow scale associated with λ. In addition, for the sake of illustrating our approach, we consider an
IMEX-RK method of type CK (Carpenter and Kennedy) [21], i.e. we take the first row of A to be
zero. This choice, as it was shown in detail in [28] for a generic second-order CK method, requires
the first column of A to be zero, as well as b1, to ensure a CFL condition independent of ε. We give
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the structure in the following Butcher tableaux notation:

explicit:

0 0 0 · · · 0

c̃2 ã21 0 · · · 0
...

... . . . . . . ...
c̃s ãs1 · · · ãs,s−1 0

b̃1 · · · b̃s−1 b̃s

implicit:

0 0 0 · · · 0

c2 0 a22 · · · 0
...

...
... . . . ...

cs 0 as2 · · · ass

0 b2 · · · bs

, (2.5)

where the coefficients c̃ and c are respectively connected to Ã and A via

c̃i =

i−1∑
j=1

ãij and ci =

i∑
j=1

aij. (2.6)

For an approach based on a different structure than (2.5), where the first column of A is nonzero, see
Appendix C.

We are interested in higher order Butcher tableaux, with an order p > 1. This implies that the
weights have to fulfil high-order compatibility conditions. The order conditions to obtain a scheme
up to order three are given in Table 1 taken from [30]. For orders higher than three, we refer to the
order conditions in [21].

Table 1: Order conditions for IMEX-RK schemes up to third-order

First-order:
s∑

k=1

b̃k = 1,
s∑

k=1

bk = 1

Second-order:
s∑

k=1

b̃kc̃k =
1

2
,

s∑
k=1

bkck =
1

2
,

s∑
k=1

b̃kck =
1

2
,

s∑
k=1

bkc̃k =
1

2

Third-order:

s∑
k=1

b̃kc̃
2
k =

1

3
,

s∑
k=1

bkc
2
k =

1

3
,

s∑
k=1

b̃kc̃kck =
1

3
,

s∑
k=1

bkc̃kck =
1

3
,

s∑
k,l=1

b̃kãklc̃k =
1

6
,

s∑
k,l=1

b̃kãklck =
1

6
,

s∑
k,l=1

b̃kaklc̃k =
1

6
,

s∑
k,l=1

b̃kaklck =
1

6
,

s∑
k,l=1

bkãklc̃k =
1

6
,

s∑
k,l=1

bkãklck =
1

6
,

s∑
k,l=1

bkaklc̃k =
1

6
,

s∑
k,l=1

bkaklck =
1

6

2.2 Convex combinations of first- and high-order IMEX schemes

It is well known that approximating discontinuous solutions with high-order non-TVD methods
can lead to spurious artefacts near jump positions. This behaviour is illustrated in Figure 1, where we
display the approximation of an advected rectangular bump profile with the first-order scheme

wn+1
j = wn

j − λ∆n
j − µε∆

n+1
j , (2.7)

as well as the well-known second-order ARS(2,2,2) and third-order ARS(2,3,3) IMEX schemes
from [2]. For more details on the numerical experiment, such as initial and boundary conditions, see
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Figure 1: Approximation of a discontinuous solution using the first-order, second-order ARS(2,2,2)
and third-order ARS(2,3,3) schemes. Left panel: ε = 1 and N = 15; right panel: ε = 10−3 and
N = 2000. In both cases, the higher-order approximations are oscillatory and the first-order one is
diffusive. For more detail on the numerical experiment, see section 5.

section 5. We clearly observe in Figure 1 that the higher-order non-TVD schemes present spurious
oscillations in the numerical solution.

Therefore, in order to avoid oscillations as in Figure 1, we need L∞ stable or TVD schemes. A
scheme is said to be L∞ stable if

‖wn+1‖∞ = max
j∈{1,...,N}

|wn+1
j | 6 ‖wn‖∞, (2.8)

and TVD if

TV(wn+1) =

N∑
j=1

∣∣∣wn+1
j+1 −wn+1

j

∣∣∣ 6 TV(wn). (2.9)

Unfortunately, it can be proven for IMEX RK schemes, following a result of Gottlieb et al. [15], that
there cannot exist L∞ stable IMEX RK schemes of order p > 2 whose CFL restriction only stems from
the explicitly treated part. For completeness, we have added the proof in Appendix A. It immediately
follows that it does not make sense to look for higher order TVD IMEX integrators. Turning again
to Figure 1, we see that the first-order scheme is very diffusive and not practical in this context.
Therefore, our main focus here is to construct a first-order IMEX integration scheme fulfilling the L∞
stability (2.8) and TVD property (2.9), that has a reduced numerical diffusion compared to the first
order scheme (2.7).

To achieve this, we propose a convex combination of (2.3) and the first-order scheme (2.7),
following [9]. The new update with the parameter θ ∈ [0, 1] is then given by

wn+1
j = wn

j − θ

(
λ

s∑
k=1

b̃k∆
(k)
j + µε

s∑
k=1

bk∆
(k)
j

)
− (1− θ)

(
λ∆n

j + µε∆
n+1
j

)
. (2.10)

We emphasise that a TVD scheme resulting from the above given convex combination (2.10) is only
first-order accurate due to Proposition 10, but will have a higher resolution, governed by the value
of θ, than the usual first-order scheme (2.7).
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3 L∞ stable and TVD scheme based on second-order tableaux

The goal of this section is to provide a theoretical framework to construct L∞ stable and TVD
discretisations from a second-order Butcher tableau based on the general form (2.5). First, we
discuss the stability properties of the convex combination scheme (2.10), with respect to the convex
combination parameter θ. Then, we propose a strategy to increase the resolution in space of the
resulting scheme.

3.1 TVD time integration

We apply the first- and second-order conditions from Table 1 and (2.6) on the Butcher tableaux
given in (2.5) with s = 3 stages. To reduce the number of effective computational steps seff, we assume
in addition that the weights b̃ and b respectively coincide with the last rows of Ã and A. This and
the CK type structure lead to seff = 2 and to the following Butcher tableaux, where β 6= {0, 1}:

explicit:

0 0 0 0

β β 0 0

1 1− 1
2β

1
2β 0

1− 1
2β

1
2β 0

, implicit:

0 0 0 0

β 0 β 0

1 0 1
2(1−β) 1− 1

2(1−β)

0 1
2(1−β) 1− 1

2(1−β)

. (3.1)

Due to the particular structure, we can immediately set w(3) = wn+1 and w(1) = wn, which does
not contribute to the number of effective computational steps. Using the stages given in (2.4), and
the convex update (2.10), the scheme is given by

w
(2)
j + µεa22∆

(2)
j = wn

j − λã21∆
n
j , (3.2a)

wn+1
j + µε ((1− θ) + θa33)∆

n+1
j = wn

j − λ ((1− θ) + θã31)∆
n
j − θ (λã32 + µεa32)∆

(2)
j . (3.2b)

Note that ã21 = a22. We rewrite the ε dependent term in (3.2a) as

−µε∆
(2)
j =

1

a22

(
w

(2)
j −wn

j

)
+ λ∆n

j .

Using (3.1) in (3.2b) and ∆
(·)
j = w

(·)
j −w

(·)
j−1, we find

w
(2)
j + µεa22∆

(2)
j = (1− λa22)w

n
j + λa22w

n
j−1, (3.3a)

wn+1
j + µε (1+ θ(a33 − 1))∆n+1

j =

(
1− λ(1+ θ(ã31 − a32 − 1)) −

θa32

a22

)
wn

j

+ λ (1+ θ(ã31 − a32 − 1))wn
j−1

+ θ

(
a32

a22
− λã32

)
w

(2)
j + θλã32w

(2)
j−1.

(3.3b)

In total, we have three free parameters to be fixed, namely β 6= {0, 1}, λ > 0 and θ ∈ [0, 1]. By
setting β ∈ (0, 1) with λ < 1 and θ 6 2β(1−β), we find that all coefficients in front of w(k)

j ,w(k)
j−1 on

the right-hand sides of (3.3a) and (3.3b) are greater than or equal to zero. In (3.3a), we find:

wn
j : 1− λa22 = 1− λβ > 0, wn

j−1 : λa22 = λβ > 0, (3.4)

7



and, in (3.3b), we find

wn
j : (1− λ(1+ θ(ã31 − a32 − 1)) −

θa32

a22
=

(
1−

θ

2β(1−β)

)
− λ

(
1−

θ

2β(1−β)

)
> 0

wn
j−1 : λ (1+ θ(ã31 − a32 − 1)) = λ

(
1−

θ

2β(1−β)

)
> 0

w
(2)
j : θ

(
a32

a22
− λã32

)
= θ

(
1

2β(1−β)
− λ

1

2β

)
> 0

w
(2)
j−1 : θλã32 = θλ

1

2β
> 0.

(3.5)

In addition, since µε is non-negative, we have positive coefficients in front of ∆(2)
j and ∆n+1

j on the
left hand side of equations (3.3a) and (3.3b). With the same notation as above we find

∆
(2)
j : µεa22 = βµε > 0, ∆n+1

j : µε (1+ θ(a33 − 1)) = µε

(
1−

θ

2(1−β)

)
> 0. (3.6)

The inequalities (3.4), (3.5) and (3.6) are the key element to show the L∞ stability and TVD properties
of scheme (3.2), because this ensures the proof only by using the triangle inequality ‖ax+ by‖ 6
a‖x‖+ b‖y‖ and reverse triangle inequality a‖x‖− b‖y‖ 6 ‖ax− by‖ for x,y ∈ R and a,b ∈ R with
a,b > 0. We start with the L∞ stability and show first that ‖w(2)‖∞ 6 ‖wn‖∞. For periodic boundary
conditions, we find with (3.4) and (3.6) that

‖wn‖∞ = (1− λa22) ‖wn‖∞ + λa22‖wn‖∞
= (1− λa22) max

j
|wn

j |+ λa22 max
j

|wn
j−1|

> max
j

∣∣(1− λa22)w
n
j + λa22w

n
j−1

∣∣
= max

j

∣∣wn
j − λa22(w

n
j −wn

j−1)
∣∣

= max
j

∣∣∣(1+ µεa22)w
(2)
j − µεa22w

(2)
j−1

∣∣∣
> (1+ µεa22)‖w(2)‖∞ − µεa22‖w(2)‖∞
= ‖w(2)‖∞.

