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Given a toric affine algebraic variety X and a collection of one-parameter unipotent subgroups U1, . . . , Us of Aut(X)

which are normalized by the torus acting on X, we show that the group G generated by U1, . . . , Us verifies the following

alternative of Tits’ type: either G is a unipotent algebraic group, or it contains a non-abelian free subgroup. We deduce

that if G is 2-transitive on a G-orbit in X, then G contains a non-abelian free subgroup, and so, is of exponential

growth.

1 Introduction

We fix an algebraically closed field k of characteristic zero. Let An stand for the affine space of dimension n over
k and Ga (Gm) for the additive (multiplicative, respectively) group of k viewed as an algebraic group. Consider
an algebraic variety X over k and an effective regular action Ga ×X → X . The image of Ga in Aut(X) is called
a one-parameter unipotent subgroup of Aut(X), or a Ga-subgroup, for short. Any Ga-subgroup U of Aut(X)
has the form U = {exp(t∂) | t ∈ k}, where ∂ is a locally nilpotent derivation of the structure ring O(X). This
correspondence between the Ga-subgroups and locally nilpotent derivations does not hold in prime characteristic,
and so, we prefer in this paper to work in characteristic zero.

The main result of the paper is the following

Theorem 1.1. Consider a toric affine variety X with no torus factor. Let a subgroup G of Aut(X) be generated
by a finite collection U1, . . . , Us of one-parameter unipotent subgroups normalized by the acting torus. Then
either

(i) G is a unipotent algebraic group,
or

(ii) G contains the free group F2 of rank two as a subgroup.

One says that a variety X over k has a torus factor if X ∼= Y × (k \ {0}) for some variety Y . A toric affine
variety X has a torus factor if and only if there is a nonconstant invertible regular function on X .

From Theorem 1.1 we deduce the following corollary.

Corollary 1.2. Let G be a group acting on a toric affine varietyX and generated by a finite collection U1, . . . , Us

of one-parameter unipotent subgroups normalized by the acting torus. If G is doubly transitive on a G-orbit in
X , then G contains a free subgroup of rank two.

The expression “Tits’ type alternative” in the present paper addresses a property of a class of groups which
asserts that any group from this class either is virtually solvable (resp., virtually nilpotent, virtually abelian,
etc.), or contains a non-abelian free subgroup. This (rather weak) form of the original Tits alternative disregards
whether or not the alternative remains true when passing to a subgroup. We wonder whether, under the setup
of Theorem 1.1, any (finitely generated) subgroup H of G either is virtually solvable, or contains a free subgroup
of rank two. Notice that the group G in Theorem 1.1 is not finitely generated, in general.
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Let us provide a brief survey on the classical Tits alternative for the automorphism groups arising in
algebraic geometry. Recall that, due to the original Tits’ theorem [Tits, 1972, Cor. 1], any finitely generated
subgroup of a linear algebraic group either is virtually solvable, or contains a non-abelian free subgroup. Over a
field of characteristic zero, the Tits alternative holds for any, not necessarily finitely generated, linear group [Tits,
1972, Thm. 1]. In the sequel we call the latter property the enhanced Tits alternative. As examples, we can cite
the following results. The first of them is due to S. Cantat and Ch. Urech.

Theorem 1.3. The group of birational transformations of a compact complex Kähler surface verifies the
enhanced Tits alternative, that is, any of its non-virtually solvable subgroups contains a free subgroup of rank
two.

The theorem is proven in [Cantat, 2011a, Thm. C and Sec. 6] (see also [Cantat, 2011b, Prop. 6.3]) for
finitely generated subgroups, and in full generality for irrational surfaces. In [Urech, 2020, Thm. 1.7 and Sec. 7]
it is extended to the rational surfaces by showing that the Cremona group of the plane verifies the enhanced
Tits alternative.

This theorem extends the earlier result of S. Lamy [Lamy, 2001] which says that Aut(A2
C) verifies the

enhanced Tits alternative. The enhanced Tits alternative holds also for the tame automorphism group of
SL2(C) viewed as an affine quadric threefold [Bisi et al., 2014, Thm. C], and as well for the group of birational
transformations of any hyperkähler variety [Oguiso, 2006]; see also [Kurnosov et al., 2019]. Otherwise, its validity
for the groups of birational transformations in higher dimensions is widely open. It is open, for instance, for the
group Aut(A3

C); see also the survey article [Cantat, 2018].
As a nice application of the classical Fujiki-Lieberman theorem, it is shown in [Cantat, 2011a, Thm. 6.3] that

the enhanced Tits alternative holds for the automorphism group of any compact Kähler manifold. The geometry
of the Kähler manifold controls the structure of the group when it is virtually solvable [Campana et al., 2014,
Thm. 1.5], [Dinh, 2012], [Dinh et al., 2015, Thm. 1.1]; see also [Hu, 2019] for the case of projective varieties over
a field of positive characteristic.

Our starting point in the present work was actually the transitivity issue, see Corollary 1.2. Let X be a toric
affine variety over k of dimension at least two with no torus factor, and let SAut(X) ⊂ Aut(X) be the subgroup
generated by all the Ga-subgroups of Aut(X). It is known [Arzhantsev et al., 2012, Thm. 2.1] that SAut(X) acts
highly transitively ∗ on the smooth locus reg(X), that is,m-transitively for anym ≥ 1. A varietyX satisfying the
latter property is called flexible; see [Arzhantsev et al., 2013, Thm. 1.1] for a criterion of flexibility. Notice that
an algebraic subgroup G ⊂ Aut(X) cannot act highly transitively on a variety, by a dimension count argument.

A Ga-subgroup acting on a toric variety X is called a root subgroup if it is normalized by the acting torus.
The term root subgroup is due to the fact that any such subgroup is associated with a certain lattice vector
called a Demazure root, see subsection 2.2. Assuming in addition that a toric affine variety X is smooth in
codimension two, one can find a finite number of root subgroups U1, . . . , Us of Aut(X) such that the group
G = 〈U1, . . . , Us〉 generated by these subgroups still acts highly transitively on reg(X) [Arzhantsev et al., 2019,
Thm. 1.1]. † If X = An, n ≥ 2, then just three Ga-subgroups (which are not root subgroups, in general) are
enough [Arzhantsev et al., 2019, Thm. 1.3]; such subgroups are found explicitly in [Andrist, 2019]. For instance,
for n = 2 the group G generated by the root subgroups

U1 = {(x, y) 7→ (x+ t1y
2, y)} and U2 = {(x, y) 7→ (x, y + t2x)}, t1, t2 ∈ k

acts highly transitively on A2 \ {0} equipped with the standard action of the 2-torus, see [Lewis et al., 2018,
Cor. 21]. Adding one more root subgroup

U3 = {(x, y) 7→ (x+ t3, y)}, t3 ∈ k,

one gets the group 〈U1, U2, U3〉 acting highly transitively on A2 (cf. [Chistopolskaya, 2018]).
The following question arises: What can one say about a group acting highly transitively on an algebraic

variety? More specifically, let us formulate the following conjecture.

Conjecture 1. Let X be an affine variety over k of dimension ≥ 2. Consider the group

G = 〈U1, ...Us〉

generated by Ga-subgroups U1, ...Us of Aut(X). Suppose G is doubly transitive on a G-orbit. Then G contains a

non-abelian free subgroup.

∗Or infinitely transitively, in the terminology of [Arzhantsev et al., 2013].
†It is conjectured [Arzhantsev et al., 2019, Conj. 1.1] that an analogous result holds for any flexible affine variety.



Tits’ type alternative 3

Corollary 1.2 partially confirms Conjecture 1. Of course, an analog of this conjecture makes sense in different
categories. For instance, one might ask (following a referee’s suggestion) whether any highly transitive group
of homeomorphisms of a compact manifold contains a non-abelian free subgroup; see, e.g., [Whittaker, 1967]
for examples of highly transitive groups of homeomorphisms. However, the group-combinatorial analog of the
conjecture fails; indeed, the torsion group of finite permutations of N is highly transitive. The same holds for
the infinite alternating group, that is, the simple group of finite even permutations of N.

Conjecture 1 is inspired in turn by the following question proposed by J.-P. Demailly:

Question 1. What can one say about the growth of the group

G = 〈U1, ..., Us〉

generated by a sequence of one-parameter unipotent subgroups, meaning by “growth” the maximal growth of the

finitely generated subgroups of G?

For instance, the group G in Conjecture 1 has exponential growth provided the conjecture is true. Anyway,
this groupG cannot have a polynomial growth, see Proposition 5.5. The groupG in Theorem 1.1 is of polynomial
growth in case (i), and of exponential growth in case (ii); the latter holds as well for the group G in Corollary 1.2.
In the combinatorial setup, we do not know the answer to the following general question.

Question 2. Let G be a finitely generated group. Assume G acts highly transitively on a set X. Can G be of

intermediate growth?

See, e.g., [Fima et al., 2015, 2020, Garion et al., 2013, Hull et al., 2016] for recent studies on highly transitive
actions of countable groups, and [Hull et al., 2016, Fima et al., 2020] for surveys. However, the groups of algebro-
geometric nature that we study in this paper are quite different.

