# Simulating SAR images clutter with a sum of scatterers

Jo

#### Flora Weissgerber, Nicolas Trouvé

ONERA Département Electromagnétisme et Radar Unité Simulation, Environment et Modélisation

26/09/2019



# Introduction Plan

### 1. Introduction

- What do we want to simulate
- How do we want to simulate it
- How do we validate the simulation

## 2. Diversity from the modulus distribution

- 3. Diversity from the location
- 4. Diversity from altitude
- 5. Conclusion



# Introduction Example 1

#### What do we want to simulate



## Salon de Provence, SETHI, ONERA

- Fields with oriented structure
- Small woods and trees



#### What do we want to simulate

# Example 2



### Salon de Provence, SETHI, ONERA

- Orchards
- Grass
- Altitude effects



What do we want to simulate

## Parameters we want to retrieve

• Mean Power or mean  $\sigma_0$ 





Distribution of power and phase



 $\blacksquare$  Texture or pattern  $\rightarrow$  pixel combined 2D-distribution



#### How do we want to simulate it

# Coherent sum of scatterers

- $N_s$  scatterers defined by :
  - A position (x, y, z)
  - A complexe amplitude *re<sup>iφ</sup>*
  - A phase due to their distance to the sensor

A sensor :

- Height H = 514km
- Incidence angle  $\theta = 34$
- f = 9.65 GHz,  $\lambda = 0.031$  m
- Orientation angle  $\theta_s$





#### How do we want to simulate it

# Impact of the orientation $\theta_s$



Changing the orientation angle changes the wavefront direction



A sum of a large amount of scatterers in a resolution cell which :

- amplitude r and phase  $\varphi$  are statistically independent
- phase  $\varphi$  is equi-distributed on an  $2\pi$  interval.

result is a complex circular Gaussian distribution (Goodman, 1976).

$$\mathsf{P} = \rho e^{i\phi} \sim \frac{1}{\pi 2\sigma_r^2} e^{\frac{\mathsf{P}\mathsf{P}^*}{2\sigma_r^2}}$$

 $\sigma_{\rm r}$  is the second moment of the scatterers modulus distributions.

- Pixel phase is uniformly distributed on a  $2\pi$ -interval
- Pixel modulus is Rayleigh-distributed





In the case of fully developped speckle :

| Indicators        | Formula                                                  | Value                                       |                       |
|-------------------|----------------------------------------------------------|---------------------------------------------|-----------------------|
| Cv                | $\frac{\sigma}{\mu}$                                     | $\sqrt{\frac{4-\pi}{\pi}} \approx 0.522723$ |                       |
| κ <sub>2</sub>    | $	ilde{m}_2 - 	ilde{m}_1^2$                              | $rac{1}{4}\Psi(1,1) pprox 0.411234$        | (Nicolas, 2002)       |
| $	ilde{\kappa}_3$ | $\tilde{m}_3 - 3\tilde{m}_1\tilde{m}_2 + 2\tilde{m}_1^3$ | $rac{1}{8}\Psi(2,1)\ pprox -0.300514$      | (Nicolas, 2002)       |
| R                 | $E[e^{i\phi}]$                                           | 0                                           | (Mardia & Jupp, 1999) |

How many scatterers do we need to get fully developped speckle depending on :

- Modulus distribution
- Position of the scatterers



# Diversity from the modulus distribution Plan

### 1. Introduction

What do we want to simulate
How do we want to simulate it
How do we validate the simulatio

## 2. Diversity from the modulus distribution

- 3. Diversity from the location
- 4. Diversity from altitude
- 5. Conclusion



- Phase  $\phi$  uniformly distributed on a  $2\pi$  interval
- x and y uniformly distributed in the resolution cell
- *z* = 0
- $\blacksquare \mathsf{Modulus} \ \rho$ 
  - Constant, with a value of  $\sqrt{2}\sigma_r$
  - 2 Gaussian, following  $|\mathcal{N}(0,\sqrt{2}\sigma_r)|$
  - Uniform, on a [0,  $\sqrt{6}\sigma_r$ ] interval
- Increasing the number of scatterers N<sub>s</sub>



# Diversity from the modulus distribution Constant modulus



ONERA

- Phase is uniformly distributed on the  $2\pi$ -interval
- For  $N_s$  larger than 7, the modulus has a Rayleigh distribution

# Diversity from the modulus distribution Gaussian modulus



ONFR

- Phase is uniformly distributed on the  $2\pi$ -interval
- For  $N_s$  larger than 4, the modulus has a Rayleigh distribution

# Diversity from the modulus distribution Uniform modulus



Phase is uniformly distributed on the  $2\pi$ -interval

For  $N_s$  larger than 3, the modulus has a Rayleigh distribution

 $\rightarrow$  When the scatterers phase is uniformly distributed on the  $2\pi\text{-interval}$ , diversity on the scatterers modulus decrease the number of scatterers needed in a resolution cell

