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Tits' type alternative for groups acting on toric affine varieties

Given a toric affine algebraic variety X and a collection of one-parameter unipotent subgroups U1, . . . , Us of Aut(X) which are normalized by the torus acting on X, we show that the group G generated by U1, . . . , Us verifies the following alternative of Tits' type: either G is a unipotent algebraic group, or it contains a non-abelian free subgroup. We deduce that if G is 2-transitive on a G-orbit in X, then G contains a non-abelian free subgroup, and so, is of exponential growth.

Introduction

We fix an algebraically closed field k of characteristic zero. Let A n stand for the affine space of dimension n over k and G a (G m ) for the additive (multiplicative, respectively) group of k viewed as an algebraic group. Consider an algebraic variety X over k and an effective regular action G a × X → X. The image of G a in Aut(X) is called a one-parameter unipotent subgroup of Aut(X), or a G a -subgroup, for short. Any G a -subgroup U of Aut(X) has the form U = {exp(t∂) | t ∈ k}, where ∂ is a locally nilpotent derivation of the structure ring O(X). This correspondence between the G a -subgroups and locally nilpotent derivations does not hold in prime characteristic, and so, we prefer in this paper to work in characteristic zero.

The main result of the paper is the following Theorem 1.1. Consider a toric affine variety X with no torus factor. Let a subgroup G of Aut(X) be generated by a finite collection U 1 , . . . , U s of one-parameter unipotent subgroups normalized by the acting torus. Then either (i) G is a unipotent algebraic group, or (ii) G contains the free group F 2 of rank two as a subgroup.

One says that a variety X over k has a torus factor if X ∼ = Y × (k \ {0}) for some variety Y . A toric affine variety X has a torus factor if and only if there is a nonconstant invertible regular function on X.

From Theorem 1.1 we deduce the following corollary.

Corollary 1.2. Let G be a group acting on a toric affine variety X and generated by a finite collection U 1 , . . . , U s of one-parameter unipotent subgroups normalized by the acting torus. If G is doubly transitive on a G-orbit in X, then G contains a free subgroup of rank two.

The expression "Tits' type alternative" in the present paper addresses a property of a class of groups which asserts that any group from this class either is virtually solvable (resp., virtually nilpotent, virtually abelian, etc.), or contains a non-abelian free subgroup. This (rather weak) form of the original Tits alternative disregards whether or not the alternative remains true when passing to a subgroup. We wonder whether, under the setup of Theorem 1.1, any (finitely generated) subgroup H of G either is virtually solvable, or contains a free subgroup of rank two. Notice that the group G in Theorem 1.1 is not finitely generated, in general.

Let us provide a brief survey on the classical Tits alternative for the automorphism groups arising in algebraic geometry. Recall that, due to the original Tits' theorem [Tits, 1972, Cor. 1], any finitely generated subgroup of a linear algebraic group either is virtually solvable, or contains a non-abelian free subgroup. Over a field of characteristic zero, the Tits alternative holds for any, not necessarily finitely generated, linear group [Tits, 1972, Thm. 1]. In the sequel we call the latter property the enhanced Tits alternative. As examples, we can cite the following results. The first of them is due to S. Cantat and Ch. Urech.

Theorem 1.3. The group of birational transformations of a compact complex Kähler surface verifies the enhanced Tits alternative, that is, any of its non-virtually solvable subgroups contains a free subgroup of rank two.

The theorem is proven in [Cantat, 2011a, Thm. C and Sec. 6] (see also [Cantat, 2011b, Prop. 6.3]) for finitely generated subgroups, and in full generality for irrational surfaces. In [Urech, 2020, Thm. 1.7 and Sec. 7] it is extended to the rational surfaces by showing that the Cremona group of the plane verifies the enhanced Tits alternative.

This theorem extends the earlier result of S. Lamy [START_REF] Lamy | L'alternative de Tits pour Aut(C 2 )[END_REF] which says that Aut(A 2 C ) verifies the enhanced Tits alternative. The enhanced Tits alternative holds also for the tame automorphism group of SL 2 (C) viewed as an affine quadric threefold [Bisi et al., 2014, Thm. C], and as well for the group of birational transformations of any hyperkähler variety [START_REF] Oguiso | Tits alternative in hypekähler manifolds[END_REF]; see also [START_REF] Kurnosov | Automorphisms of hypekähler manifolds and groups acting on CAT(0) spaces[END_REF]. Otherwise, its validity for the groups of birational transformations in higher dimensions is widely open. It is open, for instance, for the group Aut(A 3 C ); see also the survey article [Cantat, 2018]. As a nice application of the classical Fujiki-Lieberman theorem, it is shown in [Cantat, 2011a, Thm. 6.3] that the enhanced Tits alternative holds for the automorphism group of any compact Kähler manifold. The geometry of the Kähler manifold controls the structure of the group when it is virtually solvable [Campana et al., 2014, Thm. 1.5], [START_REF] Dinh | Tits alternative for automorphism groups of compact Kähler manifolds[END_REF], [Dinh et al., 2015, Thm. 1.1]; see also [START_REF] Hu | A theorem of Tits type for automorphism groups of projective varieties in arbitrary characteristic[END_REF] for the case of projective varieties over a field of positive characteristic.

Our starting point in the present work was actually the transitivity issue, see Corollary 1.2. Let X be a toric affine variety over k of dimension at least two with no torus factor, and let SAut(X) ⊂ Aut(X) be the subgroup generated by all the G a -subgroups of Aut(X). It is known [Arzhantsev et al., 2012, Thm. 2.1] that SAut(X) acts highly transitively * on the smooth locus reg(X), that is, m-transitively for any m ≥ 1. A variety X satisfying the latter property is called flexible; see [Arzhantsev et al., 2013, Thm. 1.1] for a criterion of flexibility. Notice that an algebraic subgroup G ⊂ Aut(X) cannot act highly transitively on a variety, by a dimension count argument.

A G a -subgroup acting on a toric variety X is called a root subgroup if it is normalized by the acting torus. The term root subgroup is due to the fact that any such subgroup is associated with a certain lattice vector called a Demazure root, see subsection 2.2. Assuming in addition that a toric affine variety X is smooth in codimension two, one can find a finite number of root subgroups U 1 , . . . , U s of Aut(X) such that the group G = U 1 , . . . , U s generated by these subgroups still acts highly transitively on reg(X) [Arzhantsev et al., 2019, Thm. 1.1]. † If X = A n , n ≥ 2, then just three G a -subgroups (which are not root subgroups, in general) are enough [Arzhantsev et al., 2019, Thm. 1.3]; such subgroups are found explicitly in [START_REF] Andrist | Integrable generators of Lie algebras of vector fields on C n[END_REF]. For instance, for n = 2 the group G generated by the root subgroups

U 1 = {(x, y) → (x + t 1 y 2 , y)} and U 2 = {(x, y) → (x, y + t 2 x)}, t 1 , t 2 ∈ k
acts highly transitively on A 2 \ {0} equipped with the standard action of the 2-torus, see [Lewis et al., 2018, Cor. 21]. Adding one more root subgroup

U 3 = {(x, y) → (x + t 3 , y)}, t 3 ∈ k,
one gets the group U 1 , U 2 , U 3 acting highly transitively on A 2 (cf. [START_REF] Chistopolskaya | On nilpotent generators of the Lie algebra sl n[END_REF]).

The following question arises: What can one say about a group acting highly transitively on an algebraic variety? More specifically, let us formulate the following conjecture.

Conjecture 1. Let X be an affine variety over k of dimension ≥ 2. Consider the group

G = U 1 , ...U s generated by G a -subgroups U 1 , ...U s of Aut(X).
Suppose G is doubly transitive on a G-orbit. Then G contains a non-abelian free subgroup.
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Corollary 1.2 partially confirms Conjecture 1. Of course, an analog of this conjecture makes sense in different categories. For instance, one might ask (following a referee's suggestion) whether any highly transitive group of homeomorphisms of a compact manifold contains a non-abelian free subgroup; see, e.g., [START_REF] Whittaker | Multiply transitive groups of transformations[END_REF] for examples of highly transitive groups of homeomorphisms. However, the group-combinatorial analog of the conjecture fails; indeed, the torsion group of finite permutations of N is highly transitive. The same holds for the infinite alternating group, that is, the simple group of finite even permutations of N.

Conjecture 1 is inspired in turn by the following question proposed by J.-P. Demailly:

Question 1. What can one say about the growth of the group

G = U 1 , ..., U s
generated by a sequence of one-parameter unipotent subgroups, meaning by "growth" the maximal growth of the finitely generated subgroups of G? For instance, the group G in Conjecture 1 has exponential growth provided the conjecture is true. Anyway, this group G cannot have a polynomial growth, see Proposition 5.5. The group G in Theorem 1.1 is of polynomial growth in case (i), and of exponential growth in case (ii); the latter holds as well for the group G in Corollary 1.2. In the combinatorial setup, we do not know the answer to the following general question.

