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Direct Acceleration Feedback Control of Quadrotor Aerial Vehicles

Mahmoud Hamandi1, Marco Tognon1, Antonio Franchi2,1

Abstract— In this paper we propose to control a quadrotor
through direct acceleration feedback. The proposed method,
while simple in form, alleviates the need for accurate estimation
of platform parameters such as mass and propeller effective-
ness. In order to use efficaciously the noisy acceleration mea-
surements in direct feedback, we propose a novel regression-
based filter that exploits the knowledge on the commanded
propeller speeds, and extracts smooth platform acceleration
with minimal delay. Our tests show that the controller exhibits
a few millimeter error when performing real world tasks with
fast changing mass and effectiveness, e.g., in pick and place
operation and in turbulent conditions. Finally, we benchmark
the direct acceleration controller against the PID strategy
and show the clear advantage of using high-frequency and
low-latency acceleration measurements directly in the control
feedback, especially in the case of low frequency position
measurements that are typical for real outdoor conditions.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become in the
last few years very popular thanks to their versatility and
applicability to many different domains. Among the different
types of platforms, one of the most popular is the quadrotor.
A quadrotor platform can hover in place, which is a desired
feature for applications such as inspection, search & rescue,
monitoring, etc.

For the purpose of designing the position controller, a
quadrotor can be considered as a point mass whose ac-
celeration is the sum of mass-normalized forces such as
gravity, wind, and a control force produced by the propellers.
The control force can be parameterized in two components
1) its intensity which is the total thrust provided by the sum
of propeller forces, and 2) its orientation which normally
corresponds to the vertical axis attached to the vehicle body
frame. In its most common form, the motion control of the
Center of Mass (CoM) of a quadrotor vehicle boils down to
two control loops, the outer and inner loops (see, e.g., [1],
[2] and references therein). The outer loop (position control)
computes a desired thrust and orientation (roll and pitch)
from a blending of the acceleration reference and a feedback
based on the CoM position and velocity measurements. The
inner loop (attitude control) computes the desired torques
to reorient the platform to the desired orientation. Finally,
both the desired force and torques are provided to a low
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level module that computes rotational speed of each propeller
necessary to reach the calculated thrust and orientation.

While each control part is affected by wrongly estimated
parameters and external disturbances, this paper focuses on
the improvement of the position control, which we shall show
to be enough to mitigate disturbances such as uncertain mass
and external forces, in addition to uncertain aerodynamic
parameters in the low level motor control loop.

To put our controller into perspective, we further divide
the position controller into a position feedback loop that
computes the desired accelerations based on the measured
and desired states, and into a thrust controller that calculates
the desired thrust based on the desired accelerations; this
second part is commonly implemented in open-loop by
applying an inverse of the platform model. To cope with
the non-perfect control of the CoM acceleration due to the
open-loop nature of the thrust controller, the most common
strategy is to make the position feedback loop more robust to
input disturbances and parameter uncertainty. Classical solu-
tions resort to different robust controllers (integral position
feedback, adaptive control [3], sliding mode [4], MPC [5],
etc.), or try to compensate for the inaccurate acceleration
control using a disturbance observer [6]–[8].

Another approach that is gaining popularity in the lit-
erature is the Incremental Nonlinear Dynamic Inversion
(INDI) [9]–[11], which exploits the accelerometer measure-
ment to robustify the quadrotor control. The controller is
based on an incremental law computed from the Taylor
expansion of the dynamics. The robustness of INDI against
external disturbances has been proven by real experiments.
However, in spite of its robustness, INDI requires the knowl-
edge of the input effectiveness (i.e. knowledge of the mass
and aerodynamic parameters), and propeller rotational mea-
surements. In addition, INDI low-pass-filters the accelerom-
eter measurements; this introduces a frequency-dependent
delay and removes high-frequency components that might
be relevant, e.g., in the presence of impacts or rapid changes
of acceleration due, e.g., to fast changes in the mass and
propeller effectiveness.