Using (3.5) and (3.6), as well as the above estimate ‖w(2)‖∞ 6 ‖wn‖∞, we can also prove analogously

‖wn+1‖∞ 6

(
1−

θa32

a22

)
‖wn‖∞ +

θa32

a22
‖w(2)‖∞ 6 ‖wn‖∞.

Thus, we have proven the L∞ stability. We summarize the result in the following lemma.

Lemma 1. For periodic boundary conditions under the CFL condition λ < 1, the scheme consisting of the
Butcher tableaux (3.1) with the convex update (2.10) and the stages (2.4) with the parameters β ∈ (0, 1) and
θ 6 2β(1−β) is L∞ stable.

In addition, if the optimal value for θ is taken, that is if θ = θopt = 2β(1−β), then the CFL condition
relaxes to λ 6 min

(
1
β , 1

1−β

)
.

Using the same arguments as for the proof of the L∞ stability, we now show the TVD property.
Assuming periodic boundary conditions, we write

TV(wn) = (1− λa22)

N∑
j=1

∣∣wn
j+1 −wn

j

∣∣+ λa22

N∑
j=1

∣∣wn
j −wn

j−1

∣∣
8



=

N∑
j=1

(∣∣(1− λa22)w
n
j+1 − (1− λa22)w

n
j

∣∣+ ∣∣λa22w
n
j − λa22w

n
j−1

∣∣)
>

N∑
j=1

∣∣((1− λa22)w
n
j+1 − λa22w

n
j

)
−
(
(1− λa22)w

n
j − λa22w

n
j−1

)∣∣
=

N∑
j=1

∣∣∣((1+ µεa22)w
(2)
j+1 − µεa22w

(2)
j

)
−
(
(1+ µεa22)w

(2)
j − µεa22w

(2)
j−1

)∣∣∣
>

N∑
j=1

(∣∣∣(1+ µεa22)
(
w

(2)
j+1 −w

(2)
j

)∣∣∣− ∣∣∣µεa22

(
w

(2)
j −w

(2)
j−1

)∣∣∣)

= (1+ µεa22)

N∑
j=1

∣∣∣w(2)
j+1 −w

(2)
j

∣∣∣− µεa22

N∑
j=1

∣∣∣w(2)
j −w

(2)
j−1

∣∣∣
= TV(w(2)).

Using the above estimate, we now show the final TVD property. Since the proof is straightforward,
we write the last step below:

TV(wn+1) 6

(
1−

θa32

a22

)
TV(wn) +

θa32

a22
TV(w(2)) 6 TV(wn).

This result is summarized as follows

Lemma 2. Forβ ∈ (0, 1) and periodic boundary conditions, under the CFL condition λ < 1 for θ 6 2β(1−β),
and under the relaxed CFL condition λ 6 min

(
1
β , 1

1−β

)
for θ = θopt = 2β(1−β), the scheme consisting of

the Butcher tableaux (3.1) with the convex update (2.10) and the stages (2.4) is TVD.

Note that for the proof of the Lemmata 1 and 2 we only used the positivity restrictions (3.4), (3.5)
and (3.6), as well as the choice of the boundary conditions. This means that the TVD property will
always hold under the exact same constraints as the L∞ stability. Furthermore, the proof holds also
for Neumann boundary conditions.

3.2 TVD reconstruction in space

To increase the resolution of the spatial derivatives, we seek a second-order reconstruction of the
point values wj such that the resulting scheme is still L∞ stable and TVD. We start with the explicit
space derivatives.

Explicit space reconstruction. To obtain a second-order accurate approximation of the explicit
spatial derivatives, we linearly reconstruct the values w(k)

j using the neighbouring point values, see
for instance [24]. The reconstructed values w(k)

j,− and w
(k)
j,+ are then defined by

w
(k)
j,− = w

(k)
j −

∆x

2
L
(
σ
(k)
j+1/2

,σ(k)
j−1/2

)
, w

(k)
j,+ = w

(k)
j +

∆x

2
L
(
σ
(k)
j−1/2

,σ(k)
j+1/2

)
, (3.7)

where σ(k)
j+1/2

denotes the slope between the values of w(k)
j and w

(k)
j+1 given by

σ
(k)
j+1/2

=
w

(k)
j+1 −w

(k)
j

∆x
.

9



The function L(σL,σR) is a slope limiter which should ensure that the reconstructed values still satisfy
the maximum principle. For a three-point stencil the following estimate has to hold

min(|w(k)
j−1|, |w

(k)
j |, |w(k)

j+1|) 6 |w
(k)
j,± | 6 max(|w(k)

j−1|, |w
(k)
j |, |w(k)

j+1|). (3.8)

A popular example of a second-order TVD slope limiter is the minmod limiter, defined for any two
slopes σL and σR by

minmod(σL,σR) =


min(σR,σL) if σR > 0 and σL > 0,
max(σR,σL) if σR < 0 and σL < 0,
0 otherwise.

(3.9)

Using the reconstruction (3.7) and the notation ∆
(k)
j,+ = w

(k)
j,+ −w

(k)
j−1,+, we write the stages and the

update given in (3.2) as

w
(2)
j + µεa22∆

(2)
j = wn

j − λã21∆
n
j,+,

wn+1
j + µε ((1− θ) + θa33)∆

n+1
j = wn

j − λ ((1− θ) + θã31)∆
n
j,+ − θ (λã32 + µεa32)∆

(2)
j,+.

Due to the minmod limiting procedure, we immediately have from the estimate (3.8) that

max
j

∣∣wn
j,+
∣∣ 6 max

j

∣∣wn
j

∣∣ and max
j

∣∣∣w(2)
j,+

∣∣∣ 6 max
j

∣∣∣w(2)
j

∣∣∣
for periodic boundary conditions. Using this estimates and following the analogue steps in the proofs
of Lemma 1 and 2 it is easy to see, that under this reconstruction, the L∞ stability and TVD property
still hold.

Implicit space reconstruction. In the spirit of the reconstruction used to approximate the explicit
derivatives, we could also increase the space accuracy of the implicit derivatives using TVD slope
limiters. Note that the slopes are determined in general by a non-linear function, for example the
minmod limiter (3.9). This would mean having to implicitly compute the reconstructed values (3.7).
Such computations, if at all doable, would include an iterative process or a prediction correction
method and therefore be extremely costly. We consider this increase in computational cost as too
much in the sight of the actual gain in resolution.

Treating the implicit spacial derivative with a BDF to obtain a high-order approximation is not an
option here as it leads to oscillatory solutions, see Appendix B for a proof of this claim. Therefore,
we keep the first-order upwind approximation of the implicit spatial derivatives. This is a loss of
resolution in space we are willing to take to obtain a TVD scheme.

We summarize the results of this section in the following result:

Theorem3. Forβ ∈ (0, 1) and periodic boundary conditions, the scheme consisting of the Butcher tableaux (3.1)
with the convex update (2.10) and the stages (2.4), combined with the reconstruction procedure given by (3.7)
and (3.9), is L∞ stable and TVD under the CFL condition λ < 1 for θ 6 2β(1− β), and the relaxed CFL
condition λ 6 min( 1β , 1

1−β) for θ = θopt = 2β(1−β).

4 Extension to higher order tableaux

We start the construction of schemes using higher order tableaux by investigating the natural
extension of the TVD scheme using third-order tableaux instead of second-order ones. Unfortunately,

10



as we prove now, a straightforward extension using the same assumptions as in (3.1) does not lead to
a TVD scheme. The Butcher tableaux with seff = 3 effective computational steps are given by

explicit:

0 0 0 0

c2 ã21 0 0

c3 ã31 ã32 0

0 b2 b3

, implicit:

0 0 0 0

c2 0 a22 0

c3 0 a32 a33

0 b2 b3

. (4.1)

We have assumed that b̃ = b and c̃ = c for simplicity, see also [31]. This also has the advantage of
updating the whole flux.

Applying the third-order conditions given in Table 1 and (2.6) on the scheme given by (4.1) leads
to the following tableaux, with γ /∈ {0, 1

3 }:

explicit:

0 0 0 0
3γ−1
6γ

3γ−1
6γ 0 0

γ+1
2 −6γ3−3γ2+1

2(3γ−1)
γ(3γ2+1)

3γ−1 0

0 3γ2

3γ2+1
1

3γ2+1

implicit:

0 0 0 0
3γ−1
6γ 0 3γ−1

6γ 0
γ+1
2 0 γ 1−γ

2

0 3γ2

3γ2+1
1

3γ2+1

(4.2)
We now derive conditions on γ /∈ {0, 1

3 }, λ > 0 and θ ∈ [0, 1] such that the scheme given by (4.2)
and the convex combination with the first-order scheme (2.7) is L∞ stable and TVD. From the first
stage, we have w(1) = wn. The second stage with c2 = 3γ−1

6γ is given by

w
(2)
j + µεc2∆

(2)
j = (1− λc2)w

n
j − λc2w

n
j−1.