Question 2. Let G be a finitely generated group. Assume G acts highly transitively on a set X. Can G be of intermediate growth? See, e.g., [START_REF] Fima | Highly transitive actions of groups acting on trees[END_REF][START_REF] Urech | Subgroups of elliptic elements of the Cremona group[END_REF][START_REF] Garion | Highly transitive actions of Out(F n )[END_REF][START_REF] Hull | Transitivity degrees of countable groups and acylindrical hyperbolicity[END_REF] for recent studies on highly transitive actions of countable groups, and [START_REF] Hull | Transitivity degrees of countable groups and acylindrical hyperbolicity[END_REF][START_REF] Fima | High transitivity for more groups acting on trees[END_REF] for surveys. However, the groups of algebrogeometric nature that we study in this paper are quite different.

The proof of our main Theorem 1.1 exploits a constructive criterion/algorithm to decide whether the group G in this theorem is a unipotent algebraic group. We introduce a combinatorial data associated to the given collection of the one-parameter unipotent subgroups U 1 , . . . , U s acting on our toric variety X. This data is expressed in terms of Demazure roots (ρ, e). To a Demazure root there corresponds a root derivation ∂ ρ,e acting on the structure ring O(X). It can be viewed as a vector field, and it generates a root subgroup U ρ,e . If G does not contain any non-abelian free group, then there are strong constraints on the Lie brackets between the root derivations generating the root subgroups of G; namely, the bracket of any two such derivations is proportional to one of them. These constraints are encoded in a directed graph Γ whose vertices are certain abelian Lie algebras which are indexed via the facets of the associated polyhedral cone of X and generated by the corresponding root derivations; see Definition 4.5. Any edge of Γ is oriented in the direction of the bracket of its end vertices provided the corresponding subalgebras do not commute; otherwise, the edge is absent. The geometry of Γ determines the structure of G. It occurs that Γ has no oriented cycle if and only if it has no bidirected edge, if and only if G is a unipotent algebraic group, see Proposition 4.8. Theorem 1.1 is a byproduct of this criterion.

The content of this paper is as follows. Besides the Introduction, the paper includes four sections. Section 2 contains the notation and preliminary facts from toric geometry. In Section 3 we prove Theorem 1.1 in the particular case of a group G generated by just two root subgroups, see Proposition 3.1. The main results of subsections 4.1 and 4.2 are Propositions 4.7 and 4.8, respectively. The former contains a combinatorial criterion for a Lie algebra of derivations to be nilpotent and finite dimensional. The latter provides, in our framework, a link between nilpotent Lie algebras and unipotent algebraic groups. Together, these give Proposition 4.1 which says essentially that if any two root subgroups of the group G = U 1 , . . . , U s generate a unipotent algebraic group, then G itself is a unipotent algebraic group. Theorem 1.1 follows immediately from Propositions 3.1 and 4.1. Corollary 1.2 follows from this theorem due to Proposition 5.2 in subsection 5.1. According to this proposition, a unipotent linear algebraic group cannot act 2-transitively on an algebraic variety. Finally, in subsection 5.2 we establish that a virtually solvable group cannot be highly transitive, or even be a subnormal subgroup of a highly transitive group; see Proposition 5.5. In particular, a highly transitive group is of exponential growth provided it satisfies the Tits' type alternative; cf. Question 2.

Preliminaries from toric geometry

We start by recalling the standard notation and definitions of toric geometry.

Toric affine varieties

Consider an algebraic torus T = (G m ) n . Let N be the lattice of one-parameter subgroups of T, N ∨ = Hom (T, G m ) the dual lattice of characters, and •, • : N × N ∨ → Z the natural pairing; see, e.g., [START_REF] Cox | Toric Varieties[END_REF] or [6,Def. 4.2]. Let χ m stand for the character of T which corresponds to m ∈ N ∨ , so that χ m χ m ′ = χ m+m ′ . The group algebra k[N ∨ ] = ⊕ m∈N ∨ kχ m can be identified with the structure algebra O(T).

Consider further the pair of dual Q-vector spaces

N Q = N ⊗ Q and N ∨ Q = N ∨ ⊗ Q, a closed polyhedral cone ∆ Q ⊂ N Q and its dual cone ∆ ∨ Q ⊂ N ∨ Q .
By abuse of language, by the associated pair of lattice cones we mean the pair (∆, ∆ ∨ ), where ∆ = N ∩ ∆ Q and ∆ ∨ = N ∨ ∩ ∆ ∨ Q , respectively. With any (closed) polyhedral lattice cone ∆ ⊂ N one associates the normal toric affine variety

X = Spec m∈∆ ∨ kχ m ,
and any normal toric affine variety arises in this way. The T-action on X is induced by the ∆ ∨ -grading on the structure algebra O(X). By Gordon's Lemma [Cox et al., 2011, Prop. 1.2.17], the cones ∆ and ∆ ∨ are both finitely generated monoids. The lattice vectors (ρ j ) j=1,...,k on the extremal rays of ∆ Q , which are elements of the minimal system of generators of ∆, are called ray generators. These are in one-to-one correspondence with the facets of the dual polyhedral cone ∆ ∨ Q . The variety X has no torus factor if and only if

∆ Q is full dimensional, if and only if ∆ ∨ Q ⊂ N ∨ Q is pointed, that is, contains no affine line.
See also [START_REF] Cox | Toric Varieties[END_REF], Fulton, 1993[START_REF] Arzhantsev | Convex bodies and algebraic geometry. An introduction to toric varieties[END_REF] for a detailed exposition.

Root derivations and root subgroups

The Demazure facets The kernel of ∂ ρj ,e is spanned by the characters χ m , where m runs over the facet of ∆ ∨ defined by ρ j , m = 0. The root derivations are precisely the homogeneous locally nilpotent derivations of the graded algebra O(X) = m∈∆ ∨ kχ m . Recall [Liendo, 2010, Thm. 2.4] that any homogeneous derivation of O(X) is proportional to one of the form ∂ ρ,e for some ρ ∈ N and e ∈ N ∨ acting via

S j = {e ∈ N ∨ | ρ j , e = -1, ρ i , e ≥ 0, i = 1, . . . , k, i = j}, j = 1, . . . , k are lattice polyhedra in N ∨ . Each of them is contained in a hyperplane of N ∨ Q parallel to a facet of ∆ ∨ Q and situated outside the cone ∆ ∨ Q . The
∂ ρ,e (χ m ) = ρ, m χ m+e ,
where e is called the degree of ∂ ρ,e . One has [Romaskevich, 2014, Sect. 3

] [∂ 1 , ∂ 2 ] = ∂ ρ,e1+e2 with ρ = dρ 2 -cρ 1 .
(1)

The root subgroups exp(t∂ ρj ,e ) are precisely the G a -subgroups of Aut(X) normalized by the torus T. See, e.g., [START_REF] Arzhantsev | Infinite transitivity, finite generation, and Demazure roots[END_REF][START_REF] Arzhantsev | Lie algebras of vertical derivations on semiaffine varieties with torus actions[END_REF][START_REF] Freudenburg | Algebraic theory of locally nilpotent derivations[END_REF][START_REF] Liendo | G a -actions of fiber type on affine T -varieties[END_REF] for further details.

Cox rings and total coordinates

Let X be a normal toric affine variety X with no torus factor. The divisor class group Cl(X) is the abelian group generated by the classes of the prime T-invariant divisors D 1 , . . . , D k on X. These divisors are in one-to-one correspondence with the ray generators (ρ j ) j=1,...,k . The Cox ring of X is the polynomial ring

O(A k ) = k[x 1 , . . . ,
x k ] on a distinguished set of variables called the total coordinates. It is equipped with a Cl(X)-grading defined by deg

(x i ) = [D i ], i = 1, . . . , k.
This grading corresponds to a diagonal action on

A k = Spec(k[x 1 , . . . , x k ]) of the Cox quasitorus F Cox = Hom (Cl(X), G m ).
Recall that a quasitorus is a direct product of an algebraic torus and a finite abelian group. One has [Arzhantsev et al., 2015, Thm. 2.1.3.2]

X ∼ = Spec(O(A k ) FCox ) = A k //F Cox .
See also [START_REF] Arzhantsev | Cambridge Studies in Advanced Mathematics[END_REF][START_REF] Arzhantsev | Infinite transitivity, finite generation, and Demazure roots[END_REF], [Cox et al., 2011, Ch. 5].

