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A posteriori-steered p-robust multigrid with optimal step-sizes and

adaptive number of smoothing steps∗

Ani Miraçi†‡ Jan Papež†‡ Martin Vohraĺık†‡

February 28, 2020

Abstract

In this work, we develop a multigrid solver that is steered by a posteriori estimates of the algebraic
error. We adopt the context of a second order elliptic diffusion problem discretized by the conforming
finite element method of arbitrary polynomial degree p ≥ 1. Our solver in particular features an optimal
(adaptive) choice of the step-size in the smoothing correction on each level. Developing our previous
work [HAL Preprint 02070981, 2019], we show the two following results and their equivalence: 1)
the solver contracts the algebraic error independently of the polynomial degree p; 2) the estimator
represents a two-sided p-robust bound on the algebraic error. The p-robustness results are obtained by
careful application of the work done in Schöberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1–24] for
one given mesh, combined with a multilevel stable decomposition for piecewise affine polynomials on
quasi-uniform/bisection grids given in Xu et al. [Springer, Berlin, 2009, pp. 599–659]. We consider either
quasi-uniform or graded bisection meshes and show robustness with respect to the number of mesh levels
J for H2-regular solutions. Our solver relies on zero pre- and one post-smoothing by an overlapping
Schwarz (block-Jacobi) method. We also present a simple and effective way for the solver to adaptively
choose the number of post-smoothing steps, which yields yet improved error reduction. We present
numerical tests confirming the p-robust behavior of the solver and illustrating the adaptive number
of smoothing steps. Moreover, the tests indicate numerical robustness with respect to the number of
levels J even in low regularity settings, as well as robustness with respect to the jumps in diffusion
coefficient.

Key words: finite element method, multigrid method, Schwarz method, block-Jacobi smoother, a posteriori
estimate, stable decomposition, p-robustness

1 Introduction

Multilevel methods, including multigrid, have shown their versatility as solvers and/or preconditioners of
large sparse linear systems arising from numerical discretizations of partial differential equations; we refer
to pioneering works such as e.g. Brandt et al. [6], Bramble et al. [4], Hackbusch [15], Bank et al. [2], Ruge
and Stüben [24], or Oswald [20]. We also refer to survey works that thoroughly treat subspace correction
methods in Xu in [33], robust multigrid methods with respect to non-smooth coefficients in Chan and
Wan [8], multigrid solvers for high-order discretizations in Sundar et al. [30], see also references therein.

In this work, we develop a multilevel solver for algebraic linear systems arising from the discretization
using conforming finite elements of arbitrary polynomial degree p ≥ 1. One iteration of our solver can be
viewed as a V-cycle employing zero pre- and one post-smoothing step, with the levelwise smoother being
overlapping additive Schwarz (block Jacobi) associated to patches of elements that share a common vertex.
An important difference to the classical V-cycle is the use of optimal step-size at the error correction stage
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on each level, which yields a minimal residual in the subsequent level. The idea of an optimal step-size in
the error correction is not new; in fact, a weighting of multigrid error corrections concept appears as early
as in Brandt [5]. Then, the minimal residual approach is used e.g. in Canuto and Quarteroni [7], though not
in a multigrid setting. The interest in this minimal residual approach used for the multigrid error correction
has been pointed out in Heinrichs [16], where this choice resulted in better numerical performance of the
solver. Another version of multigrid solvers with a changing step-size error correction be found in the form
of a scaled residual used in Rüde [22].

We prove that the multilevel solver we introduce contracts the error p-robustly on each iteration. Notable
works in treating p-robustness include e.g.Kanschat [17] and Lucero Lorca and Kanschat [18] using multilevel
preconditioners for rectangular/hexahedral, as well as Antonietti and Pennesi [1] for more general meshes.
A p-robust stable decompostion on triangular/tetrahedral meshes was presented in Schöberl et al. [26] and
it consequently leads to a (one-mesh) p-robust preconditioner. This result plays an important part in the
analysis of our previous work [19], which presented a p-robust multilevel solver, that we also use in this
work. Similarly to [19], the construction of the solver is tightly related to an a posteriori estimator on the
algebraic error. We show that this estimator is p-robustly efficient and that this claim is equivalent with
the p-robust contraction of the solver. The construction of the estimator is done easily and without extra
costs, stemming from the multilevel solver (see also Rüde [23] for the link between efficient estimators and
subspace decomposition type solvers). These results hold for quasi-uniform meshes as well as possibly highly
graded ones. In this case, we show that the dependence with respect to the number of mesh levels J is
linear. Moreover, under additional full-elliptic regularity, we show that the above results are also J-robust.
Numerical experiments support the theoretical findings. Moreover, the tests suggest independence of the
jump in the diffusion coefficient, and that the numerical J-robustness holds even in low-regularity test cases.

A crucial immediate consequence of using the optimal step-size in the error correction stage is the fact
that the error contraction of the previous levels is explicitly known. Indeed, thanks to it, we obtain the
formula representing the error decrease:

‖K
1
2∇(uJ − ui+1

J )‖2 = ‖K
1
2∇(uJ − uiJ)‖2 −

J∑
j=0

(λij‖K
1
2∇ρij‖)2, (1.1)

where K is the diffusion coefficient, j ∈ {1, . . . , J} is the level counter, uJ is the true algebraic solution,
ui+1
J denotes the iterate given by the solver from uiJ with levelwise corrections ρij and levelwise optimal

step-sizes λij . This is the foundation of a simple and efficient strategy to choose adaptively the number of
post-smoothing steps per level. The essence and particularity of our strategy relies on a posteriori-steered
decision-making of the number of smoothing steps. Thus, as formula (1.1) explains, at each level we are
decreasing the error by a positive computable quantity. After one mandatory smoothing step at each level,
if the given decrease is bigger than a user-prescribed portion of the decrease made by the previous levels (in
the spirit of Dörfler [10]), we can decide to do another smoothing step before going to the next level. The
idea of employing a variable number of smoothing steps per level has also been explored e.g. in Bramble and
Pasciak [3] where a generalized V-cycle is proposed. It uses a number of smoothing steps which is bigger on
coarser grids and smaller on finer ones. Closely related to the subject, in Thekale et al. [31] a new approach
is presented: it suggests an adaptive number of multigrid cycles per level in order to optimize the costs of
the full multigrid method.

Compared to previous work [19], we point out the novelties and improvements. While in [19] a global
optimal step-size was used in the proposed solver, here the levelwise step-sizes offer a better numerical
performace, as well as nicer development of the analysis. In fact, the current analysis gives independence with
respect the number of levels in full-regularity setting, which was not possible within the previous construction
of the solver. Moreover, the levelwise optimal step-sizes allow for the error representation (1.1), which other
than making the analysis simpler, is also very useful for the developed adaptive number of smoothings
strategy. Finally and importantly, the solver proposed in this work does not need any additional damping
parameters, whose tuning can be cumbersome.