Following the proof of Lemmata 1 and 2, we require, in the fashion of (3.4)-(3.6):

c2 > 0 ⇐⇒ 3γ− 1

6γ
> 0 ⇐⇒ γ < 0 or γ >

1

3
,

1− λc2 > 0 ⇐⇒ λ 6
1

c2
⇐⇒ λ 6

6γ

3γ− 1
.

(4.3)

Note that the expressions in (4.3) are well-defined. The third stage, using

−µε∆
(2)
j =

1

c2
(w

(2)
j −wn

j ) + λ∆n
j ,

is given by

w
(3)
j +µεa33∆

(3)
j =

(
1−

a32

c2
− λã31 + λa32

)
wn

j +λ (ã31 − a32)w
n
j−1+

(
a32

c2
− λã32

)
w

(2)
j +λã32w

(2)
j−1.

This leads to the following inequalities

ã32 > 0 ⇐⇒ γ(3γ2 + 1)

3γ− 1
> 0 ⇐⇒ γ 6 0 or γ >

1

3
,

a32

c2
− λã32 > 0 ⇐⇒ λ 6

6γ2

γ(3γ2 + 1)
and γ >

1

3
,

ã31 − a32 > 0 ⇐⇒ −
(γ+ 1)(6γ2 − 3γ+ 1)

2(3γ− 1)
> 0 ⇐⇒ γ > −1 and γ <

1

3
.

(4.4)

We remark no γ can fulfil the last two inequalities. Therefore, it is not possible to prove the TVD
property following the proof of Lemma 1 and Lemma 2.

In the following, we propose a method to cure this defect and still keep the easy way of proving
the TVD property.
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4.1 Method of convex stages

As we have seen, the attempt to prove the L∞ stability and TVD property already failed at the
second step, while the convex combination with the first-order scheme is only applied on the final
update. Therefore, we propose a convex combination of each stage with a first-order update at
time tn + ck∆t for the k-th stage. To have only one time level, we set c̃ = c. This framework allows for
more free parameters θk ∈ [0, 1], where k = 1, . . . , s denotes the stage in the IMEX scheme. To have
the best precision possible, the goal is to choose as many θk as possible equal to one. Analogously to
the convex update (2.10), the stages are given by

w
(k)
j + (1− θk)ckµε∆

(k)
j = wn

j − λ

(
(1− θk)c̃k∆

n
j + θk

k−1∑
l=1

ãkl∆
(l)
j

)
− µεθk

k∑
l=1

akl∆
(l)
j . (4.5)

Note that, for the Butcher tableaux in themanner of (4.1), we immediately set θ1 = 1 to recoverw(1) =
wn. This means the convex stages appear earliest for k = 2. In the case where the weights b̃ and b

respectively coincidewith the last row of Ã andA, the stagew(s) coincideswith the final updatewn+1.
In particular, we then have θ = θs.

In the spirit of the results from the second-order scheme, we seek a general framework on how to
obtain TVD schemes with s stages using the IMEX formulation (2.10) – (4.5). Since the proof follows
analogue steps as in Lemmata 1 and 2, we do not repeat the calculations and we directly give the
final result.
Theorem 4. Let Ã,A ∈ Rs×s, b̃,b, c̃, c ∈ Rs define two Butcher tableaux (2.5) fulfilling (2.6) and the p-th
order compatibility conditions. Let b̃ and b coincide with the last rows of Ã andA respectively. For k = 1, . . . , s
and l = 1, . . . ,k− 1, we define

Ak = θkakk + (1− θk)ck, Ãk = θkak1 + (1− θk)c̃k, Bkl =
θkakl

Al
, B̃kl = θkãkl.

In addition, we recursively define the following expressions:

Ck = Ãk −

k−1∑
l=2

BklCl, Ckl = B̃kl −

k−1∑
r=l+1

BkrCrl,

Dk = 1− λÃk −

k−1∑
l=2

BklDl, Dkl = Bkl − λB̃kl −

k−1∑
r=l+1

BkrDrl.

Then, with θ1 = 1 and under the following restrictions for k = 2, . . . , s and l = 1, . . . ,k− 1,

Ak > 0, Ck > 0, Dk > 0, Ckl > 0, Dkl > 0.

the scheme consisting of the stages (4.5) and the update (2.10), combined with a TVD limiter, is L∞ stable and
TVD under a CFL condition determined by λ > 0 where λ does not depend on ε.

We wish to remark that the obtained p-th order tableaux do not necessarily lead to stable schemes
by themselves if they are not combined with the convex strategy. This is not a drawback since our
goal is the L∞ stability. For studies on A- or L-stability, we refer to [30].

The result from Theorem 4 can be extended to the case where the weights b̃ and b do not coincide
with the respective last rows of Ã and A. To be able to use the notation from Theorem 4, we view the
update (2.10) as an additional explicit (s+ 1)-th stage of a scheme induced by Butcher tableaux (2.5)
with (s+ 1)× (s+ 1) matrices with the diagonal entry as+1,s+1 = 0, where the weights b̃ and b

respectively coincide with the last rows of the new Ã and A. Then we define the convex parameter of
the last stage as θs+1 = θ. Theorem 4 is then applied to yield the L∞ stability and the TVD property.
Remark 5. We can prove the same kind of theorem if the first column of A allows for non-zero entries. The
TVD conditions obtained when assuming that structure are given in Appendix C.
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4.2 L∞ stable and TVD scheme based on third-order tableaux

We now demonstrate that, with this method, a TVD scheme can be obtained based on the previous
Butcher tableaux (4.2). Let us introduce one additional parameter θ3 6= 1, while keeping θ1 = θ2 = 1.
This means that we have the same stages for w(1) and w(2) as before. We recall that we obtained
from the second stage γ < 0 or γ > 1

3 and λ 6 6γ
3γ−1 . Using the definition of the third stage given

in (4.5), we now have with w(1) = wn:

w
(3)
j + µε ((1− θ3)c3 + θ3a33)∆

(3)
j = wn

j − λ
(
(1− θ3)c3∆

n + θ3c3

(
ã31∆

n
j + ã32∆

(2)
))

+ θ3c3a32

(
1

c2
(w

(2)
j −wn

j ) + λ∆n
j

)
⇐⇒

w
(3)
j + µε (c3 + θ3(a33 − c3))∆

(3)
j =

(
1− λ(1− θ3)c3 − θ3λ(ã31 − a32) −

θ3a32

c2

)
wn

j

+ (λ(1− θ3)c3 + θ3λ(ã31 − a32))w
n
j−1

+ θ3

(
a32

c2
− λã32

)
w

(2)
j + θ3 λã32w

(2)
j−1.

As in the previous case, we obtain

ã32 > 0 ⇐⇒ γ(3γ2 + 1)

3γ− 1
> 0 ⇐⇒ γ 6 0 or γ >

1

3
,

a32

c2
− λã32 > 0 ⇐⇒ λ 6

6γ2

γ(3γ2 + 1)
and γ >

1

3
.

For the requirement (4.4) that caused problems earlier, instead of ˜a31 − a32 > 0, we get

(1− θ3)c3 + θ3( ˜a31 − a32) > 0 ⇐⇒ θ3
3γ2(γ+ 1)

3γ− 1
6

γ+ 1

2
⇐⇒ θ3 6

3γ− 1

6γ2
, (4.6)

thus leading to a restriction on θ3 instead of on γ. The next restriction gives another estimate on θ3,
as follows:

c3 + θ3(a33 − c3) > 0 ⇐⇒ γθ3 6
γ+ 1

2
⇐⇒ θ3 6

γ+ 1

2γ
.

It is easy to see that this condition on θ3 is less restrictive than the one obtained from (4.6) for all γ > 1
3 .

For a given γ, the largest value we can take for θ3 is therefore given by

θ
opt
3 =

3γ− 1

6γ2
,

and θ3 must satisfy θ3 6 θ
opt
3 . The last restriction for the third stage is given by

1− λ(1− θ3)c3 − θ3λ(ã31 − a32) −
θ3a32

c2
> 0. (4.7)

This condition is always fulfilled if we choose θ3 = θ
opt
3 . In doing so, we have the maximal allowed

input from the original stages (2.4). Otherwise, (4.7) leads to another, more restrictive estimate for λ.
We repeat this procedure for the last stage. We skip the lengthy but straightforward computations
and give the final estimates on the free parameters γ, λ, θ3 and θ4 directly in Corollary 6.
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Explicit space reconstruction. To increase the space accuracy of the scheme, we use a TVD third-
order space reconstruction satisfying (3.8). Thismerely amounts to setting the limiter function L in the
space reconstruction described in section 3.2. We choose the third-order limiting procedure introduced
in [33]. This procedure switches between the oscillatory non-limited third-order reconstruction and a
third-order TVD limiter. Switching to the TVD limiter is triggered in the event where a non-physical
oscillation represented by a non-smooth extremum is detected. Since the limiter is provably TVD
according to [33], we apply Theorem 4 and immediately find the following result

Corollary 6. The scheme consisting of the Butcher tableaux (4.2), with the stages given in (4.5), the update
in (2.10), and combined with the slope limiter from [33], is L∞ stable and TVD according to Theorem 4 with
the following choice of parameters

γ >

√
3

3
, θ1 = 1, θ2 = 1, θ3 =

3γ− 1

6γ2
, θ4 <

(3γ− 1)(3γ2 + 1)

18γ3
,

and under the CFL condition

λ 6
18γ3θ4 − (3γ− 1)(3γ2 + 1)

(3γ− 1)((6γ2 + 1)θ4 − (3γ2 + 1))
.