Lemma 2.1. Let e ∈ S j be a Demazure root, and let ê = (c 1 , . . . , c k ) ∈ Z k , where c i = ρ i , e . Then the following hold.
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(a) The integer lattice vector ê is a Demazure root of A k (viewed as a toric variety with the standard action of the k-torus) which belongs to the jth Demazure facet Ŝj of the first octant Z k ≥0 ⊂ Z k . (b) Let (ε i ) i=1,...,k be the ray generators of the lattice cone Z k ≥0 . Then one has

∂ := ∂ εj ,ê = M j ∂ ∂x j , where M j = x c1 1 • • • x cj-1 j-1 x cj+1 j+1 • • • x c k k ∈ k[x 1 , . . . , x j-1 , x j+1 , . . . , x k ]. (2) 
The associated G a -subgroup consists of elementary transformations

exp(t ∂) : (x 1 , . . . , x k ) → (x 1 , . . . , x j-1 , x j + tM j , x j+1 , . . . , x k ), t ∈ k. (3) 
This is a subgroup of the tame automorphism group Tame (A k ). (c) The Cox quasitorus F Cox and the G a -subgroup exp(t ∂) commute in Aut(O(A k )), and

exp(t ∂)| O(A k ) F Cox = exp(t∂ ρj ,e ). ( 4 
) (d) Given a sequence (∂ 1 , . . . , ∂ s ) of root derivations of O(X), where ∂ i = ∂ ρ j(i)
,ei with a Demazure root e i ∈ S j(i) of X, and the sequence of the corresponding root Proof . Statement (a) is immediate; statements (b) and (c) follow easily from [Arzhantsev et al., 2019, Lem. 4.20.b]; see [Arzhantsev et al., 2019, (12)] for (2). To show (d), consider the morphism π :

derivations ∂i = ∂ ε j(i) ,êi of the Cox ring O(A k ) = k[x 1 , . . . , x k ] with êi ∈ Ŝj(i) , i = 1, . . . ,
A k → X = A k //F Cox . The induced pullback homomorphism π * : O(X) → O(A k
) is injective, and its image coincides with the algebra of invariants O(A k ) FCox . The induced homomorphism of the Lie algebras of vector fields π * : Vec(X) → Vec(A k ) is as well injective, and its image coincides with the Lie subalgebra of F Cox -invariant vector fields on A k yielding an isomorphism Vec(X) ∼ = Vec(A k ) FCox . Considering the derivations as vector fields, we have π * (∂ i ) = ∂i , i = 1, . . . , s, and π * (L) = L.

Recall that a linear algebraic group is called unipotent if it consists of unipotent matrices. In characteristic zero, any unipotent algebraic group is isomorphic to an affine space A n as a variety. Any orbit of a unipotent algebraic group acting regularly on an affine variety is closed and isomorphic to an affine space. In the sequel we need the following technical results.

Proposition 2.2. Given a collection of Demazure roots e j(i),i ∈ S j(i) i=1,...,s , let

G = U i | i = 1, . . . , s ⊂ Aut(X) where U i = exp(t∂ ρ j(i) ,e j(i),i ).
Consider the root derivations ∂i = ∂ε j(i) ,ê j(i),i and the root subgroups Ûi = exp(t ∂i ) acting on A k , i = 1, . . . , s.

Let Ĝ = Ûi | i = 1, . . . , s ⊂ Aut(A k ).
Then the following holds. Proof . (a) Since any subgroup Ûi , i = 1, . . . , s commutes with the quasitorus

F Cox in Aut(A k ) one has Ĝ ⊂ Centr Aut(A k ) (F Cox ) ⊂ Norm Aut(A k ) (F Cox ),
where Centr Aut(A k ) (F Cox ) and Norm Aut(A k ) (F Cox ) are the centralizer and the normalizer of F Cox in Aut(A k ), respectively. There is the exact sequence [Arzhantsev et al., 2010, Thm. 5.1]

1 → F Cox → Norm Aut(A k ) (F Cox ) τ -→ Aut(X) → 1. ( 5 
)
Assume Ĝ contains a free subgroup F m of rank m ≥ 2. We claim that the restriction

τ | Fm : F m → F m /(F m ∩ F Cox ) ⊂ Aut(X)
is an isomorphism, that is, F m ∩ F Cox = 1. Indeed, the latter intersection is a normal abelian subgroup of the non-abelian free group F m , hence the trivial group. (b) Suppose Ĝ is a unipotent algebraic group. Then, once again, the restriction

τ | Ĝ : Ĝ → Ĝ/( Ĝ ∩ F Cox ) ⊂ Aut(X)
is an isomorphism, that is, Ĝ ∩ F Cox = 1. Indeed, the unipotent linear algebraic group Ĝ has no torsion. Hence, Ĝ ∩ F Cox is an algebraic subgroup of the quasitorus F Cox . Since this subgroup has no torsion, this is the trivial group.

Remark 2.3. In the proof we have used the fact that F m , m > 1, does not contain any normal abelian subgroup. Following suggestions of a referee, we indicate two alternative arguments (our initial proof was more complicated). A simple direct argument is as follows. Let A be a nontrivial abelian normal subgroup of the free group F m = u 1 , . . . , u m . Then A is cyclic, say A = a Z ; indeed, any subgroup of F m is free. Up to conjugacy, we may assume that a is cyclically reduced, starting with letter u 1 and finishing with letter u m , say. The group F m acts on A via conjugation, and any automorphism of A sends its generator a to a ±1 . So, waw -1 = a ±1 for any w ∈ F m . However, the length of u 1 au -1 1 differs from the length of a ±1 , a contradiction. Alternatively, there is a nice geometric argument. The natural action of A fixes two points on the boundary ∂F m , namely, the ends of the Caley graph of A ∼ = Z. Since A is normal, these two points form an invariant set of ∂F m . However, no finite set is fixed by the F m -action on ∂F m .

More generally, no nontrivial abelian subgroup of F m , m > 1, is subnormal (see subsection 5.2 for the definition). Indeed, assume there is a descending series F m ☎ N 1 ☎ . . . ☎ N s ☎ A, where A = 1 is abelian, hence a free cyclic group. One may suppose that N s is a non-abelian free group of finite rank, and then the previous result applied to the pair (N s , A) gives a contradiction.

3 Tits' type alternative for a pair of root subgroups

In this section we still deal with a toric affine variety X over k with no torus factor, and freely use the notation from 2.1-2.3. We prove the following partial result; cf. Theorem 1.1.

Proposition 3.1. Consider the group H = U 1 , U 2 ⊂ Aut(X) generated by the root subgroups U i = exp(t∂ i ), i = 1, 2, associated with two different ray generators, say, ρ 1 and ρ 2 , respectively. Then either H is a unipotent algebraic group, or H contains a free subgroup of rank 2.

Proof . Introducing the total coordinates (x 1 , . . . , x k ), we let U 1 and U 2 act on A k as G a -subgroups Û1 and Û2 of the tame automorphism group Tame (A k ) commuting with the Cox quasitorus F Cox , see Lemma 2.1. We let Ĥ = Û1 , Û2 . By Proposition 2.2 it suffices to prove the above alternative for Ĥ instead of H.

Let in these coordinates êi = (c ij ) where c ii = -1 and c ij ≥ 0 for j = i, i ∈ {1, 2}. One can write ê1 = (-1, c, * , . . . , * ) and ê2 = (d, -1, * , . . . , * ), where c = ρ 2 , e 1 , d = ρ 1 , e 2 , and the stars stand for nonnegative integers. The elements ûi ∈ Ûi , i = 1, 2 can be written as

û1 = (x 1 + sx c 2 N 1 , x 2 , . . . , x k ) and û2 = (x 1 , x 2 + tx d 1 N 2 , x 3 , . . . , x k ), (6) 
where

s, t ∈ k and N 1 , N 2 ∈ k[x 3 , . . . , x k ] are nonzero monomials, cf. (2)-(3).
By (1), Ĥ is abelian (and then Ĥ ∼ = G a × G a ) if and only if c = d = 0. More generally, the following holds.

Claim 1. Assume c > 0 and d = 0. Then Ĥ = Û1 , Û2 is a unipotent linear algebraic group.

Proof of Claim 1. Under our assumptions, Ĥ is a closed subgroup of the unipotent linear algebraic group consisting of the triangular transformations

(x 1 , . . . , x k ) → (x 1 + F (x 2 , N 2 )N 1 , x 2 + tN 2 , x 3 , . . . , x k ),
where t ∈ k and F runs over the linear space of homogeneous polynomials in two variables of degree c. So, Ĥ is a unipotent linear algebraic group. ‡ ‡ Alternatively, one can deduce the conclusion by using Proposition 4.8.
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Suppose now that c ≥ 1 and d ≥ 1. In this case we show, using ping-pong type arguments, that Ĥ contains a free subgroup of rank two, see Claims 2-4. We analyze separately the cases c, d ≥ 2, c ≥ 2 and d = 1, and c = d = 1. This analysis is close to the original Jung approach in [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF]; cf. also [Kambayashi, 1979, Lem. 4.1] and [Wright, 1975, 5.31, p. 65]. Another reference in order is [START_REF] Lamy | L'alternative de Tits pour Aut(C 2 )[END_REF], where the enhanced Tits alternative for the group Aut(A 2 C ) was established playing the ping-pong on the Bass-Serre tree. On can apply this alternative to the group Aut(A 2 K ), where K is the rational function field k(x 3 , . . . , x n ). Notice that by (6), any ĥ ∈ Ĥ can be written as ĥ = (p, q, x 3 , . . . , x k ) with p, q ∈ k[x 1 , . . . , x k ] \ k.