The practicality of a solver is largely determined by its behavior with respect to discretization parameters
such as possible discontinuities in the diffusion coefficient of the problem. As for studies on the behavior
of solvers with respect to discontinuities of the diffusion coefficient, see for e.g.: Vassilevski [32], where an
multilevel precondtioner is presented, both robust with respect to the number of levels and the discontinuity
of the diffusion coefficient when the discontinuities take place across edges/faces; Dryja et al. [11], where
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the proposed multilevel solver is robust with respect to both the number of mesh levels and the jump in
the diffusion coefficient under a quasi-monotonicity assumption; Graham and Hagger [13], where number of
iterations grows with discontinuity only logarithmically for unstructured meshes; Xu and Zhu [35], where the
convergence rate of the proposed preconditioner is uniform with respect to the large jump and meshsize on
quasi-uniform meshes, then extended on bisection grids in Chen et al. [9]; Scheichl et al. [25], where a robust
multilevel preconditioner is presented by using stable splittings based on weighted quasi-interpolants and
weighted Poincaré-type inequalities, in particular the coarse grid needn’t be aligned with the discontinuities
of the diffusion coefficient; Spillane et al. [28],[29], where a two level robust method with respect to the
diffusion jump is presented thanks to the construction of a coarse space generated from the solution of local
eigenvalue problems.

In Section 2 of this manuscript, we present the setting and notation we will be working with, and in
Section 3 we present the motivation, in the spirit of Papež et al. [21], leading us to consider this particular
multilevel solver. The multilevel solver is then presented in Section 4, and the a posteriori error estimator
is given in Section 5. We collect in Section 6 the assumptions we work with and the main results of the
manuscript. In Section 7, we present the algorithm of the solver with the adaptive choice of number of
post-smoothing steps. Section 8 gives the results obtained by the numerical experiments. The proofs of our
main results are given in Section 9, and we give our concluding remarks in Section 10.

2 Setting

We consider in this work a second order elliptic diffusion problem defined over Ω⊂Rd, d ∈ {1, 2, 3}, an open
bounded polytope with a Lipschitz-continuous boundary.

2.1 Model problem, finite element discretization, and algebraic system

Let f ∈ L2(Ω) be the source term, K ∈ [L∞(Ω)]d×d a symmetric positive definite diffusion coefficient. We
search for u ∈ H1

0 (Ω) such that

(K∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω), (2.1)

where (·, ·) is the L2(Ω) or [L2(Ω)]d scalar product. The existence and uniqueness of the solution of (2.1)
follows from the Riesz representation theorem.

We discretize the above continuous problem by fixing TJ a matching simplicial mesh of Ω, and an integer
p ≥ 1, in order to introduce the finite element space of continuous piecewise p-degree polynomials

V pJ := Pp(TJ) ∩H1
0 (Ω), (2.2)

where Pp(TJ) := {vJ ∈ L2(Ω), vJ |K ∈ Pp(K) ∀K ∈ TJ}. The discrete problem now consists in finding
uJ ∈ V pJ such that

(K∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ V pJ . (2.3)

If one introduces a basis of V pJ , then the discrete problem is equivalent to solving a system of linear algebraic
equations, whose matrix is symmetric and positive definite. Note, however, that such a linear system depends
on the choice of the basis functions. To avoid this dependence, we work instead with a functional description
of the problem; we in particular define the algebraic residual functional on V pJ by

vJ 7→ (f, vJ)− (K∇uiJ ,∇vJ) ∈ R, vJ ∈ V pJ . (2.4)

2.2 A hierarchy of meshes and spaces

We work with a hierarchy of matching simplicial meshes {Tj}0≤j≤J , where TJ has been introduced in
Section 2.1, and where Tj is a refinement of Tj−1, 1 ≤ j ≤ J . We also introduce a hierarchy of finite element
spaces associated to the mesh hierarchy. For this purpose, for j ∈ {1, . . . , J}, fix pj the polynomial degree
associated to mesh level j such that 1 ≤ p1 ≤ . . . ≤ pJ−1 ≤ pJ = p. In particular, let:

for j = 0 : V 1
0 := P1(T0) ∩H1

0 (Ω) (lowest-order space), (2.5a)

for 1 ≤ j ≤ J − 1 : V
pj
j := Ppj (Tj) ∩H1

0 (Ω) (pj-th order spaces), (2.5b)
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where Ppj (Tj) :={vj ∈L2(Ω), vj ∈Ppj (K) ∀K∈Tj}. Note that V 1
0 ⊂V

p1
1 ⊂ . . .⊂V

pJ−1

J−1 ⊂V
p
J . Let Vj be the set

of vertices of the mesh Tj . We denote by ψj,a the standard hat function associated to the vertex a ∈ Vj ,
0 ≤ j ≤ J . This is the piecewise affine function with respect to the mesh Tj , that takes value 1 in the vertex
a and vanishes in all other vertices of Vj .

Figure 1: Illustration of degrees of freedom (pj = 2) for the space V a
j associated to the patch T a

j .

For the following, we need to define the notion of patches of elements, illustrated in Figure 1. Given
a vertex a ∈ Vj , j ∈ {1, . . . , J}, we denote the patch related to a by T a

j , the corresponding open patch
subdomain by ωa

j , and the associated local space V a
j . Let VK be the set of vertices of element K. Then

T a
j :={K ∈ Tj ,a ∈ VK}, (2.6)

V a
j :=Ppj (Tj) ∩H1

0 (ωa
j ), j ∈ {1, . . . , J}. (2.7)

As done in previous work of the authors [19], we could present a larger version of the patches and the main
results of this manuscript would still be valid. However, to make the presentation easier, we only consider
here the version with small patches.

3 Motivation: level-wise orthogonal decomposition of the error

Let us first motivate our multilevel construction. In the spirit of Papež et al. [21], consider for a given
uiJ ∈ V

p
J , the following (infeasible in practice but illustrative) hierarchical construction ρ̃iJ,alg ∈ V

p
J

ρ̃iJ,alg := ρi0 +

J∑
j=1

ρ̃ij , (3.1)

where ρi0 is given as a solution to a global lowest-order problem on the coarsest mesh

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V0, (3.2)

and for all j ∈ {1, . . . , J}, ρ̃ij ∈ V
p
J are the solutions of

(K∇ρ̃ij ,∇vj) = (f, vj)− (K∇uiJ ,∇vj)−
j−1∑
k=0

(K∇ρ̃ik,∇vj) ∀vj ∈ V pJ . (3.3)

This construction (see also [21]) returns the algebraic error, i.e. we actually have ρ̃iJ,alg = uJ − uiJ . This, in

turn, means that ρ̃iJ,alg satifies

(K∇ρ̃iJ,alg,∇vJ) = (f, vJ)− (K∇uiJ ,∇vJ) ∀vJ ∈ V pJ . (3.4)

Moreover, there holds (K∇ρ̃ij ,∇ρ̃ik) = 0, 0 ≤ k, j ≤ J ; j 6= k. These observations lead to the orthogonal
decomposition

‖K
1
2∇(uJ − uiJ)‖2 = ‖K

1
2∇ρ̃iJ,alg‖2 =

J∑
j=0

‖K
1
2∇ρ̃ij‖2. (3.5)
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4 Multilevel solver

Let us now introduce our local constructions inspired by (3.1)–(3.3) and produce level-wise approximations
of the error. The construction relies on the use of coarse solution of (3.2), which is cheap enough to be done
in practice, and on local contributions arising from all the finer mesh levels. These local contributions are
defined on patches of elements on each level. We go through the levels adding gradually level-wise updates
to the current approximation as described below. The final update gives us the new approximation.

Definition 4.1 (Multilevel solver). 1. Initialize u0
J ∈ V 1

0 as the zero function.

2. Let i ≥ 0 be the iteration counter and uiJ ∈ V
p
J the current approximation.

(a) Let ρi0 be defined by (3.2), λi0 = 1, and uiJ,0 := uiJ + λi0ρ
i
0.