In this paper, we propose an alternative solution to the
problem; our main idea is rather simple but at the best of
our knowledge, it has never been explored in this form in the
related literature. Rather than partially relying on the open-
loop model inversion, we want to transform the thrust control
into a proper feedback control which is based on the direct
acceleration measurement. To do so, we exploit the specific
acceleration measurement provided by the accelerometer en-
riching the position controller with an acceleration feedback
compensator. The goal is to steer to zero the error between

mailto:mahmoud.hamandi@laas.fr
mailto:marco.tognon@laas.fr
mailto:antonio.franchi@laas.fr
mailto:a.franchi@utwente.nl


pR
xR

yR

zR

FRxW
yW

zW

FW

fR

Fig. 1: System model and main variables.

the desired acceleration commanded by the position feedback
loop and the measured acceleration coming from the ac-
celerometer. This idea is clearly inspired by torque-feedback-
based joint controller for standard manipulators [12], where
the electric motor input is commanded in order to steer the
measured torque to the desired one. Furthermore, we prove
theoretically and experimentally that our controller does
not require the knowledge of the mass, propeller rotational
speed measurements, and is robust to large variances in
the aerodynamic parameters. Finally, to get the most out of
the accelerometer measurements, we introduce a zero delay,
regression-based multi-notch filter, that leverages upon the
commanded propeller speeds to find the signal and noise
profiles in the accelerometer measurements.

The paper is organized as follows. In Sec. II we model
a generic quadrotor system. In Sec. III we recap the stan-
dard outer and inner loop controllers and we present our
accelerometer-based inner loop controller, hereafter referred
to as the Direct Acceleration (DA) controller. We provide
a particular remark showing how the high-frequency ac-
celeration feedback enhances the performance with respect
to a PID controller. In Sec. V we present the regression-
based filter for the estimation of body acceleration, and
finally, Sec. VI shows the experimental results. A conclusive
discussion in Sec. VII ends the manuscript and additional
experiments and details are provided in the Appendix.

II. MODELING

We firstly define a fixed world frame, FW , with axes
{xW ,yW ,zW} and origin OW . The position of OW is arbi-
trary, while {xW ,yW ,zW} are such that zW is aligned with
the opposite direction of the gravity vector g ∈ R3.

To describe the frame of the quadrotor we define a body
frame, FR, with axes {xR,yR,zR} and origin OR centered
with the vehicle CoM. We consider a quadrotor aerial vehicle
modeled as a rigid body with mass mR ∈ R>0 and positive
definite inertia matrix JR ∈ R3×3 (expressed in FR and
relative to OR). The configuration of the vehicle is then given
by the position and orientation of FR with respect to (w.r.t.)
FW , described by the vector pR ∈R3 and the rotation matrix
RR ∈ SO(3), respectively. The state of the robot completed
by the linear velocity w.r.t. FR and the angular velocity w.r.t.
FW , expressed in FR, denoted by vR ∈ R3 and ωR ∈ R3,
respectively. On a quadrotor the motion can be controlled
acting on four inputs: fR ∈ R and τR = [τRx τRy τRz]

T ∈ R3,
where fR is the magnitude of the thrust force fR = fRzR
applied at OR and parallel to zR, and τR is the 3D control
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Fig. 2: Block diagram of the quadrotor controller with the two
variants of the thrust controller.

moment expressed in FR. An example of the system and its
main variables is shown in Fig. 1.

Applying the standard Newton-Euler equations one ob-
tains the following vehicle equations of motion:

v̇R =
fR

mR
−g+ fe

mR
(1)

ṘR = S(ωR)RR (2)
JRω̇R =−S(ωR)JRωR +τR, (3)

where fe ∈ R3 is any external force (wind gust, model
inaccuracy, aerodynamic effects, etc.). S(?) is the skew
operator defined as S(?) : R3 → R3×3 such that S(x)y =
x×y for every x ∈ R3 and y ∈ R3.

The motion control problem addressed here is to design
a feedback law for the control inputs fR and τR that steers
the position of the vehicle CoM along a sufficiently smooth
desired trajectory pd

R(t) : R→ R3. It is well known that for
a quadrotor, one can also independently control the rotation
along the thrust direction, commonly called yaw angle. Since
the accelerometer cannot improve the control of this quantity,
the latter is done using standard techniques [1].

III. CONTROLLER DESIGN

As already discussed, the typical control structure for a
quadrotor aerial vehicle is composed of two high level con-
trollers (the position controller and attitude controller) and
one low level controller that controls the propeller velocities.
In the following, we shall show this standard control law
and how we intend to modify the position control part in
order to enhance the robustness against unknown parameters
and external disturbances, using the direct accelerometer
feedback. For the compactness of the paper, we omit the
description of the attitude controller that calculates desired
torques from desired orientation (and derivatives), and the
description of the motor speed allocation; we refer to [1],
[2] for the attitude controller and allocation strategy used.
Finally, we assume these rotational velocities to be applied
instantaneously through a low level controller in the ESC
described in [13].