(7)

Claim 2. Assume c, d ≥ 2. Then one has Ĥ = Û1 * Û2 ∼ = G a * G a . Consequently, any two non-unit elements ûi ∈ Ûi , i = 1, 2, generate a free subgroup of rank two.

Proof of Claim 2. Fixing ûi ∈ Ûi , i = 1, 2 as in (6) with nonzero s, t ∈ k, for ĥ as in ( 7) one has û1 ĥ = (p 1 , q, x 3 , . . . , x k ) and û2 ĥ = (p, q 2 , x 3 , . . . , x k ),

where by ( 6),

p 1 = p + sq c N 1 and q 2 = q + tp d N 2 . ( 8 
) For deg(p) ≤ deg(q) one gets deg(p 1 ) = c deg(q) + deg (N 1 ) > deg(q), (9) 
and, similarly, for deg(p) ≥ deg(q) one deduces

deg(q 2 ) > deg(p). ( 10 
)
Consider a nontrivial reduced word w in two letters, and let ĥ = w(û 1 , û2 ) ∈ Ĥ, where û1 , û2 = 1. Using ( 9)-( 10) one concludes by recursion on the length of w that deg(p) > deg(q) if w(û 1 , û2 ) starts on the left with û1 , and deg(p) < deg(q) if w(û 1 , û2 ) starts with û2 . Anyway, deg(p) = deg(q), hence ĥ = 1.

Claim 3. The conclusion of Claim 2 remains valid if c ≥ 2 and d = 1.

Proof of Claim 3. For any field F the Jung-van der Kulk Theorem [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF][START_REF] Van Der Kulk | On polynomial rings in two variables[END_REF] 

yields the presentation Aut(A 2 F ) = A * C J, (11) 
where C = A ∩ J, A = Aff(A 2 F ) is the affine group of the plane, and J is the de Jonquières subgroup of Aut(A 2 F ) which consists of the transformations of the form

(x 1 , x 2 ) → (α 1 x 1 + β 1 (x 2 ), α 2 x 2 + β 2 ) with α i ∈ F * , i = 1, 2, β 1 ∈ F [x 2 ], β 2 ∈ F ;
see [START_REF] Dicks | Automorphisms of the polynomial ring in two variables[END_REF][START_REF] Nagata | On automorphism group of k[END_REF][START_REF] Wright | Algebras which resemble symmetric algebra[END_REF], [Kambayashi, 1975, Thm. 2], and [Kambayashi, 1979, Lem. 4.1].

Let û1 = û1 (s), û2 = û2 (t), and N 1 , N 2 ∈ k[x 3 , . . . , x k ] be as in (6). Letting F = k(x 3 , . . . , x k ) and

b 1 (s) = sN 1 ∈ F [s], b 2 (t) = tN 2 ∈ F [t], û1 = û1 (s), û2 = û2 (t) (12) one gets Ĥ = û1 , û2 = (x 1 + b 1 (s)x c 2 , x 2 ), (x 1 , x 2 + b 2 (t)x 1 ) | s, t ∈ k ⊂ Aut(A 2 F ), (13) 
where b 1 (s), b 2 (t) do not vanish for any (s, t)

∈ (A 1 \ {0}) 2 . Since c > 1 and d = 1, one has Û1 \ {id} ⊂ J \ C and Û2 \ {id} ⊂ A \ C.
Due to (11) any nonunit element ĥ ∈ Ĥ can be uniquely written as a nonempty alternating product of the type ĥ

= û1 (s 1 )û 2 (t 1 ) • • • û1 (s m )û 2 (t m ),
where s i , t i = 0, up to omitting the first or the last factor, or the both. Now the claim follows.

The next claim ends the proof of Proposition 3.1.

Claim 4. Assume c = d = 1. Then there exist (û 1 , û2 ) ∈ Û1 × Û2 such that the group û1 , û2 surjects onto SL 2 (Z) and so, contains a free subgroup of rank two.

Proof of Claim 4. Choosing in ( 12) the values of parameters s 0 , t 0 such that b 1 (s 0 ) = b 2 (t 0 ) = 1, by ( 13) we obtain û1 (s 0 ), û2 (t 0 ) = (x 1 + x 2 , x 2 ), (x 1 , x 2 + x 1 ) = SL 2 (Z).

This yields the desired surjection û1 , û2 → SL 2 (Z). It remains to recall [Wikipedia,3.1] that SL 2 (Z) is virtually free with (x 1 + 2x 2 , x 2 ), (x 1 , x 2 + 2x 1 ) ∼ = F 2 .

Remark 3.2. By the Kurosh subgroup theorem, under the assumptions of Claims 2 and 3 any nontrivial algebraic subgroup of the free product Ĥ = Û1 * Û2 is conjugated to one of the factors Ûi , i = 1, 2. Hence, it is isomorphic to G a . By Proposition 2.2(b) the latter remains valid after taking off the hats.

Corollary 3.3. In the notation as before, the following conditions are equivalent:

(i) Ĥ = Û1 , Û2 is a unipotent algebraic group; (ii) letting K = k[x 3 , . . . , x k ] the Lie algebra L = Lie( ∂1 , ∂2 ) ⊂ Der K (K[x 1 , x 2 ]
) generated by the root derivations (see ( 6)

) ∂1 = x c 2 N 1 ∂/∂x 1 , ∂2 = x d 1 N 2 ∂/∂x 2 is finite dimensional and nilpotent; (iii) min{ ρ1 , ê2 , ρ2 , ê1 } = min{c, d} = 0. ( 14 
)
These equivalences remain valid after taking off the hats.

Proof . The implication (i) ⇒ (ii) is immediate; indeed, L = Lie( Ĥ) provided (i) is fulfilled. The equivalence (i) ⇔ (iii) is established in the course of the proof of Proposition 3.1. Hence, it suffices to show (ii) ⇒ (iii). Notice that the specialization (x 1 , . . . , x k ) → (x 1 , x 2 , x

(0) 3 , . . . , x (0) 
k ) yields a surjective homomorphism of Lie algebras Der Replacing now ∂1 = y c ∂/∂x by y e ∂/∂x and repeating the trick, we obtain a sequence of elements of L of unbounded degrees. Thus, in this case L has infinite dimension. In any case, (ii) fails, a contradiction.

K (K[x 1 , x 2 ]) → Der k (k[x 1 , x 2 ]). Choosing a point P 0 = (x (0) 3 , . . . , x (0) k ) ∈ (A 1 \ {0}) k-2 so that N 1 (P 0
For the last assertion, see Lemma 2.1.d and Proposition 2.2.b.

4 Tits' type alternative for a sequence of root subgroups

Let as before X be a toric affine variety with no torus factor, and let G = U 1 , ..., U s be the group generated by a finite set of root subgroups U j = exp(t∂ j ) ⊂ Aut(X), j = 1, . . . , s, where ∂ j are root derivations. According to Corollary 3.3, in the case that G does not contain any non-abelian free subgroup, for any i = j either U i and U j belong to the same ray generator (and then commute), or they belong to two different ray generators ρ and ρ ′ and for the corresponding roots e, e ′ one has min{ ρ, e ′ , ρ ′ , e } = 0. In Proposition 4.1 we establish that under these assumptions G is a unipotent algebraic group. To be more precise, notice that the Lie algebra L generated by the root derivations ∂ j , j = 1, . . . , s, might contain extra root derivations, cf. Example 4.2. Let R i be the set of Demazure roots e ij ∈ S i of X such that ∂ ρi,eij ∈ L. A priori, the cardinal card(R i ) could be infinite countable, and then the abelian subalgebra

L i = Lie(∂ ρi,eij |e ij ∈ R i ) ⊂ L (15)
is infinite dimensional. We may suppose that

R i = ∅ ∀i = 1, . . . , r and R i = ∅ ∀i = r + 1, . . . , k. Let R = r i=1 R i .
For e ∈ R i we let U e = exp(t∂ ρi,e ). Proposition 4.1. Suppose that for all e, e ′ ∈ R the group U e , U e ′ is unipotent. Then G is a unipotent algebraic group.

The proof is done at the end of subsection 4.2. The assumption of Proposition 4.1 is equivalent to the fact that U e , U e ′ for any e, e ′ ∈ R does not contain any free subgroup of rank two. The latter is equivalent to the fact that ( 14) holds for any e, e ′ ∈ R, see Proposition 3.1 and Corollary 3.3. Theorem 1.1 from the introduction is an immediate consequence of Propositions 3.1 and 4.1. In turn, Proposition 4.1 follows from Propositions 4.7 and 4.8. 

