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Informatique Signal et Automatique de Lille, F-59000 Lille, France

Abstract

We investigate a problem in which each member of a group of learners is trained
separately to solve the same classification task. Each learner has access to a
training dataset (possibly with overlap across learners) but each trained classifier
can be evaluated on a validation dataset.

We propose a new approach to aggregate the learner predictions in the pos-
sibility theory framework. For each classifier prediction, we build a possibility
distribution assessing how likely the classifier prediction is correct using frequen-
tist probabilities estimated on the validation set. The possibility distributions
are aggregated using an adaptive t-norm that can accommodate dependency
and poor accuracy of the classifier predictions. We prove that the proposed ap-
proach possesses a number of desirable classifier combination robustness prop-
erties. Moreover, the method is agnostic on the base learners, scales well in the
number of aggregated classifiers and is incremental as a new classifier can be
appended to the ensemble by building upon previously computed parameters
and structures. A python implementation can be downloaded at this link.

Keywords: robust classifier combination, agnostic aggregation, information
fusion, classification, possibility theory

1. Introduction

Classification is a supervised machine learning task consisting of assigning
objects (inputs) to discrete categories (classes). When several predictors have
been trained to solve the same classification task, a second level of algorith-
mic procedure is necessary to reconcile the classifier predictions and deliver a
single one. Such a procedure is known as classifier combination, fusion or ag-
gregation. When each individual classifier is trained using the same training
algorithm (but under different circumstances) the aggregation procedure is re-
ferred to as an ensemble method. When each classifier may be generated by
different training algorithms, the aggregation procedure is referred to as a mul-
tiple classifier system. In both cases, the set of individual classifiers is called a
classifier ensemble.
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Classifier combination comes either from a choice of the programmer or is
imposed by context. In the first case, combination is meant to increase clas-
sification performances by either increasing the learning capacity or mitigat-
ing overfitting. For instance, boosting (Schapire, 1990) and bagging (Breiman,
1996) can be regarded as such approaches. In the second case, it is not possible
to learn a single classifier. A typical situation of this kind occurs when the
dataset is dispatched on several machines in a network and sequential learning
(such as mini-batch gradient descent) is not possible either to preserve network
load or for some privacy or intellectual property reasons. In this decentralized
learning setting, a set of classifiers are trained locally and the ensemble is later
aggregated by a meta-learner.

In this article, we address classifier aggregation in a perspective that is in
line with the decentralized setting assuming that the meta-learner has access
to evaluations of the individual classifiers on a fraction of each local dataset
which is not used for training. We do not make any assumption on the base
learner models and we do not assume base learners are trained on i.i.d. samples,
however it is assumed that the union of the fractions of (local) datasets used
by the meta-learner is i.i.d.. We introduce a number of desirable robustness
properties for the aggregation procedure in this context. We investigate fault
tolerance (ability to discard classifiers whose predictions are noise), robustness
to adversarial classifiers (ability to thwart classifiers with abnormal error rates)
and robustness to redundant information (when classifier predictions are highly
dependent).

We introduce an aggregation procedure in the framework of possibility the-
ory. We prove that these robustness properties are verified asymptotically (when
the size of the validation set is large) for this new approach. The mechanism
governing the aggregation essentially relies on estimates of probabilities of class
labels, classifier predictions or classifier correct predictions. There are many
related works (Huang & Suen, 1995; Kim & Ghahramani, 2012; Lacoste et al.,
2014) dealing with classifier combination using similar information. We be-
lieve we are the first to do so in the framework of possibility theory but more
importantly these above referenced work are not proved to possess theoretical
robustness guarantees. An asymptotic optimality property is verified by an ap-
proach from Balakrishnan & Mojirsheibani (2015). This property is stronger
than most of the properties that we state except for robustness to classifier de-
pendency. Also, two technical conditions are necessary for the property to hold
while our results have no such conditions to check. Similar remarks hold w.r.t.
(Biau et al., 2016) which shares some ideas with (Balakrishnan & Mojirsheibani,
2015). Another piece of work with strong properties (oracle inequalities) is ex-
ponential weight aggregation (Rigollet & Tsybakov, 2012) but the properties
are non-exact1 and hold in expectation or with high probability while our prop-
erties rely on almost sure convergence. Also, exponential weight aggregation is
a linear combination model while our method is non-linear.

In addition, the form of aggregation robustness achieved by our method
does not jeopardize other important aspects of aggregation such as scalability
and incrementalism, two aspects that Balakrishnan & Mojirsheibani (2015) fails

1Error rate is proved to convergence to the vicinity of the optimal one not exactly to the
optimal one.
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to possess. Our approach relies on a parametric model involving a number of
parameters that is linear in the number of classifiers. Incrementalism is also
preserved in the sense that a new classifier can be appended to the ensemble
without implying to re-estimate the previously obtained parameter values or
structures.

In the next section, we recall the classifier aggregation problem and formally
define the robustness properties that we seek. In section 3, we introduce a new
aggregation technique in the framework of possibility theory and we show that
the desired properties hold asymptotically for this technique. Section 4 contains
numerical experiments illustrating our results.

2. Problem statement

2.1. Classification
Let Ω denote a set of ℓ class labels Ω = {ω1, . . . , ωℓ}. Let x denote an input

example with d entries. Most of the time, x is a vector and lives in Rd but
sometimes some of its entries are categorical data and x lives in an abstract
space which does not necessarily have a vector space structure. Without loss of
generality, we suppose that x is a vector in the rest of this article.

A classification task consists in determining a prediction function c that
maps any input x to its actual class y ∈ Ω. This function is obtained from a
training set Dtrain which contains pairs

(
x(i), y(i)

)
where y(i) is the class label

of example x(i). Given K classifiers (each of them trained by one base learner),
the label y assigned by the kth classifier to the input x is denoted by ck(x).

From a statistical point of view, training examples are instances of a random
vector X whose distribution is unknown. Likewise, class labels are instances of
a random variable Y whose distribution is also unknown. The training set is
often alleged to contain i.i.d. samples of the joint distribution of (X,Y ).

2.2. Classifier performance estimates
The ultimate goal of machine learning is to obtain predictors that generalize

well (w.r.t. unseen data at training time). Mathematically speaking, this means
achieving the lowest possible expected loss between predictions and true values.
When misclassification errors do not have different costs, the 0-1 loss function
L is the standard choice:

L (y, ck (x)) =

{
0 if y = ck (x)

1 otherwise
.

In this case, the expected loss is the misclassification error rate of ck. It is well
known, that the error rate minimizer is the Bayes classifier c⋆:

c⋆ (x) = argmax
y∈Ω

p (Y = y|X = x) .

Obviously, since the conditional distributions of Y given X = x are unknown,
we must try to find proxys of the Bayes classifier. The error rate (or risk) of
classifier ck is denoted by r [ck].

Although our goal is to achieve the lowest possible error rate, the perfor-
mances of a classifier are not, in general, constant across true class labels and
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predicted ones. This finer grained information will be instrumental to elicit
our possibilistic ensemble of classifiers. This information is contained in the
confusion matrix M(k). Each entry of this matrix reads

M
(k)
i,j =

∑
(x,y)∈Dval

I {y = ωi} I {ck (x) = ωj} , (1)

where I denotes the indicator function. It is important to compute the confusion
matrices using a validation set Dval disjoint from Dtrain otherwise the estimates
drawn from the matrix are biased. Actually, if nval is the size of the valida-
tion set, then M

(k)
ij

nval
is the maximum likelihood estimate of the joint probability

p (Y = ωi, ck (X) = ωj). Also, the sum of the non-diagonal entries of M(k) over
nval is an unbiased estimate of the error rate of ck. Many other performance
criterion estimates can be derived from a confusion matrix.

The classifier combination that we introduce in section 3 essentially relies
on the information contained in those matrices. Computing those matrices can
thus be regarded as the training phase of the combination method.

2.3. Agnostic combination of classifiers and position of the problem
Let C denote the random vector spanned by plugging X into the ensemble

of classifiers:

C =

 c1 (X)
...

cK (X)

 .

A realization of this random vector is denoted by c or c (x) whenever the
dependence on inputs must be made explicit. We place ourselves in the context
where vectors c can be pictured as new (learned) representation of inputs and we
must be agnostic, i.e. we have no control on the base classifiers. In this context,
the best aggregate classifier (Balakrishnan & Mojirsheibani, 2015) based on
observed data is thus

c∗ (x) = argmax
y∈Ω

p (Y = y|C = c (x)) . (2)

Again, the distributions involved in the above definition are unknown. Since c
lives in the discrete space ΩK , it is possible to try to learn these distributions
but this leads to very hard inference problems (Kim & Ghahramani, 2012; Bal-
akrishnan & Mojirsheibani, 2015; Li et al., 2019b) and such statistical learning
approaches do not scale well w.r.t. either ℓ or K. The smallest memory com-
plexity among these references is achieved by Li et al. (2019b) who introduce a
mixture model relying on tensor decomposition. If K ′ denotes the number of
components in the decomposition, the number of parameters to learn is linear
in K ′×K. Linearity in K can thus be claimed if K ′ ≪ K which cannot always
be assumed. In addition, the Bayesian solutions introduced in these references
do not allow to obtain an incremental2 aggregation algorithm, an attribute that
we believe is much desirable.

2Incremental aggregation means that a new classifier can be appended to the ensemble
later without having to recompute everything from scratch.
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Generally speaking, classifier combination consists in finding a function f
capturing the relation between vectors c and class labels y that achieves the
closest possible performances as compared to c∗. In the approach presented
in the next section, we leverage the flexibility of possibility theory to find one
such function. The proposed possibilistic approach visits several functions, i.e.
aggregation strategies, and select the one maximizing accuracy obtained on
the validation dataset. The strategies in question are generalizations of logical
rules as opposed to probabilistic approaches which resort to calculus rules. In
this regard, the proposed solution both relies on artificial learning and artificial
reasoning principles.