(b) For j ∈ {1, . . . , J}:
define the local contributions ρij,a ∈ V a

j as solutions of patch problems, for all vertices a ∈ Vj

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ,j−1,∇vj,a)ωa

j
∀vj,a∈V a

j , (4.1)

and the level j descent direction ρij ∈ V
pj
j by

ρij :=
∑
a∈Vj

ρij,a. (4.2)

If ρij 6= 0, define the optimal step-size on level j

λij :=
(f, ρij)− (K∇uiJ,j−1,∇ρij)

‖K
1
2∇ρij‖2

, (4.3)

otherwise set λij := 0. The level update is given by

uiJ,j := uiJ,j−1 + λijρ
i
j , (4.4)

and the final update is ui+1
J := uiJ,J ∈ V

p
J . If ui+1

J = uiJ , then we stop the solver.

Note that by definition λi0 = 1 and we thus have for ρi0 6= 0,

(f, ρi0)− (K∇uiJ ,∇ρi0)

‖K
1
2∇ρi0‖2

(3.2)
= 1 = λi0.

Remark 4.2 (Compact writing of the iteration update). Let uiJ ∈ V
p
J , using the convention uiJ,−1 := uiJ ,

and 0
0 = 0, the new iterate after a step of the solver described in Definition 4.1 is

ui+1
J = uiJ +

J∑
j=0

λijρ
i
j = uiJ +

J∑
j=0

(f, ρij)− (K∇uiJ,j−1,∇ρij)

‖K
1
2∇ρij‖2

ρij . (4.5)

In the lemma below, we justify rigorously the use and choice of each level’s step size (4.3).

Lemma 4.3 (Level-wise optimal step-size). Let uiJ ∈ V
p
J be arbitrary, let j ∈ {1, . . . , J} and let uiJ,j−1, ρij

be given by the solver described in Definition 4.1. Consider the level’s update uiJ,j given by

uiJ,j = uiJ,j−1 + λρij , for λ ∈ R.

The choice of λ = [(f, ρij) − (K∇uiJ,j−1,∇ρij)]/‖K
1
2∇ρij‖2 leads to the best decrease of the algebraic error

with respect to the energy norm.

5



Proof. We write the algebraic error associated to the new update as a function of λ

‖K
1
2∇(uJ − uiJ,j)‖2 = ‖K

1
2∇(uJ − uiJ,j−1)‖2 − 2λ(K∇(uJ − uiJ,j−1),∇ρij) + λ2‖K

1
2∇ρij‖2.

We realize that this function has a minimum at

λmin =
(K∇(uJ − uiJ,j−1),∇ρij)

‖K
1
2∇ρij‖2

(2.3)
=

(f, ρij)− (K∇uiJ,j−1,∇ρij)

‖K
1
2∇ρij‖2

,

which gives us the expression (4.3).

Remark 4.4 (Construction of the new iterate). The construction of ui+1
J from uiJ by the solver of Def-

inition 4.1 can be seen as one iteration of a V-cycle multigrid, with no pre-smoothing and a single post-
smoothing step, with a variable step-size in the error correction. The smoother on each level corresponds to
additive Schwarz with patch subdomains where the local problems (4.1) are defined. In particular, for p = 1
(i.e. for all j ∈ {1, . . . , J}, pj = 1), this corresponds to one-step Jacobi (diagonal) smoother, whereas when
pj > 1, j ∈ {1, . . . , J}, the smoother is block-Jacobi.

The main motivation for choosing appropriate level-wise step-sizes is explained in the theorem below.

Theorem 4.5 (Error represenation of one solver step). For uiJ ∈ V
p
J , let ui+1

J ∈ V pJ be given by Definiton 4.1.
Then

‖K
1
2∇(uJ − ui+1

J )‖2 = ‖K
1
2∇(uJ − uiJ)‖2 −

J∑
j=0

(λij‖K
1
2∇ρij‖)2. (4.6)

Proof. We obtain the result by going through the levels from finest to coarsest, and using the relation of
each level’s update with its associated optimal step-size

‖K
1
2∇(uJ − ui+1

J )‖2 (4.4)
= ‖K

1
2∇(uJ − (uiJ,J−1 + λiJρ

i
J))‖2

(2.3)
(4.3)
= ‖K

1
2∇(uJ − uiJ,J−1)‖2 − (λiJ‖K

1
2∇ρiJ‖)2 = . . .

= ‖K
1
2∇(uJ − (uiJ + λi0ρ

i
0))‖2 −

J∑
j=1

(λij‖K
1
2∇ρij‖)2

(3.2)
= ‖K

1
2∇(uJ − uiJ)‖2 −

J∑
j=0

(λij‖K
1
2∇ρij‖)2.

5 A posteriori estimator on the the algebraic error

We present below how the solver introduced in Section 4 induces an a posteriori estimator ηialg.

Definition 5.1 (Algebraic error estimator). Let uiJ ∈ V
p
J be arbitrary, and let ui+1

J ∈ V pJ be the update at
the end of one step of the solver introduced in Definition 4.1. We define the algebraic error estimator

ηialg :=
( J∑
j=0

(λij‖K
1
2∇ρij‖)2

) 1
2

. (5.1)

Following Theorem 4.5, the estimator ηialg is immediately a guaranteed lower bound on the algebraic error.

Lemma 5.2 (Guaranteed lower bound on the algebraic error). There holds:

‖K
1
2∇(uJ − uiJ)‖ ≥ ηialg. (5.2)
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6 Main results

In this section, we present the main results concerning our multilevel solver of Definition 4.1 and our
a posteriori estimator ηialg of Definition 5.1. As in [19], these two results are equivalent. We first list below
the assumptions used in the main results.

6.1 Mesh assumptions

For j ∈ {1, . . . , J}, we denote in the following hK := diam(K) for K ∈ Tj and hj = maxK∈Tj hK . We shall
always assume that our meshes are shape-regular:

Assumption 6.1 (Shape regularity). There exists κT > 0 such that

max
K∈Tj

hK

ρK
≤ κT for all 0 ≤ j ≤ J, (6.1)

where ρK denotes the diameter of the largest ball inscribed in K.

Then we work in one of the three settings below. In the first setting: we work with a hierarchy of quasi-
uniform meshes with a bounded refinement factor between consecutive levels. This setting is described by
the following assumption:

Assumption 6.2 (Refinement strength and mesh quasi-uniformity). There exists 0 < Cref ≤ 1, a fixed
positive real number such that for any j ∈ {1, . . . , J}, for all K ∈ Tj−1, and for any K∗ ∈ Tj such that
K∗ ⊂ K, there holds

CrefhK ≤ hK∗ ≤ hK . (6.2)

There further exists Cqu, a fixed positive real number such that for any j ∈ {0, . . . , J} and for all K ∈ Tj,
there holds

Cquhj ≤ hK ≤ hj . (6.3)

Figure 2: Illustration of the set Bj ; the refinement Tj (dotted lines) of mesh Tj−1 (full lines).