G = U 1 , U 2 , U 3 , U 4 acting on A 3 = Spec k[x, y, z], where U i = exp(t∂ i ), i = 1, . . . , 4 with ∂ 1 = yz ∂ ∂x , ∂ 2 = z ∂ ∂y , ∂ 3 = z 2 ∂ ∂y , ∂ 4 = ∂ ∂z .
We have

∂ 1 = ∂ ρ1,e1 , ∂ 2 = ∂ ρ2,e2 , ∂ 3 = ∂ ρ2,e3 , ∂ 4 = ∂ ρ3,e4 ,
where the ray generators ρ 1 , ρ 2 , ρ 3 are the vectors of the standard basis in A 3 , and e 1 = (-1, 1, 1), e 2 = (0, -1, 1), e 3 = (0, -1, 2), e 4 = (0, 0, -1).

Any pair of these root derivations verify ( 14). They generate the Lie algebra

L = span ∂ ∂x , y ∂ ∂x , yz ∂ ∂x , z ∂ ∂x , z 2 ∂ ∂x , z 3 ∂ ∂x , ∂ ∂y , z ∂ ∂y , z 2 ∂ ∂y , ∂ ∂z .
Consider the abelian Lie subalgebras

L 1 = span ∂ ∂x , y ∂ ∂x , yz ∂ ∂x , z ∂ ∂x , z 2 ∂ ∂x , z 3 ∂ ∂x , L 2 = span ∂ ∂y , z ∂ ∂y , z 2 ∂ ∂y , and 
L 3 = span ∂ ∂z .
We have

L = L 1 ⊕ L 2 ⊕ L 3 , where [L 1 , L i ] ⊂ L 1 , i = 2, 3, [L 2 , L 3 ] ⊂ L 2 ,
and, furthermore,

ad(L i )(L i ) = 0, i = 1, 2, 3, ad(L 3 ) 4 (L 1 ) = 0, ad(L 2 ) 2 (L 1 ) = 0, ad(L 3 ) 3 (L 2 ) = 0.
For the lower central series L i = [L, L i-1 ] of L we obtain L 5 = 0. Thus, L is nilpotent, and so, by Proposition 4.8, G is a unipotent algebraic group.

The proof of Proposition 4.1 is based on Proposition 4.7, which strengthens [Arzhantsev et al., 2021, Thm. 5.1] in our particular context. Let us recall the terminology of [START_REF] Arzhantsev | Lie algebras of vertical derivations on semiaffine varieties with torus actions[END_REF] and introduce the necessary notation. Definition 4.3. Consider a finite sequence of root derivations D = (D 1 , . . . , D t , D t+1 ) where D i = ∂ ρ j(i) , e j(i),i ∈ L j(i) with e j(i),i ∈ R j(i) , j(i) ∈ {1, . . . , r}.

One says that D is a cycle (more precisely, a t-cycle) if D t+1 = D 1 and ρ j(i+1) , e j(i),i > 0 ∀i = 1, . . . , t.

(16)

For instance, (D 1 , D 2 , D 1 ) forms a 2-cycle if and only if ( 14) fails, that is, 2) , e j(1),1 > 0 and ρ j(1) , e j(2),2 > 0.

ρ j(
We say that D is a pseudo-cycle if ( 16) holds and j(t + 1) = j(1), but not necessarily e j(t+1),t+1 = e j(1),1 ; that is, ρ j(t+1) = ρ j(1) but possibly D t+1 = D 1 .

In this subsection we mainly deal with the case where G contains no non-abelian free subgroup, or, which is equivalent, L contains no 2-cycle of root derivations. We need the next technical lemma.

Lemma 4.4. The following conditions are equivalent: (i) L contains no 2-cycle of root derivations; (ii) L contains no 2-pseudo-cycle of root derivations;

(iii) for any pair of indices i, j ∈ {1, . . . , r} such that i = j, at least one of the abelian Lie subalgebras L i , L j from ( 15) is an ideal of the Lie algebra Lie (L i , L j ); (iv) the Lie algebra Lie(∂ ρi,e , ∂ ρj,e ′ ) is finite dimensional and nilpotent for any pair of indices i, j ∈ {1, . . . , r} and any pair of roots e ∈ R i , e ′ ∈ R j .

Proof . (i) ⇔ (ii). Assume (i) holds. Then we have

min{ ρ i , e ′ , ρ j , e } = 0 ∀e ∈ R i , ∀e ′ ∈ R j with 1 ≤ i = j ≤ r. (17) 
Condition (ii) is clearly fulfilled if L i and L j commute. Otherwise, up to interchanging i and j, there exists e i ∈ R i such that ρ j , e i = c > 0, see (1). By virtue of ( 17) one has

ρ i , e ′ = 0 ∀e ′ ∈ R j . (18) 
It follows that L has no 2-pseudo-cycle, that is, (ii) holds. The converse implication is immediate.

(ii) ⇔ (iii). Assume (ii) holds. Then ( 17) is fulfilled. As before, (iii) is evidently true if L i and L j commute. Suppose this is not the case, and let ρ j , e i = c > 0 for some e i ∈ R i . From (1) and ( 18) one deduces that e i + e ′ ∈ R i for any e ′ ∈ R j , and

[∂ ρj ,e ′ , ∂ ρi,ei ] = c∂ ρi,ei+e ′ ∈ L i ∀e ′ ∈ R j , (19) 
that is, 0 = [L j , L i ] ⊂ L i . (20) 
Thus, (iii) is fulfilled. To show the converse, notice that [L j , L i ] ⊂ L i for i = j implies (19) for any e i ∈ R i , e ′ ∈ R j with c = ρ j , e i , and also implies ρ i , e ′ = 0. Thus, (17) holds, and so, one has the implication (iii) ⇒ (ii).

The equivalence (iv) ⇔ (i) holds by Corollary 3.3.

Definition 4.5. To any Lie algebra L as before we associate a directed graph Γ r = Γ r (L) on r vertices {L i } i=1,...,r , where a directed edge [L j → L i ] joins the vertices L i and L j if and only if ρ j , e i > 0 for some e i ∈ R i .

Thus, there is no edge joining the vertices L i and L j of Γ r if and only if [L i , L j ] = 0, that is, the Lie algebra Lie (L i , L j ) is abelian. Furthermore, Γ r has no bidirected edge if and only if L has no 2-pseudo-cycle of root derivations. For instance, this holds for the following graph Γ 3 = Γ 3 (L) associated with the Lie algebra L from Example 4.2:

Γ 3 : L 3 & & ▲ ▲ ▲ ▲ ▲ ▲ / / L 2 x x r r r r r r L 1 (21)
Lemma 4.6. The following are equivalent: (i) L contains no pseudo-cycle of root derivations; (ii) L contains no cycle of root derivations; (iii) L contains no 2-cycle of root derivations.

Proof . It suffices to prove (iii)⇒(i), the two other implications being immediate.

Assume L contains no 2-cycle, and then also no 2-pseudo-cycle of root derivations, see Lemma 4.4. Suppose to the contrary that L has a pseudo-cycle of root derivations D = {D 1 , . . . , D N , D N +1 } with N ≥ 3. Then Γ r has the oriented cycle

L ρ j(1) → L ρ j(N ) → . . . → L ρ j(2) → L ρ j(1) .
The sequence ρ j(1) , . . . , ρ j(N ) of the corresponding ray generators can eventually contain repetitions. However, it is possible to subtract a subsequence ρ j(1) , . . . , ρ j(t) without repetition, where 3 ≤ t ≤ N , such that ρ j(t+1) = ρ j(1) . Then D ′ = {D 1 , . . . , D t , D t+1 } is again a pseudo-cycle, and the cycle

L ρ j(1) → L ρ j(t) → . . . → L ρ j(2) → L ρ j(1)
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has no self-intersection. To any e ∈ R we associate the integer vector of length t, v(e) = ( ρ j(1) , e , . . . , ρ j(t) , e ) ∈ Z t .

One has v(e j(1),1 ) = (-1, •, * , . . . , * , * ) v(e j(2),2 ) = (0, -1, •, * , . . . , * )

v(e j(3),3 ) = ( * , 0, -1, •, . . . , * ) . . .

v(e j(t-1),t-1 ) = ( * , * , . . . , 0, -1, •) v(e j(t),t ) = (•, * , * , . . . , 0, -1)

(22)
The stars in ( 22) stand for nonnegative integers, the bullets stand for positive integers, and the zeros on the lower subdiagonal are due to ( 16) and ( 17). In fact, ( 16) and ( 17) imply

ρ j(i) , e = 0 ∀e ∈ R j(i+1) . (23) 
From ( 1), ( 16) and ( 23) one deduces ρ j(i+2) , e ′ j(i),i > 0 where e ′ j(i),i := e j(i),i + e j(i+1),i+1 ∈ R j(i) , i = 1, . . . , t -2.

Then (17) gives ρ j(i) , e = 0 ∀e ∈ R j(i+2) .