Besides, we have chosen to place ourselves in a framework in which each clas-
sifier can only deliver one piece of information, i.e. a predicted class label. This
allows us to be completely agnostic on the nature of the base learners. Indeed,
depending on the training algorithm and model employed by a learner, this lat-
ter may be able to deliver a score vector (usually in the form of a probability
distribution). In this case, the above analysis no longer applies and the optimal
aggregation consists in inferring posterior predictive probabilities of class labels
given the scores. Examples of approaches in this line of work are reviewed in
Tulyakov et al. (2008). It is possible to remain relatively agnostic on the nature
of base classifiers by resorting to a statistical calibration step that allows to ob-
tain prediction probabilities from non-probabilistic classifiers as done in Bella
et al. (2013). Calibration will consume a significant portion of the validation
set leaving a smaller amount to train the aggregation technique. Consequently,
score based aggregation is out of the scope of this paper. Actually, score based
aggregation is a leading follow-up of the approach introduced in the next section
as mentioned in the concluding remarks in section 5.

2.4. Desirable properties for classifier combination
In terms of purely error rate related performances, the most desirable prop-

erty for some aggregation function f is

r [f (c)] −→ r [c∗] as nval −→∞. (3)

The aggregation technique studied in (Balakrishnan & Mojirsheibani, 2015)
achieves a result of this kind (under two technical assumptions). Indeed this
technique, which elaborates on (Huang & Suen, 1995), amounts to compute
maximum likelihood estimates of the probabilities involved in (2). But classi-
fier aggregation can also bring other types of guarantees which we refer to as
robustness. Robustness is understood here as a form of fault tolerance, i.e. the
ability to maintain a good level of predictions in several circumstances involv-
ing malfunctioning individual classifiers. There may be different causes behind
malfunctioning classifiers, e.g. hardware failure or malicious hacks.

Among other possibilities, we have identified the following desirable proper-
ties in this scope:

(a) robustness to random guess: if the error rate of ck is ℓ−1
ℓ then f (c) =

f (c−k) where c−k ∈ ΩK−1 is the same vector as c but with its kth entry
deleted.
Property (a) means that if the predictions of ck are in average no better
than random guess then ck has no influence on the aggregated classifier.
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(b) robustness to adversarial classifiers: if ck has an error rate larger than
random guess, i.e. r [f (c)] > ℓ−1

ℓ , then there is a classifier c
(rec)
k with an

error rate lower than random guess such that f (c) = f (c̃) where c̃s = cs
for any s ̸= k and c̃k = c

(rec)
k .

Property (b) means that we can somewhat rectify the incorrect predictions
of classifier ck so that the aggregated classifier is identical to the one
obtained from a non-adversarial situation.

(c) robustness to redundant information: if there are two individual classifiers
such that ck (x) = ck′ (x) for any x, then f (c) = f (c−k).
Property (c) means that copies of classifiers have no influence on the ag-
gregated classifier.

In the above, we assume that the aggregation function f is produced by a
given algorithmic procedure and that this procedure applies for any K > 1.
So f (c−k) is not the restriction of f (c) but another function learned from the
same algorithm by omitting classifier ck.

Obviously, one can think of other properties or reshape them in different
ways. For instance, a soft version of property (c) would be better in the sense
that an ensemble contains rarely identical copies of a predictor but it contains
very often highly dependent ones. This a first attempt to formalize desirable
robustness properties for classifier combination and we hope that more advanced
declinations of these will be proposed in the future.

For the time being, our goal in this paper is to introduce an aggregation
procedure that is compliant with properties (a) to (c). We will prove that these
properties hold for the possibilistic approach that we introduce in the next sec-
tion at least asymptotically for some of them. Observe that (3) asymptotically
implies properties (a) to (c) so the added value of our approach as compared to
(Balakrishnan & Mojirsheibani, 2015) relies on its incremental aspect as shown
in 3.8 and scalability w.r.t. K as numerical experiments will illustrate in section
4.

2.5. Other related works
So far, we have mentioned only closely related works which perfectly fall in

the same setting as ours, i.e. performing the same type of aggregation based
on the same information. We remind that this paper is focused on a classifier
aggregation paradigm in which one must be agnostic on the base learners. As
explained before this immediately rules out a large number of methods such as
those relying on classifier scores and ensemble methods. Score based combina-
tion most often assume that base learners exploit a given training algorithm. For
instance, Loustau (2008) introduced an aggregation method tailored to SVMs
while Guo et al. (2019) applied another one to combine deep nets. By definition,
so do ensemble methods such as Liu & Zhang (2019). Other score based algo-
rithms will require that training algorithms belong to the same class of models,
typically probabilistic learners as in Hoang et al. (2019).

It must also be made clear that the addressed paradigm in this paper is
not federated learning. In federated learning, there is no base learners. A
group of remotely connected clients have access to a local dataset. Clients
are meant to compute a parameter update based on their local data and send
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this update to a meta-learner (Yao et al. (2019); Li et al. (2019a); Ji et al.
(2019)) to collaboratively train a model. This means that parameter updates
are aggregated and this is thus not a classifier aggregation problem.

Finally, an utmost important and original aspect of the method introduced in
this paper is its robustness properties w.r.t. noise, adversaries and information
redundancy. To the best of our knowledge, there is no prior art in classifier
aggregation that has touched jointly these aspects for agnostic aggregation of
predicted class labels. Robustness to noise is investigated by Kim & Ghosh
(2019) but again in a very different setting which is deep fusion, i.e. deep
learning from multiple inputs. Other references in the literature are focused on
other aspects than robustness such as security for instance (Ma et al. (2019)).
However, robustness is a hot topic in the supervised learning paradigm with
important consequences in deep learning (Madry et al., 2018). But obtaining
robust base learners does not ensure that the aggregation itself is robust.

3. Robust combination in the possibilistic framework

In this section, we introduce a new classifier combination approach in the
possibility theory framework. Possibility theory (Zadeh, 1978; Dubois & Prade,
1988) is an uncertainty representation framework. It has strong connections
with belief functions (Dubois & Prade, 1982; Kampé de Fériet, 1982), random
sets (Goodman, 1982; Pei-Zhuang & Sanchez, 1982; Sales, 1982) , imprecise
probabilities (Dubois & Prade, 1992; De Cooman & Aeyels, 1999) or proposi-
tional logic (Benferhat et al., 1999). For a concise but thorough overview of
possibility theory, the reader is referred to (Dubois & Prade, 2015) but Ap-
pendixB already provides deeper insights into this framework and as to why it
is particularly relevant for classifier aggregation tasks.

Possibility theory is a widely used framework in symbolic artificial intelli-
gence. It allowed the derivation of new propositional and/or modal logics in
which the level of uncertainty of logical propositions can be assessed (Prade
(1991); Dubois et al. (2017)). This has applications in logic programming
(Alsinet et al. (2008)), automated reasoning (Dubois et al. (1994)) or expert
systems (Shenoy (1992)). A popular class of non-probabilistic graphical models
relying on ordinal condition functions can also be revisited as a possibilistic
model, see Amor et al. (2018) for recent developments in this field. It has
also been used in other branches of artificial intelligence such as information
fusion (Destercke et al. (2008)) or machine learning (Serrurier & Prade (2015);
Hüllermeier (2002)).

In this paper, we adopt a knowledge based system view of this theory. In
this regard classifier predictions are expert knowledge to which a degree of be-
lief is attached in the form of possibility distributions. Following a normative
approach, experts are reconciled by designing a conjunctive rule that must obey
the desirable properties presented in the previous section.

3.1. Possibility theory basics
A possibility distribution π maps each element of Ω to the unit interval [0; 1]

whose extreme values correspond respectively to impossible and totally possible
epistemic states. If π (y) = 1 then this class label is totally possible (meaning
that we have no evidence against y) . If π (y) = 0 then y is ruled out as a
possible class label.
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Given a subset A of Ω, a possibility measure Π is given by:

Π(A) = max
y∈A

π(y) (4)

which means that the possibility of a subset A is equal to the maximum possi-
bility degree in this subset. A possibility measure is thus maxitive: Π(A∪B) =
max(Π(A),Π(B)) as opposed to probability measures which are summative.
Observe that this property accounts for the fact that the possibility distribution
is enough information to compute the possibility measure of any subset.

3.2. From classifier confusion matrices to possibility distributions
If one normalizes the jth column of the confusion matrix M(k), then we ob-

tain an estimate of the probability distribution p (Y = ωi|ck = ωj). So, if the
kth classifier predicts ωj for some input x, we can adopt these frequentist prob-
abilities as our beliefs on the class label of x. But unless, unrealistic conditional
independence assumptions3 are made, probabilistic calculus rules will not easily
allow to combine beliefs arising from several classifiers.

As an alternative to this approach, we propose to build a possibility distri-
bution from p (Y = ωi|ck = ωj) as information fusion in the possibilistic frame-
work can mitigate dependency issues and does not lead to intractable compu-
tations. To cast the problem in the possibilistic framework, we use Dubois and
Prade transform (DPT) (Dubois & Prade, 1982). For some arbitrary proba-
bility distribution p on Ω, let per denote a permutation on Ω such that prob-
ability masses of p are sorted in descending order, i.e. if p′ = p ◦ per then
p′ (ω1) ≥ p′ (ω2) ≥ . . . ≥ p′ (ωℓ). The (unique) possibility distribution π arising
from p through DPT is given by

π (per (ωi)) =


1 if i = 1

π (per (ωi−1)) if i > 1 and p′ (ωi) = p′ (ωi−1)
ℓ∑

q=i

p′ (ωq) otherwise
. (5)

If pY |ck=ωj
denotes the distribution of class labels when the kth classifier

predicts ωj , the corresponding possibility distribution is denoted by πk|j =

DPT
{
pY |ck=ωj

}
. For each input x, the K classifier predictions are turned into

K expert opinions in the form of possibility distributions
(
πk|ind(ck(x))

)K
k=1

where
ind (ωj) = j.

3.3. Aggregation of possibility distributions
Formally speaking, any K-ary operator on the set of possibility distribu-

tions is an admissible combination operator. Triangular norms, or t-norms, are
instrumental to yield well defined aggregation operators for possibility distribu-
tions. A t-norm T : [0; 1]

2 −→ [0, 1] is a commutative and associative mapping
therefore it is easy to build a K-ary version of it using successive pairwise op-
erations:

3These assumptions and the corresponding probabilistic approach are described in section
4.
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T (a1, . . . , aK) = T (a1, T (. . . , T (aK−1, aK))) ,

for any (ak)
K
k=1 ∈ [0; 1]

K .
Moreover, a t-norm has 1 as neutral element, 0 as absorbing element and

possesses the monotonicity property which reads: for any a, b, c, d ∈ [0; 1] such
that a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d). Finally, a t-norm is upper
bounded by the minimum of its operands.

