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Abstract

We develop a multigrid solver steered by an a posteriori estimator of the algebraic error. We adopt
the context of a second-order elliptic diffusion problem discretized by conforming finite elements of
arbitrary polynomial degree p ≥ 1. Our solver employs zero pre- and one post-smoothing by the
overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes in the
smoothing correction on each level by line search. This leads to a simple Pythagorean formula of
the algebraic error in the next step in terms of the current error and levelwise and patchwise error
reductions. We show the following two results and their equivalence: the solver contracts the algebraic
error independently of the polynomial degree p; and the estimator represents a two-sided p-robust
bound on the algebraic error. The p-robustness results are obtained by carefully applying the results of
[Schöberl et al., IMA J. Numer. Anal., 28 (2008), pp. 1-24] for one mesh, combined with a multilevel
stable decomposition for piecewise affine polynomials of [Xu et al., Optimal multilevel methods for
H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, Nonlinear and
Adaptive Approximation, Springer, Berlin, 2009, pp. 599-659]. We consider quasi-uniform or graded
bisection simplicial meshes and prove at most linear dependence on the number of mesh levels for minimal
H1-regularity and complete independence for H2-regularity. We also present a simple and effective way
for the solver to adaptively choose the number of postsmoothing steps necessary at each individual level,
yielding a yet improved error reduction. Numerical tests confirm p-robustness and show the benefits of
the adaptive number of smoothing steps.

Key words: multigrid method, a posteriori error estimate, stable decomposition, p-robustness, optimal
step-sizes, error representation formula

1 Introduction

Multilevel (multigrid) methods have shown their versatility as solvers and/or preconditioners of large sparse
algebraic linear systems arising from numerical discretizations of partial differential equations. We refer
to pioneering works such as Brandt et al. [9], Bramble et al. [6], Bank et al. [4], Ruge and Stüben [27],
or Oswald [22], as well as to survey works that thoroughly treat subspace correction methods in Xu [34],
robust multigrid methods with respect to non-smooth coefficients in Chan and Wan [11], multigrid solvers
for high-order discretizations in Sundar et al. [31], and the references therein.

In this work, we develop a multilevel solver for algebraic linear systems arising from the discretization
using conforming finite elements of arbitrary polynomial degree p≥1. One iteration of our solver can be seen
as a V-cycle employing zero pre- and one post-smoothing step, where the level-wise smoother is overlapping
additive Schwarz (block-Jacobi) associated to the patches of elements sharing a common vertex. A crucial
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1



difference to the classical V-cycle is that on each level, we use an optimal step-size at the error correction
stage, yielding minimal algebraic error in the subsequent level.

The idea of an optimal step-size in the error correction is not new; in fact, a weighting of multigrid error
corrections concept appears as early as in Brandt [8]. Then, this approach is used, e.g., in Canuto and
Quarteroni [10], though not in a multigrid setting. The interest of an optimally-weighted error correction in
the context of multigrid has been also pointed out in Heinrichs [15], where this choice resulted in a better
numerical performance of the solver. Another version of multigrid solvers with a changing step-size error
correction can be found in the form of a scaled residual in Rüde [26]. A crucial immediate consequence of
our present optimal step-sizes choice is that the error contraction becomes explicitly known. This allows to
obtain the following Pythagorean formula representing the error decrease from step i to step i+ 1:

∥∥K 1
2∇(uJ − ui+1

J )
∥∥2

=
∥∥K 1

2∇(uJ − uiJ)
∥∥2 −

J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2. (1.1)

Here, K is the diffusion tensor, j ∈ {0, . . . , J} is the level counter, uJ is the (unknown) exact algebraic
solution, uiJ denotes the available iterate, ui+1

J is the next iterate, ρij are the computed level-wise smoothing

corrections, and λij are the level-wise optimal step-sizes.

A salient feature of formula (1.1) is that the computable level-wise terms
{∑J

j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2} 1

2 form

an a posteriori estimator ηialg, representing a guaranteed lower bound for the algebraic error
∥∥K 1

2∇(uJ −
uiJ)
∥∥. Thus our solver is actually driven by the information provided by the estimator, making the solver

an a-posteriori-steered multigrid.
Our main results can be summarized as follows. First, we prove that our multilevel solver contracts the

error in each iteration. Second, we show that the associated a posteriori estimator ηialg is efficient in that
it also represents an upper bound of the error (up to a constant). These two claims are actually equivalent.
Third, there holds

∥∥K 1
2∇(uJ − uiJ)

∥∥2≈
J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2

︸ ︷︷ ︸(
ηialg

)2
=
∥∥K 1

2∇ρi0
∥∥2

+

J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

, (1.2)

so that the developed a posteriori error estimator actually localizes the algebraic error with respect to mesh
levels and also with respect to patches of elements on each level. These results hold for quasi-uniform
meshes as well as possibly highly graded ones. Importantly, all the results hold p-robustly, i.e. are robust
with respect to the polynomial degree p.

Notable previous works in treating p-robustness include Quarteroni and Sacchi Landriani [25] for a
specific domain configuration and Pavarino [24] for quadrilateral/hexahedral meshes, where the author in-
troduced a p-robust additive Schwarz method. Later, Kanschat [16] and Lucero Lorca and Kanschat [18]
used multilevel preconditioners for rectangular/hexahedral meshes, and Antonietti and Pennesi [2] consid-
ered more general meshes. Therein, however, more smoothing steps are generally necessary, whereas, we
recall, we only rely on a single post-smoothing step. A p-robust stable decompostion on triangular/tetra-
hedral meshes was presented in Schöberl et al. [29]. It leads to a (one-mesh) p-robust preconditioner and
plays an important part in the analysis of our work.

Compared to our previous work [19], we can mention the following improvements: 1) In the solver
of [19], a global optimal step-size was used, whereas we use here the level-wise step-sizes. 2) We obtain
here the powerful error decrease formula (1.1). 3) The solver proposed in this work does not need any
damping, where tuning of the parameters can be cumbersome. 4) The current analysis gives at most linear
dependence on the number of mesh levels J under minimal H1-regularity. 5) The current analysis gives
complete independence of J in H2-regularity setting.

Formula (1.1) is also the foundation of a simple and efficient adaptive strategy for the choice of the number
of post-smoothing steps per level. The essence and particularity of our strategy relies on a-posteriori-steered
decision-making of the number of smoothing steps. Following (1.1), after one mandatory smoothing step at

each level, if the given decrease λij
∥∥K 1

2∇ρij
∥∥ is higher than a user-prescribed portion of the decrease made

by the previous levels, we decide to do another smoothing step before going to the next level. The idea
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of employing a variable number of smoothing steps per level has also been explored e.g. in Bramble and
Pasciak [5], where a generalized V-cycle uses more smoothing steps on coarser grids and fewer on finer ones.
This decision is however taken a priori. Closely related to the subject is also the work of Thekale et al. [32],
who suggest a variable number of multigrid cycles per level which optimizes the costs of the full multigrid
method by formulating a nonlinear integer programming problem of small enough size to be solved exactly.

This manuscript is organized as follows. In Section 2, we present the multilevel setting and notation we
will be working with, and Section 3 develops the motivation leading us to consider our particular multilevel
solver. The solver is then presented in Section 4, and the a posteriori error estimator is introduced in
Section 5. We collect in Section 6 the main results of the manuscript. In Section 7, we present the solver
with the adaptive choice of number of post-smoothing steps, Section 8 presents a simplified cost analysis,
and Section 9 collects the results of numerical experiments, which additionally show numerical robustness
of our solver with respect to the jumps of the diffusion tensor for uniform mesh refinements. The proof of
our main result are given in Section 10, and we present our concluding remarks in Section 11.

2 Setting

This section presents the model problem and the multilevel setting with which we will be working.

