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Ultra-high-throughput EMS NB-LDPC decoder with
full-parallel node processing

Hassan Harb, Ali Chamas Al Ghouwayel, Laura Conde-Canencia, Cédric Marchand and Emmanuel Boutillon

Abstract—This paper presents an ultra-high-throughput de-
coder architecture for NB-LDPC codes based on the Hybrid
Extended Min-Sum algorithm. We introduce a new processing
block that updates a check node and its associated variable nodes
in a fully pipelined way, thus allowing the decoder to process
one line of the parity check matrix per clock cycle. The work
specifically focuses on a rate 5/6 code of size (N,K) = (144, 120)
symbols over GF(64). The synthesis results on 28-nm technology
show that the proposed architecture improves the throughput
efficiency of the state of the art by a factor greater than 10.
The architecture reaches a throughput above 10 Gb/s for SNR
values greater than 5 dB. Compared to a 5G binary LDPC code
of same size and code rate, the proposed architecture offers a
gain of 0.3 dB at a Frame Error Rate of 10−3. The proposed
architecture reduces the required memory bandwidth by almost
50 % compared to a classical LDPC code. We also provide a
detailed comparison with competitive state-of-the-art NB-LDPC
decoder implementations in terms of performance, surface and
decoding throughput are given.

Index Terms—Channel coding, decoder implementation, ASIC,
non-binary LDPC, Min-Sum, parity check.

I. INTRODUCTION

NON-Binary (NB) Low-Density Parity-Check (LDPC)
codes allow to close the performance gap with the

Shannon limit [1] when using small or moderate frame lengths.
They are defined on high order Galois Fields (GF) of order
q with q > 2 and have been proven to be more robust
than convolutional turbo-codes and binary LDPC codes [2].
However, even if they present numerous advantages (see [3]
[4]) their main drawback is complexity, which is challenging at
the receiver side. In NB-LDPC decoders, the direct application
of the Belief Propagation (BP) [5] algorithm leads to O(q2)
complexity and is thus prohibitive for q > 16. A consid-
erable amount of work has then been dedicated to reduce
the complexity of decoding algorithms and their associated
architectures ([6] [7] [8], among others), with a special focus
on the Check Node (CN) processing which is the major
bottleneck in NB-LDPC decoders.

This work particularly focuses on the Extended Min-Sum
(EMS) algorithm [9] [10] as it currently continues to present
one of the most competitive complexity/performance trade-
offs [11] [12]. For the EMS CN implementation, the Forward-
Backward (FB) approach was introduced in [12] as a serial
concatenation of Elementary CNs (ECNs). This structure
suffers from high latency and low decoding throughput. Other
approaches were proposed (e.g., the Trellis-EMS (T-EMS)
[13]) to reduce latency. However, the T-EMS presents a
complexity that increases with q when parallel implementation
is considered. This complexity was reduced with the one-

minimum T-EMS [14] and the Trellis Min-Max (T-MM) [15]
[16] algorithms.

In this paper we show how some innovative ideas have
significantly enhanced prior designs [4] [17]. This prior work
includes the Syndrome-based algorithm [18] that efficiently
performed parallel CN computations for q ≥ 16 and was
initially considered for implementing a GF(256) CN processor
with a CN degree dc = 4 [19]. However, its complexity
is dominated by the number of computed syndromes which
increases quadratically with dc. This limits its interest for
high coding rates (i.e., high dc values). A solution was then
proposed based on sorting the input vectors according to a
reliability criteria [20] [21] to significantly reduce the CN
hardware complexity without affecting performance. This so-
called presorting technique was applied to the syndrome-based
architecture in [20] and to the FB architecture in [21]. A
hybridization of those two architectures was presented in [17]
for high q and dc values.

In this paper we consider the work in [17] to design a
pipelined decoder that significantly outperforms the state of
the art in terms of throughput and efficiency. The design
includes the presorting technique and an innovative unit that
processes both the CNs and Variable Nodes (VN). For the
practical description of the decoder we consider a specific code
but the new proposed principles can be easily generalized to
any NB-LDPC code, knowing that its benefits are specially
interesting for high rates. We synthesized the decoder on
28-nm technology and performed a detailed study of its
throughput and efficiency for comparison with the state of the
art. Our design reaches a decoding throughput above 10 Gbit/s
for a CN degree of order 12, which represents a significant
gain compared to [17]. In terms of throughput efficiency (i.e.,
throughput per gate ratio), the gain factor is in the order of 6
(for low SNR values) and up to 100 (for high SNR values).
This improvement in terms of throughput efficiency is also
helped by the processing of two frames concurrently at the
cost of the duplication of the memory banks.

The paper is organized as follows: Section II introduces
notation, NB-LDPC codes, the principles of the EMS algo-
rithm and the structure of the code considered in this work.
Section III recalls the presorting technique and describes the
decoding steps and the CN-VN merging technique. Section
IV is dedicated to the global decoder architecture. Simulation
results for the proposed code and its binary LDPC counterpart
are compared in Section V. Implementation results, throughput
analysis and a detailed comparison with the state of the art are
presented in section VI. Finally, conclusions and perspectives
are discussed in Section VII.
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II. NOTATION, NB-LDPC CODES AND EMS ALGORITHM

This Section introduces NB-LDPC codes, describes the
calculation of the intrinsic messages and the principles of the
EMS algorithm. Table I lists the symbols and acronyms con-
sidered throughout the paper, which include the characteristics
of the code, the exchanged messages in the decoder and other
terms for the description of the global decoder.

A. NB-LDPC codes defined over Galois Fields

A NB-LDPC code is a linear block code defined on a very
sparse parity-check matrix H whose non-zero elements belong
to a finite field GF(q), where q > 2. The elements of GF(q) are
{0, α0, α1, . . . , αq−2}. The dimension of matrix H is M×N ,
where M is the number of parity-CNs and N is the number
of VNs (i.e., the number of GF(q) symbols in a codeword). A
codeword is denoted by C = (x0, x1, . . . , xN−1), where xk,
k = 0, . . . , N − 1, is a GF(q) symbol represented by m =
log2(q) bits as xk = (xk,0 xk,1 . . . xk,m−1). The construction
of regular (dv, dc) NB-LDPC codes is expressed as a set of
M parity-check equations Cj , j = 0, 1, . . .M−1, over GF(q),
where the jth parity check equation Cj is given as

Cj :

dc−1∑
i=0

hj,k(j,i)xk(j,i) = 0, (1)

where {k(j, i)}i=0,1,...,dc−1 is the set of the dc non-null
positions in the jth row of the matrix H and hj,k(j,i) its
associated GF values. Each variable is connected to exactly
dv non-null elements in a column.