To combine possibility distributions using a t-norm, we can simply apply a t-
norm elementwise. For instance, if πkk′ is the aggregated possibility distribution
obtained by applying a t-norm to distributions πk and πk′ , then

πkk′ (y) = T (πk (y) , πk′ (y)) ,∀y ∈ Ω.

We will use the same t-norm symbol to stand for the overall combination
of possibility distributions and we will write πkk′ = T (πk, πk′). Examples of
t-norms are elementwise multiplication T× and elementwise minimum T∧.

Decision making based on maximum expected utility is also justified using
non-additive measures (capacities) (Gilboa, 1987) such as possibility measures.
Consequently, the possibilistic aggregated classifier, denoted cens, is given by

cens (x) = argmax
y∈Ω

πens (y) , (6)

with πens = T
(
π1|ind(c1(x)), . . . , πK|ind(cK(x))

)
. (7)

Algorithm 1 explains what computations should be anticipated as part of a
training phase and Algorithm 2 summarizes how an input x class label is pre-
dicted at test time. The procedure corresponding to these algorithms is referred
to as Scalable POssibilistic Classifier Combination (SPOCC). Note that there
may be several class labels maximizing πens therefore the aggregated classifier
prediction cens (x) may be set-valued. Working with set-valued predictions is
out of the scope of this paper and will be considered in future works. In the
advent of a class label tie, and for any probabilistic, possibilistic or deterministic
aggregation approach, one of these labels is chosen at random.

3.4. Adaptive aggregation w.r.t. dependency
The predictions of an ensemble of individual classifiers are usually signifi-

cantly dependent because they are trained to capture the same bound between
inputs and class labels. So if classifiers are at least weak classifiers, they will
often produce identical predictions. More importantly, from an information fu-
sion standpoint, if a majority of the classifiers are highly dependent and have a
larger error rate than the remaining ones, they are likely to guide the ensemble
toward their level of performances making classifier fusion counter-productive.

In the approach introduced in this paper, it is possible to mitigate depen-
dency negative impact by choosing an idempotent t-norm such as elementwise
minimum T∧. Indeed, in the worst dependency case, classifier ck is a copy of
classifier ck′ therefore they have an unjustified weight in the ensemble predic-
tions. But if two individual classifiers are identical they will also yield identical
possibility distributions and if these latter are combined using T∧, then these
two classifiers will be counted as one. This is exactly the spirit of property (c).

Two difficulties arise from this quest for robustness w.r.t. classifier redun-
dancy:
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Data: validation set Dval, classifiers (ck)
K
k=1, number of class labels ℓ.

for k ∈ {1, . . . ,K} do
Compute confusion matrix M(k) as in (1).
for j ∈ Ω do

Compute conditional probability estimates

p̂mle (Y = ωi|ck = ωj)←
M

(k)
ij∑

i′
M

(k)
i′j

,∀i ∈ Ω.

Compute possibility distribution using (5)

πk|j ← DPT {p̂mle (Y =· |ck = ωj)} .

end
end
Return possibility distributions

(
πk|j

)
1≤k≤K
1≤j≤ℓ

.

Algorithm 1: SPOCC - training phase

Data: input x, classifiers (ck)
K
k=1, possibility distributions

(
πk|j

)
1≤k≤K
1≤j≤ℓ

and t-norm T .
for k ∈ {1, . . . ,K} do

Compute individual classifier prediction jk ← ind (ck (x)).
end
Compute πens ← T

(
π1|j1 , . . . , πK|jK

)
.

Return cens (x)← argmax
y∈Ω

πens (y).

Algorithm 2: SPOCC - test phase
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(i) It is not recommended to systematically use an idempotent combination
mechanism because it is also possible that two poorly dependent classifiers
yield identical possibility distributions in which case it appears justified
that their common prediction impacts on the ensemble aggregated deci-
sion.

(ii) There are different levels of dependency among subsets of individual clas-
sifiers therefore, using a single t-norm to jointly aggregate them is not the
best option.

To address the first issue, we propose to use the following parametric family
(Tλ)λ∈[1;+∞) of t-norms:

Tλ (a1, a2) = e−(| log a1|λ+| log a2|λ)
1
λ ,∀a1, a2 ∈ [0; 1] . (8)

This family is known as Aczel-Alsina t-norms and is such that T1 = T× and
T∞ = T∧. We can thus tune λ all the higher as the level of dependence between
classifiers is high.

To assess the dependence level λ among two classifiers ck and ck′ , we use
the following definition

κ (ck, ck′) = 1− exp

(
− 1

nval

∣∣∣∣log(L0

L1

)∣∣∣∣) , (9)

where L0

L1
is the likelihood ratio of the independence model over the joint model.

These likelihoods are given by

L0 =

nval∏
i=1

p̂mle

(
ck

(
x(i)

))
p̂mle

(
ck′

(
x(i)

))
, (10)

and L1 =

nval∏
i=1

p̂mle

(
ck

(
x(i)

)
, ck′

(
x(i)

))
. (11)

These likelihoods are computed using all training examples contained in
the validation set Dval. The probabilities involved in the computation of L0

are the maximum likelihood estimates of the parameters of the multinomial
marginal distributions p (ck (X)) and p (ck′ (X)) respectively. The probabilities
involved in the computation of L1 are the maximum likelihood estimates of the
parameters of the multinomial joint distribution p (ck (X) , ck′ (X)).

The definition of the dependence level κ can be extended to more than two
classifiers but this will turn out to be unnecessary because we will use hierarchi-
cal agglomerative clustering (Ward Jr, 1963) (HAC) to address issue (ii). HAC
will produce a dendrogram G, i.e. a t-norm computation binary tree. Each leaf
in this tree is in bijective correspondence with one of the possibility distributions
πk induced by a classifier. There are thus K leafs in G. Furthermore, each non-
leaf node in the tree stands for a t-norm operation involving two operands only.
Consequently, each non-leaf node has exactly two children and there K−1 such
nodes, one of them being the root node. Figure 1 gives an illustrative exam-
ple of a dependence dendrogram allowing to compute the aggregated possibility
distribution.

HAC relies on a classifier dissimilarity matrix D. In our case, entries of this
K ×K matrix are simply given by Dkk′ = 1− κ (ck, ck′).
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π1 π2 π3 π4 π5

π12 =
Tλ3 (π1, π2)

π34 =
Tλ4 (π3, π4)

π345 =
Tλ2 (π34, π5)

π12345 =
Tλ1 (π12, π345)

Figure 1: Example of a dendrogram for K = 5. Leaf nodes are at the bottom. For each of
the four non-leaf nodes, a specific dependence level λa (a ∈ {1; 2; 3; 4}) must be determined
to compute the aggregated possibility distribution.

The t-norm based possibility distribution aggregation method described in
the above paragraphs is meant to replace the penultimate step of Algorithm 2
but most of the computations pertaining to this dependency adaptive aggre-
gation can be done at training time. Indeed, the computation of the pairwise
dependence levels and the dendrogram do not depend on the unseen example
x that we will try to classify at test time. For a minimal test phase compu-
tation time, we need to assign to each non-leaf node Va of G the appropriate
dependence level λa (as illustrated in Figure 1) during the training phase. The
corresponding array is denoted by λ [a] 7→ λa. The function JG;λ maps the set
of possibility distributions (πk)1≤k≤K to the aggregated distribution πens by ex-
ecuting the computation graph G and using the dependence levels contained in
λ. There are K−1 hyperparameters in array λ that need to be tuned. They will
be automatically set to appropriate values by heuristic search, see AppendixA
for a presentation of this grid search based heuristic. It is noteworthy that
this heuristic will use HAC to define clusters of classifiers, thereby reducing the
number of hyperparameters to tune as this amounts to merge some nodes of the
dendrogram and apply some t-norm to more than two possibility distributions.

3.5. Adaptive aggregation w.r.t. informational content
When the predictions delivered by classifier ck are poorer than those of an-

other classifier ck′ , it is instrumental to reduce the impact of ck on the decisions
issued by the ensemble. Regardless of the formal definition behind what are
called ”poor predictions”, we propose to use the following mechanism to grad-
ually fade classifier ck out of the ensemble: for a given scalar αk ∈ [0; 1], we
update all conditional possibility distributions related to ck as follows:

πk|j ← (1− αk)πk|j + αk,∀j ∈ Ω. (12)

This mechanism is equivalent to an operation known as discounting (Shafer,
1976). When α = 0, then classifier ck influence on the ensemble is not reduced.
When αk = 1, classifier ck is discarded from the ensemble since we obtain
constant one possibility distributions which are the neutral element of t-norms
and the t-norm based aggregation method introduced in the previous subsection.

12



Obviously, we need to find a value of the discounting coefficient tailored for
each classifier and in line with what poor predictions are meant to be. Again, it is
tempting to set these K hyperparameters using grid search but the correspond-
ing complexity calls for a more subtle strategy. Similarly as for dependency
hyperparameters, we will resort to a heuristic search.

Among other possibilities, our solution consists in binding the discounting
rates together using the following formula:

αk = 1−

 1− r̂ [ck]

1−min
k′

r̂ [ck′ ]

ρ

, (13)

where r̂ is the estimated error rate on the validation set and ρ ∈ [0;+∞] is a
hyperparameter to tune by grid search. Using the above equation, the best base
classifier is not discounted and we have r̂ [ck] ≤ r̂ [ck′ ]⇒ αk ≤ αk′ .

3.6. Fully adaptive aggregation
The fully adaptive version (w.r.t. both dependence and informative content)

of SPOCC is referred to as adaSPOCC. The corresponding training and test
phases are described in Algorithm 3 and 4 respectively. A python implementa-
tion can be downloaded at this link.

Data: validation set Dval, classifiers (ck)
K
k=1, number of class labels ℓ.