In the second setting, we work with a hierarchy generated from a quasi-uniform coarse grid by a series
of bisections, e.g. newest vertex bisection cf. Sewell [27]. In this case, one refinement edge of Tj−1, for
j ∈ {1, . . . , J}, gives us a new finer mesh Tj . We denote by Bj ⊂ Vj the set consisting of the new vertex
obtained after the bisection together with its two neighbors on the refinement edge, illustrated in Figure
2, for d = 2. We also denote by hBj

the maximal diameter of elements having a vertex in the set Bj , for
j∈{1, . . . , J}. This setting is described by the following assumption:

Assumption 6.3 (Local quasi-uniformity of bisection-generated meshes). T0 is a conforming quasi-uniform
mesh with parameter C0

qu. The graded conforming mesh TJ is generated from T0 by a series of bisections.
There exists a fixed positive real number Cloc,qu such that for any j∈{1, . . . , J}, there holds

Cloc,quhBj
≤ hK≤ hBj

∀K∈Tj such that a vertex of K belongs to Bj . (6.4)

In the third setting, we assume we have a higher regularity of the solution by:

Assumption 6.4 (H2-regularity). In addition to Assumption 6.2, we moreover assume that the domain Ω
is convex and that K = Id, so that the solution of (2.1) has full-elliptic regularity u ∈ H2(Ω).
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6.2 Main theorems

For the solver it holds:

Theorem 6.5 (p-robust error contraction of the multilevel solver). Let uJ ∈ V pJ be the (unknown) solution
of (2.3) and let uiJ ∈ V

p
J be arbitrary, i ≥ 0. Take ui+1

J to be constructed from uiJ using one step of the
multilevel solver of Definition 4.1. Under Assumption 6.1 and either of Assumptions 6.2, 6.3, or 6.4 there
holds

‖K
1
2∇(uJ − ui+1

J )‖ ≤ α‖K
1
2∇(uJ − uiJ)‖, (6.5)

where 0 < α < 1 only depends on the space dimension d, the mesh shape regularity parameter κT , the
diffusion coefficient K, and the parameters associated to the employed Assumption 6.2, 6.3, or 6.4. If either
of Assumptions 6.2, or 6.3 holds, then α additionally depends at most linearly on the number of mesh
levels J .

In the above theorem, α represents an estimation of the algebraic error contraction factor at each step i.
In particular, this means that the solver of Definition 4.1 contracts the algebraic error at each iteration step
in a robust way both with respect to the number of mesh elements in TJ (to the mesh size h) and with
respect to the polynomial degree p.

For the estimator, in turn, we have:

Theorem 6.6 (p-robust reliable and efficient bound on the algebraic error). Let uJ ∈ V pJ be the (unknown)
solution of (2.3) and let uiJ ∈ V

p
J be arbitrary, i ≥ 0. Let ηialg be given by Definition 5.1. Let Assumption 6.1

and either of the Assumptions 6.2, 6.3, or 6.4 hold. Then, in addition to ‖∇(uJ − uiJ)‖ ≥ ηialg of (5.2),
there holds

ηialg ≥ β‖K
1
2∇(uJ − uiJ)‖, (6.6)

where 0 < β < 1 has the same dependencies as α in Theorem 6.5.

The theorem allows to write ηialg as a two-sided bound of the algebraic error (up to the generic constant
β for the upper bound), meaning that the estimator is robustly efficient with respect to the polynomial
degree p.

6.3 Additional results

Theorems 6.6 and 6.5 are actually equivalent, similarly as in [19].

Corollary 6.7 (Equivalence of the p-robust estimator efficiency and p-robust solver contraction). Let
the assumptions of Theorems 6.6 and 6.5 be satisfied. Then (6.6) holds if and only if (6.5) holds, and
β =
√

1− α2.

Proof. We give the proof for completeness Starting from (6.5) with 0 < α < 1,

‖K
1
2∇(uJ − ui+1

J )‖2 ≤ α2‖K
1
2∇(uJ − uiJ)‖2

(4.6)⇔ ‖K
1
2∇(uJ − uiJ)‖2 −

J∑
j=0

(λij‖K
1
2∇ρij‖)2 ≤ α2‖K

1
2∇(uJ − uiJ)‖2

(5.1)⇔ ‖K
1
2∇(uJ − uiJ)‖2 − (ηialg)2 ≤ α2‖K

1
2∇(uJ − uiJ)‖2

⇔ ‖K
1
2∇(uJ − uiJ)‖2(1− α2) ≤ (ηialg)2.

Finally, the following corollary formulates a three-part equivalence.

Corollary 6.8 (Equivalence error–estimator–localized contributions). If Assumption 6.4 holds, or if either
of Assumptions 6.2, or 6.3 holds together with λij ≤ R, 1 ≤ j ≤ J , where R ≥ 1 is a real parameter, then

∥∥∥K 1
2∇(uJ − uiJ)

∥∥∥2

≈
∥∥∥K 1

2∇ρi0
∥∥∥2

+

J∑
j=1

∑
a∈Vj

∥∥∥K 1
2∇ρij,a

∥∥∥2

≈
(
ηialg

)2

. (6.7)
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The constants involved in the equivalence have the same dependency as α in (6.5), and additionally depend
on R for Assumptions 6.2, or 6.3.

7 Adaptive number of smoothing steps

We consider here a simple and practical way to make the solver described in Definition 4.1 choose au-
tonomously and adaptively the number of smoothing steps on each mesh level. We remind that the non-
adaptive version can be seen as a V-cycle multigrid with no pre- and one post-smoothing step only. The
idea of the adaptive version is to make more post-smoothing steps if needed. While with the non-adaptive
version we constructed level-wise contributions that defined the a posteriori error estimator (proved above
to be equivalent to the error), with the adaptive version we aim to add more contributions from levels that
contribute more to the algebraic error. Thus, we rely on the computable level-wise contributions we have
already at our disposal and whenever it is a dominant factor (via a Dörfler [10] type condition) in the a
posteriori estimator, another smoothing step is employed.

Definition 7.1 (Adaptive multilevel solver). Let νmax be the maximum number of smoothing steps, and
0 < θ < 1.

1. Initialize u0
J ∈ V0 as the zero function.

2. Let i ≥ 0 be the iteration counter, and uiJ ∈ V
p
J the current approximation.

(a) Let ρi0 be defined by (3.2), let λi0 := 1 and uiJ,0 := uiJ + λi0ρ
i
0.

(b) For j ∈ {1, . . . , J}:
i. Construct from uiJ,j−1: ρij, λ

i
j, and uiJ,j by (4.2), (4.3), and (4.4), respectively.

Set ρij,1 := ρij, λ
i
j,1 := λij, u

i
J,j,1 := uiJ,j.

ii. ν = 2;

while
[
ν ≤ νmax&&(λij,ν−1‖K

1
2∇ρij,ν−1‖)2 ≥ θ2

( j−1∑
k=0

(λik‖K
1
2∇ρik‖)2+

ν−2∑̀
=1

(λij,`‖K
1
2∇ρij,`‖)2

)]
do

Construct from uiJ,j,ν−1: ρij, λ
i
j, and uiJ,j by (4.2), (4.3), and (4.4), respectively.

Set ρij,ν := ρij, λ
i
j,ν := λij, u

i
J,j,ν := uiJ,j.

ν := ν + 1;
endwhile

iii. Let ρij = ρij,ν ; λij = λij,ν ; uiJ,j = uiJ,j,ν when j < J , ui+1
J = uiJ,J,ν otherwise.

iv. If ui+1
J = uiJ , then stop the solver.

Remark 7.2 (Adaptive substep). Note that if we skip the adaptive substep 2(b)ii in Definition 7.1, we
obtain the non-adaptive version of the solver described in Definition 4.1.