An analysis of the influence of the choice of the parameters γ, θ3, θ4 and λwill be conducted in
section 5.2. Especially the balance between CPU time, i.e. the value of λ, and precision, expressed by
the values of θ3 and θ4, will be discussed. We emphasise once again that the bound on the time step,
expressed by λ, does not depend on ε, which represents the fast scale in equation (2.1).

5 Numerical results

In this last section, we illustrate the capabilities of the schemes we have developed in Sections 3
and 4. To help referring to these methods, we introduce the following abbreviations.

• The IMEXp scheme denotes the scheme with an p-th order time discretisation and an p-th
order space discretisation. Following this notation, the IMEX1 scheme is given by (2.7), the
IMEX2 scheme corresponds to the Butcher tableaux (3.1), and the IMEX3 scheme corresponds
to the Butcher tableaux (4.2). The second-order unlimited space discretisation (3.7) with
L(σL,σR) =

1
2(σL + σR) is applied to the explicit part of the IMEX2 scheme, while the second-

order BDF (B.1) is applied to its implicit part. The third-order unlimited space discretisation
from [33] is applied to the explicit part of the IMEX3 scheme, while the third-order BDF (B.2)
is applied to its implicit part.

• The TVDp scheme is the TVD scheme constructed from the IMEXp tableau. The TVD2 scheme
is obtained following Theorem 3, and the TVD3 scheme is given in Corollary 6.

For the remainder of this section, we consider several numerical experiments, with some common
characteristics. In each experiment, we prescribe periodic boundary conditions, and we take cm = 1

and ca = 1. The value of the fast transport velocity therefore is 1/ε. The values of ε will vary
throughout the experiments to highlight how the results depend on ε. The space-time domain is
taken such that the solution revolves exactly once with the periodic boundary conditions, i.e. we take
the final time tend = 1 and space domain (0, cm + ca

ε ).
We introduce two exact solutions to the initial value problem (2.1), whichwill help us demonstrate

the properties of the schemes. First, we give a smooth solution ws(t, x) defined by

ws(t, x) = 1+
ε

2

(
1+ sin

[
2πε

(
x−

(
cm +

ca

ε

)
t
)])

, (5.1)
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which represents a sine function of amplitude ε, transported with the velocity cm + ca

ε . Second, a
discontinuous solution wd(t, x) is given by

wd(t, x) =

1+ ε if 1
4
<

((
x−

(
cm + ca

ε

)
t
)

cm + ca

ε

−

⌊(
x−

(
cm + ca

ε

)
t
)

cm + ca

ε

⌋)
<

3

4

1 otherwise,
(5.2)

which represents a rectangular bump of amplitude ε, transported with the velocity cm + ca

ε , and
initially located in the space region

(
1
4(cm + ca

ε ), 3
4(cm + ca

ε )
)
. These exact solutions will be taken as

initial conditions by setting t = 0.
In the remainder of this section, we first introduce a MOOD procedure to increase the precision

of the TVDp scheme in section 5.1. Then, in section 5.2, we study the influence of the free parameters
in the TVD2 and TVD3 schemes on the precision and computational time. After having fixed the
parameters, we compare in section 5.3 the behaviour of these schemes, for a wide range of ε, to that
of IMEX schemes from the literature. We study both the accuracy of the schemes on the smooth
solution (5.1), and the overshoot/undershoot magnitude on the discontinuous solution (5.2). The
section is concluded with an application to the isentropic Euler equations in section 5.4.

5.1 Optimal order detection: MOOD-inspired procedure

The goal of this section is to introduce a MOOD-like procedure to increase the precision of the
TVDp scheme without degrading its stability properties. The usual MOOD framework for explicit
schemes, see e.g. [6], consists in locally and gradually lowering the order of the scheme when an
oscillation is detected. In our IMEX case, the non-local nature of the implicit part prevents us from only
recomputing the approximate solution on a few selected cells, and the solution has to be recomputed
on the whole mesh. To avoid a prohibitive increase in the computation time, we instead suggest to
directly use the TVDp scheme on the whole mesh as soon as an oscillation is detected in some cell. In
addition, we state that an oscillation has been detected if the approximate solution does not satisfy
the bounds of the initial condition.

This implicit MOOD framework is summarized in the following algorithm, which has also been
stated in [9, 28].

Algorithm 7 (MOODp scheme). Equipped with the stable TVDp scheme, the MOODp scheme consists in
applying the following procedure at each time step:

1. Compute a candidate numerical solution wn+1
c with the IMEXp scheme.

2. Detect whether an oscillation is present somewhere in the space domain, that is to say detect whether the
discrete maximum principle is satisfied by the candidate solution:

‖wn+1
c ‖∞ 6 ‖w0‖∞. (DMP)

(3a) If (DMP) holds, then set the numerical solution wn+1 equal to the candidate solution wn+1
c .

(3b) Otherwise, compute the numerical solution wn+1 with the L∞ stable TVDp scheme.

Applied at each time step, the procedure described in Algorithm 7 ensures that the numerical
solution satisfies the maximum principle, i.e. ‖wn+1‖∞ 6 ‖w0‖∞ for all n > 0.
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5.2 Choice of the free parameters

We start these numerical experiments by suggesting optimal values of the free parameters in the
schemes from Sections 3 and 4. To that end, we analyse the error produced by the schemes, as well as
the CPU time taken, with respect to the free parameters. This analysis will help us give some insights
on how to optimally choose these parameters, and on the trade-offs that must be made when making
such choices.

Here, we study the effect of the time discretisation on the precision and computational time of our
schemes. Therefore, we temporarily restrict ourselves to a first-order discretisation in space, in order
to make sure only the effects of the time discretisation are studied. We compare the IMEX1 scheme
to the IMEX2, TVD2 and MOOD2 schemes in section 5.2.1, and to the IMEX3, TVD3 and MOOD3

schemes in section 5.2.2. In both cases, we set ε = 0.1 and we take N = 400 discretisation points, and
the smooth exact solution (5.1) is considered. The conclusions of the forthcoming developments
are unchanged if we consider other values of ε. Indeed, taking a different εwould merely translate
the curves without changing their relative positioning. This study is concluded with the results of
an optimisation procedure leveraging the conditions of Theorem 4 in order to build new Butcher
tableaux, and their accompanying values of λ and θ, that yield TVD schemes.

5.2.1 Choice of β in the TVD2 scheme

We consider the TVD2 scheme. According to Lemma 2, we can freely choose β ∈ (0, 1) and get
a TVD scheme as long as θ = 2β(1−β) and λ = min( 1β , 1

1−β). These two quantities are displayed
in Figure 2. We observe that β = 1

2 maximizes both θ and λ. In this case, the Butcher tableaux (3.1)
degenerate to the Butcher tableaux of the ARS (1,2,2) midpoint scheme, see [2], and we get θ = 1

2

and λ = 2. With these settings, the TVD2 scheme exactly reverts to two steps of the IMEX1 scheme,
and we expect a loss of accuracy. Therefore, to base the TVD2 scheme on a truly second-order IMEX2
scheme, we have to take β 6= 1

2 .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

β

θopt

0 0.2 0.4 0.6 0.8 1
1

1.5

2

β

λopt

Figure 2: Values of the optimal convex combination parameter θopt (left panel) and the optimal CFL
number λopt (right panel), with respect to the IMEX parameter β of the TVD2 scheme.

Let us now study the impact of the choice of β on the precision and speed of the numerical scheme.
This study was partially performed, for β < 1

2 , in [28]. First, we check the CPU time with respect to β.
Since the CFL condition of the TVD2 and MOOD2 schemes is influenced by β, we expect these two
schemes to take more computational time when β is far from 1

2 . These observations are confirmed by
Figure 3.

In the left panel of Figure 4, we display the L∞-error of the four schemes with respect to β. We
observe that the L∞-error of the IMEX2 scheme explodes around β = 0.52, even for this smooth solu-
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Figure 3: CPU time (in milliseconds) with respect to the IMEX parameter β, using the optimal
values θopt and λopt, in the context of the test case presented in Section 5.2.1.

tion, which explains the increase in CPU time of the MOOD2 scheme noted in Figure 2. Furthermore,
still in the left panel, we observe that the error of both the IMEX2 and the MOOD2 scheme increase
sharply when β > 1

2 . Therefore, it seems sensible to restrict this study to β < 1
2 . In the right panels of

Figure 4, we display zooms of the left panel error data for β < 1
2 . In the top right panel, we observe

that the error of the TVD2 scheme reaches a minimum around β = 0.3; in the bottom right panel, we
observe that the error of the MOOD2 scheme starts increasing around β = 0.3.
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Figure 4: L∞-error with respect to the IMEX parameter β, using the optimal values θopt and λopt,
in the context of the test case presented in Section 5.2.1. The right panels contain a zoom on the left
panel data, for β ∈ [0, 1

2 ].

Therefore, according to Figures 3 and 4, taking β ' 0.29 seems like a good compromise between
error and CPU time taken. We propose βopt = 1−

√
2
2 ≈ 0.293, leading to the well-known ARS(2,2,2)

scheme (see for instance [2, 30]). The Butcher tableaux (3.1) then become

explicit:

0 0 0 0

1−
√
2
2 1−

√
2
2 0 0

1 −
√
2
2 1+

√
2
2 0

−
√
2
2 1+

√
2
2 0

, implicit:

0 0 0 0

1−
√
2
2 0 1−

√
2
2 0

1 0
√
2
2 1−

√
2
2

0
√
2
2 1−

√
2
2

.
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For the remainder of this article, we take

β = βopt = 1−

√
2

2
.