B. Intrinsic messages

The exchanged messages in the EMS decoding algorithm
are Log Likelihood Ratio (LLR) values. The intrinsic LLR
values are computed from an observed information coming
from the channel. If we consider the Additive White Gaussian
Noise (AWGN) channel and a Binary Phase-Shift Keying
(BPSK) modulation, the GF symbol x will be modulated
by m BPSK channels with amplitude B(xp) = (−1)xp ,
p = 0, . . . ,m − 1. At the receiver side, the received samples
rp are expressed as:

rp = B(xp) + wp,

where wp is a realization of a Gaussian noise of variance σ2.
Let Y = (y0, y1, ..., ym−1) be the LLR intrinsic vector

associated to x. Each value yp is defined as:

yp = log

(
P(xp = 0/rp)

P(xp = 1/rp)

)
=

2rp
σ2

. (2)

Let x̄ = (x̄0, x̄1, ..., x̄m−1), where the values x̄p are defined
as hard decisions such that if sign(yp) > 0, then x̄p = 0, x̄p =
1 otherwise. Considering the hypothesis that all the symbols
in the GF(q) alphabet have equal probability, the expression
of the LLR I+(x) of a symbol x knowing y is expressed as:

I+(x) =

m−1∑
p=0

|yp|∆(xp, x̄p), (3)

TABLE I
NOTATION

Symbols
q Order of GF

m = log2(q) Number of bits per GF(q) symbol

H, H Prototype matrix and Parity-Check Matrix (PCM)

(M,N) Number of rows (CNs) and columns (or VNs) in H

K = N −M Number of information symbols

dc Degree of connectivity of the CN
(number of VNs connected to a CN)

dv Degree of connectivity of the VN
(number of CNs connected to a VN)

h non-zero GF elements in H

hj,k non-zero element in H that connects
jth CN with kth VN

{0, α0, . . . , αq−2} GF(q) elements

x a GF symbol

Y = (y0, y1, . . . , ym−1) m bit LLR values associated to a symbol

Π = {π(0), π(1), π(2)} Indexes of the 3 smallest magnitudes of y

X+ LLR value of X

X⊕ GF value of X

nmin
Number of CN input messages

nmout Number of CN output messages

I = {I[0], . . . , I[nmin
− 1]} Intrinsic vector of size nmin

I[j] = (I+[j], I⊕[j]) jth element of I composed of a couple
(I+[j] = LLR value, I⊕[j] = GF value)

U = {U [0], . . . , U [nmin
− 1]} CN input vector

U ′ = {U ′[0], . . . , U ′[nmin
− 1]} Switched CN input vector after presorting

V = {V [0], . . . , V [nmout − 1]} CN output vector

x̂ Decision on VN V

nmax,it Maximum number of iterations

nav,it Average number of iterations

Ψ = {ψ0, . . . , ψdc−1} Indexes generated by the presorting

b Number of bits of quantization
Acronyms

GF Galois Field

PCM Parity-Check Matrix

AWGN Additive White Gaussian Noise

BPSK Binary Phase-Shift Keying

LLR Log Likelihood Ratio

CN Check Node

VN Variable Node

SN Syndrome Node

VSV Valid Syndrome Vector

DB Decorrelation Block

CU Control Unit

DMU Decision Making Unit

DMR Decision Making Reorder

GFRB GF Router Block

SCRB Stopping Criteria Router Block

PTB Parity Test Block

FPHD Full Parallel Hybrid CN Decoder

RAM Random Access Memory

where ∆(xp, x̄p) = 0 if xp = x̄p and ∆(xp, x̄p) = 1
otherwise. Note that, by definition, I+(x̄) = 0 is the smallest
LLR value. It will be denoted as I[0] = (I+[0], I⊕[0]),
with the LLR I+[0] = I+(x̄) = 0 and the associated GF
value I⊕[0] = x̄. Let Π = {π(0), π(1), π(2)} be respec-
tively the index of the smallest, the second smallest and the
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third smallest magnitude |yp| values, p = 0, 1, . . . ,m − 1.
Then, the second smallest LLR value I+[1] is obtained by
flipping the bit of x̄ of index π(0) to obtain I⊕[1], i.e.,
I[1] = (I+[1] = |yπ(0)|, I⊕[1]). The third smallest value
I+[2] is obtained by flipping the bit of x̄ of index π(1) to
obtain I⊕[2]. Thus, I[2] = (I+[2] = |yπ(1)|, I⊕[2]). Finally,
the fourth smallest LLR value I+[3] is given by min(A,B)
with A = |yπ(0)|+|yπ(1)| and B = |yπ(2)|. If min(A,B) = A,
the associated GF values I⊕[3] is obtained by flipping the bits
of index π(0) and π(1) of x̄, otherwise, if min(A,B) = B,
I⊕[3] is obtained by flipping the bit of index π(2) of x̄. This
method and its generalization to compute in parallel the first
nmin

terms of the intrinsic vector I are described in details in
[22]. Finally, for hardware design, the LLR values need to be
quantized on a fixed precision. To do so, we use the following
expression

yp = sat(bγrpQ+ 0.5c, Q),

where sat(x,Q) is the clipping function of x in [−Q,Q]
(sat(x,Q) = x if |x| < Q, sign(x)×Q otherwise), bxc indicates
the floor function, Q = 2b−1 − 1 is the saturation value
expressed as a function of b, the number of bits of quantization
(for b = 6, Q = 31). The fix scaling factor γ encompasses the
scaling factor 2/σ2 found in the LLR expression of (2). The
γ value is set empirically to γ = 1.2 in order to optimize the
decoding performance.

C. Extended Min-Sum algorithm for NB-LDPC codes

A detailed description of the different steps and equations
in the Min-Sum (MS) algorithm was presented in [4]. We
consider in this paper the Extended Min-Sum (EMS) [11]
with the following characteristics: VN degree dv = 2, CN
input messages truncated to a size nmin

� q and CN output
messages to nmout � q. This leads to computation and storage
reduction without necessarily performance loss [9] [10].

For the EMS algorithm description, we define the following:
• I = {I[0], . . . , I[nmin

− 1]} as an intrinsic LLR vector
(see previous section),

• {h0, . . . , hdc−1} are the dc non-zero elements in H
associated to a CN,

• {U0, . . . , Udc−1}: group of messages sent to a CN from
the dc connected VNs,

• {V0, . . . , Vdc−1}: group of messages sent to dc VNs from
a CN.