A. Position feedback loop

The position feedback loop is designed considering the
dynamics of the vehicle CoM virtually as a double integrator:

ṗR = vR, v̇R = v̇?R, (4)

where v̇?R ∈R3 is a controllable virtual input. For this linear
system, any stabilizing controller that steers pR(t) to pd

R(t)
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can be used. The simplest implementation is a PD controller:

v̇?R = v̇d
R + kPeR + kDėR, (5)

where eR = pd
R−pR, and kP,kD ∈ R>0 are positive scalars.

We remark that any other more sophisticated controller can
be used such as PID, robust controller, sliding mode, etc.
However, if (4) is verified, even the simple PD control law
(5) will asymptotically steer pR(t) to pd

R(t).
Then the role of the thrust controller and the attitude

controller is to compute the real control inputs fR and τR
such that (4) is verified.

B. Classical thrust controller

The classical way to make v̇R = v̇?R is to apply a partially
open-loop controller based on the inversion of the dynamics.
In particular, the thrust vector, f?

R , is computed inverting (1):

f?
R = mR (v̇

?
R +g)−fe. (6)

As we showed in Sec. II, the total thrust vector is controlled
by the thrust intensity and the full-body orientation. Along
the current thrust direction, z>R f

?
R can be instantaneously

applied setting the thrust intensity control input similar
to [14]:

fR = z>R f
?
R. (7)

A schematic representation of the controller along the thrust
direction is shown in Fig. 2. In order to properly apply the
other two components (lateral forces), it should be that zR =
z?R where z?R is computed as

z?R = f?
R/‖f?

R‖, (8)

where ‖?‖ is intended as the Euclidean norm. To attain (8),
the desired thrust direction, together with the desired rotation
along the latter (desired yaw angle), are used as a reference
by the attitude controller that steers zR to z?R and the yaw
angle to the desired one.

In the practical implementation of (7) and (6), one typi-
cally uses the nominal values of the system parameters such
as the mass m̂R, the gravity ĝ, and an estimation of the
external disturbance, f̂e; concurrently, it is estimated that the
lift coefficient applied in the allocation strategy is constant
at its nominal value ĉ f . By replacing the nominal values into
(6), and placing equation (6) and (7) into (1), we can write
the close-loop dynamics along the thrust direction (the most
important one for the quadrotor motion control) as follows:

z>R v̇R = z>R

(
1

mR

(
fe− f̂e

ĉ f

c f

)
−g+

m̂Rĉ f

mRc f
ĝ+

m̂Rĉ f

mRc f
v̇?R

)
(9)

It is clear that, if the nominal and estimated quantities are
equal to the real values, i.e., m̂R = mR, ĝ = g, f̂e = fe and
ĉ f = c f , then z>R v̇R = z>R v̇

?
R, and the control objective is

achieved at least along the thrust direction. Nevertheless, as
soon as there are model uncertainties and estimation errors,
which is the normal situation in practice, such a goal is not
met. In the next section, we shall show how the use of the
accelerometer allows to attain the control objective even in
those non-ideal conditions.

C. Accelerometer-based thrust controller

The majority of quadrotor platforms are equipped with an
Inertial Measurement Unit (IMU) including an accelerometer
and a gyroscope. The two are normally used for the estima-
tion of the vehicle attitude [1], [15]. Here we shall show how
the acceleration measurement can also be used to make the
(partially open) position loop controller a (fully) closed-loop
one. This allows achieving the control objective (4) even with
model uncertainties and unknown external disturbances.

The accelerometer measurements, defined by the vector
wa ∈ R3, provide the specific acceleration, i.e.,

wa =R
>
R (v̇R−g) , (10)

from which one can get a direct measure of the acceleration

v̇R = g+RRwa. (11)

As done in the previous section let us focus on the dynamics
along the thrust direction. To simplify the notation we
define y = z>R v̇R, u = z>R fR = fR, a = (c f /(mR ĉ f )) and
b= z>R (fe/mR−g). We can then rewrite (1) along the thrust
direction as

y = au+b. (12)

We consider a and b as unknown variables. More in gen-
eral, the quantity a, also called input effectiveness, includes
different sources of uncertainties: 1) the mass and 2) the
thrust intensity which might be not precisely known. The
latter might even change over time due to aerodynamic
effects, e.g., ground and ceiling effects [16]. The quantity
b represents any external disturbance applied to the robot
(e.g., wind gusts, the additional weight of a load, unmodeled
drag, etc.), including the gravity. The control objective is to
steer y to y? = z>R v̇

