Simulating SAR images clutter with a sum of scatterers

Flora Weissgerber, Nicolas Trouvé
ONERA
Département Electromagnétisme et Radar Unité Simulation, Environment et Modélisation

26/09/2019

Plan

1. Introduction

- What do we want to simulate
- How do we want to simulate it
- How do we validate the simulation

2. Diversity from the modulus distribution

3. Diversity from the location
4. Diversity from altitude
5. Conclusion

Example 1

Salon de Provence, SETHI, ONERA

- Fields with oriented structure
- Small woods and trees

Example 2

Salon de Provence, SETHI, ONERA

- Orchards
- Grass
- Altitude effects

Parameters we want to retrieve

- Mean Power or mean σ_{0}

Toulon, TerraSAR-X, LAN3628

- Distribution of power and phase

- Texture or pattern \rightarrow pixel combined 2D-distribution

Coherent sum of scatterers

N_{s} scatterers defined by :

- A position (x, y, z)
- A complexe amplitude $r e^{i \varphi}$
- A phase due to their distance to the sensor

A sensor :

- Height $H=514 \mathrm{~km}$
- Incidence angle $\theta=34$

■ $f=9.65 \mathrm{GHz}, \lambda=0.031 \mathrm{~m}$

- Orientation angle θ_{s}

$$
\mathrm{P}=\rho e^{i \phi}=\frac{1}{\sqrt{N_{s}}} \sum_{n=1}^{N_{s}} r_{n} e^{i \varphi_{n}}
$$

Impact of the orientation θ_{s}

90 degrees

126 degrees

180 degrees

Changing the orientation angle changes the wavefront direction

Fully developped Speckle

A sum of a large amount of scatterers in a resolution cell which:
■ amplitude r and phase φ are statistically independent
■ phase φ is equi-distributed on an 2π interval.
result is a complex circular Gaussian distribution (Goodman, 1976).

$$
\mathrm{P}=\rho e^{i \phi} \sim \frac{1}{\pi 2 \sigma_{r}^{2}} e^{\frac{\mathrm{pP} *}{2 \sigma_{r}^{2}}}
$$

σ_{r} is the second moment of the scatterers modulus distributions.

■ Pixel phase is uniformly distributed on a 2π-interval
■ Pixel modulus is Rayleigh-distributed

Quality indicators

In the case of fully developped speckle:

Indicators	Formula	Value	
c_{v}	$\frac{\sigma}{\mu}$	$\sqrt{\frac{4-\pi}{\pi}}$	
		≈ 0.522723	
$\tilde{\kappa}_{2}$	$\tilde{m}_{2}-\tilde{m}_{1}^{2}$	$\frac{1}{4} \Psi(1,1)$	(Nicolas, 2002)
	$\tilde{\kappa}_{3} 0.411234$		
R	$\tilde{m}_{3}-3 \tilde{m}_{1} \tilde{m}_{2}+2 \tilde{m}_{1}^{3}$	$\frac{1}{8} \psi(2,1)$	(Nicolas, 2002)
	$E\left[e^{i \phi}\right]$	0	
R		(Mardia \& Jupp, 1999)	

Question

How many scatterers do we need to get fully developped speckle depending on :

- Modulus distribution
- Position of the scatterers

Diversity from the modulus distribution

Plan

1. Introduction

- What do we want to simulate
- How do we want to simulate it
- How do we validate the simulation

2. Diversity from the modulus distribution
3. Diversity from the location
4. Diversity from altitude
5. Conclusion

Set up of the experiment

- Phase ϕ uniformly distributed on a 2π interval

■ x and y uniformly distributed in the resolution cell

- $z=0$
- Modulus ρ
(1) Constant, with a value of $\sqrt{2} \sigma_{r}$
(2) Gaussian, following $\left|\mathcal{N}\left(0, \sqrt{2} \sigma_{r}\right)\right|$
(3) Uniform, on a $\left[0, \sqrt{6} \sigma_{r}\right]$ interval

■ Increasing the number of scatterers N_{s}

Constant modulus

- Phase is uniformly distributed on the 2π-interval
- For N_{s} larger than 7, the modulus has a Rayleigh distribution

Gaussian modulus

- Phase is uniformly distributed on the 2π-interval
- For N_{s} larger than 4, the modulus has a Rayleigh distribution

Uniform modulus

- Phase is uniformly distributed on the 2π-interval
- For N_{s} larger than 3, the modulus has a Rayleigh distribution
\rightarrow When the scatterers phase is uniformly distributed on the 2π-interval, diversity on the scatterers modulus decrease the number of scatterers needed in a resolution cell

Diversity from the location

Plan

1. Introduction

- What do we want to simulate
- How do we want to simulate it
- How do we validate the simulation