5.2.2 Choice of γ and θ4 in the TVD3 scheme

Now, regarding the TVD3 scheme, we have to set the values of θ3, θ4 and λ, constrained by
Corollary 6. Ideally, we would like θ3, θ4 and λ to be as large as possible. By inspection, we note that
the maximum value of θ3 is θopt3 = 3

8 , obtained for γopt = 2
3 . The Butcher tableaux (4.2) then become

explicit:

0 0 0 0

1�4
1�4 0 0

5�6
−13�18

14�9 0

0 4�7
3�7

, implicit:

0 0 0 0

1�4 0 1�4 0

5�6 0 2�3
1�6

0 4�7
3�7

. (5.3)

Taking this value of γ in Corollary 6 yields the following bounds:

0 < θ4 <
7

16
and 0 < λ <

7− 16θ4
7− 11θ4

. (5.4)

We note that λ is a decreasing function of θ4, which implies that we are not able to use both a large θ4
and a large λ. There is a trade-off between the CFL condition λ (i.e. the CPU time) and the value of θ
(i.e. the resolution of the scheme).

Let us quantify this balance between precision and CPU time. To address this issue, let us
introduce α ∈ (0, 1), to rewrite (5.4) as follows:

θ4 =
7

16
α and λ =

1−α

1− 11
16α

. (5.5)

In Figure 5, we display the values of θ4 and λ with respect to α. We indeed note that θ4 increases
and λ decreases when α increases.
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θ
opt
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

λopt

Figure 5: Values of the last convex combination parameter θ4 (left panel) and the CFL number λ (right
panel), with respect to the parameter α, for the TVD3 scheme with γ = γopt = 2

3 .

We now repeat the experiments from Section 5.2.1, this time looking at the influence of α on the
TVD3 scheme with γ = γopt = 2

3 . We first display in Figure 6 the CPU time with respect to α for the
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Figure 6: CPU time (in milliseconds) with respect to the parameter α, using γ = γopt = 2
3 , in the

context of the test case presented in Section 5.2.2.
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Figure 7: L∞-error with respect to the parameter α, using γ = γopt = 2
3 , θ3 = 3

8 and θ4, λ given
by (5.5). in the context of the test case presented in Section 5.2.2. For α ∈ (0, 0.35), the top right panel
contains a zoom on the CPU time (data from Figure 6 and the bottom right panel contains a zoom on
the L∞-error (data from left panel).

four schemes. As expected, since the CFL condition becomes more restrictive, the CPU time increases
with α for the TVD3 and the MOOD3 schemes.

Now, in the left panel of Figure 7, we display the L∞-error with respect to α for the four schemes
under consideration. As expected, we observe that it decreases with α for the TVD3 scheme, since θ4
increases.

In the right panel of Figure 7, we display a zoom on the CPU time and the L∞-error produced by
the IMEX3 and MOOD3 schemes, with respect to 0 < α < 0.35. We observe that the error stabilizes
around α = 0.3, and that the CPU time increases monotonically with α. Therefore, taking α = 1

3

seems to be a good compromise between precision and computational time. In the remainder of this
article, we take

γ = γopt =
2

3
and α = αopt =

1

3
,
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which leads to the following values for θ3, θ4 and λ:

θ
opt
3 =

3

8
= 0.375, θ

opt
4 =

7

48
' 0.146, and λopt =

32

37
' 0.865.

5.2.3 Numerical optimisation of larger Butcher tableaux

To conclude this Section, we mention two other Butcher tableaux that yield a TVD scheme. To
obtain these tableaux, we have used the TVD inequalities from Theorem 4, as well as the order
conditions from Table 1, as constraints in an optimisation problem where the objective is to maximize
the value of λ+

∑
θ, and where the unknowns are the Butcher coefficients, the values of θ and λ. We

ran this optimization problemwith many random initial conditions for the unknowns, and we refined
this random initialisation around values yielding a large value of the objective function. In the end,
we chose the solution where the value of the objective function was maximal, under the additional
constraint that λ > 0.5 which is a standard CFL condition arising in fluid dynamical schemes.

Three-step, second-order tableau. In this case, we obtain λ = 2.25, θ1 = 1, θ2 = 1, θ3 = 1

and θ4 = 2/3 which corresponds to an effective convex combination only in the last stage. The
Butcher tableaux are given in Appendix D and in the remainder of the paper, the scheme and its
MOOD version will be referred to as TVD2(3) and MOOD2(3).

Four-step, third-order tableau. In this case, we obtain λ = 0.5471076190680170, θ1 = 1, θ2 =
1,θ3 = 1, θ4 = 0.5110907014643069 and θ5 = 0.4997722865197203. The Butcher tableaux are given in
Appendix E. In the remainder of the paper, the scheme and its MOOD version will be referred to as
TVD3(4) and MOOD3(4).

5.3 Numerical tests and comparison with L-stable and SSP schemes

Now that the optimal values of the free parameters are established, let us test the obtained
schemes on a few numerical experiments. We first show, in section 5.3.1, the flexibility of our large
time step schemes compared to L-stable and SSP IMEX schemes from the literature. We then check in
section 5.3.2 the order of accuracy using the smooth solution (5.1), and we finally study the behaviour
of our schemes on the discontinuous solution (5.2) in section 5.3.3. We expect the IMEXp schemes to
behave well on smooth solutions, while their non-L∞ stable nature should produce oscillations and
destroy the numerical approximation of discontinuous solutions.

With the choice of β from section 5.2.1, the IMEX2 scheme turns out to be the well-known
ARS(2,2,2) scheme. However, the IMEX3 scheme, given by the tableaux (5.3), is not well-known
in the literature. To provide a point of comparison, we introduce the L-stable ARS(2,3,3) scheme,
reported in [2], Section 2.4, or [30], Table 5, given by the following tableaux

expl.:

0 0 0 0

δ δ 0 0

1− δ δ− 1 2− 2δ 0

0 1�2
1�2

, impl.:

0 0 0 0

δ 0 δ 0

1− δ 0 1− 2δ δ

0 1�2
1�2

, where δ =
3+

√
3

6
.

Note that this scheme falls within the framework of section 4. Indeed, the above tableaux are nothing
but the tableaux (4.2) with γ = 3−

√
3

6 . This value of γ does not satisfy the requirement of Corollary 6,
and therefore we cannot prove the existence of convex combinations that make the ARS(2,3,3) scheme
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TVD and L∞ stable with a CFL restriction independent of ε. The following numerical experiments
should therefore highlight that the property of L-stability is not enough to ensure non-oscillatory
approximations.

Remark 8. In the following numerical experiments, some values of the number of points N are large when ε is
small. These large values of N have been chosen to ensure that more than 10 time iterations are needed to reach
tend. If fewer time iterations are considered, the time steps are too large to visually notice the differences between
the schemes.

5.3.1 On the flexibility of large time step schemes

In this Section, we are concerned with a comparison of the MOOD3(4) with schemes from the
literature. Namely, we consider the aforementioned ARS(2,3,3) scheme from [2], as well as a more
recent SSP-IMEX scheme from [7], Section 3.2.3, which we label as CGGS3. To compare the results
of these two schemes with our MOOD3(4) scheme, we choose to compute both the CPU time and
the L1 error, for the discontinuous solution (5.2) with N = 4000 and ε = 10−3.

By inspection, we remark that for the ARS(2,3,3) and CGGS3 schemes to be L∞ stable, the ε-
dependent CFL restriction λ 6 0.9ε is required, while for the MOOD3(4) scheme it is enough to
take λ < λopt ' 0.547.

The results are displayed in Table 2. We observe that the errors and CPU times of the ARS(2,3,3)
and CGGS3 schemes are similar for λ = 0.9ε. However, in the case of the MOOD3(4) scheme, we can
take a much larger range of λ. Indeed, by taking a larger λ, we can choose to sacrifice accuracy and
gain CPU time, as evidenced by the first lines of Table 2. Then, taking a smaller λ, for instance λ = 2ε,
yields a similar CPU time and error compared to the ARS(2,3,3) and CGGS3 schemes.

Table 2: CPU times and L1 errors for discontinuous solution (5.2) withN = 4000 discretisation points
and ε = 10−3, using the MOOD3(4), ARS(2,3,3) and CGGS3 schemes.

λ CPU time (s) L1 error

MOOD3(4) λ = λopt ' 0.548 0.0101 0.217
λ = 250ε = 0.25 0.0222 0.111
λ = 50ε = 0.05 0.0953 0.0591
λ = 10ε = 0.01 0.659 0.0488
λ = 2ε = 0.0002 1.63 0.0253
λ = 0.9ε = 0.0009 3.64 0.0253

CGGS3 λ = 0.9ε = 0.0009 1.25 0.0253
ARS(2,3,3) λ = 0.9ε = 0.0009 1.17 0.0253

This series of numerical experiments highlights the flexibility of our approach. Based on the
desired application and focus where L∞ stability is required, thanks to large time step schemes, one
may choose either a fine resolution following the fastest scale when necessary at the cost of a larger
CPU time, or a smaller CPU time when a coarser resolution is sufficient in the numerical result. We
want to stress that one is limited to the fine resolution and a large CPU time if considering schemes
such as ARS(2,3,3) or CGGS3.