This means that the second lower subdiagonal in ( 22) consists of zeros. In the same fashion one can show that the third lower subdiagonal in ( 22) consists of zeros. Finally, we arrive by recursion to the conclusion that the matrix in ( 22) is upper triangular. Moreover, one has ρ j(t+1) , e = ρ j( 1) , e = 0 ∀e ∈ R j(t) .

The latter contradicts ( 16) for i = t and e = e j(t),t .

The following statement strengthens Theorem 5.1 in [START_REF] Arzhantsev | Lie algebras of vertical derivations on semiaffine varieties with torus actions[END_REF] in application to our (simpler) setup. For the convenience of the reader we provide a complete proof, which exploits Lemma 4.6.

Proposition 4.7. Assume L contains no 2-cycle of root derivations. Then the associated graph Γ r is acyclic, that is, does not contain any oriented cycle, and the Lie algebra L is finite-dimensional and nilpotent.

Proof . We freely use the notation from the proof of Lemma 4.6. Consider the one-dimensional Lie subalgebras l ρi,ei of L i generated by the root derivations, where l ρi,ei = span(∂ ρi,ei ) = k∂ ρi,ei with e i ∈ R i .

Since L has no 2-cycle then (17) holds. Hence, for i = j there is the alternative: either [l ρi,ei , l ρj ,ej ] = 0, or [l ρi,ei , l ρj ,ej ] ∈ {l ρi,ei+ej , l ρj ,ei+ej }.

(24)

Due to (1) one has [l ρi,ei , l ρj ,ej ] = l ρi,ei+ej if and only if ρ j , e i > 0.

(25)

In the latter case Γ r contains the directed edge [L j → L i ]. It is clear that

L i = e∈Ri l ρi,e and L = r i=1 L i .
Therefore, one has

dim(L) = r i=1 dim(L i ) = r i=1 card (R i ) = card (R). ( 26 
)
Let us show that under our assumptions Γ r is acyclic, that is, does not contain any oriented cycle. Indeed, given an oriented cycle in Γ r , L j(1) → L j(2) → . . . → L j(t) → L j(t+1) = L j(1) , one can find a sequence of roots e j(i),i ∈ R j(i) such that, with the usual convention ρ j(t+1) = ρ j(1) , one has ρ j(i+1) , e j(i),i > 0, i = 1, . . . , t.

Thus, D = (D i = ∂ ρ j(i) , e j(i),i ) i=1,...,t is a pseudo-cycle of root derivations in L. By Lemma 4.6, the latter contradicts our assumption on absence of 2-cycles in L.

A vertex L i is called a sink if either L i is isolated in Γ r , or all the incident edges of Γ r at L i have the incoming direction, that is, L i does not emit any edge. The vertex L i of Γ r is a sink if and only if L i is an ideal of the Lie algebra L.

The end vertex of any maximal oriented path in Γ r is a sink. Since Γ r is acyclic it has at least one sink. Moreover, any connected component of Γ r contains a sink.

We can choose a new enumeration of the vertices of Γ r taking for L 1 a vertex which is a sink of Γ r . Deleting L 1 from Γ r along with its incident edges yields a directed graph Γ r-1 . The corresponding Lie subalgebra of L still has no pseudo-cycle of root derivations. Hence, Γ r-1 has at least one sink. We choose a sink of Γ r-1 to be L 2 , etc. By construction, with this new enumeration one has (cf. Example 4.2)

[L i , L 1 ] ⊂ L 1 , i = 2, . . . , r, [L i , L 2 ] ⊂ L 2 , i = 3, . . . , r, . . . [L r , L r-1 ] ⊂ L r-1 , [L r , L r ] = 0 . ( 27 
)
To show that L is of finite dimension, we use the enumeration of the subalgebras L j ⊂ L satisfying ( 27). We establish that the total coordinates of the vectors in R are uniformly bounded above, and so, R is finite. Due to (26) this yields the result.

At the beginning of Section 4 we defined L as the Lie algebra generated by the finite set of root derivations ∂ i , i = 1, . . . , s. Given a ray generator ρ j , consider all the root derivations ∂ i among ∂ 1 , . . . , ∂ s which belong to ρ j , and let R (0) j ⊂ R j be the set of their roots. It follows from ( 24) and ( 27) that R r = R (0) r , and so, R r is finite. Furthermore, by ( 18), (20), and (27) for any e ∈ R r one has ρ i , e = 0 ∀i = 1, . . . , r -1 and ρ r , e = -1.

Again by ( 24) and ( 27 

where the lattice vectors e r,i ∈ R r are not necessarily distinct. We claim that 0 ≤ m ≤ ρ r , e

r-1 .

Indeed, for the rth total coordinate of the lattice vectors in (28) we have ρ r , e r,i = -1, i = 1, . . . , m, and ρ r , e = ρ r , e

r-1m ≥ 0.

Since both R

r-1 and R r are finite, we conclude that R r-1 is as well. Suppose by induction that the R i are finite for i = t, . . . , r, where 2 ≤ t ≤ r -1. By ( 24) and ( 27), any root e ∈ R t-1 is of the form e = e (0)

t-1 + r i=t mi j=1 e i,j with e (0) t-1 ∈ R (0) t-1 and e i,j ∈ R i , (29) 
with possible repetitions of the summands. Likewise in ( 22), due to the chosen enumeration we obtain for the first i total coordinates of the vector e i,j ∈ R i , ρ l , e i,j = 0 ∀l = 1, . . . , i -1 and ρ i , e i,j = -1, j = 1, . . . , m i .

Letting l = t yields ρ t , e i,j = 0, i = t + 1, . . . , r -1, i = t .
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From ( 29)-( 31) we deduce ρ l , e = 0 ∀l < t -1, ρ t-1 , e = -1, and ρ t , e = ρ t , e

t-1m t ≥ 0.

Therefore, one has m t ≤ ρ t , e

t-1 =: mt . To find a uniform bound for the (t + 1)st total coordinate ρ t+1 , e of e we let mt+1 = max e (0)

t-1 ∈R (0) t-1 { ρ t+1 , e (0) 
t-1 } + max mt≤ mt mt j=1 ρ t+1 , e t,j | (e t,1 , . . . , e t,mt ) ∈ R mt t < +∞.

Arguing as before we obtain m t+1 ≤ mt+1 . Continuing in this way we arrive at the conclusion that all the total coordinates of the vectors e from R t-1 are uniformly bounded above, and so, R t-1 is finite. This gives the induction step. Thus, R is finite, and the dimension dim(L) = card (R) is finite too, see ( 26).

Let us show finally that L is nilpotent. Indeed, let 1 ≤ i < j ≤ r. Using the relations similar to (30) and the fact that R is finite, for N ≫ 1 one deduces ρ j , e + e 1 + . . . + e N = ρ j , e -N ≤ -2 whenever e ∈ R i and e 1 , . . . , e N ∈ R j .

(32)

Letting l = k∂ ρi,e ⊂ L i and l k = k∂ ρj ,e k ⊂ L j , k = 1, . . . , N and using ( 25) we obtain by ( 32)

[l 1 , [l 2 , [. . . , [l N , l] .
. .] = 0 whenever l k ⊂ L j , k = 1, . . . , N, and l ⊂ L i , i ≤ j.

For N ≫ 1 the latter vanishing reads

ad(L j ) N (L i ) = 0 ∀j ≥ i, i, j ∈ {1, . . . , r}. (33) 
Taking into account (27), from (33) we deduce ad(L) N r (L) = 0, which means that L is nilpotent.

From nilpotent Lie algebras to unipotent groups

It is well known, see, e.g., [Hochschild, 1981, Ch. XVI, Thm. 4.2], that over a field of characteristic zero, the Lie functor realizes the equivalence between the categories of unipotent algebraic groups and of nilpotent Lie algebras. In our particular case, this correspondence can be made quite explicit.

Proposition 4.8. Let X be a toric affine variety over k with no torus factor, let G = U 1 , . . . , U s ⊂ Aut(X) be a subgroup generated by the root subgroups U i = exp(t∂ i ), where the ∂ i are locally nilpotent derivations of the structure algebra O(X) associated with Demazure roots, let L be the Lie algebra generated by ∂ 1 , . . . , ∂ s , and let Γ(L) = Γ r (L) be the associated directed graph, see Definition 4.5. Then the following are equivalent:

(i) L has no 2-cycle of root derivations;

(ii) the graph Γ(L) has no oriented cycle, in particular, no bidirected edge;

(iii) L is finite-dimensional and nilpotent;

(iv) G is a unipotent algebraic group acting regularly on X.

In the latter case one has L = Lie (G).

Proof . The implications (i) ⇒ (ii)&(iii) follow from Proposition 4.7. Condition (iii) implies (iv) of Lemma 4.4, and so, by virtue of this lemma, implies (i). Therefore, there is the equivalence (i) ⇔ (iii). By Definition 4.5, Γ(L) has no bidirected edge if and only if L has no 2-pseudo-cycle of root derivations. By virtue of Lemma 4.4 this is equivalent to (i). Thus, one has (i) ⇔ (ii) ⇔ (iii). If (iv) holds, then G is a nilpotent group, and so, it contains no non-abelian free subgroup. This implies (i) due to Proposition 3.1 and Corollary 3.3. Hence, we have the implications (iv) ⇒ (i) ⇔ (iii). The converse implication (iii) ⇒ (iv) is proven in Lemmas 4.9-4.12 below.