2.1 Model problem, finite element discretization, and algebraic system

We consider a second-order elliptic diffusion problem defined over Ω⊂Rd, d∈{1, 2, 3}, an open bounded
polytope with a Lipschitz-continuous boundary. Let f ∈ L2(Ω) be a source term and K ∈ [L∞(Ω)]d×d a
symmetric positive definite diffusion coefficient. The weak solution u ∈ H1

0 (Ω) is given by

(K∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (2.1)

where (·, ·) is the L2(Ω) or [L2(Ω)]d scalar product.
We discretize the continuous problem (2.1) by fixing TJ , a matching simplicial mesh of Ω, and an integer

p ≥ 1, in order to introduce the finite element space of continuous piecewise p-degree polynomials

V pJ := Pp(TJ) ∩H1
0 (Ω), (2.2)

where Pp(TJ) := {vJ ∈ L2(Ω), vJ |K ∈ Pp(K) ∀K ∈ TJ}. The discrete problem now consists in finding
uJ ∈ V pJ such that

(K∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ V pJ . (2.3)

If one introduces a basis of V pJ , then the discrete problem is equivalent to solving a system of linear
algebraic equations whose matrix is symmetric and positive definite. However, such a linear system depends
on the choice of the basis functions. To avoid this dependence, we work instead with a functional description
of the problem. In particular, we define the algebraic residual functional on V pJ , for any uiJ ∈V

p
J , by

vJ 7→ (f, vJ)− (K∇uiJ ,∇vJ) ∈ R, vJ ∈ V pJ . (2.4)

2.2 A hierarchy of meshes and spaces

We work with a hierarchy of matching simplicial meshes {Tj}0≤j≤J , J ≥ 1, where TJ has been introduced
above, and where Tj is a refinement of Tj−1, 1 ≤ j ≤ J . We also introduce a hierarchy of finite element
spaces associated to the mesh hierarchy. For this purpose, for j ∈ {0, . . . , J}, fix pj , the polynomial degree
associated to mesh level j such that 1 = p0 ≤ p1 ≤ . . . ≤ pJ−1 ≤ pJ = p. In particular, let

for j = 0 : V 1
0 := P1(T0) ∩H1

0 (Ω) (lowest-order space), (2.5a)

for 1 ≤ j ≤ J : V
pj
j := Ppj (Tj) ∩H1

0 (Ω) (pj-th order spaces), (2.5b)

where Ppj (Tj) := {vj ∈ L2(Ω), vj |K ∈ Ppj (K) ∀K ∈ Tj}. Note that V 1
0 ⊂ V

p1
1 ⊂ . . . ⊂V pJ−1

J−1 ⊂V
pJ
J =V pJ .

Let Vj , 0≤ j≤ J , be the set of vertices of the mesh Tj . For the following, we need to define the notion of
patches of elements, illustrated in Figure 1. Given a vertex a∈Vj , we denote by T a

j all the mesh elements
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Figure 1: Illustration of degrees of freedom (pj = 2) for the space V a
j associated to the patch T a

j .

of Tj that share the vertex a, T a
j :={K ∈ Tj ,a ∈ VK}, where VK is the set of vertices of an element K. The

corresponding open patch subdomain is denoted by ωa
j . We also denote by ψj,a the standard hat function

associated to the vertex a∈Vj , i.e., the piecewise affine function with respect to Tj taking value 1 at vertex
a and vanishing in all other vertices of Vj . Note that ωa

j is the support of ψj,a. Finally, the local spaces V a
j

are defined by

V a
j :=Ppj (Tj) ∩H1

0 (ωa
j ), (2.6)

cf. Figure 1 for the illustration of degrees of freedom when pj = 2.

3 Motivation: level-wise orthogonal decomposition of the error

It is known that a multilevel construction is required to capture correctly the behavior of the algebraic error,
cf., e.g., Rüde [26], or the counterexample of Papež et al. [23, Section 2.1]. Consider, for a given uiJ ∈ V

p
J ,

the following (costly for practice but illustrative) hierarchical construction ρ̃iJ,alg∈V
p
J

ρ̃iJ,alg := ρi0 +

J∑
j=1

ρ̃ij ; (3.1)

here, ρi0 = ρ̃i0∈V 1
0 is the solution to a global lowest-order residual problem on the coarsest mesh

(K∇ρi0,∇v0) = (f, v0)− (K∇uiJ ,∇v0) ∀v0 ∈ V 1
0 , (3.2)

and, moreover, for j = 1 : J , ρ̃ij ∈ V
pj
j are the solutions of

(K∇ρ̃ij ,∇vj) = (f, vj)− (K∇uiJ ,∇vj)−
j−1∑
k=0

(K∇ρ̃ik,∇vj) ∀vj ∈ V
pj
j . (3.3)

This construction returns the algebraic error, i.e., ρ̃iJ,alg = uJ − uiJ , or, equivalently,

uJ = uiJ +
J∑
j=0

ρ̃ij . (3.4)

This, in turn, means that ρ̃iJ,alg satisfies

(K∇ρ̃iJ,alg,∇vJ) = (f, vJ)− (K∇uiJ ,∇vJ) ∀vJ ∈ V pJ . (3.5)

Moreover, there holds (K∇ρ̃ij ,∇ρ̃ik) = 0, for 0 ≤ k, j ≤ J, j 6= k. These observations altogether lead to the

orthogonal decomposition of the error between uiJ and uJ as

∥∥K 1
2∇(uJ − uiJ)

∥∥2
=
∥∥K 1

2∇ρ̃iJ,alg

∥∥2
=

J∑
j=0

∥∥K 1
2∇ρ̃ij

∥∥2
. (3.6)
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4 Multilevel solver

We introduce now our local constructions inspired by (3.1)–(3.3), producing level-wise approximations of
the algebraic error components ρ̃ij of (3.3). The construction relies on the inexpensive coarse residual
solve (3.2) and on local contributions, defined on patches of elements on each level; see Figure 1. We go
through the levels adding gradually level-wise updates uiJ,j to the current approximation uiJ as described

below. Hereafter, (·, ·)ωa
j

stands for the L2(ωa
j ) or [L2(ωa

j )]d scalar product.

Definition 4.1 (Multilevel solver). 1. Initialize u0
J ∈ V

p
J as the zero function and set i := 0.

2. Perform the following steps (a)–(d):

(a) Define ρi0 by (3.2), impose λi0 := 1, and set

uiJ,0 := uiJ + λi0ρ
i
0.

(b) For j = 1 : J , define the local contributions ρij,a ∈ V a
j as solutions of patch problems, for all

vertices a ∈ Vj,

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ,j−1,∇vj,a)ωa

j
∀vj,a∈V a

j , (4.1)

and the descent direction ρij ∈ V
pj
j on the level j by

ρij :=
∑
a∈Vj

ρij,a. (4.2)

If ρij 6= 0, define the optimal step-size on level j

λij :=
(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1

2∇ρij
∥∥2 , (4.3)

otherwise, set λij := 1. Define the level update by

uiJ,j := uiJ,j−1 + λijρ
i
j . (4.4)

(c) Set the final update as ui+1
J :=uiJ,J ∈V

p
J.

(d) If ui+1
J =uiJ , then stop the solver. Otherwise, increase i := i+ 1 and go to step 2(a).

Note that by definition λi0 = 1, and we thus have for ρi0 6= 0,

(f, ρi0)− (K∇uiJ ,∇ρi0)∥∥K 1
2∇ρi0

∥∥2

(3.2)
= 1 = λi0.

Remark 4.2 (Compact writing of the iteration update). Let uiJ ∈ V pJ . It is easily noted that the level
update (4.4) equivalently writes as

uiJ,j = uiJ +

j∑
k=0

λikρ
i
k. (4.5)

Thus, using the conventions uiJ,−1 := uiJ and 0
0 = 0, the new iterate after one step of the solver described in

Definition 4.1 is, compared to (3.4),

ui+1
J = uiJ +

J∑
j=0

λijρ
i
j = uiJ +

J∑
j=0

(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1
2∇ρij

∥∥2 ρij . (4.6)
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The lemma below justifies rigorously the choice and use of the step-sizes (4.3).

Lemma 4.3 (Level-wise optimal step-sizes). Let uiJ,j−1 ∈ V
p
J be arbitrary, let j ∈ {1, . . . , J}, and ρij and

λij be given by (4.2) and (4.3), respectively. Then

λij = arg min
λ∈R

∥∥K 1
2∇
(
uJ − (uiJ,j−1 + λρij)

)∥∥.
Proof. We write the algebraic error of uiJ,j−1 + λρij as a function of λ∥∥K 1

2∇
(
uJ − (uiJ,j−1 + λρij)

)∥∥2
=
∥∥K 1

2∇(uJ − uiJ,j−1)
∥∥2

(4.7)

− 2λ
(
K∇(uJ − uiJ,j−1),∇ρij

)
+ λ2

∥∥K 1
2∇ρij

∥∥2
.

We realize that this function has a minimum, as given by (4.3), at

λij =
(K∇(uJ − uiJ,j−1),∇ρij)∥∥K 1

2∇ρij
∥∥2

(2.3)
=

(f, ρij)− (K∇uiJ,j−1,∇ρij)∥∥K 1
2∇ρij

∥∥2 .