5.3.2 Study of the order of accuracy

We now focus on the study of the order of accuracy of the schemes under consideration using the
smooth solution (5.1).
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The IMEX2, TVD2, MOOD2 and MOOD2(3) schemes. In Figure 8, we display the convergence
curves for the four schemes, for ε = 1 (left panel) and ε = 10−3 (right panel). As expected, we
observe that the IMEX1 and TVD2 schemes are both first-order accurate, with the TVD2 scheme being
more precise than the IMEX1 scheme. In addition, the MOOD2, MOOD2(3) and IMEX2 schemes
are second-order accurate. Note that the error produced by the MOOD2(3) scheme is slightly larger
than the one coming from the other two schemes. This is due to the less restrictive CFL condition of
the MOOD2(3) scheme: were it lowered to match the one of the MOOD2 scheme, the errors would
be comparable. This means that, in this context of a smooth solution, the MOOD correction allows us
to get a second-order accurate scheme that also respects the maximum principle.
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Figure 8: Error lines in L∞ norm for the smooth solution (5.1) using the IMEX1, IMEX2, TVD2,
MOOD2 and MOOD2(3) schemes. Left panel: ε = 1; right panel: ε = 10−3.

The IMEX3, TVD3, MOOD3 andMOOD3(4) schemes. Now, let us consider the third-order IMEX3
scheme and the two schemes derived from this one. In Figure 9, we display the error to the exact
solution, for ε = 1 in the left panel and ε = 10−3 in the right panel. For ε = 1, we observe, as expected,
that the TVD3 scheme is first-order accurate but more precise than the IMEX1 scheme, while the
other three schemes are third-order accurate. For ε = 10−3, we note that the error produced by the
IMEX3 scheme starts to decrease slower than third-order when N becomes large. This is due to the
instability of this IMEX3 scheme, and this problem is not experienced by the L-stable ARS(2,3,3)
scheme. Due to these instabilities, the solution of the MOOD3 scheme is degraded since the MOOD
algorithm switches more often to the TVD3 scheme than in the previous second-order case. Although
its results are better, similar conclusions apply to the MOOD3(4) scheme.

5.3.3 Approximation of a discontinuous solution

Now, we study the numerical approximation of the discontinuous solution (5.2). Like in the
previous Section, we first study the IMEX2, TVD2, MOOD2 and MOOD2(3) schemes, before moving
on to the IMEX3, TVD3, MOOD3 and MOOD3(4) schemes. Lastly, we perform an experiment to
show that the BDF2 and BDF3 discretizations alone violate the maximum principle.

Here, to compute the order of accuracy of the scheme, we no longer focus on the L∞ norm,
which is not suited to the computation of an error between a discontinuous solution and its diffusive
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Figure 9: Error lines in L∞ norm for the smooth solution (5.1) using the IMEX1, ARS(2,3,3), IMEX3,
TVD3, MOOD3 and MOOD3(4) schemes. Left panel: ε = 1; right panel: ε = 10−3.

approximation. Instead, we turn to the L1 norm, defined by

‖wn‖1 =
1

∆x

∑
j

|wn
j |.

However, the above norm only measures the average deviation between the exact solution and the
numerical approximation. Here, since we seek a measure of the maximum principle violation of the
IMEXp scheme, we instead consider the following modification of the L1 norm:

‖wn‖L1
o
=

1

∆x

∑
j

(
|wn

j |+ max
m6n

[(
max

j
wm

j − min
j

wm
j

)
−

(
max

j
w0

j − min
j

w0
j

)])
.

This quantity, although it does not satisfy the triangle inequality property of a norm, as it is in fact
a quasinorm, allows us to add the impact of overshoots and undershoots to the usual measure of
the average deviation between the solution and its approximation. Since the TVDp and MOODp

methods are built to avoid such over- and undershoots, this additional term will vanish with these
methods.

The IMEX2, TVD2, MOOD2 and MOOD2(3) schemes. In Figure 10, we display the results of
the four schemes, and of the IMEX1 scheme for the sake of comparison, when approximating the
discontinuous solution (5.2) (left panel: ε = 1, right panel: ε = 10−3). In both cases, we observe that
the IMEX2 scheme violates the maximum principle, while it is satisfied by the other four schemes.
We observe that both phase and amplitude errors are present. Like before, taking the largest possible
CFL number condition for the MOOD2(3) worsens its precision, but this behaviour merely highlights
the flexibility of large time step schemes, as taking a more restrictive CFL condition would increase
the precision at the cost of CPU time.

In Figure 11, we display the error lines in L1 norm (left panels) and L1o quasinorm (right panels),
for ε = 1 (top panels) and ε = 10−3 (bottom panels). First, we observe that the theoretical order
of convergence is not reached. At most, the schemes are order 1

2 . This is due to the fact that we
approximate a discontinuous solution, where the numerical diffusion of the schemes considerably
worsen the order of convergence, see for instance [24], Chapter 11. Second, as expected, the L1-error
of the IMEX2 scheme is lower than the one of the other schemes. Also, when taking the over- and
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Figure 10: Approximation of the discontinuous solution (5.2) at time tend using the IMEX1, IMEX2,
TVD2, MOOD2 and MOOD2(3) schemes. Left panel: ε = 1 and N = 15; right panel: ε = 10−3 and
N = 2000.

undershoots into account thanks to the L1o quasinorm, we observe that the L1o quasinorm of the error
produced by the IMEX1, TVD2, MOOD2 and MOOD2(3) schemes is the same as their L1 norm.
This was to be expected since no over- or undershoots are produced by these schemes. However,
when looking at the L1o quasinorm of the error of the IMEX2 scheme, we observe that it stays roughly
constant asN grows larger. This means that the improvement in L1 norm, since the numerical solution
is overall closer to the exact solution, is almost exactly compensated by an increase of the over- and
undershoot magnitude. Therefore, even taking largeN is not enough to ensure a good approximation
of the exact discontinuous solution by the IMEX2 scheme.

The IMEX3, TVD3, MOOD3 and MOOD3(4) schemes. Now, we turn to Figure 12, where we have
displayed the numerical approximation of the discontinuous solution by the IMEX1, ARS(2,3,3),
IMEX3, TVD3, MOOD3 and MOOD3(4) schemes, for ε = 1 in the left panel and ε = 10−3 in the
right panel. Once again, we note that the pure IMEX high-order schemes are oscillatory and violate
the maximum principle, while the other four schemes are in-bounds. A notable remark concerns
the IMEX3 scheme when ε = 10−3, in the right panel depicted by the dashed line. In this case, the
scheme is so unstable that the numerical solution is unrecognisable. The MOOD3 scheme corrects
this shortcoming. Furthermore, the MOOD3(4) scheme is based on a more stable third-order scheme,
which ensures a better approximation of the exact solution.

In Figure 13, we report the error produced by the six schemes, in the L1 norm in the left panels and
in the L1o quasinorm in the right panels, for ε = 1 in the top panels and ε = 10−3, except for the IMEX3
scheme, whose error would explode in the bottom panels. Like in the case of the second-order
schemes, we observe that the theoretical order of convergence is not reached, and that the schemes are
accurate up to order 1

2 for the IMEX1, TVD3, MOOD3 andMOOD3(4) schemes, and up to order 3
4 for

the ARS(2,3,3) and IMEX3 schemes. In addition, once again, the L1o quasinorm for the ARS(2,3,3) and
IMEX3 schemes stays roughly constant as N increases, which means that the L1-error improvement
is compensated by an increase in the over- and undershoot amplitude.

5.4 Application to the isentropic Euler equations

In these last numerical experiments, we consider an application of the IMEXp, TVDp andMOODp

schemes to the isentropic Euler equations. This systemmodels a compressible fluid flow. It is governed,
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Figure 11: Error lines in L1 norm (left panels) and L1o quasinorm (right panels) for the discontinuous
solution (5.2) using the IMEX1, IMEX2, TVD2, MOOD2 and MOOD2(3) schemes. Top panels: ε = 1;
bottom panels: ε = 10−3.

in one space dimension and after a suitable rescaling, by:∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) +

1

M2
∂xp(ρ) = 0,

(5.6)

where ρ(x, t) > 0 is the fluid density, u(x, t) is its velocity. Assuming an ideal gas, the pressure
is p(ρ) = ργ, with γ > 1 the ratio of specific heats. Finally, M is the Mach number, which rep-
resents the ratio of material to acoustic velocity. The system (5.6) represents a compressible flow
for M > 0, whereas the flow becomes incompressible when M tends to 0. For more information, see
for instance [22, 26].

We are specifically concerned with asymptotic-preserving schemes, i.e. schemes that behave
correctly in the low Mach number limit. Such schemes have been the focus of much work in the
recent past, see for instance [8, 10, 4], but this list is far from being exhaustive. In this section, we
focus on the asymptotic-preserving scheme derived in [10], whose semi-discretization in time reads:

ρn+1 − ρn

∆t
+ ∂x(ρu)

n+1 = 0, (5.7a)

(ρu)n+1 − (ρu)n

∆t
+ ∂x(ρu

2)n +
1

M2
∂xp(ρ

n+1) = 0. (5.7b)
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Figure 12: Approximation of the discontinuous solution (5.2) at time tend using the IMEX1,
ARS(2,3,3), IMEX3, TVD3 and MOOD3 schemes. Left panel: ε = 1 and N = 15; right panel:
ε = 10−3 andN = 1500. In the right panel, the errors produced by the IMEX3 scheme have destroyed
the numerical approximation.