8 Numerical experiments

We shall consider in this section various problems: a smooth solution “Sine”, a smooth solution with
a “Peak” behavior; a singular solution in “L-shape” domain; a “Checkerboard” solution whose diffusion
coefficient jump is of order 102; a “Skyscraper” solution whose diffusion coefficient jump is of order 105. In
this section, we use the following stopping criterion: the residual drops below 10−5 times the initial residual.
This criterion makes the robustness study easier, as we expect the number of iterations istop needed to
reach it, to be similar for different polynomial degrees (indicating p-robustness), different number of mesh
levels (indicating J-robustness), and different orders of the jump in the diffusion coefficient (indicating
K-robustness). The behavior of the multilevel solver given in Definition 4.1 is presented in Table 1.
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Sine Peak L-shape Checkerboard Skyscraper

111p 1ppp 111p 1ppp 111p 1ppp 111p 1ppp 111p 1ppp

J p DoF iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ iend ᾱ

3 1 2e4 19 0.53 19 0.53 19 0.51 19 0.51 21 0.57 21 0.57 18 0.51 18 0.51 19 0.53 19 0.53

3 1e5 29 0.64 13 0.34 28 0.62 14 0.35 29 0.68 11 0.35 28 0.67 11 0.36 31 0.69 13 0.43

6 6e5 30 0.64 13 0.34 30 0.63 14 0.34 26 0.67 9 0.33 25 0.65 10 0.34 28 0.68 11 0.41

9 1e6 31 0.65 14 0.35 30 0.63 14 0.34 23 0.65 9 0.33 23 0.64 9 0.33 26 0.67 10 0.40

4 1 6e4 21 0.54 21 0.54 20 0.52 20 0.52 21 0.57 21 0.57 19 0.53 19 0.53 19 0.53 19 0.53

3 6e5 29 0.64 13 0.32 29 0.63 14 0.32 28 0.68 11 0.35 27 0.66 11 0.36 30 0.69 11 0.41

6 2e6 31 0.65 13 0.33 30 0.63 14 0.33 25 0.66 9 0.32 24 0.64 9 0.33 27 0.67 10 0.40

9 5e6 32 0.65 14 0.33 31 0.63 15 0.33 23 0.64 9 0.32 23 0.63 9 0.33 25 0.66 9 0.38

Table 1: Illustration of the convergence of the solver.

9 Proof of Theorem 6.6

Our approach to proving Theorem 6.6 consists in studying level-wise the uncomputable exact residual lifting
ρ̃iJ,alg given by (3.1). We do so by relying on the polynomial degree robust stable decomposition result of
Schöberl et al. [26]. This will allow us to exploit the similiarities of the local contributions (4.1) (used to
build our a posteriori estimator ηialg of Definition 5.1) and the global ones (3.3) that constitute ρ̃iJ,alg.

We will first present the proof of p-robust efficiency of the estimator stated in Theorem 6.6 in the general
setting. Then we give the proof of p-robust and J-robust efficiency of the estimator under the additional
assumptions stated in the second part of Theorem 6.6.

Hereafter, we will use the notation x1 . x2 when there exists c, a positive real constant only depending
on the mesh shape regularity parameter κT and the space dimension d such that x1 ≤ cx2. Similarly,
x1 & x2 means x2 . x1 and x1 ≈ x2 means that x1 . x2 and x2 . x1 simultaneously. If these constants
additionally depend on the number of mesh levels J , we use the notations .J , &J , and ≈J , respectively.

9.1 General properties of the estimator ηialg

We first present some general properties of the estimator ηialg needed for the proof.

Lemma 9.1 (Estimation of ‖K
1
2∇ρij‖ by local contributions). Let ρij and ρij,a for j ∈ {1, . . . , J}, a ∈ Vj,

be constructed as in Definition 4.1. There holds

‖K
1
2∇ρij‖2 ≤ (d+ 1)

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
. (9.1)

Proof. Since ρij =
∑

a∈Vj ρ
i
j,a by construction (4.2), and the inequality |

∑d+1
k=1 ak|2 ≤ (d + 1)

∑d+1
k=1 |ak|2

lead to

‖K
1
2∇ρij‖2 =

∑
K∈Tj

‖K
1
2∇ρij‖2K =

∑
K∈Tj

∥∥∥∥ ∑
a∈VK

K
1
2∇ρij,a

∥∥∥∥2

K

≤ (d+ 1)
∑
K∈Tj

∑
a∈VK

‖K
1
2∇ρij,a‖2K = (d+ 1)

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
.

Lemma 9.2 (Estimation of local contributions by ‖K
1
2∇ρij‖). Let ρij, ρ

i
j,a, λij for j ∈ {1, . . . , J}, be

constructed as in Definition 4.1. There holds∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
≤ (d+ 1)(λij‖K

1
2∇ρij‖)2. (9.2)
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Proof. We start by using the expression of local problems (4.1) with ρij,a ∈ V a
j , j ∈ {1, . . . , J}, used as test

function∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
=
∑
a∈Vj

(
(f, ρij,a)ωa

j
− (K∇uiJ,j−1,∇ρij,a)ωa

j

)
(4.2)
= (f, ρij)− (K∇uiJ,j−1,∇ρij).

If ρij = 0, this means
∑

a∈Vj ‖K
1
2∇ρij,a‖2ωa

j
= 0 and thus (9.2) holds trivially. Otherwise, we have∑

a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
=
(

(f, ρij)− (K∇uiJ,j−1,∇ρij)
)

(4.3)
= λij‖K

1
2∇ρij‖2

(9.1)

≤ λij‖K
1
2∇ρij‖

(
(d+ 1)

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j

) 1
2

.

After simplifying the expression and squaring, we obtain the desired result (9.2).

9.2 General properties of the exact residual lifting ρ̃iJ,alg

Two other important properties of ρ̃ij will be useful for the proof. First, the relations of orthogonality of

a given mesh error contribution ρ̃ij , j ∈ {1, . . . , J}, with respect to previous mesh level functions. And

secondly, the local properties of ρ̃ij with respect to local functions of the same mesh. In particular, the local

properties will allow the transition from the uncomputable ρ̃ij to the available local contributions of ρij .

Lemma 9.3 (Inter-level properties of ρ̃ij). Consider the hierarchical construction of the error ρ̃iJ,alg given
in (3.1). For j∈{1, . . . ,J} and k∈{0, . . . ,j−1}, there holds

(K∇ρ̃ij ,∇vk) = 0 ∀vk ∈ Vk. (9.3)

Proof. Take vk ∈ Vk. Note that since k ≤ j − 1, we have vk ∈ Vj−1 ⊂ Vj . The definition given in (3.3)
applied to ρ̃ij and ρ̃ij−1, allows us to write

(K∇ρ̃ij ,∇vk) = (f, vk)− (K∇uiJ ,∇vk)−
j−2∑
l=0

(K∇ρ̃il,∇vk)− (K∇ρ̃ij−1,∇vk)

= (K∇ρ̃ij−1,∇vk)− (K∇ρ̃ij−1,∇vk) = 0.

Below, we present the relation between ρ̃ij and ρij locally on patches, more precisely when tested against
functions of the local spaces V a

j given by (2.7).

Lemma 9.4 (Local relation between ρ̃ij and ρij,a). Let j ∈ {1, . . . , J}. Let ρ̃ij, ρ
i
j be given by (3.3), (4.2),

respectively. For all a∈Vj−s and all vj,a∈V a
j , we have

(K∇ρ̃ij ,∇vj,a)ωa
j

= (K∇ρij,a,∇vj,a)ωa
j
−
j−1∑
k=1

(K∇(ρ̃ik − λikρik),∇vj,a)ωa
j
, (9.4)

where ρij,a ∈ V a
j is defined as the solution of a local problem by (4.1). We use the convention that the sum

in the relation above is zero when j = 1.