Convention. We assume in the sequel that the Lie algebra L is finite-dimensional and nilpotent, and so, (i)-(iii) hold. We use the enumeration of the subalgebras L i ⊂ L, i = 1, . . . , r introduced in the proof of Proposition 4.7, so that ( 27) and (33) hold.

Let us recollect the notation. Recall that k stands for the number of total coordinates on our toric affine variety X; this is at the same time the number of extremal rays ρ i of the cone ∆ Q , see subsections 2.1 and 2.3. Due to (5), any automorphism of X lifts to an automorphism of the Cox ring O(A k ) = k[x 1 , . . . , x k ] of X, and to an automorphism of the spectrum A k of the Cox ring. The algebra O(X) coincides with the algebra of the F Cox -invariants of the Cox ring O(A k ). By Lemma 2.1.b any root derivation ∂ i , i = 1, . . . , s, lifts to a root derivation ∂i of k[x 1 , . . . , x k ] of form (2), and any root subgroup U i = exp(t∂ i ) lifts to a root subgroup Ûi = exp(t ∂i ) consisting of elementary transformations (3) and centralized by the Cox quasitorus F Cox . The derivation ∂ i is the restriction of ∂i to O(A k ) FCox ∼ = O(X), i = 1, . . . , s. This yields an isomorphism L ∼ = L, where L is the Lie algebra generated by ∂1 , . . . , ∂s , see Lemma 2.1.d.

Assuming that Ĝ = Û1 , . . . , Ûs is a unipotent linear algebraic group, one has an isomorphism G ∼ = Ĝ, and so, G is a unipotent linear algebraic group too, see Proposition 2.2.b. Thus, it suffices to show that Ĝ is a unipotent linear algebraic group provided L is a finite-dimensional nilpotent Lie algebra.

Let Li be the image of L i under the isomorphism L ∼ = L from Lemma 2.1.d. It is easily seen that L satisfies (i)-(iii) if and only if L does.

Recall that the automorphisms of A k of the form (x 1 , . . . , x k ) → (x 1 + f 1 , . . . , x k + f k ), where f i ∈ k[x i+1 , . . . , x k ], i = 1, . . . , k,

are called unitriangular. These automorphisms form the unitriangular subgroup of the group Aut(A k ), see [Freudenburg, 2017, Ch. 3]. In Lemmas 4.9 and 4.10 we present Ĝ = Û1 , . . . , Ûs as a subgroup of the unitriangular group with Lie( Ĝ) = L.

Lemma 4.9. Any ∂ ∈ L is a locally nilpotent derivation of O(X). 

According to [Freudenburg, 2017, Prop. 3.29], ∂ is locally nilpotent on O(A k ), and then also ∂ is locally nilpotent on O(X) = O(A k ) FCox .

Notice that for r < k the variables x r+1 , . . . , x k belong to the kernel of any derivation ∂ ∈ L.

Classical formulas.

In what follows we use the classical Baker-Campbell-Hausdorff (BCH) and Zassenhaus formulas. Let us recall these formulas following [START_REF] Bonfiglioli | Topics in noncommutative algebra[END_REF][START_REF] Li | The Baker-Campbell-Hausdorff formula via mould calculus[END_REF], Manetti, 2012[START_REF] Wang | On multivariable Zassenhaus formula[END_REF]. Let A be an associative algebra with unit over k. In the formal power series algebra A [[t]] the function exp is well defined for any series without constant term, and log is well defined for any series with the constant term equal 1. For a, b ∈ A consider the Lie subalgebra Lie(a, b) of A, that is, the

  lattice vectors e ∈ k j=1 S j are called Demazure roots. Any Demazure facet contains an infinite set of Demazure roots. To a Demazure root e ∈ S j one associates the root derivation ∂ ρj ,e ∈ Der (O(X)), which acts on the character χ m via ∂ ρj ,e (χ m ) = ρ j , m χ m+e .

  (a) If Ĝ contains a free subgroup F m of rank m ≥ 2 then G does. (b) If Ĝ is a unipotent algebraic group then G is, and, moreover, G ∼ = Ĝ.

  ) and N 2 (P 0 ) do not vanish we may assume that ∂1 = y c ∂/∂x, ∂2 = x d ∂/∂y, and L = Lie( ∂1 , ∂2 ) ⊂ Der k (k[x, y]) is finite dimensional and nilpotent. Suppose (iii) fails. If c = d = 1 then L = sl 2 (k) is not nilpotent. If, say, c ≥ 1 and d > 1 then we have ad( ∂1 ) d+1 ( ∂2 ) = -c(d + 1)!y e ∂/∂x ∈ L, where e = (d + 1)c -1 > c.

  ), any root e ∈ R r-1 is of the form e = e (0) r-1 + e r,1 + . . . + e r,m with e and e r,i ∈ R r , i = 1, . . . , m,

Proof

  . Due to (2), in the total coordinates (x 1 , . . . , x k ) any derivation ∂ ∈ Li , i ∈ {1, . . . , r}, acts onA k via ∂ = p∂/∂x i where p ∈ k[x 1 , . . . , x i-1 , x i+1 , . . . , x k ]. (35)The monomials M j in (2), taken up to proportionality, of all possible polynomials p in (35) are in one-to-one correspondence with the roots in the subset R j of R. Since R j is finite, it follows that max∂∈ Lj {deg(p)} ≤ d j for some d j ∈ N. (36)Due to our choice of enumeration, the subalgebras Li ⊂ L satisfy (27). Hence, the total coordinates of the roots in R i form a triangular-like matrix, cf. (30), that is, p ∈ k[x i+1 , . . . , x k ] for any p in (35). Since ∂2 (x i ) = 0, i = 1, . . . , k, the G a -subgroup exp(t ∂) of Aut(A k ) generated by ∂ from (35) acts on A k via the unitriangular (elementary) transformationsexp(t ∂) : (x 1 , . . . , x k ) → (x 1 , . . . , x i-1 , x i + tp(x i+1 , . . . , x k ), x i+1 , . . . , x k ), t ∈ k,(37)cf.(3). More generally, any derivation ∂ ∈ L is triangular of the /∂x i , where δ i ∈ Li and p i ∈ k[x i+1 , . . . , x k ], i = 1, . . . , r.

  Acyclicity and nilpotent Lie algebrasBefore passing to the proof of Proposition 4.1, let us give an example.
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	4.1 Example 4.2. Consider the group
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smallest subspace of A which contains a and b and is stable under commutators. The BCH formula expresses c(t) := log(exp(ta) exp(tb)) ∈ Lie(a, b) [[t]]. Plugging in formally t = 1, the formula reads:

where each term is a rational multiple of the Lie monomial in a and b of degree m obtained from the universal Lie monomial α[z 1 , [z 2 , [. . . , z m ] . . .], α ∈ Q, after substitution of either a or b instead of every z i .

Likewise, for given a 1 , . . . , a ν ∈ A, the multivariate Zassenhaus formula reads: exp(a 1 + . . .

exp(ψ m (a 1 , . . . , a ν )), (40) where ψ m (a 1 , . . . , a ν ) is a homogeneous Lie polynomial in a 1 , . . . , a ν of degree m. Notice that this description applies to any Lie algebra g and its universal enveloping algebra A.

In our setup, it occurs that the both formulas contain just a finite number of terms, and, respectively, factors. Indeed, letting L = Lie(a, b) in the former case and L = Lie(a 1 , . . . , a ν ) in the latter case, suppose that L is nilpotent of nilpotency class n, that is, L n+1 = ad(L) n (L) = 0, where n ∈ N is minimal with this property. Then the homogeneous Lie polynomials of degree m > n in the both formulas vanish, hence the sum in (39) and the product in (40) are finite.

Lemma 4.10. In the total coordinates, the automorphisms exp( L) = {exp( ∂) | ∂ ∈ L} form a group of unitriangular automorphisms of A k . The map exp : L → exp( L) is well defined and bijective.

Proof . By virtue of ( 37) and ( 38), any automorphism exp( ∂)

Any unitriangular automorphism α ∈ Aut(A k ) can be written as the exponential α = exp(c) of the triangular

see [Freudenburg, 2017, Prop. 3.30] and its proof. see [Freudenburg, 2017, Cor. 3.31]. The latter derivation can be expressed via the BCH formula (39) truncated on level n + 1, where n is the nilpotency class of L. It follows that c ∈ L. Thus, exp( L) is a subgroup of the group of unitriangular automorphisms of A k . Since log and exp are mutually inverse, the map exp : L → exp( L) is a bijection.