Remark 4.4 (Construction of the new iterate). The construction of ui+1
J from uiJ by the solver of Defini-

tion 4.1 can be seen as one iteration of a V-cycle multigrid, with no pre- and one post-smoothing step, with
an optimal step-size at the error correction stage. The smoother on each level is additive Schwarz associated
to patch subdomains where the local problems (4.1) are defined. Note that when pj = 1, j ∈{1, . . . , J}, the
smoother is the diagonal Jacobi smoother, whereas when pj > 1, the smoother is block-Jacobi. As detailed
in [19, Section 6.2], employing a weighted restricted additive Schwarz smoothing (wRAS) can offer a further
speed-up of the solver, briefly addressed in Section 9.4 below.

Remark 4.5 (Connection of local contributions with level-wise updates). Note that for ρij given by (4.1)–
(4.2), j ∈ {1, . . . , J}, we have

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

(4.1)
(4.2)
= (f, ρij)−

(
K∇uiJ,j−1,∇ρij

) (4.3)
= λij

∥∥K 1
2∇ρij

∥∥2
. (4.8)

Remark 4.6 (Extension of the solver to hp-refinement hierarchy). The multilevel approach we take in this
work can be easily extended to a setting where the mesh and space hierarchies are obtained by hp-refinement,
since all we require in our multilevel construction of Definition 4.1 is nestedness of the meshes and finite
element spaces. To obtain the theoretical results, one would need to adapt the stable decomposition results
of Schöberl et al. [29] from a global fixed polynomial order to a variable one.

The optimal step-sizes also lead to the following important result, which can be compared to the orthog-
onal error decomposition (3.6).

Theorem 4.7 (Error representation of one solver step). ForuiJ ∈V
p
J, let ui+1

J ∈V pJ be given by Definiton 4.1.
Then ∥∥K 1

2∇(uJ − ui+1
J )

∥∥2
=
∥∥K 1

2∇(uJ − uiJ)
∥∥2 −

J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2 (4.9a)

=
∥∥K 1

2∇(uJ − uiJ)
∥∥2 −

∥∥K 1
2∇ρi0

∥∥2 −
J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

. (4.9b)

Proof. The second line (4.9b) follows immediately upon multiplying (4.8) by λij on both sides and summing
over the mesh levels. We obtain the first line (4.9a) by going through the levels from finest to coarsest and

6



using the relation of each level’s update with its associated optimal step-size, similarly to (4.7):∥∥K 1
2∇(uJ − ui+1

J )
∥∥2 (4.4)

=
∥∥K 1

2∇(uJ − (uiJ,J−1 + λiJρ
i
J))
∥∥2

(2.3)
(4.3)
=
∥∥K 1

2∇(uJ − uiJ,J−1)
∥∥2 −

(
λiJ
∥∥K 1

2∇ρiJ
∥∥)2 = . . .

=
∥∥K 1

2∇
(
uJ − (uiJ + λi0ρ

i
0

))
‖2 −

J∑
j=1

(
λij
∥∥K 1

2∇ρij
∥∥)2

(3.2)
=
∥∥K 1

2∇(uJ − uiJ)
∥∥2 −

J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2.

5 A posteriori estimator on the algebraic error

We now present how the solver introduced in Section 4 induces an a posteriori estimator ηialg.

Definition 5.1 (Algebraic error estimator). Let uiJ ∈ V
p
J be arbitrary and let ui+1

J ∈ V pJ be the update at
the end of one step of the solver introduced in Definition 4.1. We define the algebraic error estimator

ηialg :=

(
J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2) 1

2

. (5.1)

Following Theorem 4.7, the estimator ηialg is immediately a guaranteed lower bound on the algebraic
error.

Lemma 5.2 (Guaranteed lower bound on the algebraic error). There holds∥∥K 1
2∇(uJ − uiJ)

∥∥ ≥ ηialg. (5.2)

6 Main results

In this section, we present the main results concerning our multilevel solver of Definition 4.1 and our
a posteriori estimator ηialg of Definition 5.1. As in [19], these two results are equivalent. We first collect our
assumptions.

6.1 Setting, mesh, and regularity assumptions

For any mesh level j ∈ {1, . . . , J}, we denote by hK := diam(K) the diameter of the element K ∈ Tj and
by hj = maxK∈Tj hK the mesh size on level j. We shall always assume that our meshes are shape-regular:

Assumption 6.1 (Mesh shape regularity). There exists κT > 0 such that

max
K∈Tj

hK

ρK
≤ κT for all 0 ≤ j ≤ J, (6.1)

where ρK denotes the diameter of the largest ball contained in K.

Below, we work in one of the three following settings. In the first setting, the hierarchy consists of
quasi-uniform meshes with a bounded refinement factor between consecutive levels.

Assumption 6.2 (Refinement strength and mesh quasi-uniformity). There exists a fixed positive real num-
ber 0 < Cref ≤ 1 such that for all j ∈ {1, . . . , J}, for all K ∈ Tj−1, and for any K∗ ∈ Tj such that K∗ ⊂ K,
there holds

CrefhK ≤ hK∗ ≤ hK . (6.2)
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There further exists a fixed positive real number 0 < Cqu ≤ 1 such that for all j∈{0, . . . , J} and for all
K ∈ Tj, there holds

Cquhj ≤ hK ≤ hj . (6.3)

Figure 2: Illustration of the set Bj ; the refinement Tj (dotted lines) of the mesh Tj−1 (full lines).

In the second setting, we work with a hierarchy generated from a quasi-uniform coarse mesh by a series
of bisections, e.g. newest vertex bisection, cf. Sewell [30] and Mitchell [21]. In this case, one refinement edge
of Tj−1, for j ∈ {1, . . . , J}, gives us a new finer mesh Tj . We denote by Bj ⊂ Vj the set consisting of the
new vertex obtained after the bisection together with its two neighbors on the refinement edge; see Figure
2 for d = 2. We also denote by hBj

the maximal diameter of elements having a vertex in the set Bj , for
j∈{1, . . . , J}. Here we assume:

Assumption 6.3 (Local refinement strength and the coarsest mesh quasi-uniformity of bisection-generated
meshes). The coarsest mesh T0 is a conforming quasi-uniform mesh in the sense of (6.3), with parameter
0 < C0

qu ≤ 1. The (possibly highly graded) conforming mesh TJ is generated from T0 by a series of bisections.
There exists a fixed positive real number 0 < Cloc,qu ≤ 1 such that for all j∈{1, . . . , J}, there holds

Cloc,quhBj
≤ hK≤ hBj

∀K∈Tj such that a vertex of K belongs to Bj . (6.4)

In the third setting, we assume the following.

Assumption 6.4 (Refinement strength, mesh quasi-uniformity, and H2-regularity). Let Assumption 6.2
hold. Moreover, let for each g ∈ L2(Ω), wg ∈ H1

0 (Ω) such that

(∇wg,∇v) = (g, v) ∀v ∈ H1
0 (Ω),

belong to H2(Ω).

6.2 Main results

We now present our main results, the proofs of which are given in Section 10. For the solver, the following
holds.

Theorem 6.5 (p-robust error contraction of the multilevel solver). Let uJ ∈ V pJ be the (unknown) finite
element solution of (2.3) and let uiJ ∈ V

p
J be arbitrary, i ≥ 0. Take ui+1

J to be constructed from uiJ using
one step of the multilevel solver of Definition 4.1. Under Assumption 6.1 and either Assumption 6.2, 6.3,
or 6.4, there holds ∥∥K 1

2∇(uJ − ui+1
J )

∥∥ ≤ α∥∥K 1
2∇(uJ − uiJ)

∥∥. (6.5)

Here 0 < α < 1 depends on the space dimension d, the mesh shape regularity parameter κT , the ratio of the
largest and the smallest eigenvalue of the diffusion coefficient K, and additionally on: (i) the parameters Cref

and Cqu and at most linearly on the number of mesh levels J under Assumption 6.2; (ii) the parameters C0
qu

and Cloc,qu and at most linearly on the number of mesh levels J under Assumption 6.3; (iii) the parameters
Cref and Cqu under Assumption 6.4. In particular, α is independent of the polynomial degree p.

In (6.5), α represents an upper bound on the algebraic error contraction factor at each step i. In
particular, this means that the solver of Definition 4.1 contracts the algebraic error at each iteration step
robustly with respect to the polynomial degree p. Moreover, under the Assumption 6.4, the contraction is
also robust with respect to the number of mesh levels J .