We recast (5.7) under the following condensed form:

Wn+1 −Wn

∆t
+ ∂xFe(W

n) + ∂xFi(W
n+1) = 0, (5.8)

where we have set

W =

(
ρ

ρu

)
; Fe(W) =

(
0

ρu2

)
; Fi(W) =

(
ρu

1
M2p(ρ)

)
, (5.9)

with Fe and Fi respectively being the explicit and implicit fluxes. Note that the seemingly coupled
system (5.7) can be decoupled by inserting the value of (ρu)n+1 from (5.7b) into (5.7a). Also, we
remark that, by adapting our TVD MOOD time integration to the semi-discretized scheme (5.8), we
recover an asymptotic-preserving scheme, analogously to [10, 9].

There is a natural correspondence between the Euler equations (5.8) and the toy problem (2.1).
Indeed, Fe(W) corresponds to cmw and Fi(W) corresponds to ca

ε w, with ε representing the square
Mach number M2. Therefore, once a suitable space discretisation is chosen for (5.8), applying
the IMEXp and TVDp schemes is straightforward in either the finite difference or the finite volume
framework. For the TVDp scheme, the same value of θ that was derived for the toy problem is directly
used for the Euler system. However, adapting the MOODp scheme requires the introduction of a
new detection criterion.

Indeed, since the Euler equations (5.6) form a hyperbolic system of conservation laws, the basic
MOOD criterion (DMP) on the L∞ norm of the unknown w from Section 5.1 is no longer valid.
Instead, we follow [9] and use the Riemann invariants to detect oscillations, since we know from [35]
that at least one of the Riemann invariants satisfies a maximum principle in a Riemann problem. The
Riemann invariants are given by:

Φ±(W) = u∓ 1

M

2

γ− 1

√
γργ−1.

We thus adapt the MOOD algorithm (Algorithm 7) for the Euler equations as follows.
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Figure 13: Error lines in L1 norm (left panels) and L1o quasinorm (right panels) for the discontinuous
solution (5.2) using the IMEX1, ARS(2,3,3), IMEX3, TVD3, MOOD3 and MOOD3(4) schemes. Top
panels: ε = 1; bottom panels: ε = 10−3. For ε = 10−3, the IMEX3 error is so large that the error lines
are not displayed (see Figure 12, right panel).

Algorithm 9 (MOODp scheme for the isentropic Euler equations). Define the initial detection crite-
rion E0

± = ‖Φ±(W
0)‖∞. Equipped with the stable TVDp scheme, the MOODp scheme consists in applying

the following procedure at each time step:

1. Compute a candidate numerical solutionWn+1
c with the IMEXp scheme.

2. Detect whether the discrete maximum principle is satisfied by the Riemann invariants:

‖Φ±(W
n+1
c )‖∞ 6 En

±. (DMP)

(3a) If (DMP) holds, then set the numerical solutionWn+1 equal to the candidate solutionWn+1
c .

(3b) Otherwise, compute the numerical solution Wn+1 with the TVDp scheme.

(4) Update the detection criterion with En+1
± = ξ‖Φ±(W

n+1)‖∞ + (1− ξ)En
±.

Remark that, compared toAlgorithm 7, the detection criterion is relaxedwith a convex combination
of parameter ξ ∈ [0, 1] between the current solution and the previous time steps. This allows a finer
control over how oscillatory we allow the MOOD solution to be. Indeed, the closer ξ is to 0, the
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less permissive the MOOD procedure will be of small oscillations. Unless otherwise specified, we
take ξ = 1

2 in the following experiments.
Regarding the space discretisation, we focus on the finite volume scheme proposed in [10], which

has been built to ensure the L∞ stability on a linearized version of (5.6), at the cost of some extra
numerical viscosity. For the sake of conciseness, we do not rewrite this space discretisation here; the
reader is referred to [10, 9] for more information. This space-time discretisation allows us to take a
time step constrained by

∆t 6 C
∆x

2maxj uj
,

which does not depend on the Mach number M, unlike in the case of classical explicit schemes.
Equipped with the IMEXp, TVDp and MOODp schemes for the isentropic Euler equations, we

now apply them, first to a smooth solution to test the order of accuracy of the schemes, and then to a
discontinuous solution to test the TVD property. For the sake of conciseness, we only display the
results of the IMEX3(4), TVD3(4) and MOOD3(4) schemes, but the conclusions hold for the other
schemes tested in Section 5.3. In addition, we compare our results to those of the TVD2 and MOOD2

schemes, which were introduced and used in [9].
In the following experiments, we prescribe homogeneous Neumann boundary conditions on the

space domain (0, 1).

5.4.1 Order of accuracy

We have shown in Section 5.3.2 that the schemes, applied to the model problem, exhibit the
expected order of accuracy. We now compute the order of accuracy of our schemes in this context of
the isentropic Euler equations. To that end, we consider the procedure proposed in [37] and used
in [9]. To obtain an exact solution, we choose the well-prepared initial condition

ρ(0, x) = 1−
M2

2
ω

(
4

(
x−

1

2

))
and u(0, x) = 1+

M2

2
ω

(
4

(
x−

1

2

))
,

where ω is a classical compactly supported smooth function, given by

ω(z) =

exp
(
1−

1

1− z2

)
if z < 1,

0 otherwise.

To compute the exact solution at time t, one needs to consider γ = 3 and follow the Riemann invariants.
The procedure is explained in detail in the two references above, and we do not repeat it here.

In Figures 14 and 15, we report at the final time tend = 0.03M the L∞ errors produced on ρ and
ρu by the four schemes forM = 1 andM = 10−2 respectively. The schemes behave as expected, i.e.
as they did in the toy problem case.

5.4.2 Approximation of a Riemann problem

Next, we apply the schemes to the approximation of a discontinuous solution. In this context
of the isentropic Euler equations, we propose a simulation of the following Riemann problem with
well-prepared initial data: ρ(x, 0) =

{
1+M2 if x < 0.5,
1 otherwise,

(ρu)(x, 0) = 0.25.

(5.10)
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Figure 14: Error lines in L∞ norm for the smooth solution described in Section 5.4.1, with M = 1

and using the IMEX1, TVD2, MOOD2, IMEX3(4), TVD3(4), and MOOD3(4) schemes. Left panel:
density ρ; right panel: momentum ρu.
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Figure 15: Error lines in L∞ norm for the smooth solution described in Section 5.4.1, with M = 10−2

and using the IMEX1, TVD2, MOOD2, IMEX3(4), TVD3(4), and MOOD3(4) schemes. Left panel:
density ρ; right panel: momentum ρu.

We take γ = 1.4 and we compute the solution until the final time tend = 0.15M. Also, to eliminate
more oscillations, we take ξ = 1

20 forM = 1. The approximations are depicted in Figures 16 and 17
for, respectively, M = 1 with N = 50, and M = 10−2 with N = 2500. We have elected to represent
only the MOOD2 and MOOD3(4) results for the sake of clarity in the figures.

Similar conclusions as in Section 5.3.3 are drawn from this experiment. Note that the IMEX3(4)
result is not displayed in Figure 17, since it is too oscillatory. In addition, forM = 1 andM = 10−2,
the MOOD procedure is activated respectively on 51% and 50% of time iterations. This observation
is explained by the fact that the IMEX3(4) scheme is quite oscillatory, and its oscillations have to
be countered by the MOOD procedure. The share of iterations where the MOOD procedure was
activated could be lowered by basing the MOOD procedure on a less oscillatory third-order IMEX
scheme than the IMEX3(4) scheme.
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Figure 16: Approximation of the solution to the Riemann problem (5.10) at time tend withM = 1,
N = 50, and using the IMEX1, MOOD2, IMEX3(4) and MOOD3(4) schemes. Left panel: density ρ;
right panel: momentum ρu.
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Figure 17: Approximation of the solution to the Riemann problem (5.10) at time tend withM = 10−2,
N = 2500, and using the IMEX1, MOOD2, and MOOD3(4) schemes. Left panel: density ρ; right
panel: momentum ρu.

Also, remark that our newMOOD3(4) scheme is more accurate than theMOOD2 scheme from [9],
as evidenced by the two zooms on the momentum shock wave, especially forM = 10−2, displayed in
Figure 17, where we observe a significant improvement in the shock profile, as well as in the reduction
of oscillations.

Furthermore, as expected, these schemes allow us to use a time step much larger than classical
explicit schemes when the Mach number is low. Indeed, forM = 1, we get a time step of the same
order as the classical one, whereas in the low Mach number regime where M = 10−2, we can use the
time step ∆t ' 1.9× 10−4, which is about 102 = 1

M times larger than the classical explicit scheme
with ∆t ' 8.3× 10−7.
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6 Conclusions and future work

We have presented a new approach to construct high-resolution TVD IMEX-RK schemes for
multi-scale equations which are computationally efficient. Motivated by the order barrier for uncondi-
tionally stable implicit and conditionally stable IMEX Runge schemes that only have a CFL restriction
depending on the explicitly treated terms, we introduced a new class of TVD schemes consisting of a
convex combination with a first-order TVD IMEX scheme and a high-order IMEX RK scheme. Even
if the TVD property is not satisfied by the high-order schemes for regions with discontinuities, as
displayed in Figures 10 and 12, it is verified in smooth enough regions. To recover accuracy in such
regions, we have combined our first-order TVD schemes with a MOOD procedure. In Figures 8, 9, 11
and 13, we saw that our schemes perform well when compared with schemes from the literature.
Due to having the option of taking large time steps, the schemes are suitable for applications where
the focus of the numerical solution is on the usually slow explicitly treated dynamics, with the
added flexibility of ensuring the L∞ stability for various CFL restrictions, as seen in Table 2. Finally,
we successfully applied the schemes to the isentropic Euler equations, which confirmed that our
approach improved on previous results from [9], especially for small Mach numbers.