Proof. We take vj,a ∈ V a
j . This implies that vj,a is zero on the boundary of the patch domain ωa

j . Since
vj,a ∈ V pJ when j∈{1, . . . , J − 1} and vJ,a ∈ V pJ otherwise, we can use it as a test function in the definition
of ρ̃ij in (3.3) as well as in the definition of ρij,a in (4.1). We conclude by subtracting the two following
identities

(K∇ρ̃ij ,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
−
j−1∑
k=0

(K∇ρ̃ik,∇vj,a)ωa
j
,

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
−
j−1∑
k=0

λik(K∇ρik,∇vj,a)ωa
j
.
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9.3 Proof of Theorem 6.6 (p-robust estimator efficiency in low-regularity set-
ting)

We begin by presenting here a result given in [19], obtained by a combination of a one-level p-robust stable
decomposition proven in Schöberl et al. [26] and a multilevel stable decomposition for piecewise linear
functions given in Xu et al. [34].

Lemma 9.5 (p-robust multilevel stable decomposition). Let vJ ∈ V pJ . Under Assumption 6.1, and either
of the Assumptions 6.2 or Assumption 6.3, we have

vJ =

J∑
j=0

∑
a∈Vj

vj,a, vj,a ∈ V a
j (9.5)

J∑
j=0

∑
a∈Vj

‖K
1
2∇vj,a‖2ωa

j
≤ CS‖K

1
2∇vJ‖2, (9.6)

where CS ≥ 1 only depends on the space dimension d, and the mesh shape regularity parameter κT . If
Assumption 6.2 is satisfied, CS also depends on the maximum strength of refinement parameter Cref , and
Cqu. If Assumption 6.3 is satisfied, Cref also depends on the local quasi-uniformity parameter Cloc,qu and
quasi-uniformity parameter of the coarse mesh C0

qu.

The previous results and properties allow us to give a concise proof in the following.

Proof of Theorem 6.6 (p-robust estimator efficiency in the general setting). First, note that by (3.5), we

have ‖K
1
2∇(uJ − uiJ)‖ = ‖K

1
2∇ρ̃iJ,alg‖. Thus, we work with the exact algebraic residual lifting ρ̃iJ,alg. We

begin by first applying Lemma 9.5

ρ̃iJ,alg =

J∑
j=0

∑
a∈Vj

ej,a, ej,a ∈ V a
j (9.7)

J∑
j=0

∑
a∈Vj

‖K
1
2∇ej,a‖2ωa

j
≤ CS‖K

1
2∇ρ̃iJ,alg‖2, (9.8)

Taking into account the variations of the diffusion coefficient K, we have

J∑
j=0

∑
a∈Vj

‖K
1
2∇ej,a‖2ωa

j
≤ CS,K‖K

1
2∇ρ̃iJ,alg‖2. (9.9)

We use this decomposition to estimate

‖K
1
2∇ρ̃iJ,alg‖2

(9.7)
=
(
K∇ρ̃iJ,alg,

J∑
j=0

∑
a∈Vj

∇ej,a
)

(3.2)
=
(
K∇ρi0,

∑
a∈V0

∇e0,a

)
+

J∑
j=1

∑
a∈Vj

(
K∇ρ̃iJ,alg,∇ej,a

)
ωa

j

(3.4)
=
(
K∇ρi0,

∑
a∈V0

∇e0,a

)
+

J∑
j=1

∑
a∈Vj

((
f, ej,a

)
ωa

j

−
(
K∇uJ ,∇ej,a

)
ωa

j

)
(4.1)
(4.4)
=
(
K∇ρi0,

∑
a∈V0

∇e0,a

)
+

J∑
j=1

∑
a∈Vj

((
K∇ρij,a,∇ej,a

)
ωa

j

+

j−1∑
k=0

(
λikK∇ρik,∇ej,a

)
ωa

j

)

=
(
K∇ρi0,

∑
a∈V0

∇e0,a

)
+

J∑
j=1

∑
a∈Vj

(
K∇ρij,a,∇ej,a

)
ωa

j

+

J∑
j=1

j−1∑
k=0

(
λikK∇ρik,

∑
a∈Vj

∇ej,a
)
.
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We will now estimate each of the above three terms using Young’s inequality and patch overlap arguments
as done in the proof of Lemma 9.1. First, we have, using the fact that λi0 = 1(

K∇ρi0,
∑
a∈V0

∇e0,a

)
≤

(d+ 1)CS,K

2

(
λi0‖K

1
2∇ρi0‖

)2

+
1

2(d+ 1)CS,K
(d+ 1)

∑
a∈V0

‖K
1
2∇e0,a‖2ωa

0
.

For the second term, we similarly obtain

J∑
j=1

∑
a∈Vj

(
K∇ρij,a,∇ej,a

)
ωa

j

≤ CS,K

J∑
j=1

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
+

1

4CS,K

J∑
j=1

∑
a∈Vj

‖K
1
2∇ej,a‖2ωa

j

(9.1)

≤ CS,K(d+ 1)

J∑
j=1

(
λij‖K

1
2∇ρij‖

)2

+
1

4CS,K

J∑
j=1

∑
a∈Vj

‖K
1
2∇ej,a‖2ωa

j

Finally, for the third term we have

J∑
j=1

j−1∑
k=0

(
λikK∇ρik,

∑
a∈Vj

∇ej,a
)
≤ 2(d+ 1)CS,KJ

2

J∑
j=1

j−1∑
k=0

(
λik‖K

1
2∇ρik‖

)2

+

J∑
j=1

j−1∑
k=0

∥∥∥K 1
2
∑

a∈Vj
∇ej,a

∥∥∥2

2(2(d+ 1)CS,KJ)

≤ (d+ 1)CS,KJ
2

J∑
k=0

(
λik‖K

1
2∇ρik‖

)2

+
1

4CS,K

J∑
j=1

∑
a∈Vj

‖K
1
2∇ej,a‖2ωb

j,0

Summing these components together, we can now pursue our main estimate

‖K
1
2∇ρ̃iJ,alg‖2 ≤ 2(d+ 1)CS,KJ

2
J∑
j=0

(
λij‖K

1
2∇ρij‖

)2

+
1

2CS,K

J∑
j=0

∑
a∈Vj

‖K
1
2∇ej,a‖2ωb

j,0

(5.1)
(9.6)

≤ 2(d+ 1)CS,KJ
2
(
ηialg

)2

+
1

2
‖K

1
2∇ρ̃iJ,alg‖2

After subtracting on both sides 1
2‖K

1
2∇ρ̃iJ,alg‖2, we finally obtain the desired result.

‖K
1
2∇ρ̃iJ,alg‖2 ≤ 4(d+ 1)CS,KJ

2
(
ηialg

)2

(9.10)

Proof of Corollary 6.8. First note that by λij ≤ R, 1 ≤ j ≤ J , and an overlapping argument we have(
λij‖K

1
2∇ρij‖

)2

≤ R2‖K
1
2∇ρi

j‖2 ≤ R2(d + 1)
∑
a∈Vj

‖K
1
2∇ρi

j,a‖2ωa
j
. (9.11)

Now, from the main proof we can conclude

(
ηialg

)2 (5.2)

≤
∥∥∥K 1

2∇(uJ − uiJ)
∥∥∥2 (9.10)

≤ 4(d+ 1)CS,KJ
2
(
ηialg

)2 (5.1)
= 4(d+ 1)CS,KJ

2
J∑
j=0

(
λij‖K

1
2∇ρij‖

)2

(9.11)

≤ 4(d+ 1)2CS,KJ
2R2

J∑
j=0

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
.