Execute SPOCC - training phase (algorithm 1)
for k ∈ {1, . . . ,K} do

for k′ ∈ {k, . . . ,K} do
Compute the dissimilarity Dkk′ ← 1− κ (ck, ck′) using (9).
Assign Dk′k ← Dkk′ .

end
end
Obtain dendrogram G by applying HAC to dissimilarity matrix D.
Apply heuristic to set parameters λa ∈ λ (see AppendixA).
Compute parameters (αk)

K
k=1 as in (13).

Update all conditional possibility distributions as in (12).
Return possibility distributions

(
πk|j

)
1≤k≤K
1≤j≤ℓ

, dendrogram G, array λ.

Algorithm 3: adaSPOCC - training phase

Data: input x, classifiers (ck)
K
k=1, possibility distributions

(
πk|j

)
1≤k≤K
1≤j≤ℓ

,

dendrogram G, array λ.
for k ∈ {1, . . . ,K} do

Compute individual classifier prediction jk ← ind (ck (x)).
end
πens ← JG;λ

(
π1|j1 , . . . , πK|jK

)
(computation graph execution).

Return cens (x)← argmax
y∈Ω

πens (y).

Algorithm 4: adaSPOCC - test phase
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3.7. Properties of the possibilistic ensemble
In this paper, we adopt a normative approach for the selection of a classifier

decision aggregation mechanism. In this subsection, we give sketches of proofs
showing that robustness properties (a) to (c) hold for adaSPOCC asymptoti-
cally:

• Property (a): if ck is a random classifier then when nval → ∞, each
conditional distribution pY |ck=ωj

converges to a uniform distribution so
DPT turns it into a constant one possibility distribution, which is the
neutral element of Tλ.

• Property (b): let ck denote an adversorial classifier, i.e. r [ck] > ℓ−1
ℓ .

(ada)SPOCC uses the following rectified classifier c
(rec)
k = h ◦ ck defined

as
c
(rec)
k (x) = argmax

y∈Ω
p (Y = y|ck (x)) . (14)

We have

1− r
[
c
(rec)
k

]
=

∑
y′∈Ω

p
(
Y = y′|c(rec)

k = y′
)
p
(
c
(rec)
k = y′

)
. (15)

Moreover, we can write

p
(
Y = y′|c(rec)

k = y′
)
=

∑
y′′∈Ω

p
(
Y = y′|c(rec)

k = y′, ck = y′′
)

p
(
ck = y′′|c(rec)

k = y′
)
. (16)

Given the definition of c(rec)
k we know that p

(
ck = y′′|c(rec)

k = y′
)
= 0 if

y′′ ̸∈ h−1 (y′). The definition also gives

p
(
Y = y′|c(rec)

k = y′, ck = y′′
)
= max

y∈Ω
p (Y = y|ck = y′′) . (17)

The maximal probability value of a discrete variable is always greater or
equal than 1

ℓ therefore

p
(
Y = y′|c(rec)

k = y′
)
≥ 1

ℓ

∑
y′′∈h−1(y′)

p
(
ck = y′′|c(rec)

k = y′
)

(18)

≥ 1

ℓ
p
(
ck ∈ h−1 (y′) |c(rec)

k = y′
)
. (19)

Again, given the definition of c(rec)
k we know that p

(
ck ∈ h−1 (y′) |c(rec)

k = y′
)
=

1. Since ck is not the random classifier, at least one of the conditional dis-
tributions pY |ck is not uniform in which case the inequality is strict. We
thus obtain 1− r

[
c
(rec)
k

]
> 1

ℓ .

Finally, when nval → ∞, if ck (x) = y and c
(rec)
k (x) = y′, the yth column

of M(k) will be identical to the y′th column of the confusion matrix of
c
(rec)
k so they will be mapped to identical possibility distributions.
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• Property (c): when nval →∞, the likelihood ratio appearing in (9) writes

L0

L1
=

nval∏
i=1

p
(
ck

(
x(i)

))
p
(
ck′

(
x(i)

))
p
(
ck

(
x(i)

)
, ck′

(
x(i)

)) . (20)

If ck′ is a copy of ck then p
(
ck

(
x(i)

)
, ck′

(
x(i)

))
= p

(
ck

(
x(i)

))
= p

(
ck′

(
x(i)

))
and

L0

L1
=

nval∏
i=1

p
(
ck

(
x(i)

))
. (21)

If ck is not a constant function, then probabilities are smaller than one
and L0

L1
→ 0. The pair of classifiers (ck, ck′) will thus be detected as

maximally dependent by HAC and they will be aggregated using T1 = T∧
hence property (c) holds in this case.
When ck is a constant function, then both ck and ck′ will yield identical
possibility distributions that are a Dirac function. In this case, the output
of Tλ will also be this Dirac function, meaning that idempotence is always
true in these circumstances. Note that, however, the procedure described
in 3.4 will fail to detect the dependency between ck and ck′ . There are
plenty of ways to thwart this issue as constant classifiers are not difficult
to detect. In practice, we will use add-one Laplace smoothing to estimate
probabilities p (ck) so we will never obtain a Dirac function as possibility
distribution.

Properties (a) to (c) rely on asymptotic estimates of multinomial distribution
parameters which, from the strong law of numbers, converge almost surely to
their exact values. Consequently, the properties do not hold only in expectation
or with high probability but systematically (when nval is large).

Although properties (a) to (c) are not as strong as (3), adaSPOCC is a scal-
able aggregation technique as the number of parameters it requires to learn from
the validation set is in O

(
ℓ2K

)
while the number of parameters to learn from

Dval in (Balakrishnan & Mojirsheibani, 2015) is in O
(
ℓK+1

)
and is therefore

doomed to overfit when K is large.

3.8. Incremental aggregation
When a new classifier cK+1 must be appended to the ensemble, it suffices to

compute its corresponding confusion matrix M(K+1) to be able to run SPOCC.
All previously estimated parameters (confusion matrices and possibility distri-
butions of the other classifiers) can be readily re-used.

Going incremental for adaSPOCC is not as straightforward as for SPOOC.
A new coefficient αK+1 needs to be computed but this latter is deduced from
M(K+1) so this is not an issue. However, the matrix D also needs to be up-
dated by appending a new line and a new column to it, which makes K − 1
new entries to compute because D is symmetric and its diagonal elements are
irrelevant. Then, HAC must be re-run. To increase the level of incrementalism
of adaSPOCC in this regard, it is possible to use an incremental clustering al-
gorithm such as Menon et al. (2019). The newly coming classifier will be either
appended to an existing cluster or a new cluster that solely contains cK+1 will
be created. In the first case, the hyperparameters λ can be left unchanged. In
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the second case, there is an additional node in the dendogram and one addi-
tional hyperparameter must be estimated by grid search. Since we perform grid
search for only one such parameter, this is obviously faster than the heuristic
search described by Algorithm 5. In conclusion, adaSPOCC is also a incre-
mental aggregation algorithm and all previously estimated parameters are also
re-used without needing to be updated.

4. Experimental results

In this section, we present a number of experimental results allowing to prove
the robustness of SPOCC and adaSPOCC as compared to other aggregation
techniques. The section starts with results obtained when the base classifiers
are trained on a synthetic dataset and are meant to highlight performances
discrepancies in simple situations where robustness is required. Another set of
experiments on real datasets are also presented to prove that the method is not
only meaningful on toy examples.

4.1. General setup
Designing numerical experiments allowing to compare aggregation methods

is not a trivial task. A crucial aspect consists in training a set of base classifiers
that achieve a form of diversity (Wozniak et al., 2014) so that the fusion of their
predictions has a significant impact on performances. Among other possibilities
(Brown et al., 2005), we chose to induce diversity by feeding the base classifiers
with different disjoint subsets of data points at training time. The subsets are
not chosen at random but instead in a deterministic way allowing each base
classifier to focus on some regions of the input space and thus learn significantly
different decision frontiers.

Because the union of the validation sets is an i.i.d. sample of p (X,Y ) and
aggregation methods have access to the predictions of each learner on this set
union, well designed aggregation methods are able to restore high levels of per-
formances even if base learners are trained from non-i.i.d. samples. This allows
us to test if aggregation methods are relatively agnostic to the quality of the
data used to train the base learners.

Each aggregation technique is fed only with the predictions of the base clas-
sifiers on the validation set in order to tune hyperparameters or learn the combi-
nation itself. Consequently, SPOCC and adaSPOCC are only compared to well
established methods that use the same level of information. The benchmarked
aggregation techniques are :

• classifier selection4 based on estimated accuracies of the base classifiers,

• weighted vote aggregation based on estimated accuracies of the base clas-
sifiers,

• exponentially weighted vote aggregation based on estimated accuracies of
the base classifiers,

• naive Bayes aggregation,

4Selection can be regarded as a special type of fusion.
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• Bayes aggregation,

• stacking.

In the exponentially weighted vote aggregation, accuracies are not directly
used as vote weight (as in standard weighted vote aggregation) but are mapped
to weights using a softmax function. This function has a positive temperature
hyperparameter that regulates the assignment of weights. When this parameter
is zero, then we retrieve unweighted vote aggregation whereas when it is very
large, then we retrieve classifier selection.

Bayes aggregation relies on (2). The conditional distributions involved in
this equation are learned from the validation set. Naive Bayes aggregation uses
conditional independence assumptions that allow to factorize probabilities as

p (y|c (x)) ∝ p (y)

K∏
k=1

p (ck (x) |y) . (22)

The conditional independence assumptions are not realistic but yield a model
with far less parameters to learn as compared to Bayes aggregation.

For each of the estimated probabilities involved in the mechanism behind
SPOCC, adaSPOCC, Bayes or naive Bayes aggregation, we perform add-one-
Laplace smoothing to avoid computational issues related to zero probabilities.
The chosen t-norm for SPOCC is T5 ≈ T∧.

Finally, we also train a softmax regression to map classifier predictions to the
true class labels. This approach belongs to a methodology known as stacking
(Wolpert, 1992). An L2 regularization term is added to the cross-entropy loss. A
positive hyperparameter regulates the relative importance of the regularization
term.