Each Ui message can be written as Ui =
{Ui[0], . . . , Ui[nmin − 1]}. Each element Ui[j] corresponds
to a couple Ui[j] = (U+

i [j], U⊕i [j]) where U⊕i [j] is the
GF(q) symbol and U+

i [j] its corresponding LLR value,
i = 0, . . . , dc − 1 and j = 0, . . . , nmin

− 1. The elements in
these messages are sorted related to their LLR values. The
four steps of the EMS algorithm considering dv = 2 are:

1) LLR calculation: The LLR calculation is defined in sec-
tion II.B. It generates the intrinsic vector I of size nmin

= 4.
2) CN update: The CN update is processed as

V +
i (x) = min

{
dc−1∑

i′=0,i′ 6=i

U+
i′ [ji′ ]|

dc−1⊕
i′=0,i′ 6=i

U⊕i′ [ji′ ] = x

}
, (4)

where ji′ ∈ {0, 1, . . . , nmin − 1} for i′ = 0, 1, . . . , dc − 1,
i′ 6= i and ⊕ refers to GF addition (i.e., XOR gate).

The final stage is to partially sort in increasing order the
set of values of V +

i (x) indexed by x ∈ GF(q) to obtain an
ordered set V ⊕i = {x0, x1, . . . , xnmout−1} that verifies

∀(j, k), j < k < nmout ⇒ V +
i (xj) ≤ V +

i (xk),

and

∀x ∈ GF(q), x 6∈ V ⊕i ⇒ V +
i (xnmout−1) ≤ V +

i (x).

The ith output message is thus given as Vi =
{Vi[0], Vi[1], . . . , Vi[nmout−1]}, where Vi[j] = (V +

i [j] =
V +
i (xj), V

⊕
i [j] = xj), j = 0, 1, . . . nmout−1.

In the state of the art, the GF values outside Vi are associated
with a default LLR value Di, with Di = V +

i [nmout − 1] +O,
i.e., the default value is equal to the highest LLR value of the
V message added with O, a positive offset value (see [10] for
more details on the definition of the offset value). In section
III.A, we propose a new method to determine the default value
Di to facilitate the hardware implementation of the full parallel
CN architecture.

3) VN update: After processing CN a, the required inputs
of a VN are: the intrinsic vector I of size nmin , the m values
of Y to be able to compute I+(x) for any x ∈ GF(q) using (3),
the received message V a of size nmout

coming from CN a, the
default value Da associated to message V a and the message
Ua sent to the CN a (Ua encompasses both I information and
the updated message V b coming from CN b. Note that Ua is
used only for the decision process). The two outputs of the
VN are the current message U b of size nmin to be sent to CN
b and the VN decision x̂ obtained by combining V a and Ua.

The first step of the VN processing is the addition of the
intrinsic LLR values on the incoming V a message to generate
the message V̄ a defined as:

V̄ a,+[j] = V a,+[j] + I+(V a,⊕[j]), j = 0, 1, . . . nmout
− 1.

(5)
Since V̄ a associates LLR values for only a subset of GF
values, in parallel, a second message Ī is generated as

Ī+[j] = I+[j] +Da,+, j = 0, 1, . . . nmin − 1. (6)

Then, the nmin
smallest values of set V̄ a∪ Ī in terms of LLR

value are extracted along with their associated GF symbols to
generate the vector messages Ū b. Note that by construction,
V̄ a,⊕ ∩ Ī⊕ may not be empty. In that case, the corresponding
LLR element in Ī is saturated so that Ū b contains the first
nmin

smallest LLR values with distinct GF values. The last
step to generate the final message is the normalization process
that keeps the first LLR of the message equal to zero, i.e.,

U b,+[j] = Ū b,+[j]− Ū b,+[0],

U b,⊕[j] = Ū b,⊕[j], j = 0, . . . , nmout − 1. (7)
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4) Decision making: in the MS algorithm, the decision is
done by adding all the incoming information, i.e.,

x̂ = arg min
x∈GF(q)

(
V a,+(x) + V b,+(x) + I+(x)

)
. (8)

In the EMS algorithm [4], this process is simplified first by
considering that Ua already contains the summation V b + I ,
then by pruning the nmin

elements of vector Ua to its
first 3 elements. The merging of the nmout

elements of V a

and the first three elements of Ua gives V T as V T [j] =
(V T,+[j], V T,⊕[j] = Ua,⊕[j]), j = 0, 1, . . . nmout − 1, where

V T,+[j] = V a,+[j]+

 Ua,+[0] if V a,⊕[j] = Ua,⊕[0]
Ua,+[1] if V a,⊕[j] = Ua,⊕[1]
Ua,+[2] +O otherwise.

(9)
Note that Ua,+[0] = 0 and that, compared to [4], the new
version omits the case where V a,⊕[j] = Ua,⊕[2].

Finally, the decision is made x̂ = V T,⊕[k] with k =
arg minj{V T,+[j]}. In practice, the offset value O is equal
to 1.

Before describing the flooding algorithm, we present the
NB-LDPC code implemented in the paper.

D. Code Structure

The code considered in this work is a (N,K) = (144, 120)
NB-LDPC defined over GF(64) with dv = 2, dc = 12 and
code rate r = 5/6. This code is a Quasi-Cyclic LDPC code
constructed from the complete 2× 12 base matrix H defined
as

H =

[
0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11

]
(10)

with an expansion factor of 12. During the lifting process of
H, every element H(i, j), i = 0, 1 and j = 0, 1, . . . , 11, is
replaced by the 12 × 12 identity matrix with a right shift
rotation equal to H(i, j). Based on this definition, the resulting
matrix H is of size (M,N) = (24, 144) in GF(64). The
equivalent size in binary is thus (M,N) = (864, 720).

Let us define layer one (L1) as the set of CNs of index 0
to 11 and layer two (L2) as the set of CNs of index 12 to
23. Then, any variable is connected to a unique CN in L1 and
a unique CN in L2. According to the parity check equation
given in (1), the 12 indexes k(j, i) of the jth parity check are
given by k(j, i) = j+12i when j = 0, 1, . . . , 11 and k(j, i) =
mod (j + i, 12) + 12i when j = 12, 13, . . . 23.

The GF coefficients {hj,k(j,i)}i=0,1,...11 of the first layer L1

and second layer L2 are α{43,0,31,4,37,9,59,14,49,20,55,25} and
α{0,31,4,37,9,59,14,49,20,55,25,43}, respectively.

E. Flooding scheduling

The decoding process iterates until a maximum number of
iterations (nmax,it) is reached or the M parity equations are
satisfied. In each iteration, M CN and M×dc VN updates are
performed. At the end of every iteration, a decision is taken
on the N VNs.

Let l = 0, . . . , nmax,it − 1 be the iteration number. In the
following, every vector message that is being processed at
iteration l is appended by (l) at its exponent. The decoding
process is described in Algorithm 1.

Input: Received message composed of N = 144 received GF
symbols Yk = {yk,0, yk,1, . . . , yk,5}, k = 0, 1, . . . , 143.

Output: Decoded message Ĉ = {x̂0, . . . , x̂N−1}.