The proof of our main Theorem 1.1 exploits a constructive criterion/algorithm to decide whether the group
G in this theorem is a unipotent algebraic group. We introduce a combinatorial data associated to the given
collection of the one-parameter unipotent subgroups U1, . . . , Us acting on our toric variety X . This data is
expressed in terms of Demazure roots (ρ, e). To a Demazure root there corresponds a root derivation ∂ρ,e acting
on the structure ring O(X). It can be viewed as a vector field, and it generates a root subgroup Uρ,e. If G
does not contain any non-abelian free group, then there are strong constraints on the Lie brackets between
the root derivations generating the root subgroups of G; namely, the bracket of any two such derivations is
proportional to one of them. These constraints are encoded in a directed graph Γ whose vertices are certain
abelian Lie algebras which are indexed via the facets of the associated polyhedral cone of X and generated by
the corresponding root derivations; see Definition 4.5. Any edge of Γ is oriented in the direction of the bracket
of its end vertices provided the corresponding subalgebras do not commute; otherwise, the edge is absent. The
geometry of Γ determines the structure of G. It occurs that Γ has no oriented cycle if and only if it has no
bidirected edge, if and only if G is a unipotent algebraic group, see Proposition 4.8. Theorem 1.1 is a byproduct
of this criterion.

The content of this paper is as follows. Besides the Introduction, the paper includes four sections. Section 2
contains the notation and preliminary facts from toric geometry. In Section 3 we prove Theorem 1.1 in the
particular case of a group G generated by just two root subgroups, see Proposition 3.1. The main results of
subsections 4.1 and 4.2 are Propositions 4.7 and 4.8, respectively. The former contains a combinatorial criterion
for a Lie algebra of derivations to be nilpotent and finite dimensional. The latter provides, in our framework, a link
between nilpotent Lie algebras and unipotent algebraic groups. Together, these give Proposition 4.1 which says
essentially that if any two root subgroups of the group G = 〈U1, . . . , Us〉 generate a unipotent algebraic group,
then G itself is a unipotent algebraic group. Theorem 1.1 follows immediately from Propositions 3.1 and 4.1.
Corollary 1.2 follows from this theorem due to Proposition 5.2 in subsection 5.1. According to this proposition,
a unipotent linear algebraic group cannot act 2-transitively on an algebraic variety. Finally, in subsection 5.2
we establish that a virtually solvable group cannot be highly transitive, or even be a subnormal subgroup of
a highly transitive group; see Proposition 5.5. In particular, a highly transitive group is of exponential growth
provided it satisfies the Tits’ type alternative; cf. Question 2.

2 Preliminaries from toric geometry

We start by recalling the standard notation and definitions of toric geometry.

2.1 Toric affine varieties

Consider an algebraic torus T = (Gm)n. Let N be the lattice of one-parameter subgroups of T, N∨ =
Hom(T,Gm) the dual lattice of characters, and 〈·, ·〉 : N ×N∨ → Z the natural pairing; see, e.g., [Cox et al.,
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2011] or [6, Def. 4.2]. Let χm stand for the character of T which corresponds tom ∈ N∨, so that χmχm′

= χm+m′

.
The group algebra k[N∨] = ⊕m∈N∨kχm can be identified with the structure algebra O(T).

Consider further the pair of dual Q-vector spaces NQ = N ⊗Q and N∨
Q = N∨ ⊗Q, a closed polyhedral cone

∆Q ⊂ NQ and its dual cone ∆∨
Q ⊂ N∨

Q . By abuse of language, by the associated pair of lattice cones we mean
the pair (∆,∆∨), where ∆ = N ∩∆Q and ∆∨ = N∨ ∩∆∨

Q, respectively. With any (closed) polyhedral lattice
cone ∆ ⊂ N one associates the normal toric affine variety

X = Spec

(

⊕

m∈∆∨

kχm

)

,

and any normal toric affine variety arises in this way. The T-action on X is induced by the ∆∨-grading on the
structure algebra O(X). By Gordon’s Lemma [Cox et al., 2011, Prop. 1.2.17], the cones ∆ and ∆∨ are both
finitely generated monoids. The lattice vectors (ρj)j=1,...,k on the extremal rays of ∆Q, which are elements of the
minimal system of generators of ∆, are called ray generators. These are in one-to-one correspondence with the
facets of the dual polyhedral cone ∆∨

Q. The variety X has no torus factor if and only if ∆Q is full dimensional,
if and only if ∆∨

Q ⊂ N∨
Q is pointed, that is, contains no affine line. See also [Cox et al., 2011, Fulton, 1993, Oda,

1988] for a detailed exposition.

2.2 Root derivations and root subgroups

The Demazure facets

Sj = {e ∈ N∨ | 〈ρj , e〉 = −1, 〈ρi, e〉 ≥ 0, i = 1, . . . , k, i 6= j}, j = 1, . . . , k

are lattice polyhedra inN∨. Each of them is contained in a hyperplane ofN∨
Q parallel to a facet of ∆∨

Q and situated

outside the cone ∆∨
Q. The lattice vectors e ∈

⋃k

j=1 Sj are called Demazure roots. Any Demazure facet contains an

infinite set of Demazure roots. To a Demazure root e ∈ Sj one associates the root derivation ∂ρj ,e ∈ Der (O(X)),
which acts on the character χm via

∂ρj ,e(χ
m) = 〈ρj ,m〉χm+e.

The kernel of ∂ρj ,e is spanned by the characters χm, where m runs over the facet of ∆∨ defined by 〈ρj ,m〉 = 0.
The root derivations are precisely the homogeneous locally nilpotent derivations of the graded algebra

O(X) =
⊕

m∈∆∨ kχm. Recall [Liendo, 2010, Thm. 2.4] that any homogeneous derivation of O(X) is proportional
to one of the form ∂ρ,e for some ρ ∈ N and e ∈ N∨ acting via

∂ρ,e(χ
m) = 〈ρ,m〉χm+e,

where e is called the degree of ∂ρ,e. One has [Romaskevich, 2014, Sect. 3]

[∂1, ∂2] = ∂ρ,e1+e2 with ρ = dρ2 − cρ1. (1)

The root subgroups exp(t∂ρj ,e) are precisely the Ga-subgroups of Aut(X) normalized by the torus T. See,
e.g., [Arzhantsev et al., 2019, 2021, Freudenburg, 2017, Liendo, 2010] for further details.

2.3 Cox rings and total coordinates

Let X be a normal toric affine variety X with no torus factor. The divisor class group Cl(X) is the abelian
group generated by the classes of the prime T-invariant divisors D1, . . . , Dk on X . These divisors are in
one-to-one correspondence with the ray generators (ρj)j=1,...,k. The Cox ring of X is the polynomial ring
O(Ak) = k[x1, . . . , xk] on a distinguished set of variables called the total coordinates. It is equipped with
a Cl(X)-grading defined by deg(xi) = [Di], i = 1, . . . , k. This grading corresponds to a diagonal action on
Ak = Spec(k[x1, . . . , xk]) of the Cox quasitorus FCox = Hom(Cl(X),Gm). Recall that a quasitorus is a direct
product of an algebraic torus and a finite abelian group. One has [Arzhantsev et al., 2015, Thm. 2.1.3.2]

X ∼= Spec(O(Ak)FCox) = Ak//FCox.

See also [Arzhantsev et al., 2015, 2019], [Cox et al., 2011, Ch. 5].

Lemma 2.1. Let e ∈ Sj be a Demazure root, and let ê = (c1, . . . , ck) ∈ Zk, where ci = 〈ρi, e〉. Then the following
hold.



Tits’ type alternative 5

(a) The integer lattice vector ê is a Demazure root of Ak (viewed as a toric variety with the standard action
of the k-torus) which belongs to the jth Demazure facet Ŝj of the first octant Zk

≥0 ⊂ Zk.

(b) Let (εi)i=1,...,k be the ray generators of the lattice cone Zk
≥0. Then one has

∂̂ := ∂εj ,ê =Mj

∂

∂xj
, where Mj = xc11 · · ·x

cj−1

j−1 x
cj+1

j+1 · · ·xckk ∈ k[x1, . . . , xj−1, xj+1, . . . , xk]. (2)

The associated Ga-subgroup consists of elementary transformations

exp(t∂̂) : (x1, . . . , xk) 7→ (x1, . . . , xj−1, xj + tMj , xj+1, . . . , xk), t ∈ k. (3)

This is a subgroup of the tame automorphism group Tame (Ak).

(c) The Cox quasitorus FCox and the Ga-subgroup exp(t∂̂) commute in Aut(O(Ak)), and

exp(t∂̂)|O(Ak)FCox = exp(t∂ρj ,e). (4)

(d) Given a sequence (∂1, . . . , ∂s) of root derivations of O(X), where ∂i = ∂ρj(i) ,ei with a Demazure root

ei ∈ Sj(i) ofX , and the sequence of the corresponding root derivations ∂̂i = ∂εj(i),êi of the Cox ringO(Ak) =

k[x1, . . . , xk] with êi ∈ Ŝj(i), i = 1, . . . , s, consider the Lie algebras L and L̂ generated, respectively, by

∂1, . . . , ∂s and ∂̂1, . . . , ∂̂s. Then the correspondence ∂i 7→ ∂̂i, i = 1, . . . , s, induces an isomorphism of Lie
algebras L ∼= L̂.