All hyperparameters are tuned automatically using a cross-validated grid
search on the validation set. For each hyperparameter, the grid contains 100
points. When the hyperparameter is unbounded, a logarithmic scale is used to
design the grid.

The statistical significance of the reported results are given in terms of 95%
confidence intervals estimated from bootstrap sampling. When the accuracies
of two aggregation methods have overlapping confidence intervals, the perfor-
mance discrepancy is not significant. A companion python implementation of
adaSPOCC and benchmark methods can be downloaded at this link

4.2. Synthetic Data
In this subsection, we use a very simple generating process to obtain exam-

ple/label pairs. Data points are sampled from four isotropic Gaussian distribu-
tions. The centers of these Gaussian distributions are located at each corner of
a centered square in a 2D input space (d = 2). The standard deviations of each
of the distribution is 1. There are ℓ = 2 possible class labels: Ω = {ω1;ω2}.
Points such that x1 and x2 are both positive belong to ω1. Points such that x1

and x2 are both negative also belong to ω1. All the other points belong to ω2.
Figure 2 shows one such dataset obtained from this generating process.

In this series of experiments, the dataset has n = 200 points and is divided
in four overlapping subsets as depicted in Figure 3. Then a randomly selected
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Figure 2: Synthetic dataset obtained from four Gaussian distributions. Examples belonging
to class ω1 are in blue while those belonging to class ω2 are in cyan. Optimal decision frontiers
are in magenta.

Figure 3: Subsets of the data seen respectively by c1 to c4

portion of 80% of each such subset is used to train one of the base classifier.
The remaining 20% are used for the validation set. Each base classifier ck
sends the corresponding set of prediction/label pairs {(ck (x) , y)}(x,y)∈Dval

to
the aggregation method.

Since we have access to the data generating process, the test set is dynam-
ically created. We sample test points until the observed accuracies of all the
tested methods are with probability 0.95 in their respective Clopper-Pearson
confidence intervals of half-width 0.2%. The whole procedure is repeated 100
times. The averaged test errors in this case are thus a good approximation of
the generalization errors of the tested methods.

Given the shape of optimal decision frontiers, the base classifiers trained in
this subsection are decision trees with a maximal depth of two.

4.2.1. Robustness w.r.t. adversaries
Among other possibilities, adversarial predictions are simulated by sampling

from a Bernoulli distribution Z ∼ Ber (θ). Given Z = 1, the prediction of a base
classifier is replaced with another (arbitrarily selected) class label that will not
coincide with the classifier prediction. When Z = 0, the classifier prediction is
unchanged. Consequently, an adversarial classifier built in this way from a base
classifier with an error rate lower than random guess will achieve an error rate
greater then random guess as θ → 1.

The evolution of the classification accuracy of the benchmarked aggregation
methods as the number of adversaries grows can be witnessed on Figure 4.
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Figure 4: Evolution of accuracy distributions (violin plots) for several aggregation methods
w.r.t. the number of adversaries. SPOCC and adaSPOCC are in orange while other methods
are in blue.

For simplicity, all adversaries are built from the same base classifier (c1) with
θ = 0.5. Two methods cannot maintain the same level of performances when the
number of adversaries increases: weighted vote ensemble and Bayes aggregation.
For the weighted vote ensemble, this is explained by the fact that the number
of misleading classifiers outnumber legitimate classifiers and start to obtain a
majority of votes. For Bayes aggregation, the performances are degrading simply
because of overfitting. Indeed, Bayes aggregation has a number of parameter to
learn that is exponential in K while SPOCC and other methods have a number
of parameters at most linear in K.

4.2.2. Robustness w.r.t. faults
Erroneous predictions are simulated by sampling from a Bernoulli distribu-

tion Z ∼ Ber (θ). Given Z = 1, the prediction of a base classifier is replaced
with an (arbitrarily selected) class label that will coincide with the classifier
prediction with probability 1

ℓ . When Z = 0, the classifier prediction is un-
changed. Consequently, a noisy classifier built in this way from a base classifier
will achieve an error rate equal to ℓ−1

ℓ (random guess) as θ → 1.
The evolution of the classification accuracy of the benchmarked aggregation

methods as the number of noisy classifiers grows can be witnessed on Figure 5.
For simplicity, all noisy classifiers are built from the same base classifier (c1)
with θ = 0.9. Similarly as for adversarial classifiers, weighted vote ensemble
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Figure 5: Evolution of accuracy distributions (violin plots) for several aggregation methods
w.r.t. the number of noisy classifiers. SPOCC and adaSPOCC are in orange while other
methods are in blue.

and Bayes aggregation cannot maintain the same level of performances when
the number of perturbed classifiers increases. The same reasons are also behind
these performance decays (majority of incorrect classifiers for the weighted vote
ensemble and overfitting for Bayes aggregation).

4.2.3. Robustness w.r.t. informational redundancy
Redundancy in classifier predictions is simulated by adding several copies of

one of the base classifiers (classifier c1 in our experiments). As shown in Figure
6, this very simple setting allows to observe severe performance decays for the
weighted vote ensemble, the exponentially weighted vote ensemble and the naive
Bayes aggregation. Vote based ensembles are very sensitive to changes of ma-
jority. Naive Bayes aggregation is also sensitive to this phenomenon and suffers
from its inability to capture dependency relations between the base classifiers.

Unlike the previous experiment, it can be noted that Bayes aggregation
maintains the same level of performances as the number of clones of c1 increases.
Because clones will always produce identical predictions as c1, training the Bayes
aggregation in these conditions is equivalent to learn from K = 4 base classifiers
regardless how many copies of c1 are added. However, should these copies be
slightly perturbed, then we would observe the same overfitting issues as in the
previous experiments.
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Figure 6: Evolution of accuracy distributions (violin plots) for several aggregation methods
w.r.t. the number of copies of c1. SPOCC and adaSPOCC are in orange while other methods
are in blue.
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Table 1: Average performances of aggregation methods on the synthetic data. The first figure
is the average accuracy followed by the semi-width of the 95% confidence interval width of
this latter and the average standard deviation. Best accuracies (or those not statistically
significantly different) are in bold characters.

Method Adversaries Faults Redundancy Global Average
Clf. Selection 79.26% 79.25% 79.25% 79.25%

±0.52 ±0.50 ±0.51 ±0.28
std. 8.56% std. 8.56% std. 8.55% std. 8.56%

Weighted Vote 81.47% 81.89% 76.46% 79.94%
±0.25 ±0.23 ±0.52 ±0.22

std. 4.23% std. 3.83% std. 8.86% std. 6.57%
Exp. Weighted Vote 84.32% 84.35% 82.75% 83.81%

±0.23 ±0.23 ±0.39 ±0.17
std. 3.86% std. 3.77% std. 6.46% std. 4.92%

Stacking 83.43% 83.50% 83.38% 83.44%
±0.28 ±0.29 ±0.36 ±0.17

std. 4.75% std. 4.82% std. 5.89% std. 5.18%
Naive Bayes Agg. 85.23% 85.22% 80.27% 83.57%

±0.13 ±0.14 ±0.46 ±0.19
std. 2.25% std. 2.25% std. 8.12% std. 5.55%

Bayes Agg. 66.20% 66.36% 81.16% 71.24%
±0.77 ±0.79 ±0.51 ±0.46

std. 13.45% std. 13.43% std. 8.40% std. 13.90%
SPOCC 84.42% 84.42% 83.52% 84.10%

±0.23 ±0.23 ±0.34 ±0.16
std. 3.82% std. 3.82% std. 5.76% std. 4.61%

adaSPOCC 84.01% 84.01% 84.54% 84.16%
±0.23 ±0.23 ±0.52 ±0.13

std. 3.89% std. 3.89% std. 4.12% std. 4.00%

Best base Clf. 82.65% 82.65% 82.65% 82.65%
±0.41 ±0.41 ±0.41 ±0.41

std. 6.87% std. 6.87% std. 6.87% std. 6.87%
Optimal Clf. 87.52% 87.52% 87.52% 87.52%

± ≈ 0 ±0.52 ± ≈ 0 ± ≈ 0
std. ≈ 0% std. ≈ 0% std. ≈ 0% std. ≈ 0%

4.2.4. Summarizing synthetic data experiment robustness results
In the previous paragraphs, we have seen which methods are tolerant to

adversaries, faults and redundancy and scale well w.r.t. K. Only SPOCC,
adaSPOCC and stacking seem to be robust w.r.t. each of these forms of diffi-
culties. Beside robustness, their absolute performances also matter. Average5

performances are reported in Table 1 for each experiment as well as the global
average on all experiments. We also provide as reference the optimal (Bayes)
classifier accuracy as well as the performances of the best base classifier ck, i.e.
optimal selection.

In terms of accuracies, SPOOC or adaSPOOC are always the top 1 or top
2 aggregation approach. While the naive Bayes aggregation is slightly better
than SPOOC or adaSPOOC in the two first series of experiments, it performs
very significantly worse in the last one and it is outperformed on global average.
Stacking and all other methods obtain worse (or sometimes comparable) results
as compared to (ada)SPOCC. Moreover, observe that adaSPOCC achieves the
smallest variance, meaning that its performances are more stable across dataset
draws. Normalized confusion matrices corresponding to the global average on
all experiments (last column of Table 1) are shown in Figure 7. It shows the
distribution of error rates in terms of type I and type II errors. Let alone clas-
sifier selection (which achieves anyway poor general performances), adaSPOOC
is the aggregation method with the smallest type I / type II error discrepancy.

5Averages w.r.t either the number of adversaries, noisy classifiers or clones respectively.
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Figure 7: Normalized averaged confusion matrices for the reported results in the last column
of Table 1.

4.2.5. Other experimental aspects
The main goal of this experimental section is to illustrate the robustness

properties (a) to (c) that adaSPOOC possesses. The results reported in the
previous paragraphs match this purpose. However, other aspects are also inter-
esting to examine. In the following paragraphs, we investigate the behavior of
the tested aggregation methods under two different circumstances:

• when the base classifiers are heterogeneous,

• when the dataset is imbalanced, meaning that p (Y ) is not uniform.