?
R with a and b unknown. To attain this

purpose we propose the following controller based on the
acceleration input

u = αy?+β

∫
eydt, (13)

where ey = y? − y is the acceleration error, β ∈ R, and
α ∈ R is an estimation of 1/a. We shall show that the
term αy? improve the control performance if α is a decent
approximation of 1/a. However, if a good estimation of a is
not available, α can be set arbitrarily and the controller is
still applicable. A schematic representation of the controller
along the thrust direction is shown in Fig. 2. We can verify
that ey has a stable behavior analyzing its dynamics:

ėy = ẏ?− (au̇+ ȧu+ ḃ) =−aβey + ãẏ?− ȧu− ḃ, (14)

where ã = 1− aα . The equilibrium point is clearly ēy =(
ãẏ?− ȧu− ḃ

)
/(aβ ) and is asymptotically stable if aβ > 0,

while assuming ȧ to be zero. Even if a is unknown, its sign is
normally known and the sign of β can be chosen accordingly.
Without loss of generality, we can assume that a > 0. The
equilibrium point ēy is then asymptotically stable for any
β > 0, a and b.

Remark 1. Notice that if ẏ? = ȧ = ḃ = 0, as in many of
the practical cases, the error will asymptotically converge to
zero. One can also observe that knowing precisely the input
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effectiveness, (i.e., α = 1/a, ã = 0) the part of the error due
to ẏ? vanishes. It is not surprising that knowing the feed-
forward term will improve the performance. Nevertheless we
remark that for the DA controller a precise knowledge of a
is not actually needed. In fact, increasing β , one can make
the steady-state error ēy very small, independently of the
unknown parameter and disturbance. Unfortunately, β cannot
be arbitrarily large otherwise u̇ will be too large and the
system will not be able to provide the corresponding u.

The above remark is validated experimentally1.

IV. DISCUSSION ON THE COMPARISON WITH PID
Let us assume that a standard PD position feedback loop

controller is applied. We can then replace (5) into (13), where
we recall that y? = z>R v̇

?
R:

u = α

(
v̇d

Rt + kPeRt + kDėRt

)
+β

(
ė′Rt + kDe′Rt + kP

∫
eRtdt

)
. (15)

where v̇d
Rt = z

>
R v̇

d
R, eRt = z

>
R eR and similarly for its deriva-

tives. Furthermore, e′Rt =
∫
(vd

Rt − vRt)dt and ė′Rt =
∫
(v̇d

Rt −
v̇Rt)dt with vRt = z>R vR and similarly for its derivatives.
While it is clear that (15) resembles a PID, it turns out
from the experimental comparisons (see Fig. 5) that the step
response against an external disturbance can be made faster
for the proposed acceleration-based thrust controller plus a
PD position feedback loop controller when compared to the
PID controller. The experiment has been conducted with the
two controller gains tuned at best2.

To investigate this discrepancy, we notice that the PID
in (15) relies on the high frequency accelerometer measure-
ments 1 [KHz], in addition to the low frequency position and
velocity measurements required in a normal PID.

In the following, we analyze a simplified system that
still encapsulates the main properties, in order to better
explain why high-frequency acceleration feedback shows
better stability than an equivalent controller based on slower
sampled measurements. Let us consider the dynamic system

ẋ1 = x2, ẋ2 = u, (16)

where u = −k1x1 − k2x2 is a simple PD controller with
k1,k2 ∈ R>0. For this system we analyze two cases:

1) both x1 and x2 in u are sampled with period T ∈ R>0;
2) only x1 in u is sampled with period T , while x2 is

sampled at a much higher frequency such that it can
be considered continuous.

In our parallelism, case 1) corresponds to the standard PID
based on low-sampled measurements, while case 2) corre-
sponds to the proposed acceleration-based thrust controller.

For case 1), from the theory of digital control [17], it is
well known that the proportional gain k1 cannot be increased
arbitrarily (aiming at a better performance). On the contrary,

1The results and details of these experiments, showing the robustness
to the choice of a and the advantage of knowing accurately the input
effectiveness, are presented in the Appendix.

2We consider the best gains as the maximum gains that preserve the
stability of the system. Higher gains would make the system unstable.

its maximum value is bounded depending on the sampling
time T . The higher T the lower k1 has to be in order to
guarantee stability.