Proof . Statement (a) is immediate; statements (b) and (c) follow easily from [Arzhantsev et al., 2019,
Lem. 4.20.b]; see [Arzhantsev et al., 2019, (12)] for (2). To show (d), consider the morphism π : Ak → X =
Ak//FCox. The induced pullback homomorphism π∗ : O(X) → O(Ak) is injective, and its image coincides
with the algebra of invariants O(Ak)FCox . The induced homomorphism of the Lie algebras of vector fields
π∗ : Vec(X) → Vec(Ak) is as well injective, and its image coincides with the Lie subalgebra of FCox-invariant
vector fields on Ak yielding an isomorphism Vec(X) ∼= Vec(Ak)FCox . Considering the derivations as vector fields,

we have π∗(∂i) = ∂̂i, i = 1, . . . , s, and π∗(L) = L̂.

Recall that a linear algebraic group is called unipotent if it consists of unipotent matrices. In characteristic
zero, any unipotent algebraic group is isomorphic to an affine space An as a variety. Any orbit of a unipotent
algebraic group acting regularly on an affine variety is closed and isomorphic to an affine space. In the sequel
we need the following technical results.

Proposition 2.2. Given a collection of Demazure roots
(

ej(i),i ∈ Sj(i)

)

i=1,...,s
, let

G = 〈Ui | i = 1, . . . , s〉 ⊂ Aut(X) where Ui = exp(t∂ρj(i) ,ej(i),i ).

Consider the root derivations ∂̂i = ∂̂εj(i),êj(i),i and the root subgroups Ûi = exp(t∂̂i) acting on Ak, i = 1, . . . , s.
Let

Ĝ = 〈Ûi | i = 1, . . . , s〉 ⊂ Aut(Ak).

Then the following holds.

(a) If Ĝ contains a free subgroup Fm of rank m ≥ 2 then G does.
(b) If Ĝ is a unipotent algebraic group then G is, and, moreover, G ∼= Ĝ.

Proof . (a) Since any subgroup Ûi, i = 1, . . . , s commutes with the quasitorus FCox in Aut(Ak) one has

Ĝ ⊂ CentrAut(Ak)(FCox) ⊂ NormAut(Ak)(FCox),

where CentrAut(Ak)(FCox) and NormAut(Ak)(FCox) are the centralizer and the normalizer of FCox in Aut(Ak),
respectively. There is the exact sequence [Arzhantsev et al., 2010, Thm. 5.1]

1 → FCox → NormAut(Ak)(FCox)
τ

−→ Aut(X) → 1. (5)
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Assume Ĝ contains a free subgroup Fm of rank m ≥ 2. We claim that the restriction

τ |Fm
: Fm → Fm/(Fm ∩ FCox) ⊂ Aut(X)

is an isomorphism, that is, Fm ∩ FCox = 1. Indeed, the latter intersection is a normal abelian subgroup of the
non-abelian free group Fm, hence the trivial group.

(b) Suppose Ĝ is a unipotent algebraic group. Then, once again, the restriction

τ |
Ĝ
: Ĝ→ Ĝ/(Ĝ ∩ FCox) ⊂ Aut(X)

is an isomorphism, that is, Ĝ ∩ FCox = 1. Indeed, the unipotent linear algebraic group Ĝ has no torsion. Hence,
Ĝ ∩ FCox is an algebraic subgroup of the quasitorus FCox. Since this subgroup has no torsion, this is the trivial
group.

Remark 2.3. In the proof we have used the fact that Fm, m > 1, does not contain any normal abelian
subgroup. Following suggestions of a referee, we indicate two alternative arguments (our initial proof was more
complicated). A simple direct argument is as follows. Let A be a nontrivial abelian normal subgroup of the free
group Fm = 〈u1, . . . , um〉. Then A is cyclic, say A = aZ; indeed, any subgroup of Fm is free. Up to conjugacy,
we may assume that a is cyclically reduced, starting with letter u1 and finishing with letter um, say. The group
Fm acts on A via conjugation, and any automorphism of A sends its generator a to a±1. So, waw−1 = a±1 for
any w ∈ Fm. However, the length of u1au

−1
1 differs from the length of a±1, a contradiction.

Alternatively, there is a nice geometric argument. The natural action of A fixes two points on the boundary
∂Fm, namely, the ends of the Caley graph of A ∼= Z. Since A is normal, these two points form an invariant set
of ∂Fm. However, no finite set is fixed by the Fm-action on ∂Fm.

More generally, no nontrivial abelian subgroup of Fm, m > 1, is subnormal (see subsection 5.2 for the
definition). Indeed, assume there is a descending series Fm ☎N1 ☎ . . .☎Ns ☎A, where A 6= 1 is abelian, hence
a free cyclic group. One may suppose that Ns is a non-abelian free group of finite rank, and then the previous
result applied to the pair (Ns, A) gives a contradiction.

3 Tits’ type alternative for a pair of root subgroups

In this section we still deal with a toric affine variety X over k with no torus factor, and freely use the notation
from 2.1–2.3. We prove the following partial result; cf. Theorem 1.1.

Proposition 3.1. Consider the group H = 〈U1, U2〉 ⊂ Aut(X) generated by the root subgroups Ui = exp(t∂i),
i = 1, 2, associated with two different ray generators, say, ρ1 and ρ2, respectively. Then either H is a unipotent
algebraic group, or H contains a free subgroup of rank 2.

Proof . Introducing the total coordinates (x1, . . . , xk), we let U1 and U2 act on Ak as Ga-subgroups Û1 and Û2

of the tame automorphism group Tame (Ak) commuting with the Cox quasitorus FCox, see Lemma 2.1. We let
Ĥ = 〈Û1, Û2〉. By Proposition 2.2 it suffices to prove the above alternative for Ĥ instead of H .

Let in these coordinates êi = (cij) where cii = −1 and cij ≥ 0 for j 6= i, i ∈ {1, 2}. One can write

ê1 = (−1, c, ∗, . . . , ∗) and ê2 = (d,−1, ∗, . . . , ∗), where c = 〈ρ2, e1〉, d = 〈ρ1, e2〉,

and the stars stand for nonnegative integers. The elements ûi ∈ Ûi, i = 1, 2 can be written as

û1 = (x1 + sxc2N1, x2, . . . , xk) and û2 = (x1, x2 + txd1N2, x3, . . . , xk), (6)

where s, t ∈ k and N1, N2 ∈ k[x3, . . . , xk] are nonzero monomials, cf. (2)–(3).
By (1), Ĥ is abelian (and then Ĥ ∼= Ga ×Ga) if and only if c = d = 0. More generally, the following holds.

Claim 1. Assume c > 0 and d = 0. Then Ĥ = 〈Û1, Û2〉 is a unipotent linear algebraic group.

Proof of Claim 1. Under our assumptions, Ĥ is a closed subgroup of the unipotent linear algebraic group
consisting of the triangular transformations

(x1, . . . , xk) 7→ (x1 + F (x2, N2)N1, x2 + tN2, x3, . . . , xk),

where t ∈ k and F runs over the linear space of homogeneous polynomials in two variables of degree c. So, Ĥ is
a unipotent linear algebraic group. ‡

‡Alternatively, one can deduce the conclusion by using Proposition 4.8.
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Suppose now that c ≥ 1 and d ≥ 1. In this case we show, using ping-pong type arguments, that Ĥ contains
a free subgroup of rank two, see Claims 2–4. We analyze separately the cases c, d ≥ 2, c ≥ 2 and d = 1, and
c = d = 1. This analysis is close to the original Jung approach in [Jung, 1942]; cf. also [Kambayashi, 1979,
Lem. 4.1] and [Wright, 1975, 5.31, p. 65]. Another reference in order is [Lamy, 2001], where the enhanced Tits
alternative for the group Aut(A2

C) was established playing the ping-pong on the Bass-Serre tree. On can apply
this alternative to the group Aut(A2

K), where K is the rational function field k(x3, . . . , xn).

Notice that by (6), any ĥ ∈ Ĥ can be written as

ĥ = (p, q, x3, . . . , xk) with p, q ∈ k[x1, . . . , xk] \ k. (7)

Claim 2. Assume c, d ≥ 2. Then one has Ĥ = Û1 ∗ Û2
∼= Ga ∗Ga. Consequently, any two non-unit elements

ûi ∈ Ûi, i = 1, 2, generate a free subgroup of rank two.

Proof of Claim 2. Fixing ûi ∈ Ûi, i = 1, 2 as in (6) with nonzero s, t ∈ k, for ĥ as in (7) one has

û1ĥ = (p1, q, x3, . . . , xk) and û2ĥ = (p, q2, x3, . . . , xk),

where by (6),
p1 = p+ sqcN1 and q2 = q + tpdN2. (8)

For deg(p) ≤ deg(q) one gets
deg(p1) = c deg(q) + deg (N1) > deg(q), (9)

and, similarly, for deg(p) ≥ deg(q) one deduces

deg(q2) > deg(p). (10)

Consider a nontrivial reduced word w in two letters, and let ĥ = w(û1, û2) ∈ Ĥ, where û1, û2 6= 1. Using
(9)–(10) one concludes by recursion on the length of w that deg(p) > deg(q) if w(û1, û2) starts on the left with

û1, and deg(p) < deg(q) if w(û1, û2) starts with û2. Anyway, deg(p) 6= deg(q), hence ĥ 6= 1.