For the estimator, in turn, we have the following theorem.
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Theorem 6.6 (p-robust reliable and efficient bound on the algebraic error). Let uJ ∈ V pJ be the (unknown)
finite element solution of (2.3) and let uiJ ∈ V

p
J be arbitrary, i ≥ 0. Let ηialg be given by Definition 5.1. Let

Assumption 6.1 and either Assumption 6.2, 6.3, or 6.4 hold. Then, in addition to
∥∥K 1

2∇(uJ − uiJ)
∥∥ ≥ ηialg

of (5.2), there holds

ηialg ≥ β
∥∥K 1

2∇(uJ − uiJ)
∥∥, (6.6)

where 0 < β < 1 is given by β =
√

1− α2 with α from (6.5).

Theorem 6.6 allows one to write ηialg as a two-sided bound of the algebraic error (up to the constant
β for the upper bound), meaning that the estimator is reliable and efficient, robustly with respect to the
polynomial degree p.

6.3 Additional results

Theorems 6.5 and 6.6 are actually equivalent, similarly to [19, Corollary 5.4] (we thus only prove Theorem 6.6
in Section 10).

Corollary 6.7 (Equivalence of the p-robust solver contraction and p-robust estimator efficiency). Let
the assumptions of Theorems 6.5 and 6.6 be satisfied. Then (6.5) holds if and only if (6.6) holds, and

α =
√

1− β2.

Proof. We give the proof for completeness. Starting from (6.5), with 0 < α < 1,∥∥K 1
2∇(uJ − ui+1

J )
∥∥2 ≤ α2

∥∥K 1
2∇(uJ − uiJ)

∥∥2

(4.9a)⇔
∥∥K 1

2∇(uJ − uiJ)
∥∥2 −

J∑
j=0

(λij
∥∥K 1

2∇ρij
∥∥)2 ≤ α2

∥∥K 1
2∇(uJ − uiJ)

∥∥2

(5.1)⇔
∥∥K 1

2∇(uJ − uiJ)
∥∥2

(1− α2) ≤
(
ηialg

)2
.

Finally, the following corollary formulates a three-part equivalence (recall that the step-sizes are given
by (4.3) and the local (patch-wise) contributions by (4.1)).

Corollary 6.8 (Equivalence error–estimator–localized contributions). Let Assumption 6.1 hold, as well as
either Assumption 6.2, 6.3, or 6.4. Then

∥∥K 1
2∇(uJ − uiJ)

∥∥2 ≈
(
ηialg

)2
=
∥∥K 1

2∇ρi0
∥∥2

+

J∑
j=1

λij
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

, (6.7)

where the constant hidden in the equivalence is β from (6.6).

Proof. Under Assumptions 6.2, 6.3, or 6.4, Theorem 6.6 together with (5.2) gives
∥∥K 1

2∇(uJ − uiJ)
∥∥ ≈ ηialg.

The equality in (6.7) is easily obtained as in Theorem 4.7 upon multiplying (4.8) by λij on both sides and
summing over the mesh levels.

Remark 6.9. (Localized a posteriori estimator of the algebraic error) The localization (6.7) is over vertex
patches as in the a posteriori error estimators of the discretization error in the finite element method, see
e.g.; Babuška and Rheinboldt [3] or Verfürth [33]. Therein, the construction also relies on solving local
Dirichlet problems.
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7 Adaptive number of smoothing steps

We consider here a simple and practical way to make the solver described in Definition 4.1 choose au-
tonomously and adaptively the number of smoothing steps on each mesh level. The idea of the adaptive
version is to make more post-smoothing steps if needed on levels that contribute most to the algebraic error.
This is decided relying on the a posteriori error estimate on the algebraic error we have at our disposal,
relying on a Dörfler-type condition; cf. [12].

Definition 7.1 (Adaptive multilevel solver). Let νmax ≥ 1 be a user-specified maximal number of smoothing
steps and let 0 < θ < 1 be a bulk-chasing parameter.

1. Initialize u0
J ∈ V

p
J as the zero function and set i := 0.

2. Perform the following steps (a)–(d):

(a) Let ρi0 be constructed by (3.2). Set ρi0,1 := ρi0, λi0,1 := 1, νi0 := 1, and uiJ,0 := uiJ + λi0,1ρ
i
0,1.

(b) For j = 1 : J :

i. Set ν := 1.

ii. From uiJ,j−1, construct ρij and λij by (4.1)–(4.3).

Set ρij,ν := ρij, λ
i
j,ν := λij, u

i
J,j,ν := uiJ,j−1 + λij,νρ

i
j,ν , and

while
[
ν < νmax and(
λij,ν

∥∥K 1
2∇ρij,ν

∥∥)2≥ θ2
( j−1∑
k=0

νi
k∑̀

=1

(
λik,`

∥∥K 1
2∇ρik,`

∥∥)2+
ν−1∑̀
=1

(
λij,`
∥∥K 1

2∇ρij,`
∥∥)2)]

do Set ν := ν + 1.
From uiJ,j,ν−1, construct ρ̄ij and λ̄ij by (4.1)–(4.3).

Set ρij,ν := ρ̄ij, λ
i
j,ν := λ̄ij, u

i
J,j,ν := uiJ,j,ν−1 + λij,νρ

i
j,ν .

endwhile

iii. Set νij=ν and uiJ,j := uiJ,j,ν .

(c) Define the final update on step i as ui+1
J := uiJ,J ∈ V

p
J .

(d) If ui+1
J = uiJ , then stop the solver. Otherwise, increase i := i+ 1 and go to step 2(a).

Remark 7.2 (Adaptive substep). Note that if we skip the adaptive substep in 2(b) in Definition 7.1 by
setting νmax = 1, we obtain the non-adaptive version of the solver of Definition 4.1.

Remark 7.3 (Optimal step-sizes and adaptive number of smoothing steps as a general approach). The
main ideas of optimal step-size per level and adaptive number of smoothing steps we use in Definition 7.1
can be used in other geometric multigrid solvers. Implementation-wise, these ideas are easy to add to existing
codes and alleviate the task of choosing the number of smoothing steps arbitrarily.

Remark 7.4 (Adaptivity criterion). The bulk-chasing (Dörfler’s) marking criterion is not crucial above,
other criteria like the maximal one can be considered as well. We note that we do not analyze here the
influence of the additional adaptive smoothing steps on the convergence speed.

8 Complexity of the solver

We wish to give some insights into the complexity of the proposed solver here. In particular, estimating the
number of floating point operations after is iterations can be done by the formula

nflops :=
|V0|3

3
+

J∑
j=1

∑
a∈Vj

ndof(V a
j )3

3
+

is∑
i=1

[
2|V0|2 +

J∑
j=1

νij
∑
a∈Vj

2ndof(V a
j )2

]

+

is∑
i=1

J∑
j=1

[
2 nnz(Ijj−1) + 2 nnz(Ij−1

j ) + 2νij nnz(Aj) + 3νij(2 size(Aj))

]
. (8.1)
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This formula is derived assuming 1) an initial Cholesky decomposition of the local matrices associated to
each patch on each level except for the coarsest one, where the global stiffness matrix for piecewise affine
functions is factorized (for a matrix of size n, this cost is estimated as 1/3n3); 2) local solves by forward
and backward substitutions (cost 2n2); 3) intergrid operators Ijj−1 : V

pj−1

j−1 → V
pj
j with the cost estimated

by twice the number of nonzeros of the associated interpolation matrix; and 4) evaluation of the optimal
step-sizes λj as in formula (4.3) with a cost equal to twice the number of nonzeros of the stiffness matrix Aj
on the given level and three inner products. Recall that νij is the number of smoothing steps on level j at
iteration i.

We would like to point out that the above estimation (8.1) is a worst-case scenario. In fact, in the case of a
structured initial mesh T0 containing an arbitrary number of simplices, or T0 only containing a few simplices
and uniform or newest vertex bisection graded refinemement, most patches have the same geometry. Then
the second (cubic, potentially dominant) term in (8.1) almost vanishes. Moreover, the developed solver and
estimator are fully parallelizable on each mesh level and thus the discussion of complexity in floating point
operations no longer has the same meaning in a parallel implementation; in particular, all the terms in (8.1)
containing the sum over (all) vertices can be fully parallelized. On the other hand, formula (8.1) ignores
the operations needed to evaluate the right-hand sides of local problems (4.1). Such evaluation may affect
the overall flops count, but this is very dependent on the particular implementation.