For case 2) the measurement of x2 can be considered
continuous time with respect to the sampling of x1. Then,
the control input u can be written as

u =−k1x̄1− k2x2, (17)

where x̄1 is the sampled measurement of x1. In the
continuous-time we can write x̄1(t) = x1(t)−∆x1(t) where
∆x1(t) ∈ R is the error at time t due to the sampling of the
signal. Notice that ∆x1(t) = 0 if t = iT for a certain i. Let us
now consider the following Lyapunov function:

V (x1,x2) =
1
2
(
k1x2

1 + x2
2
)
, (18)

which is clearly positive semi-definite, and V (x1,x2) = 0 if
x1 = x2 = 0. The time derivative of V (x1,x2) is

V̇ (x1,x2) = k1x1x2 + x2 (−k1x̄1− k2x2)

= x2 (k1∆x1− k2x2) .
(19)

Considering the Taylor approximation of ∆x1 around the time
iT for a certain i, we can bound ∆x1 with x2T . Therefore, it
is easy to verify that

V̇ (x1,x2)≤−x2 (k2− k1T )x2 (20)

which is negative semi-definite if k2 is chosen such that k2−
k1T > 0. Using the LaSalle principle [18], we can prove the
stability of the system. This implies that, whatever is the
sampling period of x1, one can choose k1 arbitrarily large,
and then k2 such that k2 > k1T . For case 2), thanks to the high
sampling frequency of x2, one can obtain a fast convergence
of the state to zero independently from the sampling rate
of x1.

V. FILTERING OF THE BODY ACCELERATION

The raw accelerometer measurements are practically un-
usable due to high frequency noise, mostly coming from the
vibrations of the propellers. The most common technique
to extract the body acceleration is to use a low-pass filter,
which introduces frequency dependent delay and phase shift,
and can remove high frequency components of the signal.
Moreover, low-pass filters are linear filters that attenuate high
frequency noise, instead of removing them. As such, high
amplitude noise can still show up in the filtered signal.

We designed an adaptive and regression-based notch filter
that allows to reject multiple frequency components, without
adding any delay or phase shift, and that at the same time
remains simple to implement. In addition, as our filter is
regression-based, it is able to find the amplitude of the
noise signal and remove it completely from the accelerometer
signal while a linear filter can only attenuating it.

Considering what has been presented so far, we can
modify the ideal accelerometer model in (10) into:

wa =
Sv̇R +δ+σ, (21)

where Sv̇R = R>R (v̇R−g) is the specific acceleration of
the main body, the one that we would like to estimate,
δ represents the vibrations induced by spinning propellers,
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and σ represents all the additional noise, assumed gaussian
distributed with zero mean.

Let us consider a certain time window of N ∈ N>0
acceleration samples, w̃a(t) = [w>a (t) w

>
a (t−T ) . . . w>a (t−

NT )]> ∈ R3N , where T ∈ R>0 is the sampling period. The
first step to estimate Sv̇R(t) given w̃a(t) is to model the
components of wa. For the specific acceleration we use a
Taylor/polynomial approximation:

Sv̇R(t) =
p

∑
i=0

θvit i, (22)

where p ∈ N>0 is the degree of the polynomial which has
to be chosen a priori and depends on the variability signal
Sv̇R over the time window [t−NT, t] (as a rule of thumb, in
general, the larger the time window the larger p), and θvi ∈R
is the generic unkown i-th coefficient of the polynomial to
be estimated.

We model δ as a sum of q shifted sinusoidal functions:

δ(t) =
q

∑
j=0

θδ j sin(ωδ jt +φδ j) , (23)

where θδ j ∈ R and φδ j ∈ R are the amplitude and phase
shift of the generic j-th sinusoidal, again to be estimated.
We assume that the pulsation ωδ j of the j-th sinusoidal is
known since it is directly linked to the spinning frequency
of the propellers and its harmonics. There are several ways
to choose q and ωδ j according to the current frequency of
the propellers. In general, it is a good practice to choose
q as small as possible to avoid over-fitting. Following this
guideline, we choose q = 4 taking ωδ1 and ωδ2 as the
minimum spinning frequency among the propellers (in the
considered time window) and its first harmonic, respectively.
Similarly, we take ωδ3 and ωδ4 as the maximum spinning
frequency among the propellers (in the considered time
window) and its fist harmonic, respectively.

Noticing that sin(ωδ jt +φδ j) = cos(φδ j)sin(ωδ jt) +
sin(φδ j)cos(ωδ jt) we can rewrite (23) as

δ(t) =
q

∑
i=0

θc j sin(ωδ jt)+θs j cos(ωδ jt) , (24)

which is now linear in the new parameters θc j = θδ j cos(φδ j)
and θs j = θδ j sin(φδ j).