ONFRA

# Diversity from the location Plan

#### 1. Introduction

What do we want to simulate
How do we want to simulate it
How do we validate the simulation

### 2. Diversity from the modulus distribution

- 3. Diversity from the location
- 4. Diversity from altitude
- 5. Conclusion



- $\blacksquare$  Phase  $\phi$  of the scatterers is equal to 0
- Modulus  $\rho$  of the scatterers is constant
- *z* = 0
- x and y :
  - Uniformly distributed in the resolution cell
  - Oistributed on a sparse grid
- Increasing the number of scatterers  $N_s$
- $\blacksquare$  Changing the orientation  $\theta_s$  of the wavefront toward the resolution cell



# Diversity from the location Uniformly distributed x and y



Result similar to the phase randomly distributed on a  $2\pi$ -interval.

- There is  $N_{\varphi} = 36$  phase cycles projected onto the resolution cell
- $\rightarrow$  The scatterers sample uniformly the wavefront

# Diversity from the location Target distributed on a grid

- The grid is sampling the wavefront
- The orientation angle \(\theta\_s\) influences the sampling

**Full grid**: the number of nodes is  $N_s$ 

Their is no randomness

Sparse grid:  $N_s = 9$ , 90 nodes on the grid









ONFRA

# Diversity from altitude Plan

#### 1. Introduction

What do we want to simulate
How do we want to simulate it
How do we validate the simulation

### 2. Diversity from the modulus distribution

- 3. Diversity from the location
- 4. Diversity from altitude

## 5. Conclusion



- $\blacksquare$  Phase  $\phi$  of the scatterers is equal to 0
- $\blacksquare$  Modulus  $\rho$  of the scatterers is constant
- x and y are distributed on a regular full grid
- z Uniformly distributed between  $[-z_{max}, z_{max}]$
- Increasing the number of scatterers  $N_s$
- $\blacksquare$  Changing the orientation  $\theta_s$  of the wavefront toward the resolution cell

At constant location,  $z \in [-2, 2]$ *cm* to get  $\varphi \in [-\pi, \pi]$ .

On a regular grid, the position (x, y) also sample the wavefront.  $z \in [-1, 1]$  cm can result in a fully developped speckle for some grid orientation.





# Diversity from altitude Seamless heightmap

Set up :

- Modulus  $\rho$  given by a  $\sigma_0$  curve (given the local incidence)
- Height z given by a seamless heightmap
- x and y resolution is 25cm
- Scatterers summed in the SAR grid



 $\sigma_0$  curve "forage crop"



# Diversity from altitude The seamless heightmap



ONERA

# Diversity from altitude The seamless heightmap

Flora Weissgerber - 26/09/2019 - Simulation of SAR images clutter

25/30





ONERA













What do we want to simulate
How do we want to simulate it
How do we validate the simulation

### 2. Diversity from the modulus distribution

- 3. Diversity from the location
- 4. Diversity from altitude

## 5. Conclusion



## Conclusion Diversity of the phase is key

- For a phase uniformly distributed on a 2π-interval, very few scatterers can lead to a fully developped speckle
- Increasing the variability of the modulus decreases the number of scatterers needed
- The uniform distribution of the phase can arise :
  - From a random (x, y) position
  - From a random altitude *z*
- ▲ If the phase of the scatterers is only due to their distance to the sensor, a (*x*, *y*) position given by a grid can lead to a unique value for the phase
- ▲ Introducing an angle  $\theta_s$  between the sensor trajectory and the vector of the grid can help to retrieve phase diversity
- A textured heightmap is a mean to lead to a textured ground clutter



Cochin, C., Le Hellard, D., Aubineau, F., & Gosselin, P. (2008). {MOCEM:} An 'all in one tool' to simulate {SAR} image. In 7th european conference on synthetic aperture radar. Farina, a., Russo, a., & Studer, F. (1986). Coherent radar detection in log-normal clutter. IEE Proceedings F Communications, Radar and Signal Processing, 133(1), 39. doi: 10.1049/ip-f-1.1986.0009 Goodman, J. W. (1976). Some fundamental properties of speckle. Journal of the Optical Society of America, 66(11), 1145–1150. Hammer, H., & Schulz, K. (2009). Coherent simulation of SAR images. In Image and signal processing for remote sensing xv. Retrieved from http://proceedings.spiedigitallibrary.org/ proceeding.aspx?doi=10.1117/12.830380 doi: 10.1117/12.830380 Mardia, K. V., & Jupp, P. E. (1999). Directional Statistics. Wiley.

Nicolas, J.-M. (2002). Introduction aux statistiques de deuxième espèce: applications des logs-moments et des logs- cumulants à l'analyse des lois d'images radar. <u>Traitement du Signal</u>, <u>19</u>(3), 139–167.
Oliver, C. J. (1987). On the simulation of coherent clutter textures with arbitrary spectra. Inverse Problems, 3(3), 463–475. doi:

10.1088/0266-5611/3/3/014