Notations U
(l),u
k refers to the message sent at iteration l from

the VN k to the CN of layer u, u = 0, 1.

Initialization:
l = 0; decoded = false.
for k ← 0 to 143

Compute Ik = (Ik[i])i=0,1,2,3, and Πi (section II-B).
U

(0),0
k = U

(0),1
k = Ik

end for

Iterative decoding:
while l < nmax,it and not(decoded)

l = l + 1;
for j ← 0 to 11 (processing of layer L1)

Parallel computation with i = 0, 1, . . . , 11

{U (l−1),0

k(j,i) }
see II.C.2−−−−→ {V (l),0

k(j,i)}(
{V (l),0

k(j,i)}, Ik(j,i), |Yk(j,i)|,Πk(j,i)

)
see II.C.3−−−−→ {U (l),1

k(j,i)}(
{U (l),0

k(j,i)}, {V
(l),0

k(j,i)}, Ik(j,i), |Yk(j,i)|,Πk(j,i)

)
see II.C.4−−−−→ x̂k(j,i)

end for
for j ← 12 to 23 (processing of layer L2)

Parallel computation with i = 0, 1, . . . , 11

{U (l−1),1

k(j,i) }
see III.A−−−−→ {V (l),1

k(j,i)}(
{V (l),1

k(j,i)}, Ik(j,i), |Yk(j,i)|,Πk(j,i)

)
see III.B−−−−→ {U (l),0

k(j,i)}
end for

decoded= true; (is x̂ a codeword?)
for j ← 0 to 23

if Parity check Cj (see equation (1)) not satisfied with x̂.
decoded = false

end if
end for

end while
Algorithm 1: Flooding scheduling of matrix H .

III. PIPELINED CN-VN UNIT

This section presents a pipelined architecture able to per-
form a CN of degree dc = 12 and its 12 associated VNs every
clock cycle. To do this parallel architecture, we first remind
the principle of the hybrid CN architecture [17]. Then, based
on this formalism, we describe the result of the optimization
process of the CN architecture for the 5/6-rate N = 144 code
in the paper. Then, an innovative method to merge VN and
CN processing is presented.

A. Principle of the hybrid CN architecture

In [17], the authors present the principle of the hybrid
CN architecture. The three main functions performed by this
CN are recalled: the presorting, the ECN processing and the
decorrelation using the Valid Syndrome Vector (VSV).
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1) Presorting: The preliminary step of CN processing is
the presorting block that leads to a significant reduction of the
CN computations. In [21] the authors proposed the sorting of
the CN input vectors based on the LLR value of the second
GF element. This sorting polarizes the reliability of the input
vectors and classifies them into two sets: high reliability and
low reliability. As described in Section II-B, the first element
(i.e., the most reliable symbol) has a zero LLR value, while the
second has the first non-zero LLR value. The sorting criteria
is the following: the higher the LLR value of the second
element, the higher the reliability of the vector. In other terms,
a big difference between the first and second LLR values
indicates that the competition between the GF symbols in the
vector will clearly favor the first one and the rest will rarely
contribute to the final decision on the codeword. Discarding
(or eliminating) them leads to computational reduction without
any performance loss. As a consequence, presorting helps
the CN to concentrate its processing effort on low-reliability
vector messages.

Fig. 1 shows the presorting principle for dc = 4, nmin
= 4

and GF(64). The second most reliable LLR values {2, 5, 1, 3}
of each message (U0 to U3) are considered as inputs to a sorter
block. Then, the dc input messages are switched based on the
indexes ψ. The high reliability messages are concentrated in
one region and dashed elements are discarded prior to the
CN processing. More details on the presorting technique are
presented in [20], [21] and [23].

Fig. 1. Presorting principle of the EMS-based CN.

2) ECN: For the implementation of the CN processing,
equation (4) is implemented in a simplified way using the
hybrid CN architecture defined in [17]. The whole CN ar-
chitecture is characterized graphically in Fig. 2.a). Let us
describe, from top to bottom, the graphical elements used in
this design and the corresponding processing.

First, the number of elements of U ′i , i = 0, . . . , 11, that
enter the CN is indicated by the number of circles below it. For
example, only U ′0[0] = (U ′+0 [0], U ′⊕0 [0]) enters the CN while
only the first 3 elements {U ′8[1], U ′8[2], U ′8[3]} out of nmin

= 4
elements of message U ′8 enter the CN. The line of multipliers

on the top indicates that each GF values of U ′k are multiplied
by the GF coefficient h′k. The outputs of the multipliers enter
a rather dense datapath composed of a network of ECN. Each
ECN performs the bubble check algorithm. Let us give the
key to understand the processing performed by the generic
ECN given in Fig. 2.b). An ECN receives two input vectors
A and B of size na and nb given by the number of circles
(or bubbles) respectively in the first column and in the first
row (na = 4 and nb = 3 in Fig. 2.b)). It generates an
output message C of size nc. Note that in Fig.2.a), the
output size is implicitly defined as the number of inputs (i.e.,
number of vertical bubbles) of the next ECN. A circle in
position (t0, t1), t0 = 0, . . . , na − 1 and t1 = 0, . . . , nb − 1,
means that Ua[t0] and Ub[t1] are added to generate a couple
(U+

a [t0] +U+
b [t1], U⊕a [t0]

⊕
U⊕b [t1]). The nc bubbles of min-

imum LLR sorted in increasing order constitute the output
vector of the ECN. The VSV is appended with a boolean
value that indicates whether Uc[t2], t2 = 0, . . . , nc − 1, has
been generated with Ub[0] or with Ub[t1], t1 > 0. Bubbles in
dark color append a false Boolean value to the corresponding
position in the VSV vector. The three last ECNs (ECN11,
ECN12 and ECN13) are slightly simplified compared to the
other ECNs because all the bubbles are output without any
sorting. In fact, one of the main ideas in the architecture is to
save hardware complexity by postponing the sorting operation
in the VN processing. Since no sorting is performed, the
default value D of the check to variable message cannot be
determined. Thus, we propose to empirically set it to the LLR
of a fixed bubble position indicated by Dg , D10 and D11 in
ECN11, ECN12 and ECN13, respectively. Note that the size
of the output message S of ECN11 is nS = 20 while the
size of the message of ECN12 and ECN13 is nFB = 16.
Any element of S is given by the summation of all the
incoming messages, a decorrelation process is thus required
[17]. It suppresses the GF symbol U ′⊕i [0] from S⊕[t] if U ′⊕i [0]
contributes in computing S⊕[t] to generate the ith output
thanks to the GF adder (addition and subtraction are equivalent
in the GF domain), where i = 0, . . . , 11, t = 0, . . . , n − 1
and n ∈ {nS , nFB}. Otherwise, if U ′⊕i [0] does not contribute
in computing S⊕[t], the Decorrelation Block (DB) associated
to U ′i saturates the LLR value S+[t]. This is done thanks to
the VSV vector that is being checked by the DB. The final
multiplication is applied on the GF value to compute the output
message V ′i . In more details, V ′⊕i [t] = (S⊕[t]−U ′⊕i [0]).h′−1

i

and V ′+i [j] = S+[t].