Given the accelerometer measurements w̃a, we can obtain
an estimation of the specific acceleration, S ˆ̇vR, identifying the
parameters θvi for i= 1, . . . , p, and θs j,θc j for j = 1, . . . ,q, by
simple linear regression. Notice that the minimum require-
ment is N ≥ p+2q. In addition, in order to clearly identify
all the sinusoidal components, it is desirable that w̃a contains
at least a full period of the slowest sinusoidal signal.

Finally, in order to remove the additional noise σ (that
we did not model in the regression) from S ˆ̇vR we use a
discrete adaptive high-bandwidth low-pass filter. Let S ˆ̇vR[k]
be the regressed estimation of the specific acceleration at
the discrete-time tk = kT , where k ∈ N+. Then the adaptive
high-bandwidth low-pass filter can be expressed as:

S ˆ̇vR f [k] = (1−κ[k])S ˆ̇vR f [k−1]+κ[k]S ˆ̇vR[k], (25)

Fig. 3: The quadrotor picking up an unknown mass with a hook-
and-loop. Left: the platform descending to pick up the object. Right:
the platform ascending after it had fastened and picked up the
object.

where S ˆ̇vR f [k] is the low-pass filtered value of S ˆ̇vR[k], and
κ[k] is an adaptive gain computed as:

κ[k] = min

(
1,

∣∣∣∣∣
S ˆ̈vR[k]
v̈th

∣∣∣∣∣
)
, (26)

where |.| represents the absolute value, S ˆ̈vR[k] is an esti-
mation of the rate of change of Sv̇R calculated from the
regressed derivative of S ˆ̇vR, and v̈th is a threshold rate such
that if S ˆ̈vR[k] ≥ v̈th the filter would behave as a zero-phase
all-pass filter.

The chosen adaptive gain allows the filter to have low
bandwidth when Sv̇R is slowly varying (a case in which
the effect of σ is more visible), thus effectively filtering
the noise, and a very high bandwidth when Sv̇R is rapidly
varying (a case in which the effect of σ is almost negligible)
to obtain non-delayed tracking3.

VI. EXPERIMENTAL RESULTS

The validation experiments have been conducted with a
quadrotor platform, with software running on-board in real-
time. The experiments are conducted in door with conditions
emulating outdoor settings. For more details about the hard-
ware, software and configurations used, we refer the reader
to the Appendix.

A. Use of DA in Two Practically Relevant Scenarios

In this section we assess the performance of the proposed
DA controller while completing two real world tasks in-
volving unknown and time-varying changes in the quadro-
tor dynamical model: i) hook-and-loop fasten and pick an
unknown-mass object, and ii) take-off and maneuver in a
air-turbulent environment 4

In the first experiment, shown in Fig. 3, the platform
is commanded to pick up an object whose 0.4 [Kg] mass
is unknown to the controller. Despite the unknown mass,
the platform was able to follow the desired position while
approaching and lifting the object. The recorded error along
both trajectories is less than 0.008 [m].

In the second experiment, shown in Fig. 4, the platform
flies underneath a flying hexarotor; due to the configuration

3The proposed filter is compared against a second-order Butterworth filter;
the comparison results are presented in the Appendix.

4Detailed results of these experiments are presented in the Appendix.
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Fig. 4: The quadrotor flying stabiliy beneath a 2.5 [Kg] hexarotor.

of its propellers, the hexarotor creates a turbulent environ-
ment for the quadrotor. Despite the turbulence, the quadrotor
is able to lift off ground, hover in place, then approach the
hexarotor and retract back to its original position with an
error less than 0.01 [m] throughout its flight.

B. Comparing the Best DA and PID Performances

We assess the performance of DA against a PID controller
with equivalent gains as described in (15). Gains kP and
kD were tuned to ensure a desirable transient performance,
and a near zero steady state error: kP = 27.5 and kD = 18.
The acceleration gain β was varied to study its effect on
the performance of each controller; as seen from (13), the
increase in β increases the reactiveness of the controller to ey,
and correspondingly its reactiveness to external disturbances.

Figure 5 shows a statistical representation of repeated
experiments demonstrating a comparison between the DA
controller and a PID following a step disturbance of 4 [N] –
equivalent to ' 0.407 [Kg], i.e., 40% of the platform mass.
This experiment highlights the performance of the controllers
in scenarios such as sudden lifting of an unknown mass, or
a very quick change in the aerodynamic properties of the
platform’s actuators, due, e.g, to a sudden wind gust. The
same figure shows the difference between the controllers for
different values of the acceleration gain β .