Claim 3. The conclusion of Claim 2 remains valid if c ≥ 2 and d = 1.

Proof of Claim 3. For any field F the Jung-van der Kulk Theorem [Jung, 1942, van der Kulk, 1953] yields the
presentation

Aut(A2
F ) = A ∗C J, (11)

where C = A ∩ J, A = Aff(A2
F ) is the affine group of the plane, and J is the de Jonquières subgroup of Aut(A2

F )
which consists of the transformations of the form

(x1, x2) 7→ (α1x1 + β1(x2), α2x2 + β2) with αi ∈ F ∗, i = 1, 2, β1 ∈ F [x2], β2 ∈ F ;

see [Dicks, 1983, Nagata, 1972, Wright, 1975], [Kambayashi, 1975, Thm. 2], and [Kambayashi, 1979, Lem. 4.1].
Let û1 = û1(s), û2 = û2(t), and N1, N2 ∈ k[x3, . . . , xk] be as in (6). Letting F = k(x3, . . . , xk) and

b1(s) = sN1 ∈ F [s], b2(t) = tN2 ∈ F [t], û1 = û1(s), û2 = û2(t) (12)

one gets
Ĥ = 〈û1, û2〉 = 〈(x1 + b1(s)x

c
2, x2), (x1, x2 + b2(t)x1) | s, t ∈ k〉 ⊂ Aut(A2

F ), (13)

where b1(s), b2(t) do not vanish for any (s, t) ∈ (A1 \ {0})2. Since c > 1 and d = 1, one has

Û1 \ {id} ⊂ J \ C and Û2 \ {id} ⊂ A \ C.

Due to (11) any nonunit element ĥ ∈ Ĥ can be uniquely written as a nonempty alternating product of the type

ĥ = û1(s1)û2(t1) · · · û1(sm)û2(tm),

where si, ti 6= 0, up to omitting the first or the last factor, or the both. Now the claim follows.

The next claim ends the proof of Proposition 3.1.

Claim 4. Assume c = d = 1. Then there exist (û1, û2) ∈ Û1 × Û2 such that the group 〈û1, û2〉 surjects onto

SL2(Z) and so, contains a free subgroup of rank two.

Proof of Claim 4. Choosing in (12) the values of parameters s0, t0 such that b1(s0) = b2(t0) = 1, by (13) we
obtain

〈û1(s0), û2(t0)〉 = 〈(x1 + x2, x2), (x1, x2 + x1)〉 = SL2(Z).

This yields the desired surjection 〈û1, û2〉 → SL2(Z). It remains to recall [Wikipedia, 3.1] that SL2(Z) is virtually
free with 〈(x1 + 2x2, x2), (x1, x2 + 2x1)〉 ∼= F2.
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Remark 3.2. By the Kurosh subgroup theorem, under the assumptions of Claims 2 and 3 any nontrivial
algebraic subgroup of the free product Ĥ = Û1 ∗ Û2 is conjugated to one of the factors Ûi, i = 1, 2. Hence, it is
isomorphic to Ga. By Proposition 2.2(b) the latter remains valid after taking off the hats.

Corollary 3.3. In the notation as before, the following conditions are equivalent:

(i) Ĥ = 〈Û1, Û2〉 is a unipotent algebraic group;

(ii) letting K = k[x3, . . . , xk] the Lie algebra L̂ = Lie(∂̂1, ∂̂2) ⊂ DerK(K[x1, x2]) generated by the root
derivations (see (6))

∂̂1 = xc2N1∂/∂x1, ∂̂2 = xd1N2∂/∂x2

is finite dimensional and nilpotent;
(iii)

min{〈ρ̂1, ê2〉, 〈ρ̂2, ê1〉} = min{c, d} = 0. (14)

These equivalences remain valid after taking off the hats.

Proof . The implication (i) ⇒ (ii) is immediate; indeed, L̂ = Lie(Ĥ) provided (i) is fulfilled. The equivalence (i)
⇔ (iii) is established in the course of the proof of Proposition 3.1. Hence, it suffices to show (ii) ⇒ (iii). Notice

that the specialization (x1, . . . , xk) 7→ (x1, x2, x
(0)
3 , . . . , x

(0)
k ) yields a surjective homomorphism of Lie algebras

DerK(K[x1, x2]) → Derk(k[x1, x2]). Choosing a point P0 = (x
(0)
3 , . . . , x

(0)
k ) ∈ (A1 \ {0})k−2 so that N1(P0) and

N2(P0) do not vanish we may assume that ∂̂1 = yc∂/∂x, ∂̂2 = xd∂/∂y, and L̂ = Lie(∂̂1, ∂̂2) ⊂ Derk(k[x, y]) is
finite dimensional and nilpotent. Suppose (iii) fails. If c = d = 1 then L̂ = sl2(k) is not nilpotent. If, say, c ≥ 1
and d > 1 then we have

ad(∂̂1)
d+1(∂̂2) = −c(d+ 1)!ye∂/∂x ∈ L̂, where e = (d+ 1)c− 1 > c.

Replacing now ∂̂1 = yc∂/∂x by ye∂/∂x and repeating the trick, we obtain a sequence of elements of L̂ of
unbounded degrees. Thus, in this case L̂ has infinite dimension. In any case, (ii) fails, a contradiction.

For the last assertion, see Lemma 2.1.d and Proposition 2.2.b.

4 Tits’ type alternative for a sequence of root subgroups

Let as before X be a toric affine variety with no torus factor, and let

G = 〈U1, ..., Us〉

be the group generated by a finite set of root subgroups Uj = exp(t∂j) ⊂ Aut(X), j = 1, . . . , s, where ∂j are root
derivations. According to Corollary 3.3, in the case that G does not contain any non-abelian free subgroup, for
any i 6= j either Ui and Uj belong to the same ray generator (and then commute), or they belong to two different
ray generators ρ and ρ′ and for the corresponding roots e, e′ one has min{〈ρ, e′〉, 〈ρ′, e〉} = 0. In Proposition 4.1
we establish that under these assumptions G is a unipotent algebraic group. To be more precise, notice that
the Lie algebra L generated by the root derivations ∂j , j = 1, . . . , s, might contain extra root derivations, cf.
Example 4.2. Let Ri be the set of Demazure roots eij ∈ Si of X such that ∂ρi,eij ∈ L. A priori, the cardinal
card(Ri) could be infinite countable, and then the abelian subalgebra

Li = Lie(∂ρi,eij |eij ∈ Ri) ⊂ L (15)

is infinite dimensional. We may suppose that

Ri 6= ∅ ∀i = 1, . . . , r and Ri = ∅ ∀i = r + 1, . . . , k.

Let R =
⋃r

i=1 Ri. For e ∈ Ri we let Ue = exp(t∂ρi,e).

Proposition 4.1. Suppose that for all e, e′ ∈ R the group 〈Ue, Ue′〉 is unipotent. Then G is a unipotent algebraic
group.

The proof is done at the end of subsection 4.2. The assumption of Proposition 4.1 is equivalent to the fact
that 〈Ue, Ue′〉 for any e, e′ ∈ R does not contain any free subgroup of rank two. The latter is equivalent to the
fact that (14) holds for any e, e′ ∈ R, see Proposition 3.1 and Corollary 3.3. Theorem 1.1 from the introduction
is an immediate consequence of Propositions 3.1 and 4.1. In turn, Proposition 4.1 follows from Propositions 4.7
and 4.8.
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4.1 Acyclicity and nilpotent Lie algebras

Before passing to the proof of Proposition 4.1, let us give an example.

Example 4.2. Consider the group G = 〈U1, U2, U3, U4〉 acting on A3 = Speck[x, y, z], where Ui = exp(t∂i),
i = 1, . . . , 4 with

∂1 = yz
∂

∂x
, ∂2 = z

∂

∂y
, ∂3 = z2

∂

∂y
, ∂4 =

∂

∂z
.

We have
∂1 = ∂ρ1,e1 , ∂2 = ∂ρ2,e2 , ∂3 = ∂ρ2,e3 , ∂4 = ∂ρ3,e4 ,

where the ray generators ρ1, ρ2, ρ3 are the vectors of the standard basis in A3, and

e1 = (−1, 1, 1), e2 = (0,−1, 1), e3 = (0,−1, 2), e4 = (0, 0,−1).

Any pair of these root derivations verify (14). They generate the Lie algebra

L = span

(

∂

∂x
, y

∂

∂x
, yz

∂

∂x
, z

∂

∂x
, z2

∂

∂x
, z3

∂

∂x
,
∂

∂y
, z

∂

∂y
, z2

∂

∂y
,
∂

∂z

)

.

Consider the abelian Lie subalgebras

L1 = span

(

∂

∂x
, y

∂

∂x
, yz

∂

∂x
, z

∂

∂x
, z2

∂

∂x
, z3

∂

∂x

)

,

L2 = span

(

∂

∂y
, z

∂

∂y
, z2

∂

∂y

)

, and L3 = span

(

∂

∂z

)

.