In this paper, the focus was to give a theoretical justification of our TVD approach by means of
studying a one dimensional linear scalar equation. The application to the isentropic Euler system
confirmed the validity of our approachwhen applied to non-linear systems, and showed an increase in
precision and stability compared to the existing scheme in [9]. However, here, we did not consider the
problematic of scale dependent diffusion and multi-dimensional problems, which will be addressed
in future work.
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A Proving the incompatibility of high-order TVD IMEX schemes with
large time steps

We write the IMEX update (2.3) as a convex combination of forward and backward Euler steps,
in the notation of [34, 15], as

wn+1 = (1− h)

i−1∑
k=0

(
αikw

(k) +∆t
β̃ik

1− h
cmw

(k)
x

)
+ h

(
i−1∑
k=0

αikw
(k) +∆t

βi

h

ca

ε
w

(i)
x

)
, (A.1)

where h ∈ (0, 1) and the weights αik > 0 fulfilling
∑

αik = 1. We assume βi > 0 and β̃ik > 0

without loss of generality. Indeed, negative βi or β̃ik could still yield a TVD scheme, by changing the
upwinding direction in the discretisation of the derivatives wx, as suggested in [15]. For simplicity,
we also assume without loss of generality, in accordance with [15], that the non-diagonal entries of
the implicit Butcher tableau are zero. We immediately see from (A.1) that the explicit part is a convex
combination of TVD forward Euler (fE) steps, and is thus TVD under the CFL restriction

∆t 6 (1− h) min
(
αik

β̃ik

)
∆tfE (A.2)
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where the minimum is set to infinity if β̃ik = 0. In [15], it was shown that a necessary condition for
the TVD property is that all weights αik have to be positive while satisfying the order conditions.
Unfortunately, the authors prove in the same work that this is impossible for implicit schemes with
order p > 2 which do not require a CFL condition. Analogously, we show that this result still holds
for the IMEX update (A.1) under the scale-independent CFL condition (A.2).

Proposition 10. For an IMEX-RK update (A.1), under a scale-independent CFL condition (A.2) of order
p > 2, there is at least one negative αik.

Proof. The order conditions for high-order RK schemes are included in the compatibility conditions
for higher order IMEX-RK schemes. The second-order conditions read for the implicit part of (A.1) as

i−1∑
k=0

αik = 1, Xs = h, Ys =
1

2
h2, (A.3)

where h ∈ (0, 1), and where Xs, Ys are defined recursively by

X1 = β1, Y1 = β2
1, Xs = βs +

s−1∑
i=1

αsiXi, Ys = βsXs +

s−1∑
i=1

αsiYi.

Following the proof in [15], we show now that, if αik > 0 for all i,k, then we get

hXs − Ys <
1

2
h2,

which contradicts (A.3). This contradiction is shown by using the formula

(1− ζ)hXs − Ys 6 τs(1− ζ)2

with arbitrary ζ ∈ R and

0 < τ1 =
1

4
h2, τs =

h4

4(h2 − τs−1)
. (A.4)

This estimate is shown by induction following the steps given in [15]. From (A.4), we find

0 < τ1 =
1

4
h2 < . . . < τs <

1

2
h2

which completes the proof.

B On the incompatibility of BDF with TVD

Using for instance a second order Backward-Differencing-Formula (BDF), see [1], to approximate
the implicit derivative, leads to

∂w(x, t)
∂x

≈ 1

∆x

(
3wj − 4wj−1 +wj−2

)
, (B.1)

while the third-order BDF approximation is given by

∂w(x, t)
∂x

≈ 1

∆x

(
11

6
wj − 3wj−1 +

3

2
wj−2 −

1

3
wj−3

)
. (B.2)
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Using the second-order BDF (B.1) in the first step of the scheme (3.2), we get

w
(2)
j + µε

a22

2

(
3w

(2)
j − 4w

(2)
j−1 +w

(2)
j−2

)
= wn

j − λa22∆
n
j .

Following the proof from Lemma 1, we have

‖wn‖∞ > max
j

∣∣∣∣(1+ µε
3a22

2

)
w

(2)
j − µε

a22

2

(
4w

(2)
j−1 −w

(2)
j−2

)∣∣∣∣
>

(
1+ µε

3a22

2

)
‖w(2)‖∞ − µε

a22

2
max

j

∣∣∣4w(2)
j−1 −w

(2)
j−2

∣∣∣
To complete this step we need

max
j

∣∣∣4w(2)
j−1 −w

(2)
j−2

∣∣∣ 6 4‖w(2)‖∞ − ‖w(2)‖∞ (B.3)

which is a contradiction to the inverse triangular equation. Therefore using a second-order BDF does
not lead to a TVD scheme. We can even extend this observation to a BDF of general order. As it is
derived to match the Taylor series expansion up to an order p, its general form has alternating signs,
and it can be written using p+ 1 coefficients κi > 0, i = 0, . . . ,p, as in [1]

∂w(x, t)
∂x

≈ κ0wj − κ1wj−1 + κ2wj−2 − . . .+ κpwj−p (B.4)

for an approximation of order p, where we have taken an even p for the moment. We use the BDF
described by (B.4) for the approximation of the implicit space derivative, and we find in the estimate
for the L∞ stability:

‖wn‖∞ > max
j

∣∣∣(1+ µεa22κ0)w
(2)
j − µεa22

(
κ1w

(2)
j−1 − κ2w

(2)
j−2 + κ3w

(2)
j−3 − . . .− κmw

(2)
j−m

)∣∣∣
> (1+ µεa22κ0) ‖w(2)‖∞ − µεa22 max

j

∣∣∣κ1w(2)
j−1 − κ2w

(2)
j−2 + κ3w

(2)
j−3 − . . .− κmw

(2)
j−m

∣∣∣
> (1+ µεa22κ1) ‖w(2)‖∞ − µεa22 max

j

∣∣∣κ1w(2)
j−1 − κ2w

(2)
j−2

∣∣∣− . . .

− µεa22 max
j

∣∣∣κp−1w
(2)
j−p−1 − κpw

(2)
j−p

∣∣∣ .
Analogously to (B.3), to achieve the right estimate, the inverse triangular inequality would be violated.
The case of an odd p also fails.

C On non-CK IMEX schemes

Consider the following Butcher tableaux, defining an IMEX scheme in non-CK, non-ARS form:

explicit:

0 0 0 · · · 0

c̃2 ã21 0 · · · 0
...

... . . . . . . ...
c̃s ãs1 · · · ãs,s−1 0

b̃1 · · · b̃s−1 b̃s

implicit:

c1 a11 0 · · · 0

c2 a21 a22 · · · 0
...

...
... . . . ...

cs as1 as2 · · · ass

b1 b2 · · · bs

. (C.1)

We derive stability conditions analogous to Theorem 4 for this case where the first column of the
implicit tableau is non-zero. After lengthy computations, we get the following result:
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Theorem 11. Let Ã,A ∈ Rs×s, b̃,b, c̃, c ∈ Rs define two Butcher tableaux (C.1) fulfilling (2.6) and the
p-th order compatibility conditions. Let b̃ and b coincide with the last rows of Ã and A respectively. For
k = 1, . . . , s and l = 1, . . . ,k− 1, we define

Ak = θkakk + (1− θk)ck, Ãk = (1− θk)c̃k, Bkl =
θkakl

Al
, B̃kl = θkãkl.

In addition, we recursively define the following expressions:

C̃k = Ãk −

k−1∑
l=2

BklC̃l, D̃kl = B̃kl −

k−1∑
r=l+1

BkrD̃rl,

Ck = 1−

k−1∑
l=1

BklCl, Dkl = Bkl −

k−1∑
r=l+1

BkrDrl.

Then, under the following restrictions for k = 1, . . . , s and l = 1, . . . ,k− 1,

Ak > 0, 0 6 λC̃k 6 Ck, 0 6 λD̃k,l 6 Dk,l,

the scheme consisting in the convex combination based on the Butcher tableaux (C.1), combined with a TVD
limiter, is L∞ stable and TVD under a CFL condition determined by λ > 0 where λ does not depend on ε.

Whenperforming numerical experiments, we observe that the results of schemes derived under the
conditions of Theorem 11 are not as compelling as results of schemes obeying Theorem 4. Therefore,
we do not include such schemes in the numerical experiments, but we still state Theorem 11 for the
sake of completeness.

D TVD2(3)

For the TVD2(3) scheme, define a32 = 0.3280595784620364 and a33 = 0.3386070882046304. Then,
the Butcher tableaux are given by:

explicit:

0 0 0 0

1�3
1�3 0 0

2�3 a32 a33 0

0 1�2
1�2

, implicit:

0 0 0 0

1�3 0 1�3 0

2�3 0 a32 a33

0 1�2
1�2

.

E TVD3(4)

For the TVD3(4) scheme, the explicit Butcher tableau is given by:

0 0 0 0 0

0.2049503677289891 0.2049503677289891 0 0 0

0.4173127343286904 0.2123925641886599 0.2049201701400305 0 0

0.9048203025659662 −0.4501877125339555 0.3955748607480934 0.9594331543518283 0

0 0.3354718384287510 0.3487815573407456 0.3157466042305059

,
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while the implicit Butcher tableau is given as follows:

0 0 0 0 0

0.2049503677289891 0 0.2049503677289891 0 0

0.4173127343286904 0 0.2040104873103189 0.2133022470183705 0

0.9048203025659662 0 0.3991926529002874 0.4115004113464103 0.0941272383192684

0 0.3354718384287510 0.3487815573407456 0.3157466042305059

.
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