9 Numerical experiments

In this section, we consider three test cases with the diffusion tensor constant in Ω, K = I, where the
domains Ω ⊂ R2 and the exact solutions u are given by

Sine: u(x, y) := sin(2πx) sin(2πy), Ω := (−1, 1)2, (9.1)

Peak: u(x, y) := x(x− 1)y(y − 1)e−100((x−0.5)2−(y−0.117)2), Ω := (0, 1)2, (9.2)

L-shape: u(r, ϕ) := r2/3 sin(2ϕ/3), Ω := (−1, 1)2 \([0, 1]× [−1, 0]). (9.3)

We further consider two tests with piecewise constant diffusion tensor K = c(x, y) · I on the square domain.
For each of these tests, we will vary c(x, y) in order to study its influence on the solver’s performance. The
tests are described by

Checkerboard: u(r, ϕ) = rγµ(ϕ), Ω:=(−1, 1)2, (9.4)

where µ(ϕ) is constructed following Kellogg [17]. We consider the case γ = 1, K = I, and a singular solution
with γ = 0.0009 and diffusion contrast 2001405.429972. For the latter, c(x, y) varies across the domain as
in Figure 3.

-1 1
-1

1

1

2e6

Figure 3: Variations of the coefficient c(x, y) across the domain for the Checkerboard test case.

Skyscraper: unknown analytic solution, Ω:=(0,1)2. (9.5)

The variations of c(x, y) are shown in Figure 4. We take the source term f = 1 and Dirichlet bound-
ary condition uD(x, y) =

√
x on ∂Ω. We adjust c(x, y) to obtain two tests: one with diffusion contrast

11
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5e7

7e7

9e7

Figure 4: Variations of the coefficient c(x, y) across the domain for the Skyscraper test case.

proportional to 1, and another proportional to 107. An analogous test case is also described and used in
Anciaux-Sedrakian et al. [1, Section 5.3].

In all tests, the exact solution of the algebraic systems is given by a direct solver.

9.1 Performance of the multilevel solver of Definition 4.1

We first consider mesh hierarchies obtained by J uniform refinements of an initial Delaunay triangulation of
the domain Ω. We study the solver of Definition 4.1 stopped when the `2-norm of the algebraic residual vector
drops below 10−5 times the initial one; then we expect for a p-robust solver that the number of iterations
is needed to reach it will be similar for different polynomial degrees. We also numerically investigate J-
robustness and robustness with respect to the jump in the diffusion coefficient, denoted henceforth by J (K).
Results presented in Table 1 confirm perfect p-robustness, as well as numerical K- and J-robustness even
in low-regularity cases.

Table 1: Number of iterations is for different polynomial degrees p, number of mesh levels J , space hierarchies
with two different pj , j ∈ {1, . . . , J − 1}, and jump in the diffusion coefficient J (K).

Sine Peak L-shape Checkerboard Skyscraper

K=I K=I K=I K=I J
(
K
)
=O

(
106

)
J
(
K
)
=O

(
1
)
J
(
K
)
=O

(
107

)
pj 1 p 1 p 1 p 1 p 1 p 1 p 1 p

J p DoF is is is is is is is is is is is is is is

3 1 2e4 19 19 19 19 21 21 18 18 18 18 19 19 19 19

3 1e5 29 13 28 14 29 11 27 11 28 11 31 13 31 13

6 6e5 30 13 30 14 26 9 24 9 25 10 28 11 28 11

9 1e6 31 14 30 14 23 9 23 9 23 9 26 10 26 10

4 1 6e4 21 21 20 20 21 21 19 19 19 19 19 19 19 19

3 6e5 29 13 29 14 28 11 26 11 27 11 30 11 30 11

6 2e6 31 13 30 14 25 9 24 9 24 9 27 10 27 10

9 5e6 32 14 31 15 23 9 22 9 23 9 25 9 25 9

We now present some experiments for graded mesh hierarchies. The meshes were obtained by the newest
vertex bisection algorithm, cf. Sewell [30] and Mitchell [21], and a Dörfler’s bulk-chasing criterion [12] which
uses the true discretizaton error and marking parameter 0.8. The true discretizaton error is used in the
marking for refinement instead of an a posteriori discretization error estimator for the purpose of simplicity
and result reproducibility: our main goal is to test the solver of Definition 4.1 in graded meshes that satisfy
Assumption 6.3. The resulting meshes are depicted in Figure 5 for three different test cases, and the results
are given in Table 2. We observe perfect p-robustness behavior of the solver of Definition 4.1, which is in
agreement with our theoretical results also covering graded mesh hierarchies. Moreover, as expected from
the theoretical results, the solver behaves perfectly J-robustly for the Peak test case with H2-regular weak
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Table 2: Number of iterations is for different polynomial degrees p, number of mesh levels J , space hierarchies
given by pj = p, j ∈ {1, . . . , J − 1}; graded mesh hierarchies.

Peak, K=I L-shape, K=I

J p is

5 1 14

3 11

6 8

9 9

J p is

10 1 16

3 9

6 8

9 7

J p is

15 1 17

3 9

6 8

9 7

J p is

5 1 16

3 7

6 6

9 5

J p is

10 1 15

3 6

6 5

9 5

J p is

15 1 17

3 11

6 5

9 4

Checkerboard, J
(
K
)

= O
(
106

)
J p is

5 1 33

3 15

6 12

9 11

J p is

10 1 57

3 23

6 15

9 12

J p is

15 1 97

3 32

6 20

9 15

solution, and a linear increase of the number of iterations with respect to J appears in the Checkerboard
test case for p = 1.

Figure 5: Graded meshes obtained by the newest-vertex bisection algorithm. Left: Peak problem, J = 10,
and p = 3. Center: L-shape problem, J = 10, and p = 3. Right: Checkerboard O(106), J = 10, and p = 3.
The regions where the diffusion coefficient is constant are bordered by dashed lines.

9.2 Adaptive number of smoothing steps using Definition 7.1

Now we will study the behavior of the solver described in Definition 7.1, where we set the maximum number
of smoothing steps νmax = 5. In order to do a comparison study of the solver’s performance in different
settings, we will use the estimated number of floating point operations (8.1), and we also introduce the
number of global synchronizations

sync := is +

is∑
i=1

J∑
j=1

νij . (9.6)

9.2.1 Dependence on θ

In Figure 6 we report the cumulated number of the smoothing steps employed at each level for different
choices of θ. The non-adaptive variant of solver of Definition 4.1 (νmax = 1) is also plotted for comparison.
Recall that this employs just one post-smoothing step, and may lead to an increased number of iterations,
whereas the solver of Definition 7.1 makes more smoothing steps and typically cuts the number of iterations.
If in Figure 6 we find for a given θ that all numbers are consistently low for all levels, then this results
in a cheaper procedure and gives us an idea of the best candidates for θ. Table 3 then gives the detailed
numbers of smoothing steps per level and iteration for θ = 0.2.
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In Table 4 more results are presented together with the estimated costs in order to compare the perfor-
mance of the solver for different values of θ. Most often, the costs are very close for different choices of θ
and in practice the choice θ = 0.2 is quite satisfactory. It typically brings the number of iterations down
to 5-8 from 9-28, upon usually performing 2-4 post-smoothing steps on each level instead of just one. Note
also that choosing θ in our setting somehow differs from typical bulk-chasing criteria, where larger θ means
including more elements. Here instead, smaller θ make the condition of the while loop of Definition 7.1
more likely to be satisfied, thus leading to more smoothing steps and overall smaller iteration numbers, as
seen in Table 4.
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Figure 6: Number of smoothing steps per level for the Checkerboard case, polynomial degree p = 3, number
of mesh levels J = 3, diffusion coefficient jump J (K) = O(106), and mesh hierarchies with pj = 1 and
pj = p, j ∈ {1, . . . , J − 1}.

Table 3: Number of smoothing steps per level in each iteration it for the Checkerboard case, θ = 0.2,
polynomial degree p = 3, number of mesh levels J = 3, diffusion coefficient jump J (K) = O(106), and mesh
hierarchies with pj = 1 and pj = p, j ∈ {1, . . . , J − 1}. The numbers of iterations for the non-adaptive
versions (νmax = 1) are respectively 28 and 11.

pj = 1 pj = p

it=1 it=2 it=3 it=4 it=5 it=6 it=7 it=8 it=1 it=2 it=3 it=4 it=5 it=6

level 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

level 1 3 3 3 3 3 3 3 3 3 4 4 4 4 4

level 2 3 3 3 3 3 3 3 3 2 1 1 1 1 1

level 3 3 4 4 4 4 4 4 4 2 2 2 2 2 1

9.2.2 Performance of the adaptive solver of Definition 7.1

In Figure 7, we fix θ = 0.2 and we compare our adaptive number of smoothing steps approach with the
number of smoothing steps ν ≥ 1 being fixed to the same value on each mesh level. Relative to the adaptive
approach, the solver using a fixed number of smoothing steps, whatever it is, is typically more costly, both
in terms of nflops computed by (8.1) and of sync computed by (9.6). Note also that when using a fixed
number of smoothing steps, the simplistic solver of Definition 4.1 (νmax = 1) is often the cheapest to employ,
although its number of iterations may seem rather increased at first sight. As for the adaptive solver, we also
point out that the maximum number of smoothing steps νmax = 5 is hardly ever reached in our experiments,
endorsing our adaptive approach in two ways: a fixed number of smoothing steps is not the best way to take
advantage of a multigrid solver; the criterion used for the while loop in Definition 7.1 successfully identifies
the levels in which more smoothing steps are necessary, without over-smoothing.