We have
L = L1 ⊕ L2 ⊕ L3, where [L1, Li] ⊂ L1, i = 2, 3, [L2, L3] ⊂ L2,

and, furthermore,

ad(Li)(Li) = 0, i = 1, 2, 3, ad(L3)
4(L1) = 0, ad(L2)

2(L1) = 0, ad(L3)
3(L2) = 0.

For the lower central series Li = [L,Li−1] of L we obtain L5 = 0. Thus, L is nilpotent, and so, by Proposition 4.8,
G is a unipotent algebraic group.

The proof of Proposition 4.1 is based on Proposition 4.7, which strengthens [Arzhantsev et al., 2021,
Thm. 5.1] in our particular context. Let us recall the terminology of [Arzhantsev et al., 2021] and introduce
the necessary notation.

Definition 4.3. Consider a finite sequence of root derivations

D = (D1, . . . , Dt, Dt+1) where Di = ∂ρj(i), ej(i),i ∈ Lj(i) with ej(i),i ∈ Rj(i), j(i) ∈ {1, . . . , r}.

One says that D is a cycle (more precisely, a t-cycle) if Dt+1 = D1 and

〈ρj(i+1), ej(i),i〉 > 0 ∀i = 1, . . . , t. (16)

For instance, (D1, D2, D1) forms a 2-cycle if and only if (14) fails, that is,

〈ρj(2), ej(1),1〉 > 0 and 〈ρj(1), ej(2),2〉 > 0.

We say that D is a pseudo-cycle if (16) holds and j(t+ 1) = j(1), but not necessarily ej(t+1),t+1 = ej(1),1; that
is, ρj(t+1) = ρj(1) but possibly Dt+1 6= D1.

In this subsection we mainly deal with the case where G contains no non-abelian free subgroup, or, which
is equivalent, L contains no 2-cycle of root derivations. We need the next technical lemma.

Lemma 4.4. The following conditions are equivalent:

(i) L contains no 2-cycle of root derivations;
(ii) L contains no 2-pseudo-cycle of root derivations;
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(iii) for any pair of indices i, j ∈ {1, . . . , r} such that i 6= j, at least one of the abelian Lie subalgebras Li, Lj

from (15) is an ideal of the Lie algebra Lie (Li, Lj);
(iv) the Lie algebra Lie(∂ρi,e, ∂ρj,e′) is finite dimensional and nilpotent for any pair of indices i, j ∈ {1, . . . , r}

and any pair of roots e ∈ Ri, e
′ ∈ Rj .

Proof . (i) ⇔ (ii). Assume (i) holds. Then we have

min{〈ρi, e
′〉, 〈ρj , e〉} = 0 ∀e ∈ Ri, ∀e′ ∈ Rj with 1 ≤ i 6= j ≤ r. (17)

Condition (ii) is clearly fulfilled if Li and Lj commute. Otherwise, up to interchanging i and j, there exists
ei ∈ Ri such that 〈ρj , ei〉 = c > 0, see (1). By virtue of (17) one has

〈ρi, e
′〉 = 0 ∀e′ ∈ Rj . (18)

It follows that L has no 2-pseudo-cycle, that is, (ii) holds. The converse implication is immediate.
(ii) ⇔ (iii). Assume (ii) holds. Then (17) is fulfilled. As before, (iii) is evidently true if Li and Lj commute.

Suppose this is not the case, and let 〈ρj , ei〉 = c > 0 for some ei ∈ Ri. From (1) and (18) one deduces that
ei + e′ ∈ Ri for any e

′ ∈ Rj , and

[∂ρj ,e′ , ∂ρi,ei ] = c∂ρi,ei+e′ ∈ Li ∀e′ ∈ Rj , (19)

that is,
0 6= [Lj , Li] ⊂ Li. (20)

Thus, (iii) is fulfilled. To show the converse, notice that [Lj, Li] ⊂ Li for i 6= j implies (19) for any ei ∈ Ri, e
′ ∈ Rj

with c = 〈ρj , ei〉, and also implies 〈ρi, e′〉 = 0. Thus, (17) holds, and so, one has the implication (iii) ⇒ (ii).
The equivalence (iv) ⇔ (i) holds by Corollary 3.3.

Definition 4.5. To any Lie algebra L as before we associate a directed graph Γr = Γr(L) on r vertices
{Li}i=1,...,r, where a directed edge [Lj → Li] joins the vertices Li and Lj if and only if 〈ρj , ei〉 > 0 for some
ei ∈ Ri.

Thus, there is no edge joining the vertices Li and Lj of Γr if and only if [Li, Lj] = 0, that is, the Lie algebra
Lie (Li, Lj) is abelian. Furthermore, Γr has no bidirected edge if and only if L has no 2-pseudo-cycle of root
derivations. For instance, this holds for the following graph Γ3 = Γ3(L) associated with the Lie algebra L from
Example 4.2:

Γ3 :
L3

&&▲
▲▲

▲▲
▲

// L2

xxrr
rr
rr

L1

(21)

Lemma 4.6. The following are equivalent:

(i) L contains no pseudo-cycle of root derivations;
(ii) L contains no cycle of root derivations;
(iii) L contains no 2-cycle of root derivations.

Proof . It suffices to prove (iii)⇒(i), the two other implications being immediate.
Assume L contains no 2-cycle, and then also no 2-pseudo-cycle of root derivations, see Lemma 4.4. Suppose

to the contrary that L has a pseudo-cycle of root derivations D = {D1, . . . , DN , DN+1} with N ≥ 3. Then Γr

has the oriented cycle
Lρj(1)

→ Lρj(N)
→ . . .→ Lρj(2)

→ Lρj(1)
.

The sequence ρj(1), . . . , ρj(N) of the corresponding ray generators can eventually contain repetitions. However,
it is possible to subtract a subsequence ρj(1), . . . , ρj(t) without repetition, where 3 ≤ t ≤ N , such that ρj(t+1) =
ρj(1). Then D′ = {D1, . . . , Dt, Dt+1} is again a pseudo-cycle, and the cycle

Lρj(1)
→ Lρj(t)

→ . . .→ Lρj(2)
→ Lρj(1)
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has no self-intersection. To any e ∈ R we associate the integer vector of length t,

v(e) = (〈ρj(1), e〉, . . . , 〈ρj(t), e〉) ∈ Zt.

One has
v(ej(1),1) = (−1, •, ∗, . . . , ∗, ∗)

v(ej(2),2) = (0,−1, •, ∗, . . . , ∗)

v(ej(3),3) = (∗, 0,−1, •, . . . , ∗)

...

v(ej(t−1),t−1) = (∗, ∗, . . . , 0,−1, •)

v(ej(t),t) = (•, ∗, ∗, . . . , 0,−1)

(22)

The stars in (22) stand for nonnegative integers, the bullets stand for positive integers, and the zeros on the
lower subdiagonal are due to (16) and (17). In fact, (16) and (17) imply

〈ρj(i), e〉 = 0 ∀e ∈ Rj(i+1). (23)

From (1), (16) and (23) one deduces

〈ρj(i+2), e
′
j(i),i〉 > 0 where e′j(i),i := ej(i),i + ej(i+1),i+1 ∈ Rj(i), i = 1, . . . , t− 2.

Then (17) gives
〈ρj(i), e〉 = 0 ∀e ∈ Rj(i+2).

This means that the second lower subdiagonal in (22) consists of zeros. In the same fashion one can show that
the third lower subdiagonal in (22) consists of zeros. Finally, we arrive by recursion to the conclusion that the
matrix in (22) is upper triangular. Moreover, one has

〈ρj(t+1), e〉 = 〈ρj(1), e〉 = 0 ∀e ∈ Rj(t).

The latter contradicts (16) for i = t and e = ej(t),t.

The following statement strengthens Theorem 5.1 in [Arzhantsev et al., 2021] in application to our (simpler)
setup. For the convenience of the reader we provide a complete proof, which exploits Lemma 4.6.

Proposition 4.7. Assume L contains no 2-cycle of root derivations. Then the associated graph Γr is acyclic,
that is, does not contain any oriented cycle, and the Lie algebra L is finite-dimensional and nilpotent.

Proof . We freely use the notation from the proof of Lemma 4.6. Consider the one-dimensional Lie subalgebras
lρi,ei of Li generated by the root derivations, where

lρi,ei = span(∂ρi,ei) = k∂ρi,ei with ei ∈ Ri.

Since L has no 2-cycle then (17) holds. Hence, for i 6= j there is the alternative:

either [lρi,ei , lρj ,ej ] = 0, or [lρi,ei , lρj ,ej ] ∈ {lρi,ei+ej , lρj ,ei+ej}. (24)

Due to (1) one has
[lρi,ei , lρj ,ej ] = lρi,ei+ej if and only if 〈ρj , ei〉 > 0. (25)

In the latter case Γr contains the directed edge [Lj → Li]. It is clear that

Li =
⊕

e∈Ri

lρi,e and L =

r
⊕

i=1

Li.