(9.2)

≤ 4(d+ 1)3CS,KJ
2R2

(
ηialg

)2
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9.4 Proof of Theorem 6.6 (p- and J-robust estimator efficiency in H2-regularity
setting)

We now work in the setting of Assumption 6.4, we can prove that the result of Theorem 6.6 holds not only
p-robustly but also J-robustly.

Remark 9.6 (Relation of consecutive mesh sizes). Putting together Assumptions 6.4, we have

CquCrefhj−1 ≤ hj . (9.12)

In order to obtain J-robustness in addition to p-robustness of our main result, we proceed by exhibiting
another level-wise stable decomposition of the algebraic error components. Firstly, we define the piecewise
linear component of the stable decomposition via a H1-orthogonal projection. Then we use a duality type
argument to obtain the properties of the decomposition that will allow to estimate the algebraic error p-
and J-robustly by our a posteriori error estimator.

Definition 9.7 (H1-orthogonal lowest-order projection of error components). For any j ∈ {1, . . . , J}, ρ̃ij
given by (3.3), let cij ∈ V 1

j be the solution of

(∇cij ,∇vj) = (∇ρ̃ij ,∇vj), ∀vj ∈ V 1
j . (9.13)

Remark 9.8 (Orthogonality properties of cij). Note that due to Definition 9.7, for any j ∈ {1, . . . , J}, cij
satisfies the following orthogonality with piecewise linear functions of previous levels

(∇cij ,∇vk)
(9.13)

= (∇ρ̃ij ,∇vk)
(9.3)
= 0, ∀vk ∈ V 1

k , ∀k < j. (9.14)

Lemma 9.9 (H2-regularity result). Under Assumptions 6.4, 6.3, for any j ∈ {1, . . . , J}, ρ̃ij given by (3.3),

and cij given by Definition 9.7, there holds

‖ρ̃ij‖ . hj‖∇ρ̃ij‖, (9.15)

‖cij‖ . hj‖∇cij‖. (9.16)

Proof. To prove the first result, we proceed by a standard duality argument.
We consider the following problem: find ξj ∈ H1

0 (Ω) such that

(∇ξj ,∇v) = (ρ̃ij , v) ∀v ∈ H1
0 (Ω). (9.17)

Following Grisvard [14, Theorem 4.3.1.4], under Assumption 6.4 ξj ∈ H2(Ω) and

|ξj |H2(Ω) = ‖∆ξj‖ = ‖ρ̃ij‖. (9.18)

Consider I1
j−1(ξj) the P1-Lagrange interpolation of ξj on mesh level j−1. Since ξj ∈ H2(Ω), following, e.g.,

Ern and Guermond [12, Corollary 1.110], we obtain

‖∇(ξj − I1
j−1(ξj))‖ ≤ Capphj−1|ξj |H2(Ω). (9.19)

In particular: I1
j−1(ξj) ∈ Vj−1, so by the orthogonality relation (9.3)

(∇I1
j−1(ξj),∇ρ̃ij) = 0. (9.20)

We have now all the elements to conclude

‖ρ̃ij‖2
(9.17)

= (∇ξj ,∇ρ̃ij)
(9.20)

= (∇(ξj − I1
j−1(ξj)),∇ρ̃ij) ≤ ‖∇(ξj − I1

j−1(ξj))‖‖∇ρ̃ij‖
(9.19)

≤ Capphj−1|ξj |H2(Ω)‖∇ρ̃ij‖
(9.18)

= Capphj−1‖ρ̃ij‖‖∇ρ̃ij‖
(9.12)

≤
Capp

CquCref
hj‖ρ̃ij‖‖∇ρ̃ij‖

which gives us ‖ρ̃ij‖ . hj‖∇ρ̃ij‖.
To obtain (9.16), we use the same argument. It is enough to appropriately modify the right hand side

of the dual problem (9.17), and replace the orthogonality relation (9.20) by (9.14).
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We can now present the stable decomposition that will help us prove the efficiency of the a posteriori
error estimator.

Lemma 9.10 (Stable decomposition of the error level-wise components). For all j ∈ {1, . . . , J}, ρ̃ij given

by (3.3) and cij given by Definition 9.7, there exist ˜̃ρij,a ∈ V a
j , such that

ρ̃ij = cij +
∑
a∈Vj

˜̃ρij,a, (9.21)

‖∇cij‖2 +
∑
a∈Vj

‖∇ ˜̃ρij,a‖2ωa
j
≤ CSD‖∇ρ̃ij‖2. (9.22)

Proof. We now rely on the stable decomposition result of Schöberl et al. [26] for one-level setting. We will
first show that cij satisfies

‖∇cij‖2 + ‖∇(ρ̃ij − cij)‖2 +
∑
K∈Tj

h−2
K ‖(ρ̃

i
j − cij)‖2K . ‖∇ρ̃ij‖2. (9.23)

Then as following [26] this will give us

‖∇cij‖2 +
∑
a∈Vj

‖∇ ˜̃ρij,a‖2ωa
j
≤ CSD‖∇ρ̃ij‖2.

To show (9.23), we first use the Definition 9.7 of cij

‖∇cij‖2 = (∇cij ,∇cij)
(9.13)

= (∇cij ,∇ρ̃ij) ≤ ‖∇cij‖‖∇ρ̃ij‖.

This allows to estimate the first and second term (after using the triangle inequality) of(9.23). The third
term is then estimated by∑

K∈Tj

h−2
K ‖(ρ̃

i
j − cij)‖2K

Assumption 6.3

≤ C−2
qu h

−2
j

∑
K∈Tj

‖(ρ̃ij − cij)‖2K ≤ 2C−2
qu h

−2
j (‖ρ̃ij‖2 + ‖cij)‖2)

(9.15)
(9.16)

≤ 2
( Capp

CrefC2
qu

)2

(‖∇ρ̃ij‖2 + ‖∇cij)‖2) ≤ 4
( Capp

CrefC2
qu

)2

‖∇ρ̃ij‖2.

Remark 9.11 (Localized writing of level-wise components). Note that since ρ̃ij = cij +
∑

a∈Vj
˜̃ρij,a, we can

decompose the piecewise linear cij ∈ V 1
j using nodal basis functions. We can then write

ρ̃ij = cij +
∑
a∈Vj

˜̃ρij,a =
∑
a∈Vj

(cij,aψj,a + ˜̃ρij,a), (9.24)

where cij,a is the nodal value on vertex a ∈ Vj, and cij,aψj,a + ˜̃ρij,a ∈ V a
j .

Lemma 9.12 (L2-stability of nodal decomposition). For all j ∈ {1, . . . , J}, and any vj ∈ V 1
j decomposed

into basis hat functions vj =
∑

a∈Vj vj,aψj,a, we have

‖vj‖2 ≤ (d+ 1)
∑
a∈Vj

‖vj,aψj,a‖2ωa
j
, and

∑
a∈Vj

‖vj,aψj,a‖2ωa
j
≤ Cnd‖vj‖2, (9.25)

where Cnd only depends on space dimension d and the mesh shape regularity parameter κT .