14



Table 4: Estimated number of floating point operations given by (8.1) and number of iterations is for two
singular test cases, different polynomial degrees p, number of mesh levels J , and space hierarchies with pj ,
j ∈ {0, . . . , J}.

L-shape test case Checkerboard O(106)

non-adapt θ = 0.2 θ = 0.6 θ = 0.9 non-adapt θ = 0.2 θ = 0.6 θ = 0.9

J pj is nflops is nflops is nflops is nflops is nflops is nflops is nflops is nflops

3 1111 21 2.17e7 7 1.57e7 11 1.75e7 11 1.67e7 18 2.01e7 8 1.76e7 12 1.91e7 11 1.72e7

1113 29 6.05e8 7 5.28e8 12 5.75e8 15 5.84e8 28 6.05e8 8 6.01e8 13 5.80e8 14 5.66e8

1116 26 1.20e10 7 1.28e10 11 1.22e10 13 1.19e10 25 1.21e10 8 1.38e10 12 1.23e10 13 1.23e10

1119 23 9.08e10 6 9.22e10 10 9.23e10 12 9.23e10 23 9.39e10 7 1.00e11 12 9.54e10 12 9.54e10

1333 11 3.90e8 6 3.61e8 10 4.07e8 10 3.86e8 11 4.04e8 6 3.52e8 10 4.04e8 10 3.99e8

1666 9 9.49e9 6 1.00e10 8 9.53e9 8 9.45e9 10 1.03e10 6 9.71e9 9 1.04e10 8 9.77e9

1999 9 9.18e10 6 9.31e10 8 9.21e10 8 9.17e10 9 9.48e10 6 9.45e10 8 9.51e10 8 9.47e10

4 11111 21 7.24e7 8 5.61e7 11 5.66e7 12 6.00e7 19 6.83e7 9 6.29e7 11 5.71e7 12 5.92e7

11113 28 2.34e9 7 2.04e9 12 2.30e9 14 2.19e9 27 2.33e9 8 2.40e9 12 2.17e9 14 2.26e9

11116 25 4.69e10 7 5.00e10 11 4.77e10 13 4.78e10 24 4.72e10 7 5.04e10 12 4.93e10 13 4.93e10

11119 23 3.65e11 7 3.97e11 10 3.64e11 12 3.71e11 23 3.77e11 7 4.03e11 11 3.76e11 12 3.83e11

13333 11 1.59e9 6 1.43e9 9 1.50e9 10 1.61e9 11 1.64e9 6 1.48e9 9 1.55e9 10 1.59e9

16666 9 3.88e10 5 3.65e10 8 3.85e10 8 3.81e10 9 4.00e10 6 3.99e10 9 4.19e10 8 3.94e10

19999 9 3.74e11 5 3.64e11 8 3.73e11 8 3.71e11 9 3.87e11 6 3.78e11 8 3.86e11 8 3.83e11

9.3 Examples in three space dimensions

We consider now three test cases where Ω ⊂ R3, K = I except in areas of the domain explicitly specified
below, and, when available, exact solution u:

Cube: u(x, y, z) := x(x− 1)y(y − 1)z(z − 1), Ω := (0, 1)3, (9.7)

Nested cubes: unknown analytic solution, Ω := (−1, 1)3, (9.8)

K = 105 ∗ I in (−0.5, 0.5)3,

Checkers cubes: unknown analytic solution, Ω := (0, 1)3, (9.9)

K = 106 ∗ I in (0, 0.5)3 ∪ (0.5, 1)3.

In the case of nested cubes and checkers cubes, the source term is given by f = 1 in Ω and zero Dirichlet
boundary conditions are prescribed on ∂Ω.

We employ our solver of Definition 4.1 for polynomial degrees p = 1, 2, 3, 4, number of mesh levels J = 4,
and hierarchies given by pj = 1, j ∈ {1, . . . , J − 1}. The coarse mesh in all these test cases is unstructured,
and the hierarchy is obtained by uniform refinement, where each tetrahedron is refined into eight new
tetrahedra using the midpoints of edges in the initial tetrahedron. In Figures 8–10, we present the decay
of the relative energy norm of the algebraic error and the relative `2-norm of the algebraic residual vector
with respect to the iterations. Even in three space dimensions, in accordance with our theory, we see that
the results are p-robust and in agreement with the more in-depth experiments of two space dimensions.
Moreover, similarly to the previous tests in two space dimensions, we numerically observe that the behavior
of our solver is not influenced by the magnitude of the diffusion coefficient jump. The implementation of
the experiments in this section is done with NGSolve [28].

9.4 Comparison with solvers from literature

In Table 5, we finally compare our solver of Definition 4.1 (denoted as ∼MG(0,1)-bJ due to the similarity
with the multigrid using only one post-smoothing step by block-Jacobi, the only difference being the use
of the optimal step-size per level in the error correction stage), with different multigrid solvers used in
the literature as solvers or preconditioners; see [19] for a more detailed discussion on these methods. The
test case we choose has a poor regularity, and as we see both in terms of CPU timing1 and iteration

1The codes were prepared to benefit as much as possible from Matlab’s fast operations on matrices and vectors. The
timings cover the solution time only, without the preparation phase of matrices assembly. The experiments were run on one
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Figure 7: Comparison between a fixed number of (block-Jacobi) smoothing steps ν on all levels (Defini-
tion 4.1 and its obvious modification for ν ≥ 1) and the adaptive number of smoothing steps of Definition 7.1.
Number of iterations is, floating point operations given by (8.1) relative with respect to Definition 7.1, and
the number of global synchronizations by (9.6).

numbers, our solver performs well compared with the other methods, despite the more simplistic one post-
smoothing step, while having the advantage of being naturally parallelizable on each level as the smoother
is block-Jacobi. Importantly, note that other block smoothing methods, namely PCG(MG-bJ) which uses
a symmetric multigrid with block-Jacobi smoothing as preconditioner, and MG-bGS, the multigrid using
block Gauss–Seidel as smoother, also exhibit numerical p-robustness, whereas the classical MG-GS does
not. In addition to the solver of Definition 7.1 with θ = 0.2 and νmax = 5 (denoted as ∼MG(0,adapt)-bJ),
we also introduce its weighted restrictive additive Schwarz (wRAS) smoother variant, which outperforms
the other methods while preserving numerical p-robustness. Smoothing by wRAS, see details in [19, Section
6.2], only differs from the additive Schwarz smoothing used in Definitions 4.1 and 7.1 by summing in (4.2)
local contributions ρij,a weighted by the corresponding hat functions ψj,a and then interpolated to the local

Dell C6220 dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée “NEF” computation cluster, in a sequential
Matlab script.
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Figure 8: Cube case: decay of the relative algebraic error (left) and the relative residual (right) for the
hierarchy with pj = 1, j ∈{1, . . . , J−1}, J = 4. The solver of Definition 4.1 is stopped at iteration i = 40.
nDoFs: 5 501 for p = 1, 41 337 for p = 2, 136 693 for p = 3, 320 753 for p = 4.

Figure 9: Nested cubes case: decay of the relative algebraic error (left) and the relative residual (right) for
the hierarchy with pj=1, j∈{1, . . . , J−1}, J = 4. The solver of Definition 4.1 is stopped at iteration i = 40.
nDoFs: 7 281 for p = 1, 55 649 for p = 2, 185 041 for p = 3, 435 393 for p = 4.

Figure 10: Checkers cubes: decay of the relative algebraic error (left) and the relative residual (right) for
the hierarchy with pj=1, j∈{1, . . . , J−1}, J = 4. The solver of Definition 4.1 is stopped at iteration i = 40.
nDoFs: 5 425 for p = 1, 40 033 for p = 2, 131 473 for p = 3, 307 393 for p = 4.
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spaces V a
j . Another important observation, as proven in e.g. Bramble et al. [7], is that multigrid methods

can perform robustly with respect to the diffusion contrast in two space dimensions. This is reflected by
most methods of Table 5, having rather low iteration numbers for all diffusion tensors.