Therefore, one has

dim(L) =

r
∑

i=1

dim(Li) =

r
∑

i=1

card (Ri) = card (R). (26)

Let us show that under our assumptions Γr is acyclic, that is, does not contain any oriented cycle. Indeed, given
an oriented cycle in Γr,

Lj(1) → Lj(2) → . . .→ Lj(t) → Lj(t+1) = Lj(1),
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one can find a sequence of roots ej(i),i ∈ Rj(i) such that, with the usual convention ρj(t+1) = ρj(1), one has

〈ρj(i+1), ej(i),i〉 > 0, i = 1, . . . , t.

Thus, D = (Di = ∂ρj(i) , ej(i),i )i=1,...,t is a pseudo-cycle of root derivations in L. By Lemma 4.6, the latter
contradicts our assumption on absence of 2-cycles in L.

A vertex Li is called a sink if either Li is isolated in Γr, or all the incident edges of Γr at Li have the
incoming direction, that is, Li does not emit any edge. The vertex Li of Γr is a sink if and only if Li is an ideal
of the Lie algebra L.

The end vertex of any maximal oriented path in Γr is a sink. Since Γr is acyclic it has at least one sink.
Moreover, any connected component of Γr contains a sink.

We can choose a new enumeration of the vertices of Γr taking for L1 a vertex which is a sink of Γr. Deleting
L1 from Γr along with its incident edges yields a directed graph Γr−1. The corresponding Lie subalgebra of L
still has no pseudo-cycle of root derivations. Hence, Γr−1 has at least one sink. We choose a sink of Γr−1 to be
L2, etc. By construction, with this new enumeration one has (cf. Example 4.2)

[Li, L1] ⊂ L1, i = 2, . . . , r,

[Li, L2] ⊂ L2, i = 3, . . . , r,

...

[Lr, Lr−1] ⊂ Lr−1,

[Lr, Lr] = 0 .

(27)

To show that L is of finite dimension, we use the enumeration of the subalgebras Lj ⊂ L satisfying (27).
We establish that the total coordinates of the vectors in R are uniformly bounded above, and so, R is finite.
Due to (26) this yields the result.

At the beginning of Section 4 we defined L as the Lie algebra generated by the finite set of root derivations
∂i, i = 1, . . . , s. Given a ray generator ρj , consider all the root derivations ∂i among ∂1, . . . , ∂s which belong to

ρj , and let R
(0)
j ⊂ Rj be the set of their roots. It follows from (24) and (27) that Rr = R

(0)
r , and so, Rr is finite.

Furthermore, by (18), (20), and (27) for any e ∈ Rr one has

〈ρi, e〉 = 0 ∀i = 1, . . . , r − 1 and 〈ρr, e〉 = −1.

Again by (24) and (27), any root e ∈ Rr−1 is of the form

e = e
(0)
r−1 + er,1 + . . .+ er,m with e

(0)
r−1 ∈ R

(0)
r−1 and er,i ∈ Rr, i = 1, . . . ,m, (28)

where the lattice vectors er,i ∈ Rr are not necessarily distinct. We claim that

0 ≤ m ≤ 〈ρr, e
(0)
r−1〉.

Indeed, for the rth total coordinate of the lattice vectors in (28) we have

〈ρr, er,i〉 = −1, i = 1, . . . ,m, and 〈ρr, e〉 = 〈ρr, e
(0)
r−1〉 −m ≥ 0.

Since both R
(0)
r−1 and Rr are finite, we conclude that Rr−1 is as well.

Suppose by induction that the Ri are finite for i = t, . . . , r, where 2 ≤ t ≤ r − 1. By (24) and (27), any root
e ∈ Rt−1 is of the form

e = e
(0)
t−1 +

r
∑

i=t

mi
∑

j=1

ei,j with e
(0)
t−1 ∈ R

(0)
t−1 and ei,j ∈ Ri, (29)

with possible repetitions of the summands. Likewise in (22), due to the chosen enumeration we obtain for the
first i total coordinates of the vector ei,j ∈ Ri,

〈ρl, ei,j〉 = 0 ∀l = 1, . . . , i− 1 and 〈ρi, ei,j〉 = −1, j = 1, . . . ,mi. (30)

Letting l = t yields

〈ρt, ei,j〉 =

{

0, i = t+ 1, . . . , r

−1, i = t .
(31)
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From (29)–(31) we deduce

〈ρl, e〉 = 0 ∀l < t− 1, 〈ρt−1, e〉 = −1, and 〈ρt, e〉 = 〈ρt, e
(0)
t−1〉 −mt ≥ 0.

Therefore, one has

mt ≤ 〈ρt, e
(0)
t−1〉 =: m̃t.

To find a uniform bound for the (t+ 1)st total coordinate 〈ρt+1, e〉 of e we let

m̃t+1 = max
e
(0)
t−1∈R

(0)
t−1

{〈ρt+1, e
(0)
t−1〉}+ max

mt≤m̃t

{

mt
∑

j=1

〈ρt+1, et,j〉 | (et,1, . . . , et,mt
) ∈ Rmt

t

}

< +∞.

Arguing as before we obtain mt+1 ≤ m̃t+1. Continuing in this way we arrive at the conclusion that all the total
coordinates of the vectors e from Rt−1 are uniformly bounded above, and so, Rt−1 is finite. This gives the
induction step. Thus, R is finite, and the dimension dim(L) = card (R) is finite too, see (26).

Let us show finally that L is nilpotent. Indeed, let 1 ≤ i < j ≤ r. Using the relations similar to (30) and
the fact that R is finite, for N ≫ 1 one deduces

〈ρj , e+ e1 + . . .+ eN 〉 = 〈ρj , e〉 −N ≤ −2 whenever e ∈ Ri and e1, . . . , eN ∈ Rj . (32)

Letting l = k∂ρi,e ⊂ Li and lk = k∂ρj ,ek ⊂ Lj , k = 1, . . . , N and using (25) we obtain by (32)

[l1, [l2, [. . . , [lN , l] . . .] = 0 whenever lk ⊂ Lj , k = 1, . . . , N, and l ⊂ Li, i ≤ j.

For N ≫ 1 the latter vanishing reads

ad(Lj)
N (Li) = 0 ∀j ≥ i, i, j ∈ {1, . . . , r}. (33)

Taking into account (27), from (33) we deduce

ad(L)Nr(L) = 0,

which means that L is nilpotent.

4.2 From nilpotent Lie algebras to unipotent groups

It is well known, see, e.g., [Hochschild, 1981, Ch. XVI, Thm. 4.2], that over a field of characteristic zero, the
Lie functor realizes the equivalence between the categories of unipotent algebraic groups and of nilpotent Lie
algebras. In our particular case, this correspondence can be made quite explicit.

Proposition 4.8. Let X be a toric affine variety over k with no torus factor, let G = 〈U1, . . . , Us〉 ⊂ Aut(X)
be a subgroup generated by the root subgroups Ui = exp(t∂i), where the ∂i are locally nilpotent derivations of
the structure algebra O(X) associated with Demazure roots, let L be the Lie algebra generated by ∂1, . . . , ∂s,
and let Γ(L) = Γr(L) be the associated directed graph, see Definition 4.5. Then the following are equivalent:

(i) L has no 2-cycle of root derivations;
(ii) the graph Γ(L) has no oriented cycle, in particular, no bidirected edge;
(iii) L is finite-dimensional and nilpotent;
(iv) G is a unipotent algebraic group acting regularly on X .

In the latter case one has L = Lie (G).

Proof . The implications (i) ⇒ (ii)&(iii) follow from Proposition 4.7. Condition (iii) implies (iv) of Lemma 4.4,
and so, by virtue of this lemma, implies (i). Therefore, there is the equivalence (i) ⇔ (iii). By Definition 4.5,
Γ(L) has no bidirected edge if and only if L has no 2-pseudo-cycle of root derivations. By virtue of Lemma 4.4
this is equivalent to (i). Thus, one has (i) ⇔ (ii) ⇔ (iii).

If (iv) holds, then G is a nilpotent group, and so, it contains no non-abelian free subgroup. This implies
(i) due to Proposition 3.1 and Corollary 3.3. Hence, we have the implications (iv) ⇒ (i) ⇔ (iii). The converse
implication (iii) ⇒ (iv) is proven in Lemmas 4.9–4.12 below.
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Convention. We assume in the sequel that the Lie algebra L is finite-dimensional and nilpotent, and so, (i)–(iii)
hold. We use the enumeration of the subalgebras Li ⊂ L, i = 1, . . . , r introduced in the proof of Proposition 4.7,
so that (27) and (33) hold.

Let us recollect the notation. Recall that k stands for the number of total coordinates on our toric affine
variety X ; this is at the same time the number of extremal rays ρi of the cone ∆Q, see subsections 2.1 and 2.3.
Due to (5), any automorphism of X lifts to an automorphism of the Cox ring O(Ak) = k[x1, . . . , xk] of X ,
and to an automorphism of the spectrum Ak of the Cox ring. The algebra O(X) coincides with the algebra
of the FCox-invariants of the Cox ring O(Ak). By Lemma 2.1.b any root derivation ∂i, i = 1, . . . , s, lifts to a

root derivation ∂̂i of k[x1, . . . , xk] of form (2), and any root subgroup Ui = exp(t∂i) lifts to a root subgroup

Ûi = exp(t∂̂i) consisting of elementary transformations (3) and centralized by the Cox quasitorus FCox. The

derivation ∂i is the restriction of ∂̂i to O(Ak)FCox ∼= O(X), i = 1, . . . , s. This yields an isomorphism L ∼= L̂,

where L̂ is the Lie algebra generated by ∂̂1, . . . , ∂̂s, see Lemma 2.1.d.
Assuming that Ĝ = 〈Û1, . . . , Ûs〉 is a unipotent linear algebraic group, one has an isomorphism G ∼= Ĝ, and

so, G is a unipotent linear algebraic group too, see Proposition 2.2.b. Thus, it suffices to show that Ĝ is a
unipotent linear algebraic group provided L̂ is a finite-dimensional nilpotent Lie algebra.