B. CN-VN Processing

Fig. 3 shows the architecture of the proposed parallel
pipelined CN-VN. Every input Ei, i = 0, . . . , dc − 1, car-
ries Uai and the information associated to it, i.e., Ei =
{Uai , hi, h

−1
i , |Yi|,Πi, I

⊕
i }. Let E = {E0, . . . , E11}, the first

stage of the proposed joint CN-VN unit starts in a similar
way than the hybrid architecture, except that all messages are
received in parallel: first, the message E is permuted using the
indexes Ψ obtained by the presorting block, then the hybrid
CN is performed. The presorting receives {U+

0 [1], . . . , U+
11[1]}

to generate the indexes Ψ = {ψ[0], . . . , ψ[11]} for dc = 12
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Fig. 2. a) High level CN architecture and b) ECN in case of na = 4, nb = 3 and nc = 5.

based on the presorting principle shown in Fig. 1, thus
U+
ψ[0][1] ≤ U+

ψ[1][1] ≤ · · · ≤ U+
ψ[11][1]. The architecture of the

parallel pipelined presorting architecture is shown in Fig. 4.
This architecture is inspired from [24]. Every comparator-swap
receives two inputs where the one that is having minimum
LLR value will be positioned at the lower output and the one
with maximum LLR value will be positioned at the higher
output. The indexes of the inputs are also shifted. It consists
of 42 comparator swap components configured such that at the
output every ψ[i], i = 0, . . . , dc − 1, is having only the index
of the (i + 1)th minimum value. Based on the Ψ values, the
inputs {E0, . . . , E11} of the CN-VN are switched using the
permutation block. Every ψ[i] is coded on 4 bits since there
are dc = 12 positions. Thus, the size of Ψ is 4×12 = 48 bits.
Once the input message permuted, the CN is performed. The
specification of the CN was defined in section III.A.

Fig. 3. CN-VN architecture.

After the CN processing, the VNs-DMs block operates to
make the VN update and the decision on every input. There

Fig. 4. Presorting architecture.

are 12 VN and 12 DM blocks associated to a CN. The VN and
DM processing were described in section II.C. Note that the
size of input vector V a can take two values, i.e., nFB = 16
for {V ′a10 , V

′a
11} and ns = 20 for {V ′a0 , . . . , V ′a9 }. The size of

the output vector U b is always nmin
= 4. Since the vector

{V ′a0 , . . . , V ′a11} is not reordered before the VN processor,
all the information required for the VN processor should
also follow the permutation Ψ in order to be consistently
processed. Thus, for each input vector, the information
associated to the ith message Uai , i.e., (I⊕i [0], |Yi|,Πi),
i = 0, . . . , dc−1, are also permuted thanks to the permutation
Ψ. It represents a total of (6 + 5× 6 + 3× 4) = 54 bits. The
generation of U ′ai and decision x̂′i follows the work described
in [17], except that all the operations are done in parallel.

Figure 5 illustrates the parallel architecture of the VN.
The eLLR block generates the intrinsic LLR value I+(V ′a⊕i )
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Fig. 5. VN architecture

Fig. 6. DM architecture

thanks to Y ′i and I ′⊕i [0] that will be added on V ′a+
i to generate

V̄ ′a+
i . The Regeneration of Intrinsic Candidates (RIC) block

is to regenerate the intrinsic candidates {I ′i[0], . . . , I ′i[3]}.
Then, the offset value Da ∈ {Dg, D10, D11} associated
to V ′i is added on {I ′i[0], . . . , I ′i[3]} to generate Ī+

i . In
section II.C, we showed that the output is generated by
detecting the most reliable not redundant GF symbols from
{V ′ai [0], . . . , V ′ai [n − 1], I ′i[0], . . . , I ′i[3]}. To reduce the
complexity, the sorting and the redundant elimination
are separated. First, the vector V ′si of nmin + nδ
couples having the lowest LLR values are detected from
{V ′ai [0], . . . , V ′ai [n − 1], I ′i[0], . . . , I ′i[3]}, then the outputs
are generated by detecting, from V ′si , the nmin

couples
without redundant GF symbols. In this work nδ = 1. Thus,
the n + 4-to-5 Sorter block, n ∈ {nFB , ns} = {16, 20},
generates V ′si that is having the 4 + 1 = 5 couples of lowest
LLR values among {V ′ai [0], . . . , V ′ai [n − 1], I ′i[0], . . . , I ′i[3]}.

The Redundant Elimination (RE) block generates U ′bi by
detecting the 4 couples from V ′s that are different in terms
of GF values and having lowest LLR values. Finally, the
normalization of Ū b,+ (7) is performed.

Figure 6 shows the parallel architecture of the DM block.
There are 2n comparators operating in parallel to check
whether V ′⊕i [t0] = U ′⊕i [t1] or not, t0 = 0, . . . , n − 1 and
t1 = 0, 1. We compare V ′⊕i [t0] to U ′⊕i [0] and U ′⊕i [1] as
described in equation (9). The 3-to-1 MUXs operate as
follows: if V ′⊕i [t0] = U ′⊕i [t1] then the output is U ′+i [t1],
otherwise, the output is U ′+i [2]+O. The output of every 3-to-1
MUX is added to its associated V ′+i [t0]. Only the couple U ′i [0]
is considered from the set {U ′⊕i [0], U ′⊕i [1], U ′⊕i [2]} where its
LLR value is added to the default value Da. Finally, the MIN
Detector block selects from {V ′i [0], . . . , V ′i [n− 1], U ′i [0]} the
decided symbol x̂′i having the lowest LLR value.

The last operation in CN-VN is the inverse permuta-
tion performed using Ψ−1 to reorder {U ′b0 , . . . , U ′b11} and
{x̂′0, . . . , x̂′11} to their original order.

IV. PROPOSED PARALLEL AND PIPELINED DECODER

This section describes the global architecture of the decoder,
where the inputs/outputs of each block are described along
with the functionality being performed. The memory system
and the timing diagram of the decoding process are discussed.
The global decoder is based on the CN-VN unit described
in Section III which has been customized to offer the best
performance-complexity trade-off for the considered code.
This CN-VN unit can be modified to meet the specifications
of any other NB-LDPC code and thus design the associated
decoder. In the following, we use the index k(j, i), i =
0, . . . , 11, j = 0, . . . ,M − 1 and k(j, i) ∈ {0, . . . , 143}, to
refer to a quantified symbol Yk(j,i) for a specific VNk(j,i). For
instance, when CN0 is being processed after the extension of
the prototype matrix H, the set {VN0, VN12, VN24, VN36,
VN48, VN60, VN72, VN84, VN96, VN108, VN120, VN132}
is considered and hence k(0, 0) = 0, k(0, 1) = 12, . . . ,
k(0, 11) = 132 are the indexes associated to VN0, VN12, . . . ,
VN132 respectively. These indices along with the associated
GF symbols hi are indicated by the PCM of the code.