Table 5: Checkerboard O(106) problem: comparison of iteration numbers is and CPU times for differ-
ent solvers. The horizontal/rising arrow denotes whether the polynomial degree per level remains the
same/gradually increases. The number of pre- and post-smoothing steps are given in parantheses, and the
smoothers are given by block-Jacobi (bJ), block Gauss–Seidel (bGS), pointwise Gauss–Seidel (GS), or PCG
with incomplete Cholesky preconditioner. The number of iterations is limited to 80.

∼MG(0,1) ∼MG(0,1) ∼MG(0, ∼MG(0,adapt) PCG(MG MG(1,1)- MG(0,1)- MG(3,3)-

-bJ -bJ adapt)-bJ -bJ (wRAS) (3,3)-bJ) PCG(iChol) bGS GS

1→ 1, p 1, p→ p 1, p→ p 1↗ p p→ p 1↗ p 1→ 1, p 1↗ p

J p is time is time is time is time is time is time is time is time

3 1 18 0.05 s 18 0.07 s 8 0.04 s 8 0.04 s 10 0.07 s 6 0.39 s 10 0.04 s 4 0.02 s

3 28 0.96 s 11 0.50 s 6 0.43 s 6 0.41 s 3 0.57 s 22 3.43 s 11 2.62 s 6 0.34 s

6 25 9.88 s 10 5.43 s 6 5.24 s 5 2.90 s 2 5.24 s 44 51.38 s 9 7.35 s 11 5.91 s

9 23 45.87 s 9 27.01 s 6 25.25 s 4 13.86 s 2 36.95 s >80 >5.22m 8 32.53 s 11 19.72 s

4 1 19 0.12 s 19 0.12 s 9 0.11 s 9 0.11 s 11 0.20 s 16 0.74 s 11 0.06 s 4 0.05 s

3 27 3.85 s 11 2.07 s 6 1.89 s 7 1.62 s 3 2.34 s 44 27.48 s 10 9.64 s 5 1.37 s

6 24 41.79 s 9 20.19 s 6 20.69 s 4 12.54 s 3 38.40 s >80 >6.87m 9 34.78 s 6 14.44 s

9 23 3.63m 9 2.13m 6 2.09m 3 49.84 s 2 2.24m >80 >23.08m 8 1.72m 9 1.21m

10 Proof of Theorem 6.6

Our approach to proving Theorem 6.6 consists in studying level-wise the contributions ρ̃ij of (3.3) of the

uncomputable exact residual lifting ρ̃iJ,alg given by (3.1). The polynomial-degree-robust stable decomposition
result of Schöberl et al. [29] then allows us to exploit the similarities of the local computable contributions
ρij,a (4.1) to the global inaccessible ones ρ̃ij (3.3).

We will first present the proof of p-robust efficiency of the estimator stated in Theorem 6.6 under
Assumption 6.2 or 6.3. Then we give the proof of p-robust and J-robust efficiency under Assumption 6.4.
Let us start with some generalities.

10.1 Properties of the estimator ηialg

We first present some general properties of the estimator ηialg of Definition (5.1) needed for the proof.

Lemma 10.1 (Estimation of
∥∥K 1

2∇ρij
∥∥ by the local contributions). Let ρij,a and ρij for j ∈ {1, . . . , J},

a ∈ Vj, be given by (4.1) and (4.2). Then there holds∥∥K 1
2∇ρij

∥∥2 ≤ (d+ 1)
∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

. (10.1)

Proof. Since ρij =
∑

a∈Vj
ρij,a, the inequality

∣∣∣ d+1∑
k=1

ak

∣∣∣2 ≤ (d+ 1)
d+1∑
k=1

|ak|2 leads to

∥∥K 1
2∇ρij

∥∥2
=
∑
K∈Tj

∥∥K 1
2∇ρij

∥∥2

K
=
∑
K∈Tj

∥∥∥∥ ∑
a∈VK

K
1
2∇ρij,a

∥∥∥∥2

K

≤ (d+ 1)
∑
K∈Tj

∑
a∈VK

∥∥K 1
2∇ρij,a

∥∥2

K
= (d+ 1)

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

.

18



Remark 10.2 (Lower bound on the optimal step-sizes). Note that (4.8) together with (10.1) and the
definition λij = 1 when ρij = 0 or j = 0 lead to

λij ≥
1

d+ 1
0 ≤ j ≤ J. (10.2)

10.2 Properties of the exact residual lifting ρ̃iJ,alg

Hereafter, we use two crucial properties of the level-wise error contributions of (3.3) ρ̃ij , j∈{1, . . . , J}: the

orthogonality of ρ̃ij with respect to previous levels and local properties of ρ̃ij on level j.

Lemma 10.3 (Inter-level properties of ρ̃ij). Consider the hierarchical construction of the error ρ̃iJ,alg given
in (3.1). For j∈{1, . . . ,J}, there holds

(K∇ρ̃ij ,∇vk) = 0 ∀vk ∈ V pkk , 0 ≤ k < j. (10.3)

Proof. Take vk ∈ V pkk . Note that since k ≤ j−1 and by nestedness of the spaces, we have vk ∈ V
pj−1

j−1 ⊂ V
pj
j .

The definition given in (3.3) applied to ρ̃ij and ρ̃ij−1, allows us to write

(K∇ρ̃ij ,∇vk) = (f, vk)− (K∇uiJ ,∇vk)−
j−2∑
l=0

(K∇ρ̃il,∇vk)− (K∇ρ̃ij−1,∇vk)

= (K∇ρ̃ij−1,∇vk)− (K∇ρ̃ij−1,∇vk) = 0.

Now, we present the relation between ρ̃ij and ρij locally on patches, more precisely when tested against
functions of the local spaces V a

j given by (2.6).

Lemma 10.4 (Local relation between ρ̃ij and ρij,a). Let j∈{1, . . . , J}. Let ρ̃ij, ρ
i
j,a, ρij be respectively given

by (3.3), (4.1), and (4.2). For all vertices a∈Vj and all functions vj,a∈V a
j , we have

(K∇ρ̃ij ,∇vj,a)ωa
j

= (K∇ρij,a,∇vj,a)ωa
j
−
j−1∑
k=1

(K∇(ρ̃ik − λikρik),∇vj,a)ωa
j
. (10.4)

We use the convention that the sum in the relation above is zero when j = 1.

Proof. We take vj,a ∈ V a
j . This implies that vj,a is zero on the boundary of the patch domain ωa

j . Since

vj,a ∈ V pJ , we can use it as a test function in the definition of ρ̃ij in (3.3) as well as in the definition of ρij,a
in (4.1). We conclude by using (4.5) and subtracting the two following identities

(K∇ρ̃ij ,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
−
j−1∑
k=0

(K∇ρ̃ik,∇vj,a)ωa
j
,

(K∇ρij,a,∇vj,a)ωa
j

= (f, vj,a)ωa
j
− (K∇uiJ ,∇vj,a)ωa

j
−
j−1∑
k=0

λik(K∇ρik,∇vj,a)ωa
j
.

10.3 Proof of Theorem 6.6 under the minimal H1
0 (Ω)-regularity assumption

We begin by presenting here a result given in [19, Proposition 7.6], obtained by a combination of a one-
level p-robust stable decomposition proven in Schöberl et al. [29] and a multilevel stable decomposition for
piecewise linear functions given in Xu et al. [35].
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Lemma 10.5 (p-robust multilevel stable decomposition). Let vJ ∈ V pJ . Under Assumption 6.1 and either
Assumption 6.2 or Assumption 6.3, there exists a decomposition

vJ = v0 +

J∑
j=1

∑
a∈Vj

vj,a, v0 ∈ V 1
0 , vj,a ∈ V a

j , (10.5)

stable as

‖∇v0‖2 +

J∑
j=1

∑
a∈Vj

‖∇vj,a‖2ωa
j
≤ C2

S‖∇vJ‖2, (10.6)

where CS ≥ 1 only depends on the space dimension d, the mesh shape regularity parameter κT , and on the
maximum strength of refinement parameter Cref and quasi-uniformity parameter Cqu when Assumption 6.2
is satisfied, or on the coarse and local quasi-uniformity parameters C0

qu, Cloc,qu when Assumption 6.3 is
satisfied.

The previous results and properties allow us now to give concise proofs.