Heterogeneous ensemble of classifiers. An important advantage of the class label
agnostic aggregation setting over others is that no assumption at all are made
on the base classifiers and therefore any training algorithm can be used to derive
them. To illustrate this ability, we reproduce the same experiment as in 4.2.3
with different base classifiers. Now, c1 is trained using logistic regression, c2
is a 5-nearest neighbor classifier, c3 is an SVM with radial basis function as
kernel while c4 is a decision tree like before. Classifier c1 will achieve smaller
accuracy because a linear decision function underfits the data in this case. Since
this classifier will be progressively duplicated, it will also check the ability of
methods to cope with increasingly many lesser accurate classifiers.

The corresponding results are displayed in Figure 8. Since at least one mem-
ber of the ensemble performs more poorly than in 4.2.3, all methods have their
accuracy distributions eroded. However, the conclusions from the previous ex-
periments are confirmed as the same methods achieve robustness to information
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Figure 8: Evolution of accuracy distributions (violin plots) on an heterogeneous ensemble of
4 classifiers for several aggregation methods w.r.t. the number of copies of c1. SPOCC and
adaSPOCC are in orange while other methods are in blue.
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Figure 9: Evolution of accuracy distributions (violin plots) with class label imbalance for
several aggregation methods w.r.t. β (first class label probability). SPOCC and adaSPOCC
are in orange while other methods are in blue.

redundancy and corruption. It is also made clear that the ability of the aggre-
gation to overcome these difficulties does not lie with the training algorithms
employed to obtain the base classifiers.

Class label imbalance. In practice, it is common that the generative process
underlying our data is such that the class label probability distribution is not
uniform. In the previous set of experiments, such an imbalance was in place
for the base learner but not for the aggregation methods. We now modify the
generative process such p (Y = ω1) = β and p (Y = ω2) = 1 − β. The level of
imbalance is progressively reduced as β increases. The set of examined values
is: β ∈ {0.05; 0.1; 0.15; ..; 0.5}.

The corresponding results are displayed in Figure 9. For any value of β, this
setting is very favorable to majority based methods. Indeed, if the decision tree
training went alright, we should obtain approximately the following predictors

c1 (x) =

{
ω2 if x1 < 0 and x2 > 0

ω1 otherwise
c2 (x) =

{
ω1 if x1 > 0 and x2 > 0

ω2 otherwise

c3 (x) =

{
ω2 if x1 > 0 and x2 < 0

ω1 otherwise
c4 (x) =

{
ω1 if x1 < 0 and x2 < 0

ω2 otherwise
.
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We see that, for any x, there are 3 classifiers out of 4 that yield correct pre-
dictions therefore majority voting based aggregations are expected to perform
very well. In addition, we also have r [ci] ≈ r [cj ] for any i and j so the weighted
vote and exponentially weighted vote aggregation are nearly equivalent to ma-
jority voting. As we can see, these two methods perform very well when β = 0.5
and can tolerate imbalance up to β = 0.15. Below this value, there are two few
points in the class ω1

6 for the decision tree to learn meaningful prediction rules
and thus their aggregation (regardless of the method) is not meaningful either.
Stacking can also easily learn a combination rule that mimics majority vote. It
thus compares favorably to vote based methods.

The naive Bayes aggregation also works very well in this setting because
p (c1|Y = ω1) ≈ I {c1 = ω1}, p (c2|Y = ω2) ≈ I {c2 = ω2}, p (c3|Y = ω1) ≈ I {c3 = ω1}
and p (c4|Y = ω2) ≈ I {c4 = ω2}. Consequently, the naive Bayes aggregation
will easily rule out the classifier yielding an incorrect prediction. We can see
that this method achieves comparable performances as compared to the vote
based ones.

The Bayes aggregation is a gold standard because it infers the optimal deci-
sion rule as explained in 2.3. However it still has ℓ

(
ℓK − 1

)
= 30 parameters to

learn from 40 data points in the validation set and will thus slightly overfit. It
thus achieves worse accuracies than naive Bayes or vote based aggregation but
seems to better handle extreme imbalance.

Because indicator functions (or Dirac masses) are fixed points of DPT and
zero is the absorbing element of t-norms, SPOCC and adaSPOCC can enjoy
the same type of information as the naive Bayes aggregation does. They indeed
perform well when β > 0.35. However, they exhibit higher sensitivity to im-
balance than other methods. As often, adaSPOCC appears to be more robust
than SPOCC. We believe this is due to the fact that they are discriminative
aggregation models in the sense that they do not rely on the whole data dis-
tribution but solely operate on the conditional distributions p (Y |ck). As the
experiments on real data will show, adaSPOCC already works pretty well on
several imbalanced datasets, however possible fixes for this limitation will be
investigated in future works and are discussed in section 5.

4.3. Real Data
To upraise the ability of the benchmarked methods to be deployed in more

realistic situations (such as decentralized learning), we also need to test them
on sets of real data. Since this is essentially useful in a big data context, we
chose eight from moderate to large public datasets. The specifications of these
datasets are reported in Table 2.

Example entries from the 20newsgroup data set are word counts obtained
using the term frequency - inverse document frequency statistics. We reduced
the dimensionality of inputs using a latent semantic analysis (Deerwester et al.,
1990) which is a standard practice for text data. We kept 100 dimensions.
Also, as recommended, we stripped out each text from headers, footers and
quotes which lead to overfitting. Besides, for the Wine and Avila datasets, the
number of class labels is originally 10 and 12 respectively. We binarized these

6When β = 0.1, classifiers c2 and c4 have access (in expectation) to 8 data points in class
ω1 and only four such points when β = 0.05.
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Table 2: Real dataset specifications
Name Size n Dim. d Nbr. of

classes ℓ
Data type Class

imbalance
Source

20newsgroup 18846 100 (after red.) 20 text yes sklearn
MNIST 70000 784 10 image no sklearn
Satellite 6435 36 6 image

features
yes UCI repo. (Statlog)

Wine 6497 11 2
(binarized)

chemical
features

yes UCI repo. (Wine
Quality)

Spam 4601 57 2 text yes UCI repo. (Spam)
Avila 10430 10 2

(binarized)
layout

features
yes UCI repo. (Avila)

Drive 58509 48 11 current
statistics

no UCI repo. (Sensorless
Drive Diagnosis)

Particle 130064 50 2 signal yes UCI repo. (MiniBooNE
particle identification)

classification tasks because some classes have very small cardinalities which
is problematic for our experimental design in which datasets are divided into
several distinct subsets. Indeed, some subsets may possess no example at all of
some classes which leads to imprecise labeling which is beyond the scope of this
paper. To circumvent these acute class imbalance issues, classes were merged
as follows:

• In the Wine data set, class labels are wine quality scores. Two classes are
obtained by comparing scores to a threshold of 5.

• In the Avila dataset, class labels are middle age bible copyist identities.
The five first copyists are grouped in one class and the remaining ones in
the other class.

Unlike synthetic data sets, we need to separate the original dataset into a
train set and a test set. To avoid a dependency of the reported performances
w.r.t train/test splits, we perform 2-fold cross validation (CV). Also, we shuffled
at random examples and repeated the training and test phases 100 times.

To induce diversity in the base classifiers, we separated the training data
into 6 distinct pieces using the following procedure: for each data set, for each
class,

1. apply principal component analysis to the corresponding data,
2. project this data on the dimension with highest eigenvalue,
3. sort the projected values and split them into 6 subsets of cardinality ni/6

where ni is the proportion of examples belonging to class ωi.

We argue that this way of splitting data leads to challenging fusion tasks because
some base classifiers may see data that are a lot easier to separate than it should
and will consequently not generalize very well. Actually, the training data to
which classifier ck has access is a non-i.i.d. sample of the distribution of (X,Y ).

We used softmax regression with an L2 regularization term to train the base
classifiers. The regularization hyperparameter is set to default (i.e. 1.0).

To make sure that robustness observations from the previous subsection are
confirmed on real data, we also add two noisy classifiers to the ensemble. Both
noisy classifiers are built from c1 with θ = 0.01 therefore they are perturbed
copies of c1.
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Table 3: Classification accuracies (with bootstrap confidence intervals and standard devia-
tions) for several real data sets when 6 base classifiers were trained separately on disjoint
subsets of the datasets. Datasets were split in an non-i.i.d. way using a PCA based protocol.
Two slightly noisy copies of c1 were added so there are K = 8 base classifiers to aggregate.

Method 20newsgroup MNIST Satellite Wine Spam Avila Drive Particle
Clf. Selection 40.86% 70.86% 75.23% 64.92% 87.31% 60.56% 51.55% 82.11%

±0.12% ±0.08% ±0.15% ±0.26% ±0.18% ±0.34% ±0.31% ±0.15%
std. 0.83% std. 0.79% std. 1.54% std. 2.60% std. 1.83% std. 3.48% std. 3.18% std. 1.56%

Weighted Vote 38.67% 67.48% 75.34% 65.60% 85.22% 60.77% 50.72% 79.35%

±0.15% ±0.06% ±0.08% ±0.16% ±0.20% ±0.35% ±0.33% ±0.24%
std. 1.59% std. 0.61% std. 0.85% std. 1.62% std. 2.05% std. 3.60% std. 3.38% std. 2.50%

Exp. Weighted Vote 42.17% 75.10% 77.88% 65.63% 88.50% 62.30% 57.01% 82.64%

±0.08% ±0.06% ±0.10% ±0.18% ±0.14% ±0.35% ±0.46% ±0.12%
std. 0.83% std. 0.61% std. 1.01% std. 1.81% std. 1.42% std. 3.60% std. 4.67% std. 1.29%

Stacking 19.01% 37.82% 61.72% 64.65% 89.67% 65.58% 37.10% 83.75%

±0.15% ±0.24% ±0.10% ±0.26% ±0.13% ±0.12% ±0.28% ±0.11%
std. 1.58% std. 2.43% std. 1.04% std. 2.76% std. 1.28% std. 1.24% std. 2.78% std. 1.12%

Naive Bayes Agg. 39.32% 76.11% 78.06% 64.21% 87.83% 60.76% 66.39% 80.10%

±0.43% ±0.17% ±0.09% ±0.21% ±0.23% ±0.33% ±0.60% ±0.30%
std. 4.43% std. 1.69% std. 0.87% std. 2.16% std. 2.34% std. 3.42% std. 6.05% std. 2.90%