Let L̂i be the image of Li under the isomorphism L ∼= L̂ from Lemma 2.1.d. It is easily seen that L satisfies
(i)–(iii) if and only if L̂ does.

Recall that the automorphisms of Ak of the form

(x1, . . . , xk) 7→ (x1 + f1, . . . , xk + fk), where fi ∈ k[xi+1, . . . , xk], i = 1, . . . , k, (34)

are called unitriangular. These automorphisms form the unitriangular subgroup of the group Aut(Ak),
see [Freudenburg, 2017, Ch. 3]. In Lemmas 4.9 and 4.10 we present Ĝ = 〈Û1, . . . , Ûs〉 as a subgroup of the
unitriangular group with Lie(Ĝ) = L̂.

Lemma 4.9. Any ∂ ∈ L is a locally nilpotent derivation of O(X).

Proof . Due to (2), in the total coordinates (x1, . . . , xk) any derivation ∂̂ ∈ L̂i, i ∈ {1, . . . , r}, acts on Ak via

∂̂ = p∂/∂xi where p ∈ k[x1, . . . , xi−1, xi+1, . . . , xk]. (35)

The monomials Mj in (2), taken up to proportionality, of all possible polynomials p in (35) are in one-to-one
correspondence with the roots in the subset Rj of R. Since Rj is finite, it follows that

max
∂̂∈L̂j

{deg(p)} ≤ dj for some dj ∈ N. (36)

Due to our choice of enumeration, the subalgebras L̂i ⊂ L̂ satisfy (27). Hence, the total coordinates of the roots

in Ri form a triangular-like matrix, cf. (30), that is, p ∈ k[xi+1, . . . , xk] for any p in (35). Since ∂̂2(xi) = 0,

i = 1, . . . , k, the Ga-subgroup exp(t∂̂) of Aut(Ak) generated by ∂̂ from (35) acts on Ak via the unitriangular
(elementary) transformations

exp(t∂̂) : (x1, . . . , xk) 7→ (x1, . . . , xi−1, xi + tp(xi+1, . . . , xk), xi+1, . . . , xk), t ∈ k, (37)

cf. (3). More generally, any derivation ∂̂ ∈ L̂ is triangular of the form

∂̂ =

r
∑

i=1

δi =

r
∑

i=1

pi∂/∂xi, where δi ∈ L̂i and pi ∈ k[xi+1, . . . , xk], i = 1, . . . , r. (38)

According to [Freudenburg, 2017, Prop. 3.29], ∂̂ is locally nilpotent on O(Ak), and then also ∂ is locally nilpotent
on O(X) = O(Ak)FCox .

Notice that for r < k the variables xr+1, . . . , xk belong to the kernel of any derivation ∂̂ ∈ L̂.

Classical formulas. In what follows we use the classical Baker-Campbell-Hausdorff (BCH) and Zassenhaus
formulas. Let us recall these formulas following [Bonfiglioli et al., 2012, Li et al., 2019, Manetti, 2012,
Wang et al., 2019]. Let A be an associative algebra with unit over k. In the formal power series algebra
A[[t]] the function exp is well defined for any series without constant term, and log is well defined for any
series with the constant term equal 1. For a, b ∈ A consider the Lie subalgebra Lie(a, b) of A, that is, the
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smallest subspace of A which contains a and b and is stable under commutators. The BCH formula expresses
c(t) := log(exp(ta) exp(tb)) ∈ Lie(a, b)[[t]]. Plugging in formally t = 1, the formula reads:

c := c(1) = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]] +

1

12
[b, [b, a]] + . . . , (39)

where each term is a rational multiple of the Lie monomial in a and b of degree m obtained from the universal
Lie monomial α[z1, [z2, [. . . , zm] . . .], α ∈ Q, after substitution of either a or b instead of every zi.

Likewise, for given a1, . . . , aν ∈ A, the multivariate Zassenhaus formula reads:

exp(a1 + . . .+ aν) = exp(a1) · · · exp(aν)

∞
∏

m=2

exp(ψm(a1, . . . , aν)), (40)

where ψm(a1, . . . , aν) is a homogeneous Lie polynomial in a1, . . . , aν of degree m. Notice that this description
applies to any Lie algebra g and its universal enveloping algebra A.

In our setup, it occurs that the both formulas contain just a finite number of terms, and, respectively,
factors. Indeed, letting L = Lie(a, b) in the former case and L = Lie(a1, . . . , aν) in the latter case, suppose that
L is nilpotent of nilpotency class n, that is, Ln+1 = ad(L)n(L) = 0, where n ∈ N is minimal with this property.
Then the homogeneous Lie polynomials of degree m > n in the both formulas vanish, hence the sum in (39) and
the product in (40) are finite.

Lemma 4.10. In the total coordinates, the automorphisms exp(L̂) = {exp(∂̂) | ∂̂ ∈ L̂} form a group of
unitriangular automorphisms of Ak. The map exp : L̂→ exp(L̂) is well defined and bijective.

Proof . By virtue of (37) and (38), any automorphism exp(∂̂) ∈ exp(L̂) ⊂ Aut(Ak) is unitriangular of the form

exp(∂̂) : (x1, . . . , xk) 7→ (x1 + f1, . . . , xr + fr, xr+1, . . . , xk) with fi ∈ k[xi+1, . . . , xk]. (41)

Any unitriangular automorphism α ∈ Aut(Ak) can be written as the exponential α = exp(c) of the triangular
derivation

c = log(α) = log(id + (α− id)) ∈ Der(O(Ak)),

see [Freudenburg, 2017, Prop. 3.30] and its proof. Consider a pair (a, b) of triangular derivations of O(Ak) from
L̂. The product exp(a) exp(b) of the corresponding unitriangular automorphisms is again unitriangular. In more
detail, exp(a) exp(b) = exp(c) with a triangular derivation

c = log(exp(a) exp(b)) ∈ Der(O(Ak)),

see [Freudenburg, 2017, Cor. 3.31]. The latter derivation can be expressed via the BCH formula (39) truncated
on level n+ 1, where n is the nilpotency class of L̂. It follows that c ∈ L̂. Thus, exp(L̂) is a subgroup of the
group of unitriangular automorphisms of Ak. Since log and exp are mutually inverse, the map exp : L̂→ exp(L̂)
is a bijection.

Lemma 4.11. The degrees of exp(∂̂) are uniformly bounded for ∂̂ ∈ L̂.

Proof . Write ∂̂ = a1 + . . .+ aν ∈ L̂, where ai ∈ L̂i. We can express exp(∂̂) = exp(a1 + . . .+ aν) via the
Zassenhaus formula (40), where the product is truncated on level n+ 1 with n being the nilpotency class
of L̂.

Consider the increasing chain of ideals of L̂,

L1 ⊂ L2 ⊂ . . . ⊂ Lr = L̂, where Lν := L̂1 ⊕ . . .⊕ L̂ν ,

see (27). Notice that ∂̂ = a1 + . . .+ aν ∈ Lν . Let us show that in (40) one has ψm(a1, . . . , aν) ∈ Lν−1 for any
ν ∈ {2, . . . , r}, m ≥ 2. Indeed, it suffices to check this for ψm which is a Lie monomial in a1, . . . , aν of degree m.
In this case, our claim follows from the fact that the abelian Lie algebras L̂1, . . . , L̂r verify (27).

Now we proceed by induction on ν = 1, . . . , r. The assertion of the lemma holds for L1 due to (36) and (37).
Suppose it holds for some Lν−1. Take

∂̂ =

ν
∑

i=1

ai =

ν
∑

i=1

pi∂/∂xi ∈ Lν , where ai ∈ L̂i.
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Using (40) and the preceding observation, we can write

exp(∂̂) = g1 exp(aν)g2 = g1 exp(pν∂/∂xν)g2, where g1, g2 ∈ exp(Lν−1). (42)

Since our assertion holds for exp(Lν−1) by the induction hypothesis and for exp(L̂ν) by (36)–(37), the degrees
of all the automorphisms in (42) are uniformly bounded above. Therefore, the assertion holds for exp(Lν) as
well. This concludes the induction.

Lemma 4.12. Assume L is a finite dimensional nilpotent Lie algebra. Then G is a unipotent algebraic group
acting regularly on X , and L = Lie(G).