Proof. For the first estimate, we apply the usual overlapping argument as done for (9.1). As for the second
estimate, consider a patch ωa

j and K element contained in the patch. Since vj ∈ V 1
j and by equivalence of

norms in finite dimension, we have

‖vj,aψj,a‖ωa
j
≈ ‖vj,aψj,a‖K ≤ ‖vj,aψj,a‖∞|K|

1
2 ≤

∥∥∥ ∑
a∈VK

vj,aψj,a

∥∥∥
∞
|K| 12 = ‖vj‖∞,K |K|

1
2 . ‖vj‖K .

The result is obtained by summing both sides over all vertices.
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Lemma 9.13 (Level-wise estimation of cij). Let j ∈ {1, . . . , J}, let cij =
∑

a∈Vj c
i
j,aψj,a be given by Defini-

tion 9.7. There holds ∑
a∈Vj

‖cij,a∇ψj,a‖2ωa
j
≤ Cstab‖∇cij‖2, (9.26)

where Cstab,K only depends on the space dimension d, the mesh shape regularity parameter κT , quasi-
uniformity parameter Cqu, and the strength refinement parameter Cref .

Proof. We start by using an inverse inequality, we denote by hωa
j

the diameter of patch ωa
j , then use the

quasi-uniformity Assumption 6.3

∑
a∈Vj

‖cij,a∇ψj,a‖2ωa
j
≤ Cinv

∑
a∈Vj

h−2
ωa

j
‖cij,aψj,a‖2ωa

j
≤ C−2

qu Cinvh
−2
j

∑
a∈Vj

‖cij,aψj,a‖2ωa
j

(9.25)

≤ C−2
qu CinvCndh

−2
j ‖c

i
j‖2

(9.16)

≤ Cstab‖∇cij‖2, Cstab :=
CinvCndC

2
app

C4
quC

2
ref

Lemma 9.14 (p-robust level-wise error estimation). Let j ∈ {1, . . . , J}, let ρ̃ij and ρij be defined by (3.3)
and (4.2), respectively. There holds

‖∇ρ̃ij‖2 .
∑
a∈Vj

‖∇ρij,a‖2ωa
j
. (9.27)

Proof. Let j ∈ {1, . . . , J}, we begin by using the splitting (9.21)

‖∇ρ̃ij‖2
(9.24)

=
∑
a∈Vj

(∇ρ̃ij ,∇(cij,aψj,a + ˜̃ρij,a))ωa
j

(9.4)
=

∑
a∈Vj

(
(∇ρij,a,∇(cij,aψj,a + ˜̃ρij,a))ωa

j
−
j−1∑
k=1

(∇(ρ̃ik − λikρik),∇(cij,aψj,a + ˜̃ρij,a))ωa
j

)
(9.24)

=
∑
a∈Vj

(∇ρij,a,∇(cij,aψj,a + ˜̃ρij,a))ωa
j
−
j−1∑
k=1

(∇(ρ̃ik − λikρik),∇ρ̃ij)

(9.3)
=

∑
a∈Vj

(
√

2CSDCstab(d+ 1)∇ρij,a,
1√

2CSDCstab(d+ 1)
∇(cij,aψj,a + ˜̃ρij,a))ωa

j
− 0

≤ CSDCstab(d+ 1)
∑
a∈Vj

‖∇ρij,a‖2ωa
j

+
1

4CSDCstab(d+ 1)

∑
a∈Vj

∥∥∥∇(cij,aψj,a + ˜̃ρij,a)
∥∥∥2

ωa
j

≤ CSDCstab(d+ 1)
∑
a∈Vj

‖∇ρij,a‖2ωa
j

+
1

2CSDCstab

∑
a∈Vj

(‖cij,a∇ψj,a‖2ωa
j

+ ‖∇ ˜̃ρij,a‖2ωa
j
)

(9.26)

≤ CSDCstab(d+ 1)
∑
a∈Vj

‖∇ρij,a‖2ωa
j

+
1

2CSDCstab

(
Cstab‖∇cij‖2 +

∑
a∈Vj

‖∇ ˜̃ρij,a‖2ωa
j

)
(9.22)

≤ CSDCstab(d+ 1)
∑
a∈Vj

‖∇ρij,a‖2ωa
j

+
1

2
‖∇ρ̃ij‖2,

which finally leads to the result

‖∇ρ̃ij‖2 ≤ 2CSDCstab(d+ 1)
∑
a∈Vj

‖∇ρij,a‖2ωa
j

(9.28)

We can now give a concise proof of Theorem 6.6.
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Proof of Theorem 6.6 (p-robust estimator efficiency under additional assumptions). To estimate the alge-
braic error we use the level-wise decomposition (3.5). Each level’s contribution was estimated in Lemma 9.14.
We achieve the result by summing these estimates on different levels.

‖∇(uJ − uiJ)‖2 (3.5)
= ‖∇ρi0‖2+

J∑
j=1

‖∇ρ̃ij‖2
(9.28)

≤ ‖∇ρi0‖2+ 2Cstab(d+ 1)

J∑
j=1

∑
a∈Vj

‖∇ρij,a‖2

(9.2)

≤ 2Cstab(d+ 1)2
(

(λi0‖∇ρi0‖)2 +

J∑
j=1

(λij‖∇ρij‖)2
)

= 2Cstab(d+ 1)2(ηialg)2 (9.29)

Thus we showed ηialg ≥ β‖∇(uJ − uiJ)‖, for β :=
1

(d+ 1)
√

2Cstab

> 0, depending only on the space

dimension d, the mesh shape regularity parameter κT , quasi-uniformity parameter Cqu, and the strength
refinement parameter Cref .

Proof of Corollary 6.8. As a consequence of the Proof of Theorem 6.6, we have

(ηialg)2
(5.2)

≤ ‖∇(uJ − uiJ)‖2
(9.29)

≤ 2CSDCstab(d+ 1)
(
‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj

‖∇ρij,a‖2
)

(9.2)

≤ 2CSDCstab(d+ 1)2(ηialg)2

10 Conclusions and future work

In this work we presented a multilevel algebraic solver, whose procedure naturally constructs an a posteriori
estimator of the algebraic error on each iteration. The solver can be seen as a geometric multigrid solver
relying on V-cycles with zero pre- and one post-smoothing, where the smoother is additive Schwarz associ-
ated to patches of elements (block Jacobi). A crucial difference compared to classic multigrid solvers is the
use of an optimal step-size in the error correction stage that takes on each level of the mesh hierarchy. This
significantly improves the behavior of the solver and conveniently enough, makes the analysis easier. We
also present a simple and efficient way for the solver to pick adaptively the number of post-smoothing steps
on each level. We show that the non-adaptive version of the solver (with only one post-smoothing step)
contracts the error in each iteration robustly with respect to the polynomial degree p of the underlying finite
element discretization. This result is moreover equivalent to showing the p-robust efficiency of the a poste-
riori error estimate. If we additionally assume H2-regularity of the solution, we can show that these results
are also robust with respect to the number of mesh levels J . In this case, the error estimator is equivalent
to a sum of highly-localized computable contributions. Future work will explore how to incorporate this
information in the solver in order to make it adaptive by only tackling problematic regions which contribute
most to the algebraic error. Numerical results indicate that even for singular test cases, the solver behaves
robustly with respect to the polynomial degree p, number of levels J and also the diffusion coefficient K.
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