A. Architecture overview

The architecture of the global decoder is shown in
Fig. 7. The input messages are being received by
blocs of 8 symbols. The 8 symbols are being received
according to the order of the VNs that are connected to
CN0,. . . ,CN11 respectively. In more details, the first set of
8 received symbols is {Y0, Y12, Y24, Y36, Y48, Y60, Y72, Y84}
(all of them belong to CN0), the second set is
{Y96, Y108, Y120, Y132, Y1, Y13, Y25, Y37} (the first 4 symbols
belong to CN0 and the last 4 symbols belong to CN1), . . . ,
etc. The different blocks are described in the following.

Intrinsic Router Block (IRB): the observed symbols
and their intrinsic messages generated by LLRGB are being
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Fig. 7. Global decoder architecture.

routed by IRB to be stored appropriately in the RAM ROM
Banks. We purposely managed for eight symbols to be
received in parallel (details are shown in section IV.C).

Control Unit (CU): the CU block controls the read/write
operations from/to the RAM ROM Banks. A start signal
indicates the arrival of the observed symbols and hence the
control signals of the RAM ROM Banks are generated based
on a counter in the CU.

GF Routing Block (GFRB): this block deals with the
routing of the decided symbols {x̂0, . . . , x̂11} to their
appropriate positions in the GF Register (GFR). This GFR
register contains the 144 GF decided symbols received in sets
of size dc = 12 from the CN-VN unit.

Stopping Criteria Routing Block (SCRB): this block
extracts 24 GF symbols per clock cycle from the GFRB,
according to a pre-defined order and routes them to the Parity
Test Block (PTB).

PTB: this block is composed of two sub-blocks PTB1 and
PTB2 and performs the test of all the M = 24 parity check
equations based on equation (1). During the 12 Clock Cycles
(CC) of the processing of the CNs of L1, the PTB1 receives
its input directly from the CN-VN and performs the parity
test on each received set of 12 GF symbols. At the end of
the L1 processing, all the 144 VNs have taken their decisions
and the corresponding decided GF symbols have been stored
in the GFR. Then, during the processing of the L2 CNs, both
PTB1 and PTB2 will operate to perform simultaneously two
parity equation tests on two sets of 12 GF symbols read in
parallel from the GFRB and routed via the SCRB. Once the
M = 24 equations are satisfied, i.e., the decoded codeword
Ĉ is valid (ready = out v = 1), the decoder stops the
decoding process of the current frame and starts a new frame.
Otherwise, the decoder continues until the maximum allowed
number of iterations nmax,it = 30 is attained by the counter

cntit.

Note that the LLR Generator Block (LLRGB) and the
CN-VN unit have been described in section II.B. and III,
respectively. The memory organization of the decoder (RAM
ROM Banks) is described in next section.

Number of pipelines in every block: The decoder is
pipelined with registers inserted within the different blocks as
follows: two pipeline stages are implemented in the LLRGB,
one in the PTB, three in the presorting block, one in the
permutation Ψ block, three in the CN block, eight in the VN-
DM and one in the permutation Ψ−1 block. Thus, the CN-VN
block takes in total 16 CC latency to generate the U b messages
and only 9 CC to generate the decisions x̂.

B. Memory system

Recalling Section II.D, after the extension of the proto-
type matrix H (see (10)), the obtained PCM H is of size
(M,N) = (24, 144) with two layers L1 and L2. There are
three types of memories in the decoder: Extrinsic RAM,
Intrinsic RAM and the ROM that stores the h coefficients of
the PCM. Fig. 8 shows the structure of the Extrinsic RAMs.
The RAMs are structured according to the PCM matrix,
i.e., according to the connections of the CNs with the VNs.
A value j = 0, . . . , 143 in a cell represents the index of
the VNj . Every RAMi, i = 0, . . . , 11, stores 24 extrinsic
messages of 12 successive VNs, with each VN connected
to a CN in L1 and a CN in L2. For instance, RAM2 stores
the extrinsic messages associated to VN24,VN25, . . . ,VN35

that are connected to CN0,CN1, . . . ,CN11, respectively from
the first layer L1, and to CN22,CN23,CN12, . . . ,CN21,CN12,
respectively from the second layer L2. When processing CNi,
i = 0, . . . , 23, the messages are read in parallel from RAMs
as {RAM0[i],RAM1[i], . . . ,RAM11[i]}. The read address @R
is a counter varying from 0 up to 23 periodically. The set
of inputs {U b0 , . . . , U b11} coming from the CN-VN is stored
in their appropriate positions in the RAMs. For example, let
CN0 ∈ L1 be the CN that is being processed. We have @R = 0
and hence {Ua1

0 , . . . , Ua1
11 } = {RAM0[0], . . . ,RAM11[0]}. In

other words, the VNs {VN0,VN12, . . . ,VN132} are being
processed. Once processed, the results {U b0 , . . . , U b11} are
written to the associated VNs: U b0 is associated to VN0 in
the second layer and hence it will be stored in RAM0[12];
U b1 is associated to VN12 and hence it will be stored in
RAM1[23], . . . ; U b11 is associated to VN132 and it will be
stored in RAM11[13]. Therefore, each RAMi requires its own
write address @Wi, i = 0, . . . , 11. Every cell in a RAM is
storing 42 bits: 4 GF symbols (each of 6 bits) and 3 non-zero
LLR values (each of 6 bits). Furthermore, since the latency
of the CN is 16 CCs, some updated message VNs in L1 are
directly used in L2. These messages are highlighted by gray
color in Fig. 8. In other words, the decoding process is not
completely flooding (recall section II.E).

The intrinsic RAMs store the information related to the
intrinsic LLR messages of the N = 144 VNs. These VNs are
organized in RAM blocks similarly to RAM L1 part shown in
Fig. 8. For instance, the intrinsic messages of VN0 are stored
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in the first cell of the first RAM block (RAM0[0]), while the in-
trinsic messages of VN50 are stored in the third cell of the fifth
RAM block (RAM4[2]), and so on. The data of every VNk,
k = 0, 1, . . . , 143, is composed of the absolute values of the
channel observations |Yk,p|, p = 0, 1, . . . , 5, represented each
on 5 bits, and the hard decision I⊕[0] along with the indexes
of the first 3 minimum values Πk = {πk[0], πk[1], πk[2]}
of the sorted Yk. Note that the indexes π[i] are on 3 bits
each, since they contain the sorting indexes of 6 symbols.
The required information is concatenated to be stored in
each cell as: (I⊕k [0] & Πk & |Yk|), where & represents the
concatenation operation. The cumulative length of each cell is
equal to 6 + 3 + 3 + 3 + 6× 5 = 45 bits. Every intrinsic RAM
has its own read address and write address.