Proof . Due to Lemma 4.11, the span F of exp(L̂) is a finite-dimensional subspace of the vector space End(Ak).
One can take for the coordinates in L̂ and F the coefficients of the polynomials p1, . . . , pr and f1, . . . , fr in (38)
and (41), respectively. The map

L̂ ∋ ∂̂ 7→ exp(∂̂) ∈ exp(L̂), (p1, . . . , pr) 7→ (f1, . . . , fr),

defines a morphism of algebraic varieties L̂→ F . The image exp(L̂) is an irreducible constructible subset of F .
Since exp(L̂) is a connected group, this is a locally closed smooth subvariety of F . By Zariski’s Main Theorem,
the bijective morphism exp : L̂→ exp(L̂) of smooth varieties is an isomorphism. Since L̂ is an affine variety,
exp(L̂) is too. Using (34), it is easily seen that exp(L̂) is an affine algebraic group which acts regularly on Ak.
The exponential of a nilpotent matrix is unipotent. Therefore, the group exp(L̂) is unipotent since it consists of
unipotent elements.

Recall that Ĝ = 〈Û1, . . . , Ûs〉, where Ûj = exp(t∂̂j) with ∂̂j ∈ L̂. So, Ûj ⊂ exp(L̂) for any j = 1, . . . , s. It

follows that Ĝ ⊂ exp(L̂). In fact, Ĝ = exp(L̂) because the Lie subalgebras Lie(Ûj) = k∂̂j ⊂ L̂, j = 1, . . . , s,

generate L̂. By the preceding discussion we deduce Lie(Ĝ) = L̂. It follows that Lie(G) = L.

Proof of Proposition 4.1. Due to Corollary 3.3, under the assumption of Proposition 4.1, (17) holds for
any e ∈ Ri, e

′ ∈ Rj . Then L has no 2-cycle of root derivations. Now the assertion follows from Propositions 4.7
and 4.8.

5 Transitive actions

5.1 Doubly transitive groups acting on toric affine varieties

In this section we apply the Tits’ type alternative to answer Question 1 under the assumption of double
transitivity of the group in question. We start with the following simple combinatorial lemma.

Lemma 5.1. Let a group G act effectively and doubly transitively on a set X , where card(X) ≥ 3. Then the
following hold.

(a) Any nontrivial normal subgroup H of G is transitive on X ;
(b) the stabilizer Gx of a point x ∈ X acts transitively on X \ {x}, and so, x is a unique fixed point of Gx;
(c) the center of G is trivial.

Proof . To show (a) it suffices to notice that G permutes the H-orbits on X . Statement (b) is immediate. To
show (c), assume that the center Z of G is nontrivial. Then by (a), Z is transitive on X . On the other hand,
since Z commutes with Gx, it fixes the unique fixed point x of Gx, see (b). This gives a contradiction.

The next proposition follows immediately from Lemma 5.1(c).

Proposition 5.2. No nilpotent group acts doubly transitively on a set X with card(X) ≥ 3. In particular, a
unipotent linear algebraic group cannot act 2-transitively on an algebraic variety.

Remark 5.3. Alternatively, the second statement can be deduced from the classification of doubly transitive
groups of homeomorphisms and doubly transitive Lie groups, see [Kramer, 2003, Tits, 1952, 1956], or by using
[Humphreys, 1975, Prop. 17.4 and Cor. 17.5].

Now we can deduce Corollary 1.2 from the Introduction.

Proof of Corollary 1.2. The assertion follows immediately from Theorem 1.1 and Proposition 5.2.
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5.2 High transitivity of a subnormal subgroup

As we indicated in the Introduction, the highly transitive actions of the groups generated by one-parameter
unipotent subgroups were a starting point of this research. We add below some results concerning a combinatorial
aspect of high transitivity, which could be useful in order to attack Conjecture 1.

Definition 5.4. Let G be a group. We say that G is highly transitive if G admits an effective action on a set
X which is m-transitive for any m ∈ N.

Attention: one can find in the literature another definition of high transitivity, which does not require
effectiveness.

The non-abelian free groups provide examples of highly transitive groups [Cameron, 1987,
McDonough et al., 1977]. Recall that a subgroup N of a group G is called subnormal if there exists a descending
normal series

G☎N1 ☎N2 ☎ . . .☎Nk = N . (43)

Proposition 5.5. Assume that a group G acts effectively and highly transitively on an infinite set X . Then
any nontrivial subnormal subgroup N of G is also highly transitive on X . In particular, N cannot be virtually
solvable.

The proof is done at the end of the section; it is based on the following lemma. In turn, the proof of the
lemma imitates the one of [Dixon et al., 1996, Cor. 7.2A]. For the sake of completeness, we provide the argument.

Lemma 5.6. Assume that a group G acts effectively and highly transitively on a set X . Let H be a nontrivial
normal subgroup of G. Then H acts on X highly transitively.

Proof . For any m-tuple α = {x1, . . . , xm} of pairwise distinct points in X we consider the stabilizers

Gα = Gx1 ∩ . . . ∩Gxm
and Hα = Hx1 ∩ . . . ∩Hxm

.

Then Hα is a normal subgroup in Gα. It suffices to show that for any positive integer m and for any m-tuple α
the group Hα acts transitively on X \ {x1, . . . , xm}. Assuming the contrary, take the minimal m ≥ 1 such that
Hα is not transitive on X \ {x1, . . . , xm}. Notice that, according to Lemma 5.1(a), for m = 0 the group Hα = H
is transitive on X \ {x1, . . . , xm} = X .

By assumption, Gα acts highly transitively on X \ {x1, . . . , xm}. From Lemma 5.1(a) we deduce that
Hα = {e}.

Let β = {x1, . . . , xm−1}. By the minimality of m, the stabilizer Hβ is transitive on X \ {x1, . . . , xm−1}.
From Hα = {e} it follows that Hβ is simply transitive on X \ {x1, . . . , xm−1}. So, we can identify the set
X \ {x1, . . . , xm} with Hβ \ {e} via the bijection

X \ {x1, . . . , xm} ∋ y 7→ h ∈ Hβ \ {e}, where y = hxm.

Under this identification, the (highly transitive) action of Gα on X \ {x1, . . . , xm} corresponds to the action of
Gα by conjugation on Hβ \ {e}. Indeed, the latter is due to the relation

ghxm = ghg−1gxm = ghg−1xm ∀g ∈ Gα, ∀h ∈ Hβ \ {e}.

The action by conjugation sends a pair (h, h−1) to a pair of the same type. Since Hβ is infinite, it follows that
the action of Gα ⊂ Aut(Hβ) on Hβ \ {e} cannot be 2-transitive, unless Hβ is a group of exponent two.

Suppose finally that Hβ is a group of exponent two. It is well known that Hβ is a power of Z/2Z, or, in
other words, the additive group of a vector space V over the field F2 with two elements. However, the action of
Aut(Hβ) = GL(V ) is not 3-transitive on Hβ \ {e} = V \ {0} contrary to our assumption, because it preserves
the linear (in)dependence. This contradiction completes the proof.

Remark 5.7. Notice that the affine group G = Aff (V ) of the vector space V = An
F2
, n ≥ 3, acts 3-transitively

on V , while the normal subgroup of translations acts just simply transitively on V , contrary to [Dixon et al.,
1996, Exercise 2.1.16].

Proof of Proposition 5.5. The first assertion of 5.5 follows from Lemma 5.6 by recursion on the length of the
normal series (43). As for the second assertion, notice that any virtually solvable group G contains a normal
solvable subgroup H of finite index. In turn, H contains a nontrivial normal abelian subgroup A, and A contains
a nontrivial cyclic subgroup, say, N , which is a subnormal subgroup of G. However, a cyclic group cannot be
highly transitive.
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Remark 5.8. Due to Gromov’s Theorem [Gromov, 1981], a finitely generated group has polynomial growth
if and only if it is virtually nilpotent. Hence, by Proposition 5.5 no nontrivial subnormal finitely generated
subgroup of a highly transitive group has polynomial growth.
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a square complex.” J. Éc. polytech. Math. 1 (2014):161–223.

Bonfiglioli, A., and Fulci, R. Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff

and Dynkin. Lecture Notes in Mathematics, 2034. Springer, Heidelberg, 2012.

Cameron, P. J. “Some permutation representations of a free group.” Europ. J. Combin. 8 (1987):257–260.

Campana, F., Wang, Fei, and Zhang, De-Qi. “Automorphism groups of positive entropy on projective threefolds.”
Trans. Amer. Math. Soc. 366 (2014):1621–1638.

Cantat, S. “Sur les groupes de transformations birationnelles des surfaces.”Ann. of Math. (2) 174 (2011):299–340.

Cantat, S. “Sur les groupes de transformations birationnelles des surfaces (version longue).” 52 pp. Available
at: https://perso.univ-rennes1.fr/serge.cantat/Articles/cremona long.pdf

Cantat, S. “The Cremona group.” Algebraic geometry: Salt Lake City 2015, 101–142. Proc. Sympos. Pure Math.,
97.1. Amer. Math. Soc., Providence, RI, 2018.

Chistopolskaya, A. “On nilpotent generators of the Lie algebra sln.” Linear Algebra Appl. 559 (2018):73–79.

Cox, D. A., Little J. B., and Schenck, H. K. Toric Varieties. Graduate Studies in Mathematics, 124.
Amer. Math. Soc., Providence, RI, 2011.
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