2. Diversity from the modulus distribution
3. Diversity from the location
4. Diversity from altitude
5. Conclusion

Diversity from the location

Set up of the experiment

■ Phase ϕ of the scatterers is equal to 0

- Modulus ρ of the scatterers is constant
- $z=0$
- x and y :
(1) Uniformly distributed in the resolution cell
(2) Distributed on a sparse grid
- Increasing the number of scatterers N_{s}
- Changing the orientation θ_{s} of the wavefront toward the resolution cell

Uniformly distributed x and y

■ Result similar to the phase randomly distributed on a 2π-interval.
■ There is $N_{\varphi}=36$ phase cycles projected onto the resolution cell
\rightarrow The scatterers sample uniformly the wavefront

Diversity from the location

Target distributed on a grid

- The grid is sampling the wavefront
- The orientation angle θ_{s} influences the sampling

Full grid: the number of nodes is N_{s}

- Their is no randomness

Sparse grid: $N_{s}=9,90$ nodes on the grid

$$
\theta_{s}=270
$$

All the scatterers have the same phase

$$
\theta_{s}=126
$$

Diversity from altitude Plan

1. Introduction

- What do we vant to simulate
- How do we want to simulate it
- How do we validate the simulation

2. Diversity from the modulus distribution
3. Diversity from the location
4. Diversity from altitude
5. Conclusion

Set up of the experiment

- Phase ϕ of the scatterers is equal to 0
- Modulus ρ of the scatterers is constant
- x and y are distributed on a regular full grid
- z Uniformly distributed between $\left[-z_{\max }, z_{\max }\right]$
- Increasing the number of scatterers N_{s}
- Changing the orientation θ_{s} of the wavefront toward the resolution cell

Random scatterers height

At constant location, $z \in[-2,2] c m$ to get $\varphi \in[-\pi, \pi]$.
On a regular grid, the position (x, y) also sample the wavefront. $z \in[-1,1] \mathrm{cm}$ can result in a fully developped speckle for some grid orientation.

$$
\theta_{s}=126, N_{s}=9
$$

Seamless heightmap

Set up :

- Modulus ρ given by a σ_{0} curve (given the local incidence)
- Height z given by a seamless heightmap
- x and y resolution is 25 cm
- Scatterers summed in the SAR grid

$$
\sigma_{0} \text { curve "forage crop" }
$$

θ

Diversity from altitude

The seamless heightmap

Normal

Diversity from altitude The seamless heightmap

Amplitude

Number of scatterers

Diversity from altitude

The seamless heightmap

Amplitude histogram

Phase histogram

Plan

1. Introduction- What do we want to simulate- How do we want to simulate it- How do we validate the simulation
2. Diversity from the modulus distribution
3. Diversity from the location
4. Diversity from altitude
5. Conclusion

Diversity of the phase is key

- For a phase uniformly distributed on a 2π-interval, very few scatterers can lead to a fully developped speckle
- Increasing the variability of the modulus decreases the number of scatterers needed
- The uniform distribution of the phase can arise :
- From a random (x, y) position
- From a random altitude z
© If the phase of the scatterers is only due to their distance to the sensor, a (x, y) position given by a grid can lead to a unique value for the phase
© Introducing an angle θ_{s} between the sensor trajectory and the vector of the grid can help to retrieve phase diversity
- A textured heightmap is a mean to lead to a textured ground clutter

Bibliography

Cochin, C., Le Hellard, D., Aubineau, F., \& Gosselin, P. (2008). \{MOCEM:\} An 'all in one tool' to simulate \{SAR\} image. In 7th european conference on synthetic aperture radar.
Farina, a., Russo, a., \& Studer, F. (1986). Coherent radar detection in log-normal clutter. IEE Proceedings F Communications, Radar and Signal Processing, $133(1)$, 39. doi: 10.1049/ip-f-1.1986.0009
Goodman, J. W. (1976). Some fundamental properties of speckle. Journal of the Optical Society of America, 66(11), 1145-1150.
Hammer, H., \& Schulz, K. (2009). Coherent simulation of SAR images.
In Image and signal processing for remote sensing xv. Retrieved from http://proceedings.spiedigitallibrary.org/ proceeding.aspx?doi=10.1117/12.830380 doi: 10.1117/12.830380

Mardia, K. V., \& Jupp, P. E. (1999). Directional Statistics. Wiley.

Bibliography II

Nicolas, J.-M. (2002). Introduction aux statistiques de deuxième espèce: applications des logs-moments et des logs- cumulants à l'analyse des lois d'images radar. Traitement du Signal, 19(3), 139-167.
Oliver, C. J. (1987). On the simulation of coherent clutter textures with arbitrary spectra. Inverse Problems, 3(3), 463-475. doi: 10.1088/0266-5611/3/3/014