Bayes Agg. Intract. Intract. 66.07% 63.89% 88.90% 65.39% Intract. 83.29%

±0.17% ±0.27% ±0.14% ±0.12% ±0.11%
std. 1.65% std. 2.77% std. 1.42% std. 1.26% std. 1.12%

SPOCC 35.99% 78.00% 77.55% 63.60% 86.74% 61.91% 66.86% 73.31%

±0.19% ±0.22% ±0.10% ±0.10% ±0.34% ±0.33% ±0.53% ±0.23%
std. 1.93% std. 2.29% std. 1.00% std. 1.07% std. 3.32% 3.27% std. 5.48% std. 2.35%

adaSPOCC 41.19% 79.13% 78.59% 64.92% 89.26% 63.33% 67.75% 82.13%

±0.10% ±0.26% ±0.08% ±0.25% ±0.14% ±0.32% ±0.47% ±0.14%
std. 1.03% std. 2.66% std. 0.77% std. 2.51% std. 1.40% 3.21% std. 4.79% std. 1.47%

Best base Clf. 42.11% 70.89% 75.82% 65.66% 87.73% 62.59% 52.06% 82.33%

±0.06% ±0.06% ±0.08% ±0.16% ±0.09% ±0.11% ±0.24% ±0.12%
std. 0.66% std. 0.66% std. 1.25% std. 1.42% std. 1.27% std. 1.78% std. 2.63% std. 1.65%

Centralized Clf. 57.43% 91.44% 82.43% 73.72% 92.18% 68.23% 74.72% 88.56%

±0.04% ±0.02% ±0.04% ±0.05% ±0.05% ±0.04% ±0.03% ±0.25%
std. 0.39% std. 0.12% std. 0.44% std. 0.53% std. 0.50% std. 0.47% std. 0.35% std. 2.58%

Table 4: Maximal accuracy discrepancy w.r.t. the best approach. Max is taken over the 8
datasets.
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max. discr. 16.2% 17.03% 10.74% 41.31% 4.82% 12.52% 10.44% 2.25%

Average accuracies over random shuffles and CV-folds are given in Table
3 for K = 8 base classifiers. Train/validation split ratio are identical to the
synthetic dataset case. A number of observations can be made based on these
results:

• Classifier selection based on estimated accuracies is always significantly
outperformed by some of the aggregation techniques which shows that the
experimental protocol meets its purpose (providing a setting allowing to
do better than base classifiers). Even ”oracle” classifier selection (reported
as best base classifier in Table 3) is outperformed in 6 datasets out of 8
and achieves comparable performance in the remaining two.

• adaSPOOC always obtain better results than SPOCC which indicates that
it is safer to analyze classifier dependencies as well as estimated individual
performances on real data.
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• Memory occupation became problematic for Bayes aggregation whenever
ℓ > 6 as ℓ

(
ℓK − 1

)
parameters need to be estimated and stored. It

achieves unsurprisingly poor performances when ℓ = 6 (Satellite dataset)
confirming its inability to scale w.r.t. ℓ or K.

• adaSPOCC is one of the most efficient aggregation approach. It achieves
the highest average rank (over the 8 datasets). adaSPOCC has average
rank of 2.1 followed by the exponentially weighted vote which is in average
the top 3 approach.

• adaSPOCC is robust in the sense that it achieves the minimal maximal dis-
crepancy w.r.t. the best concurrent approach. Absolute values of maximal
discrepancies (over the 8 datasets) w.r.t. the best approach are reported
in Table 4.

The corresponding normalized confusion matrices are given in AppendixC.
These matrices exhibit different patterns, thereby showing that the methods
converge to significantly different aggregation strategies. Also, interestingly, the
methods do not necessarily issue incorrect predictions under the same circum-
stances and a second stage of aggregation may take advantage of their respective
strengths.

5. Conclusion

In this article, a new classifier aggregation technique is introduced. This
technique relies on the framework of possibility theory. Conditional probabilities
of class labels given a classifier prediction are estimated on a validation set and
transformed in possibility distributions. For each input to be classified, the set of
possibility distributions issued by the classifier predictions are regarded as a set
of propositions that are conjunctively combined using a t-norm. The obtained
method, called SPOCC, is scalable w.r.t. to both the number of class labels
and the number of base classifiers. It is also incremental as extra-classifiers
can be appended later to the ensemble without re-computing previously derived
parameters.

An adaptive version of this method, called adaSPOCC is also introduced. It
is proposed to perform hierarchical agglomerative clustering to identify subsets
of classifiers which are not statistically independent. Each such cluster can thus
be combined sequentially with different t-norms. T-norms are chosen from the
Aczel-Alsina parametric family which allows to reduce the impact of redundant
predictions when necessary. Moreover, the individual impact of a base classi-
fier can also be regulated by setting discounting coefficients. When one such
coefficient is set to one, the corresponding classifier is discarded from the fusion
process. These coefficients as well as the t-norm parameters are automatically
tuned using heuristic search monitoring the ensemble accuracy on the validation
set.

The adaptive version of this non-probabilistic aggregation method possesses
a number of nice statistical properties. These properties are well supported by
several numerical experiments and clearly show its ability to tolerate adversaries,
faults or information redundancy. In a series of experiments on a synthetic
dataset and involving variable numbers of (respectively) noisy, adversarial or
redundant classifiers, adaSPOCC achieves the highest average accuracy by a
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comfortable margin (≈ 2.5 times the 95% confidence interval width). In a second
series of experiments on 8 real datasets and involving several (jointly) noisy,
adversarial and redundant classifiers, adaSPOCC achieves the highest average
accuracy rank. Thanks to its robustness, its worst performance is limited to a
2.25% misclassification error overhead as compared to the best method. This is
the minimal such overhead among all other methods, the second smallest such
overhead being 4.82% which is more than two times larger.

There are several future research tracks that we plan to investigate to further
develop this contribution. One of them consists in investigating to what extent
the approach is modular w.r.t. imprecise classifiers, i.e. classifiers that can only
discriminate between subsets of class labels. Since possibility theory is natively
compatible with set theory, this modularity seems not too challenging to achieve
as opposed to many other concurrent approaches.

A second one consists in designing a more efficient way to set parameters λ
than grid search (and the heuristic search presented in Appendix A). To replace
grid search, we plan to try to fit πens to the one-hot encoding of the true label. It
is already known that Lk norm based metrics are relevant distance for possibility
distributions as illustrated in Jousselme & Maupin (2012). A projected gradient
descent would allow us to find a relevant estimate of λ.

Another interesting question is to adapt the proposed classifier aggregation
method to regression tasks. This will require to use possibilities on the real line
for instance which may be computationally more demanding.

Another line of work consists in proposing an alternative version of adaSPOCC
in which possibility distributions are built from classifier output scores instead
of just their class label predictions. Classifier score are much more informative
than class label predictions because they provide a ranked list of candidate so-
lutions equipped with levels of confidence. On the downside, they require either
not be agnostic on base learners or to perform a calibration step. Mapping
scores to possibilities can be regarded as a regression task for which a dedicated
portion of the validation set can be used for fitting.

Finally, while adaSPOCC can tolerate a certain level of class imbalance, its
sensitivity to this phenomenon could be reduced in several ways. One can think
of turning the class probability distribution into a possibility distribution and
combine it to the aggregated possibility distribution issued by adaSPOCC. It
is also possible to give different weights to the data points in the validation set
and optimize the t-norm with respect to a corresponding weighted empirical
risk instead of the unweighted version that we used in this article.

AppendixA. Heuristic search for dependency parameters

In this appendix, we explain how to set hyperparameters (λa)
K−1
a=1 which are

necessary to execute the computation graph G as part of adaSPOCC. Each hy-
perparameter λa regulates the level of dependency between operands aggregated
using the Aczel-Alsina t-norm Tλa

. Each λa lives in [1;+∞] and we can use a
logarithmic grid and the validation set to assess the impact of a given value of
λa in terms of classification accuracy of the ensemble. However, resorting to
baseline grid search has exponential complexity in K and we will thus employ
a heuristic search to keep computation time at bay.

To cleverly browse possible values for (λa)
K−1
a=1 , we can remark that HAC

agglomerates classifiers from most dependent ones to least dependent ones. This
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implies that if Va is a child node of Va′ in G then λa ≥ λa′ . Consequently,
instead of systematically visit all configurations, we will start by performing a
grid search on the full grid for the lowest nodes in the hierarchy and freeze the
corresponding hyperparameters. Then, we will move to their parent nodes and
perform grid search only for smaller values. This sequential grid search has a
maximal complexity equal to K − 1 times the cost of a 1D grid search.

Another trick allowing to improve the procedure consists in jointly setting a
subset of hyperparameters. Clusters can be obtained from G. This is actually
the original intent behind HAC. For a given number of clusters Nc, clusters
are obtained by thresholding cophenetic correlation coefficients between pairs
of classifiers. More precisely, if a pair of classifiers have a cophenetic correlation
distance below the threshold, they are considered to belong to different clusters.
Starting with a sufficiently high value of the threshold so that all classifiers are
in one unique cluster, the threshold is lowered until the constraint on Nc is
violated, i.e. further lowering it yields Nc + 1 clusters. Note that the obtained
clusters always correspond to non-overlapping branches of G. This strategy is
wrapped up by iterating on Nc, starting from Nc = 2 to K.

Algorithm 5 summarizes the proposed heuristic search for dependency pa-
rameters. The 1D grid search for one λa is performed on a predefined grid
and the retained value is the one achieving highest accuracy of the classifier
ensemble.

Initialize λa ← 1, ∀Va ∈ G.
for Nc from 2 to K do

Obtain Nc clusters denoted by C1 . . . CNc .
for i from 1 to Nc do

Find Va s.t. its descendants contain Ci and no other leaf node.
Perform grid search jointly for λa and all λa′ in correspondence
with non-leaf descendants of Va.