The non-zero elements of the PCM and their inverse are
stored in a ROM block. The ROM has 2 words, one for each
layer, where each word is of size equal to (6× 2)× 12 = 144
bits since every non-zero GF value hi and its inverse h−1

i

consists of 6-bit words, and i = 0, . . . , 11.
It is interesting to evaluate the memory bandwidth of the

proposed architecture per iteration and per symbol, then, per
bit. In an iteration, a VN is implied in two CNs. For each CN, it
reads (|Y |,Π, I+[0]) in the intrinsic RAM (thus 30+9+6 = 45
bits) and reads the Ua message in the extrinsic RAM (42
bits from 4 GF symbols and 3 non-zero LLRs) and write
back the U b message (thus 42 bits) in the extrinsic RAM.
Thus, the total number of read/write operations to process a
symbol during an iteration is 2(45 + 2 × 42) = 258 bits.
Since a symbol contains 6 bits of information, it gives in
average 43 bits of read/write memory access per message bit
per decoding iteration. This number should be compared to a
binary LDPC decoder. Assuming a dv = 3 and a soft-output
based CN architecture [25], with the soft-output coded on 8
bits and the extrinsic on 6 bits, then each iteration will require
dv × 2(8 + 6) = 84 bits of read/write memory access per
message bit per decoding iteration. The natural conclusion
that may goes against the common belief is that NB-LDPC
code can decrease the memory bandwidth by almost 50%
compared to binary LDPC code. The size of the memory
is also reduced from (8 + 3 × 6) = 26) per message bits for
LDPC down to (45 + 2 × 42)/6 = 21.5 bits in average per
message bits for the NB-LDPC.

C. Timing diagram

The control of the decoder works with a periodicity of 2×24 =
48 CC as shown in Fig. 9. In this figure, lines 3 to 8 show the
processing of frame k between cycles 0 and 23 while lines
9 to 13 show the processing of frame k between cycles 24
and 47. The N = 144 received symbols of the kth frame
are received in 18 CC from cycle numbers 0 up to 17 by a
group of 8 symbols and sent directly to the LLRGB. After two
CCs of latency, the LLRGB generate all the side information
related to the received symbol (i.e. permutation Π and intrinsic
message I). The data is reordered by the IRB component and
stored in their appropriate location in the intrinsic memory
RAMs and in the extrinsic memory RAMs. At cycle index
18, the intrinsic information of the VNs connected to CN0

are stored in memory and the processing of the layers L1 and
L2 starts from cycle number 19 up to cycle number 18 + 24
(see line 10 of Fig. 9). Then, 10 cycles after the beginning of
the processing of the first CN of frame k, i.e., at CC number
19+9 = 28 (see line 11 of Fig. 9) the decision on the VNs
associated to the first CN are output. Note that the extrinsic
message requires 5 more CC to be generated (not shown in
the Fig. 9). After 18 CC (see PTB description), a codeword is
said decoded if all the decisions generated by layer 1 verifie
all the parity CNs (at CC number 47), just in time to start
again the loading of a new codeword at cycle number 48. As
seen in Fig. 9, the processing of a given frame requires the
utilization of a given component at most 24 CC. During the
remaining 24 CC, a different frame is processed. In Fig. 9, we
also show, for illustration, the processing of iteration (ite.) l
and l+ 1 of the frame k− 1. Note that the frame order at the
output of the decoder can be changed.

The number of CCs to decode a frame is thus 48 × nit,f ,
where 0 < nit,f ≤ nmax,it is the number of iterations to
decode a frame. Since two frames are decoded in parallel, the
average number of CC to decode a codeword is 24 × nav,it
CCs.
This parallelism in the simultaneous processing of two con-
secutive frames requires the duplication of the intrinsic and
extrinsic RAMs to store the data of two frames. To summarize,
looking at the global execution of the decoder, the 19-CC
latency for preparing the data (shown in Fig. 9) and the 16-
CC latency of the CN are not considered when evaluating the
execution time of the decoder (which has a direct impact on
the throughput rate). We also note that without the duplication
of the RAMs, that allowed the parallel processing of two
consecutive frames, the 16-CC latency of the CN has to be
considered as a part of the execution time at each iteration.
This is due to the fact that CN23 and CN0 share the same
variable VN12, which prevents the start of the second iteration
before the processing of CN23 is ended. Therefore, M = 24
CCs is the latency of one iteration.

V. SIMULATION RESULTS

As described in Section III.B, some bubbles from the H-CN
are eliminated to reduce the computational complexity but at
the cost of a slight performance loss. In order to compensate
this performance degradation, the global number of iterations
within the decoder is increased to 30 iterations. Fig. 10
shows simulation results for the BP decoder [5], the well-
known FB-CN-based decoder [26], proposed decoder, and the
Sum-Product (SP)-based decoder. The BP and the FB-CN-
based NB-LDPC code have the same parameters: K = 120
GF(64) symbols, N = 144 GF(64) symbols and CR = 5/6
(equivalently, K = 720 bits and N = 864 bits). The SP-based
B-LDPC code is of length N = 864 bits, K = 720 bits and
CR = 5/6 but designed over GF(2). The BP and the FB CN-
based decoders are simulated using layered scheduling while
the proposed decoder, in its hardware version, is implemented
using the sub-flooding scheduling. This is due to the fact
that by its nature, the new parallel decoder allows to start
a new CN processing at each clock cycle which leads to
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Fig. 8. Extrinsic RAM Banks in RAM ROM Banks block.