Lemma 4.11. The degrees of exp( ∂) are uniformly bounded for ∂ ∈ L.

Proof . Write ∂ = a 1 + . . . + a ν ∈ L, where a i ∈ Li . We can express exp( ∂) = exp(a 1 + . . . + a ν ) via the Zassenhaus formula (40), where the product is truncated on level n + 1 with n being the nilpotency class of L.

Consider the increasing chain of ideals of L,

Let us show that in (40) one has ψ m (a 1 , . . . , a ν ) ∈ L ν-1 for any ν ∈ {2, . . . , r}, m ≥ 2. Indeed, it suffices to check this for ψ m which is a Lie monomial in a 1 , . . . , a ν of degree m.

In this case, our claim follows from the fact that the abelian Lie algebras L1 , . . . , Lr verify ( 27). Now we proceed by induction on ν = 1, . . . , r. The assertion of the lemma holds for L 1 due to ( 36) and ( 37). Suppose it holds for some L ν-1 . Take

Using (40) and the preceding observation, we can write

Since our assertion holds for exp(L ν-1 ) by the induction hypothesis and for exp( Lν ) by ( 36)-( 37), the degrees of all the automorphisms in (42) are uniformly bounded above. Therefore, the assertion holds for exp(L ν ) as well. This concludes the induction.

Lemma 4.12. Assume L is a finite dimensional nilpotent Lie algebra. Then G is a unipotent algebraic group acting regularly on X, and L = Lie(G).

Proof . Due to Lemma 4.11, the span F of exp( L) is a finite-dimensional subspace of the vector space End(A k ).

One can take for the coordinates in L and F the coefficients of the polynomials p 1 , . . . , p r and f 1 , . . . , f r in ( 38) and ( 41), respectively. The map

defines a morphism of algebraic varieties L → F . The image exp( L) is an irreducible constructible subset of F . Since exp( L) is a connected group, this is a locally closed smooth subvariety of F . By Zariski's Main Theorem, the bijective morphism exp : L → exp( L) of smooth varieties is an isomorphism. Since L is an affine variety, exp( L) is too. Using (34), it is easily seen that exp( L) is an affine algebraic group which acts regularly on A k . The exponential of a nilpotent matrix is unipotent. Therefore, the group exp( L) is unipotent since it consists of unipotent elements.

Recall that Ĝ = Û1 , . . . , Ûs , where Ûj = exp(t ∂j ) with ∂j ∈ L. So, Ûj ⊂ exp( L) for any j = 1, . . . , s. It follows that Ĝ ⊂ exp( L). In fact, Ĝ = exp( L) because the Lie subalgebras Lie( Ûj ) = k ∂j ⊂ L, j = 1, . . . , s, generate L. By the preceding discussion we deduce Lie( Ĝ) = L. It follows that Lie(G) = L.

Proof of Proposition 4.1. Due to Corollary 3.3, under the assumption of Proposition 4.1, (17) holds for any e ∈ R i , e ′ ∈ R j . Then L has no 2-cycle of root derivations. Now the assertion follows from Propositions 4.7 and 4.8.

Transitive actions

Doubly transitive groups acting on toric affine varieties

In this section we apply the Tits' type alternative to answer Question 1 under the assumption of double transitivity of the group in question. We start with the following simple combinatorial lemma.

Lemma 5.1. Let a group G act effectively and doubly transitively on a set X, where card(X) ≥ 3. Then the following hold.

(a) Any nontrivial normal subgroup H of G is transitive on X; (b) the stabilizer G x of a point x ∈ X acts transitively on X \ {x}, and so, x is a unique fixed point of G x ; (c) the center of G is trivial.

Proof . To show (a) it suffices to notice that G permutes the H-orbits on X. Statement (b) is immediate. To show (c), assume that the center Z of G is nontrivial. Then by (a), Z is transitive on X. On the other hand, since Z commutes with G x , it fixes the unique fixed point x of G x , see (b). This gives a contradiction.

The next proposition follows immediately from Lemma 5.1(c).

Proposition 5.2. No nilpotent group acts doubly transitively on a set X with card(X) ≥ 3. In particular, a unipotent linear algebraic group cannot act 2-transitively on an algebraic variety.

Remark 5.3. Alternatively, the second statement can be deduced from the classification of doubly transitive groups of homeomorphisms and doubly transitive Lie groups, see [START_REF] Kramer | Two-transitive Lie groups[END_REF][START_REF] Tits | Sur les groupes doublement transitif continus[END_REF][START_REF] Tits | Correction et compléments" à: "Sur les groupes doublement transitif continus[END_REF], or by using [Humphreys, 1975, Prop. 17.4 and Cor. 17.5].

Now we can deduce Corollary 1.2 from the Introduction.

Proof of Corollary 1.2. The assertion follows immediately from Theorem 1.1 and Proposition 5.2.
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High transitivity of a subnormal subgroup

As we indicated in the Introduction, the highly transitive actions of the groups generated by one-parameter unipotent subgroups were a starting point of this research. We add below some results concerning a combinatorial aspect of high transitivity, which could be useful in order to attack Conjecture 1.

Definition 5.4. Let G be a group. We say that G is highly transitive if G admits an effective action on a set X which is m-transitive for any m ∈ N.

Attention: one can find in the literature another definition of high transitivity, which does not require effectiveness.

The non-abelian free groups provide examples of highly transitive groups [START_REF] Cameron | Some permutation representations of a free group[END_REF][START_REF] Mcdonough | A permutation representation of a free group[END_REF]. Recall that a subgroup N of a group G is called subnormal if there exists a descending normal series

Proposition 5.5. Assume that a group G acts effectively and highly transitively on an infinite set X. Then any nontrivial subnormal subgroup N of G is also highly transitive on X. In particular, N cannot be virtually solvable.

The proof is done at the end of the section; it is based on the following lemma. In turn, the proof of the lemma imitates the one of [Dixon et al., 1996, Cor. 7.2A]. For the sake of completeness, we provide the argument.

Lemma 5.6. Assume that a group G acts effectively and highly transitively on a set X. Let H be a nontrivial normal subgroup of G. Then H acts on X highly transitively.

Proof . For any m-tuple α = {x 1 , . . . , x m } of pairwise distinct points in X we consider the stabilizers

Then H α is a normal subgroup in G α . It suffices to show that for any positive integer m and for any m-tuple α the group H α acts transitively on X \ {x 1 , . . . , x m }. Assuming the contrary, take the minimal m 1 such that H α is not transitive on X \ {x 1 , . . . , x m }. Notice that, according to Lemma 5.1(a), for m = 0 the group H α = H is transitive on X \ {x 1 , . . . , x m } = X.

By assumption, G α acts highly transitively on X \ {x 1 , . . . , x m }. From Lemma 5.1(a) we deduce that H α = {e}.

Let β = {x 1 , . . . , x m-1 }. By the minimality of m, the stabilizer H β is transitive on X \ {x 1 , . . . , x m-1 }. From H α = {e} it follows that H β is simply transitive on X \ {x 1 , . . . , x m-1 }. So, we can identify the set X \ {x 1 , . . . , x m } with H β \ {e} via the bijection

Under this identification, the (highly transitive) action of G α on X \ {x 1 , . . . , x m } corresponds to the action of G α by conjugation on H β \ {e}. Indeed, the latter is due to the relation

The action by conjugation sends a pair (h, h -1 ) to a pair of the same type. Since H β is infinite, it follows that the action of G α ⊂ Aut(H β ) on H β \ {e} cannot be 2-transitive, unless H β is a group of exponent two.

Suppose finally that H β is a group of exponent two. It is well known that H β is a power of Z/2Z, or, in other words, the additive group of a vector space V over the field F 2 with two elements. However, the action of Aut(H β ) = GL(V ) is not 3-transitive on H β \ {e} = V \ {0} contrary to our assumption, because it preserves the linear (in)dependence. This contradiction completes the proof.

Remark 5.7. Notice that the affine group G = Aff (V ) of the vector space V = A n F2 , n ≥ 3, acts 3-transitively on V , while the normal subgroup of translations acts just simply transitively on V , contrary to [Dixon et al., 1996, Exercise 2.1.16].

Proof of Proposition 5.5. The first assertion of 5.5 follows from Lemma 5.6 by recursion on the length of the normal series (43). As for the second assertion, notice that any virtually solvable group G contains a normal solvable subgroup H of finite index. In turn, H contains a nontrivial normal abelian subgroup A, and A contains a nontrivial cyclic subgroup, say, N , which is a subnormal subgroup of G. However, a cyclic group cannot be highly transitive.

Remark 5.8. Due to Gromov's Theorem [START_REF] Gromov | Groups of polynomial growth and expanding maps". With an appendix by Jacques Tits[END_REF], a finitely generated group has polynomial growth if and only if it is virtually nilpotent. Hence, by Proposition 5.5 no nontrivial subnormal finitely generated subgroup of a highly transitive group has polynomial growth.