Append node Va and all its descendants to the set Treated.
end
Obtain list Remain of those nodes in G which do not belong to Treated.
Sort list Remain so that Remain[i] cannot be an antecedent of
Remain[j] if i < j.

for i from 1 to length of Remain do
Perform grid search for λa where Va = Remain[i] and subject to
λa ≤ λa′ for any Va′ that is a descendant of Va.

end
Save in ri the empirical error rate achieved with this value of λ.
if Nc ≥ 3 and ri ≥ ri−1 then

Revert to the value of λ obtained at the previous iteration.
Stop looping.

end
end
Return λ.

Algorithm 5: Heuristic search for dependency hyperparameters
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AppendixB. Deeper insights into possibility theory

Possibility theory was introduced by Zadeh (1978) and further developed
by Dubois & Prade (1988) with the motivation to offer a well-defined and for-
mal mathematical representation for linguistic statements that permits handling
imprecise or vague information. For instance, the word cheap can be given a
large set of values according to everyone’s subjective definition and context of
cheapness. Possibility values can be interpreted as degrees of feasibility of event
occurrence. An important difference with the way probabilities encode uncer-
tainty is that high possibility values are non-informative while high probability
values are. Indeed, a very high possibility for event A means that, should A
occur or not, we would not be surprised. If A has a very high probability mass,
then we would be surprised that A does not occur. Conversely, low possibil-
ity and probability values are both informative as they both indicated that an
occurrence of A is unlikely.

Generally speaking, possibilities are a special class of imprecise probabilities
which is a setting in which probability values can only be bracketed by two
bounds. Indeed, the uncertainty of an event in the possibilistic framework is
better upraised by a pair of values (possibility and necessity) which can be
seen as probability bounds. In this regard, possibility theory is not at all an
orthogonal theory to probabilities but provide a convenient language to grasp
some aspects of uncertainty that lead to highly complex models in probabilistic
language.

AppendixB.1. Main concepts
Possibility theory can be formalized as follows. Suppose events B ⊆ Ω can

be sorted into one of the following families:

• T the family of true propositions,

• F the family of false propositions,

• and U the family of undecided propositions.

Define two functions N and Π that respectively represent the certainty of truth
and the possibility of truth. More formally,

N (B) = I {B ∈ T } , (B.1)
Π(B) = I {B ∈ T ∪U } , (B.2)

where I is the indicator function. Take two events B1 and B2. If they are both
certain then so is B1 ∩ B2 and if at least of one of them is not certain then
B1 ∩B2 is not certain either. We thus have

N (B1 ∩B2) = min {N (B1) ;N (B2)} . (B.3)

Conversely, if at least either B1 or B2 is possible then so is B1 ∪B2, hence

Π(B1 ∪B2) = max {Π(B1) ; Π (B2)} . (B.4)

Moreover, if B is impossible then Bc is surely true, hence

Π(B) = 1−N (Bc) . (B.5)
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Now, by preserving the above logical rules but allowing N and Π to take values
in [0; 1] and to represent graded membership of families T and T ∪ U , then
we obtain the framework of possibility theory.

In this framework, the function N is called necessity measure and the function
Π is called possibility measure and it is immediate from (B.5) that they encode
the same information. From (B.4), it is also obvious that the possibility measure
of any subset B can be obtained from the possibility measures of singletons. The
restriction of Π to singletons is denoted π and called possibility distribution.
A possibility distribution has the same memory complexity as a probability
distribution.

Example 1. Suppose Ω = {ω1;ω2;ω3}. Suppose classifier c1 is a 4-nearest-
neighbor and class labels ω1 and ω2 receive two votes when c1 is asked to predict
the class label y of some input x. Consequently, aggregation methods receive the
following message from c1: B1 = {ω1;ω2} ∈ T . This piece of information is
encoded in the following possibility distribution:

y ω1 ω1 ω3

π 1 1 0

The corresponding possibility and necessity measures are given by

y {ω1; } {ω2} {ω1;ω2} {ω3} {ω1;ω3} {ω2;ω3} Ω
N 0 0 1 0 0 0 1
Π 1 1 1 0 1 1 1

The above example illustrates the ability of possibility distributions to easily
encode set theoretic information. The same information can be encoded by
an infinite set of probability distributions, i.e. the set of those distributions
such that p ({ω1;ω2}) = 1. Observe that the probability distribution p0 (ω1) =
p (ω2) =

1
2 belongs to those distributions in question. The distribution p0 does

not only inform us that y is either ω1 or ω2 but also that there are evidence
that these outcomes are equally probable. It is thus more informative than the
statement B1 ∈ T

Note that SPOCC does not exploit this aspect of possibility theory but
this is mentioned as one of the perspectives for future work. In this paper,
SPOCC leverages the flexibility of possibility theory when it comes to aggregate
propositions in the form of possibility distributions.

AppendixB.2. Probability / Possibility transforms
In this article, the information issued by classifier ck that we would like to

encode as a possibility distribution corresponds to one column of matrix M(k).
After dividing by nval these entries of M(k), we obtain a maximum likelihood
estimate of the conditional distribution p (y|ck (x)). It is therefore necessary to
turn the information encoded by this probability distribution into a possibility
distribution in order to exploit possibilistic aggregation mechanisms.

To turn a probability distribution p into a possibility one π, three desirable
properties stated by Dubois et al. (2004) are

• consistency: ∀A ⊆ Ω, Π(A) ≥ p(A) where Π is the possibility measure
spanned by π. So Π is a probability upper bound.
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• preference preservation: ∀(ω, ω′) ∈ Ω2, p (ω) > p (ω′) ⇔ π (ω) > π (ω′),
so there is a form of compatibility between the preferences encoded by π
and those encoded by p.

• maximal specificity: π is the most informative possibility distribution
among those possibility distributions consistent and preserving preferences
with p. Considering two possibility distribution π(1) and π(2), the possi-
bility distribution π(1) is said to be more informative than π(2), denoted
π(1) ⪯ π(2), if ∀ω , π(1)(ω) ≤ π(2)(ω).

The only transformation verifying the above properties is DPT which is
presented in 3.2.

Example 2. Suppose Ω = {ω1;ω2;ω3}. Below are two examples of application
of DPT to two conditional probability distributions:

y ω1 ω1 ω3

p (y|c1 (x) = y3) 0.1 0.15 0.75
π1|3 0.1 0.25 1

y ω1 ω1 ω3

p (y|c2 (x) = y2) 0.2 0.6 0.2
π2|2 0.4 1 0.4

AppendixB.3. Conjunctive aggregation of possibility distributions
In classical logic, the logical conjunction operator (logical AND) is true when

all operands are true. When the operands are subsets, it thus amounts to taking
the intersection of these subsets. Logical conjunction allows us to combine
possibility distributions that are basically indicator functions of a set (as in
example 1). When possibility values are in ]0; 1[ (as in example 2), we need to
define an aggregation operator that is a generalization of logical conjunction.

The parametric operator Tλ presented in 3.3 and 3.4 that relies on Aczel-
Alsina t-norms is one such generalization in the sense that if π1 (ω) = I {ω ∈ B}
and π2 (ω) = I {ω ∈ C} then, Tλ (π1, π2) (ω) = I {ω ∈ B ∩ C}.

Actually, the operator Tλ achieves a more general form of conjunctivity which
reads

Tλ (π1, π2) ⪯ π1 and π2,∀π1, π2. (B.6)

This means that the result of the aggregation of possibility distributions
using Tλ is always at least as informative than the most informative input dis-
tribution. This property comes from the fact that for any distributions π1 and
π2 and any λ < λ′, we have

Tλ (π1, π2) ⪯ Tλ′ (π1, π2) .

Remembering that T∞ (π1, π2) is the entrywise minimum of π1 and π2, it is
obvious that T∞ (π1, π2) ⪯ π1 and π2 and by transitivity (B.6) holds.

Example 3. Suppose Ω = {ω1;ω2;ω3}. Below is a figure displaying the aggre-
gated possibility distribution πens using Tλ when one operand is distribution π1|3
from example 2, a second operand is distribution π2|2 from example 2 and the
final and third operand is π3|2 = π2|2.

34



Figure B.10: Evolution of possibility values of πens w.r.t. to λ

The above example illustrates that depending on the value of λ, the class
label achieving maximal possibility is either a class label strongly supported by
one classifier or moderately supported by a majority of classifiers. Since λ is
tuned by a grid search based heuristic in adaSPOCC, the chosen aggregation
policy is data driven and will maximize accuracy.

The key aspect of possibility theory that we exploit in the derivation of
adaSPOCC is that the above described aggregation operator is flexible and has
a number of parameters to learn that is linear in K the number of classifiers in
the ensemble. In probability theory, aggregating p (y|c1) and p (y|c2) consists
in inferring the distribution p (y|c1, c2). As explained earlier and illustrated
by the numerical experiments, direct inference leads to overfitting or is simply
intractable. When simplifying conditional independence assumptions are made,
the computations become tractable at the expense of accuracy.

In possibility theory, the philosophy behind aggregation operators such as
Tλ is fundamentally different. Aggregation operators are not derived through
calculus rules but by logical rules. Desirable properties are stated and an opera-
tor satisfying them is derived (normative approach). This is a knowledge based
system view, in which possibility distributions encode partial knowledge that
must be combined in a principled way.

AppendixB.4. Decision making from possibilities
It is clear that based on the aggregated possibility distribution πens obtained

from the ensemble of classifiers using Algorithm 2 or 4, the intuition calls for
taking the argmax of this possibility distribution in order to produce a reliable
prediction.

There are actually strong theoretical justifications behind this decision rule
coming from decision theory. Indeed, a theorem by Gilboa (1987) explains that
decisions based on non-additive measures (such as possibility measures) are in
line with several decision theoretic axioms. These axioms are closely related
to those of the famous theorem from Savage (1954) which holds for (finitely)
additive probability distributions.
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AppendixC. Normalized confusion matrices on real data

This section provides normalized confusion matrices corresponding to the
experiments on real datasets exposed in 4.3 and summarized in Table 3. The
matrices are grouped by dataset and for each of the 8 datasets there is one
such matrix for each aggregation or reference method. The confusion matrix of
the Bayes aggregation is missing for 20newsgroup, Drive and MNIST datasets
because Bayes aggregation is intractable as soon as ℓ > 6 with our equipment.
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MNIST.
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Satellite.
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Wine.
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Spam.

Avila.
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Drive.
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Particle.
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