Fig. 9. Timing diagram of the overlapping phase.

reach the second layer of CNs without having completed
the processing of the VNs being started in the first layer.
Therefore, when the layered scheduling is implemented, the
proposed decoder needs to enter an idle time waiting the
availability of the required data. To avoid this idle time, the
sub-flooding schedule has been adopted.
We consider Monte Carlo simulations under the AWGN chan-
nel, QPSK modulation and the LLR values quantized on b = 6
bits. A performance loss of 0.08 dB is observed between the
proposed decoder with 30 iterations and the references floating
point BP and fixed point FB-CN decoding algorithms with 8
iterations. Although the proposed decoder is implemented with
a maximum number of iterations equal to 30, it is the average
number of iterations that will be taken into consideration when
the throughput rate will be evaluated. This will be discussed in
more details in next section. When compared to its B-LDPC
counterpart, the proposed decoder presents a gain of 0.3 dB at
a FER of 10−3. It is worth mentioning that the NB-LDPC code

offers an important advantage in terms of spectrum efficiency
since high order modulations are suitable to be used with
NB-LDPC codes designed over GF(q > 2), where there is
no need for iterative demodulation. To evaluate performance
in a short time, the complete digital communication chain is
implemented on an FPGA device. The source, encoder, chan-
nel and decoder are implemented using VHDL. The source
generates random bits that are encoded, BPSK modulated,
affected by an AWGN, then demodulated and decoded. A
hardware discrete channel emulator is implemented to emulate
the AWGN channel. We used the Xilinx KC705 FPGA DevKit
containing a Kintex 7 where the simulation results match the
emulation results.

VI. IMPLEMENTATION RESULTS

This section discusses the throughput calculation and the
post-synthesis results on 28-nm TSMC technologies. Since
the decoding throughput is highly dominated by the average
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over GF(2) SP decoder.

TABLE II
AVERAGE NUMBER OF ITERATIONS AND THROUGHPUT.

Eb/N0 (dB) Low 3 3.5 4 4.5 5

nav,it 30 18.3 7.25 3.4 2.45 1.93

Throughput (Mb/s) 650 1060 2680 5730 7950 10100

number of iterations nav,it, we study its variation versus the
signal-to-noise ratio (i.e., Eb/N0). Table II shows that nav,it
significantly varies with low Eb/N0, and decreases rapidly
when Eb/N0 changes from 3 dB to 3.5 dB, then nav,it = 1
from Eb/N0 > 8 dB. The throughput calculation is expressed
as:

Throughput (Mb/s) =
log2(q)×K × Fclk

nav,it ×M
. (11)

TABLE III
COMPARISON OF STATE-OF-THE-ART NB-LDPC DECODERS

(ASICS).

[15] [27] [7] FPHD

Techno (nm) 40 → 28 90 → 28 65 → 28 28
Design Synthesis Synthesis Silicon Synthesis

N (symbols) 3888 837 160 144
CR 8/9 13/15 1/2 5/6
GF 4 32 64 64

Decoding T-EMS IL-MwBRB EMS EMS
Algorithm Layered sub-flooding Flooding Flooding
Iterations 10 10 10-30 1-30

Fclk (MHz) 1,000 665 1,000 650
C (NAND) 4 M 4.54 M 2.78 M 0.79 M
T (Gbps) 0.36 69.6 1.7 1.1→10.0
E (T/C) 0.9 15.3 0.63 1.3→24.7

Synthesis results for our design lead to a maximum clock
frequency Fclk = 650 MHz, and thus a throughput that varies
from 1.06Gb/s up to 19.5 Gb/s (Table II). A comparison of
the Full Parallel Hybrid CN Decoder (FPHD) implementation

and three state-of-the-art decoders [15], [27], [7] is presented
in Table III. All these decoders achieve ultra-high throughput
thanks to parallelism. To take into account the different
technologies, the clock frequency of a design in technology
θ-nm, θ ∈ {40, 65, 90}, is multiplied by the scaling factor
θ/28 before being compared to the proposed decoder (28-nm
technology). The maximum allowed frequency after scaling
is upper bounded by 1,000 MHz. The last three lines of the
table correspond to the hardware complexity C expressed in
millions of NAND gates, the input decoding throughput T
(in Gbits/s or Gbps) and the hardware efficiency E defined
as the ratio E = T/C (in Gbps per million NAND gates),
respectively. Let us first compare the FPHD to the architecture
proposed in [15]: FPHD consumes 0.79 M NAND gates, runs
at 650 MHz and varies the number of iterations from 1 to 30,
while the design in [15] consumes 4 M NAND gates, runs at
1000 MHz and iterates 10 times. In terms of throughput, FPHD
outperforms [15] for Eb/N0 > 3.7 dB with FER ≈ 10−2.
However, the throughput efficiency of FPHD is better for any
Eb/N0 > 3 dB.
Compared to [27], both designs present the same frequency,
and our design reduces the number of NAND gates by a
factor of 5.74. The decoder proposed in [27] offers a higher
throughput for the entire range of Eb/N0. Nevertheless, in
terms of hardware efficiency, FPHD outperforms [27] at high
SNR. It is worth mentioning that in [27] the performance loss
is significant because of the symbol-flipping algorithm they
use (i.e., only one symbol is considered among q candidates).
Finally, our FPHD consumes 1.99M NAND gates less than [7],
but runs at a lower frequency. However, our FPHD provides
higher throughput for Eb/N0 > 3.5 dB and hence shows a
better hardware efficiency in a factor ranging from 2.1 up to
39.3.

VII. CONCLUSION AND PERSPECTIVES

This paper was dedicated to an ultra-high-throughput EMS
NB-LDPC decoder implementation based on full parallel
architectures. We particularly focused on a GF(64) (144, 120)
code with high rate (CR = 5/6). A number of architectural
strategies made possible the 10 Gb/s throughput for high SNR,
which represents a throughput efficiency gain in the order of
6 to 50 (depending on the SNR) compared to [17]. Beside
the careful optimization of the number of bubbles in each
ECN, several original ideas have been presented in the paper
to optimize the prior hybrid architecture. The main idea is to
merge the CN and the VN processing with the suppression
of the sorting operation after the CN processing thanks to the
use of a predefined bubble position to get the default check
to variable LLR value for the VN processing. This leads to
both a reduced hardware complexity and a reduced memory
bandwidth (almost 50% of reduction compared to a binary
LDPC code). The two-step generation of the variable-to-check
messages, i.e., the selection of the nmin + nδ messages with
smallest LLR, then the extraction of nmin

smallest LLR with
distinct GF values, is also a new contribution.

As a proof of concept, the full design of a small code
has been performed. Due to the small size of the code, two
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codewords are decoded in parallel to avoid idle cycles in the
hardware. Simulation results showed that the proposed decoder
(sub-flooding scheduling and nmax,it = 30) outperforms the
(860, 720) binary-LDPC SP used in the 5G standard by 0.3
dB at FER of 10−3. Emulation results on FPGA show that
the proposed decoder introduces only a 0.08 dB penalty loss
compared to the reference floating point BP layered decoder
with nmax,it = 8.

There are many possible extensions of this work. The first
one is to find the optimal sets of parameters of the hybrid
CN-VN architecture in the general case (different code length,
code rate and Galois Field order). From this study, it would
be possible to design a flexible hardware parallel architecture
able to decode a set of codes with different coding rates and
lengths. In terms of hardware, the advantages of the proposed
CN-VN unit should be even greater when the code length is
high enough so that a layered decoder is feasible without any
memory conflict.
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