We observe that both controllers can achieve a zero steady
state error before and after the step disturbance, however
with varying transient performances. As we increase β , both
controllers reach steady state in a shorter time, and achieve a
smaller maximum error post the step response; these last two
observations suggest that an increase in β induces a faster
reaction to external disturbances.

We can also observe from Fig. 5 that the performance
of both controllers is similar for the same β , with the PID
lagging slightly from the DA controller. However, we can
see that at β = 4 the PID controller lets the error oscillate
and eventually diverge, while the DA controller can still
achieve stable flight. At β = 12 the DA controller shows
small oscillations – while still achieving a stable flight –
with a maximum error of 2 [cm], while the PID’s best error
was around 4 [cm], with β = 3.

C. Dynamic Maneuver

Finally, we assess the performance of DA while per-

Fig. 5: Step response of DA vs PID following a 4 [N] (' 0.407 [Kg])
step function while varying β , with lines of the same color
corresponding to the same β , solid lines to DA, and dashed lines
to PID. Each of the plots show the statistics of 3 identical flights,
with the exception of the PID at β = 4 showing only one flight to
avoid possible crashes.

forming high speed maneuvers. While our system does not
ameliorate the attitude controller, but rather is designed to
be robust to external disturbances, we conduct these flights
to show that the lateral motion is not deteriorated by our
controller.
To this end, we fly our controller in a lemniscate patern, with
a radius of 2 [m] and at a maximum speed of 2.8 [m.s−1].
During these flights, our controller follows the desired state
defined by the equation of the lemniscate with the corre-
sponding derivatives. The controller exhibits a maximum
error of 0.1 [m] along the trajectory, which is equivalent to
the PID error for the same flight. More details regarding this
flight can be found in the Appendix.

VII. CONCLUSIONS

In this work we proposed a novel quadrotor controller
concept based on direct acceleration (DA) feedback. The
controller does not require any knowledge of the platform’s
mass or propeller efficiency, while can still benefit from such
knowledge.

In addition, we proposed a new regression-based method
to filter the IMU signal which uses the information about
the commanded propeller speed, and extracts vibration-free
body acceleration. We show that our regression based method
removes the vibrations from the signal with a smaller delay
than classical low pass filters.

We conducted an experimental campaign to demonstrate
the performance of the new controller in various challenging
scenarios, and compared its performance to a well tuned PID.
During these experiments, the DA controller exhibits more
accurate position tracking conditions in reaction to sudden
disturbances.

In the future we intend to improve the DA controller by in-
cluding possible compensation also of the lateral acceleration
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Fig. 6: Comparison of different types of filters on the raw ac-
celerometer data waz, where S ˆ̇vR is the output of the proposed
regression-based filter, S ˆ̇vRbutt30 is the output of a second-order
Butterworth filter with cutoff frequency 30 [Hz], and S ˆ̇vRbutt13 is
the output of a second-order Butterworth filter with cutoff frequency
13 [Hz].

and the handling of substantial biases in the measurement
data by including pre-integration of the positional error, in
addition to the existing post-integration.

APPENDIX

This appendix presents details the experimental setup, and
extra experimental results.

A. Regression Based notch filter

In Fig. 6 we compared the estimated specific acceleration
using different techniques: 1) the proposed regression-based
filter, defined by the symbol S ˆ̇vR; 2) a second-order Butter-
worth filter with cutoff frequency 30 [Hz] (same setup used
in [9]), defined by the symbol S ˆ̇vRbutt30; 3) a second-order
Butterworth filter with cutoff frequency 13 [Hz], defined
by the symbol S ˆ̇vRbutt13. From Fig. 6 it is evident that the
proposed regression-based filter is the one able to suppress
the vibrations (see Fig. 6 on the right) while minimizing the
delay when the signal changes rapidly (see Fig. 6 on the
left). On the other hand, using a second-order Butterworth
filter with cutoff frequency 30 [Hz], the delay with respect
to the real signal is small (although still larger than using
the regression-based filter) but the vibrations are still there
(see Fig. 6 on the right). In order to almost suppress the
vibrations with a second-order Butterworth filter, one has to
set a cutoff frequency of 13 [Hz]. However the delay becomes
much larger.

B. Experimental Setup

The validation experiments have been conducted with
a quadrotor platform, weighting about 1 [Kg]. The vehi-
cle is endowed with an IMU, which exports the raw ac-
celerometer and gyroscope measurements at 1 [KHz], and
four brushless motor controllers (BLDC ESC) regulating
the propeller speed using an in-house developed closed-
loop speed controller [13]. A motion capture system reads
the position and orientation of the vehicle and a UKF
component performs the sensor fusion to retrieve the full
state of the platform. To ensure consistency with the typical
sensor frequencies available in an outdoor setting endowed

Fig. 7: showing error distribution of the platform while taking off
and landing with a wrong c f or α .

with, e.g., a standard vision-based localization system, we
sample the position and velocity measurements from the
UKF at 20 [Hz]. Most of the software components (including
the controller) have been developed in C++ and run on
an onboard PC (odroid XU4) at 1 [KHz]. As for most of
the robotics software at LAAS-CNRS, software components
have been developed using GenoM3 [19], a code generator
and formal software component description language that
allows assembling middleware-independent components in
a modular system. Most of this software is available on the
openrobots repository at https://git.openrobots.org/
projects/telekyb3

C. Flight with unknown parameters

This section shows experiments where the platform takes
off and lands with different values of the lift coefficient
c f and α provided to the attitude controller and the thrust
controller respectively.
• In the first flight we vary α ∈ [0.2,2][Kg], while its

nominal value is 1
a = 1[Kg].

• In the second flight we vary the estimated lift coeffi-
cient c f ∈ [4.5e−4,8.5e−4][N/Hz2], while its identified
nominal value is ĉ f = 6.5e−4[N/Hz2].

Fig. 7 shows the distribution of the platform’s error while
following the above maneuvre with the chosen parameters.
The figure shows that the platform is able to fly for the
given α and c f range. We note that the tested c f range is
one that might be encountered during regular flights (such
as ground effect [20]), however, we acknowledge that our
controller does not guarantee stability for larger variances in
c f due to the presence of the attitude controller. In addition,
we note from Fig. 7 that the performance improves if α is
an exact estimate of 1

a , however, the controller is still stable
even when α is set arbitrarily as explained earlier.

D. Use of DA in Two Practically Relevant Scenarios

Fig. 8 shows the actual-vs-desired quadrotor altitudes
before and after hook-and-loop fastening and picking up an
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Fig. 8: position tracking of the quadrotor before and after hook-
and-loop fasten and pick up of an object whose 0.2 [Kg] mass is
unknown to the controller.

Fig. 9: position tracking of the quadrotor flying beneath a 2.5 [Kg]
hexarotor. The plot shows a lift off phase, followed by a hover
phase, a maneuvre phase, and finally another hover phase. During
the first 2.5 [s], the platform follows a safety procedure imposing a
ramp on the motor speeds, irrespective of the controller commands.

object whose 0.4 [Kg] mass is unknown to the controller.
The top surface of the object is taken as a reference point.
The platform is commanded to go below the object surface
as seen in the hook-and-loop fastening and pick up section
of Fig. 8. This experiment shows that while the weight
of the object is unknown to the controller, and there is a
phase in which the motion is even hindered, the platform’s
performance is smooth, stable, and indistinguishable before
and after the pick up, with less than 0.008 [m] error in both
phases.

Fig. 9 shows the performance of the DA in the presence
of turbulence created by flying near ground and underneath a
flying hexarotor weighting about 2.5 [Kg]. The platform first
lifts off from ground and hovers in place, then it increases its

Fig. 10: position tracking of the quadrotor while following a high
speed lemniscate maneuvre.

altitude to approach the bottom of the hexarotor, and then it
goes back to hover in the previous altitude. The DA controller
in Fig. 9 shows complete resilience to the existing turbulence
while following its desired trajectory, with less than 0.01 [m]
maximum error. It has to be noted that during take off
there is an initial error caused by the quadrotor’s safety
starting procedure which imposes the motor speeds to follow
a 2.5 [s] saturation ramp from 0% to 100% which prevents the
execution of the DA commanded forces. The DA controller
lets the platform behave smoothly and stably despite such
additional unmodeled obstruction to the actuation system.

E. Lemniscate Maneuvre

Fig. 10 shows the performance of the DA controller while
following an agile lemniscate maneuvre. The lemniscate has
a 2 [m] radius, and with a maximum velocity in the center
at 2.8 [m.s−1], and 2 [m.s−1] with a 2.8 [m.s−2] acceleration
at the edges. The lemniscate is enforced by calculating the
desired position, velocity, acceleration, jerk and snap at each
point.

The maximum error norm recorded along the trajectory is
0.1 [m].
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