Proof of Theorem 6.6. (p-robust estimator efficiency under Assumption 6.2 or 6.3).Note that by (3.6), we

have
∥∥K 1

2∇(uJ − uiJ)
∥∥ =

∥∥K 1
2∇ρ̃iJ,alg

∥∥. Thus, we work with the exact algebraic residual lifting ρ̃iJ,alg. We

begin by applying Lemma 10.5 to ρ̃iJ,alg, which allows to decompose it as

ρ̃iJ,alg = c̃i0 +

J∑
j=1

∑
a∈Vj

ρ̃ij,a, c̃i0 ∈ V 1
0 , ρ̃

i
j,a ∈ V a

j , (10.7)

‖∇c̃i0‖2 +

J∑
j=1

∑
a∈Vj

‖∇ρ̃ij,a‖2ωa
j
≤ C2

S‖∇ρ̃iJ,alg‖2. (10.8)

Taking into account the variations of the diffusion coefficient K, we have

‖K
1
2∇c̃i0‖2 +

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

≤ C2
S,K
∥∥K 1

2∇ρ̃iJ,alg

∥∥2
, (10.9)

where the constant C2
S,K additionally depends on the ratio of the largest and the smallest eigenvalue of

the diffusion coefficient K. Since max
(
1, C2

S,K
)

also satisfies (10.9), we can assume CS,K ≥ 1. We use this
decomposition to develop

∥∥K 1
2∇ρ̃iJ,alg

∥∥2 (10.7)
=

(
K∇ρ̃iJ,alg,∇c̃i0 +

J∑
j=1

∑
a∈Vj

∇ρ̃ij,a
)

(3.2)
=
(
K∇ρi0,∇c̃i0

)
+

J∑
j=1

∑
a∈Vj

(
K∇ρ̃iJ,alg,∇ρ̃ij,a

)
ωa

j

(3.5)
=
(
K∇ρi0,∇c̃i0

)
+

J∑
j=1

∑
a∈Vj

((
f, ρ̃ij,a

)
ωa

j

−
(
K∇uiJ ,∇ρ̃ij,a

)
ωa

j

)
(4.1)
(4.5)
=
(
K∇ρi0,∇c̃i0

)
+

J∑
j=1

∑
a∈Vj

((
K∇ρij,a,∇ρ̃ij,a

)
ωa

j

+

j−1∑
k=0

(
λikK∇ρik,∇ρ̃ij,a

)
ωa

j

)

=
(
K∇ρi0,∇c̃i0

)
+

J∑
j=1

∑
a∈Vj

(
K∇ρij,a,∇ρ̃ij,a

)
ωa

j

+

J∑
j=1

j−1∑
k=0

(
λikK∇ρik,

∑
a∈Vj

∇ρ̃ij,a
)
.
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We will now estimate each of the above three terms using Young’s inequality and patch overlap arguments
as done in the proof of Lemma 10.1. First, we have, using the fact that λi0 = 1,(

K∇ρi0,∇c̃i0
)
≤
C2

S,K

2

(
λi0
∥∥K 1

2∇ρi0
∥∥)2+ 1

2C2
S,K

∥∥K 1
2∇c̃i0

∥∥2
.

For the second term, we similarly obtain

J∑
j=1

∑
a∈Vj

(
K∇ρij,a,∇ρ̃ij,a

)
ωa

j

≤C2
S,K

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

+
1

4C2
S,K

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

(4.8)
(10.2)

≤ C2
S,K(d+ 1)

J∑
j=1

(
λij
∥∥K 1

2∇ρij
∥∥)2 +

1

4C2
S,K

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

.

Finally, for the third term, we have

J∑
j=1

j−1∑
k=0

(
λikK∇ρik,

∑
a∈Vj

∇ρ̃ij,a
)
≤

2(d+ 1)C2
S,KJ

2

J∑
j=1

j−1∑
k=0

(
λik
∥∥K 1

2∇ρik
∥∥)2 +

J∑
j=1

j−1∑
k=0

∥∥∥K 1
2
∑

a∈Vj
∇ρ̃ij,a

∥∥∥2

2(2(d+ 1)C2
S,KJ)

≤ (d+ 1)C2
S,KJ

2
J∑
k=0

(
λik
∥∥K 1

2∇ρik
∥∥)2 +

1

4C2
S,K

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

.

Summing these components together, we can now pursue our main estimate

∥∥K 1
2∇ρ̃iJ,alg

∥∥2≤ 2(d+1)C2
S,KJ

2
J∑
j=0

(
λij
∥∥K 1

2∇ρij
∥∥)2+

∥∥K 1
2∇c̃i0

∥∥2
+

J∑
j=1

∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

2C2
S,K

(5.1)
(10.9)

≤ 2(d+ 1)C2
S,KJ

2
(
ηialg

)2
+

1

2

∥∥K 1
2∇ρ̃iJ,alg

∥∥2
.

After subtracting 1
2

∥∥K 1
2∇ρ̃iJ,alg

∥∥2
on both sides, we finally obtain the desired result∥∥K 1

2∇ρ̃iJ,alg

∥∥2 ≤ 4(d+ 1)C2
S,KJ

2
(
ηialg

)2
. (10.10)

10.4 Proof of Theorem 6.6 under the H2(Ω)-regularity assumption

Under Assumption 6.4, we now prove that the result of Theorem 6.6 holds not only p-robustly but also
J-robustly. For this, we exhibit a different level-wise stable decomposition from that of Section 10.3. Here,
we will define the piecewise linear component of the stable decomposition via a H1-orthogonal projection
and then use a duality-type argument.

Definition 10.6 (H1-orthogonal lowest-order projection of error components). For any j ∈ {1, . . . , J}, let
ρ̃ij be given by (3.3). Then let cij ∈ V 1

j be the solution of

(∇cij ,∇vj) = (∇ρ̃ij ,∇vj) ∀vj ∈ V 1
j . (10.11)

Remark 10.7 (Orthogonality properties of cij). For any j ∈ {1, . . . , J}, cij satisfies the following orthogo-
nality with piecewise affine functions of previous levels

(∇cij ,∇vk)
(10.11)

= (∇ρ̃ij ,∇vk)
(10.3)

= 0, ∀vk ∈ V 1
k , ∀0 ≤ k < j. (10.12)
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Lemma 10.8 (H2-regularity result). Under Assumption 6.4, for any cij given by Definition 10.6, j ∈
{1, . . . , J}, there holds

‖ρ̃ij‖ ≤
Capp

CquCref
hj‖∇ρ̃ij‖, (10.13)

‖cij‖ ≤
Capp

CquCref
hj‖∇cij‖, (10.14)

where the constant Capp depends on the space dimension d and the mesh shape regularity parameter κT ,
and Cqu and Cref are the quasi-uniformity and refinement strength parameters from Assumption 6.2.

Proof. To prove the first result, we proceed by a standard duality argument.
We consider the following problem: find ξj ∈ H1

0 (Ω) such that

(∇ξj ,∇v) = (ρ̃ij , v) ∀v ∈ H1
0 (Ω). (10.15)

Following Grisvard [14, Theorem 4.3.1.4], under Assumption 6.4, ξj ∈ H2(Ω), and we have

|ξj |H2(Ω) = ‖∆ξj‖ = ‖ρ̃ij‖. (10.16)

Consider I1
j−1(ξj) the P1-Lagrange interpolation of ξj on mesh level j−1. Since ξj ∈ H2(Ω), following, e.g.,

Ern and Guermond [13, Corollary 1.110], we obtain

‖∇(ξj − I1
j−1(ξj))‖ ≤ Capphj−1|ξj |H2(Ω). (10.17)

In particular: I1
j−1(ξj) ∈ V

pj−1

j−1 , so by the orthogonality relation (10.3)

(∇I1
j−1(ξj),∇ρ̃ij) = 0. (10.18)

We have now all the elements to conclude

‖ρ̃ij‖2
(10.15)

= (∇ξj ,∇ρ̃ij)
(10.18)

= (∇(ξj − I1
j−1(ξj)),∇ρ̃ij) ≤ ‖∇(ξj − I1

j−1(ξj))‖‖∇ρ̃ij‖

(10.17)

≤ Capphj−1|ξj |H2(Ω)‖∇ρ̃ij‖
(10.16)

= Capphj−1‖ρ̃ij‖‖∇ρ̃ij‖

(6.2)
(6.3)

≤
Capp

CquCref
hj‖ρ̃ij‖‖∇ρ̃ij‖,

which gives us (10.13). To obtain (10.14), the same argument is used once the right-hand side of the dual
problem (10.15) is modified to (cij , v), and we replace the orthogonality relation (10.18) by (10.12). Note

that at this point, it is important that I1
j−1(ξj) ∈ V 1

j−1.

We can now present the stable decomposition used in the proof of Theorem 6.6.

Lemma 10.9 (Stable decomposition of the error level-wise components). For ρ̃ij given by (3.3), cij given

by Definition 10.6, j∈{1, ..., J}, there exist ρ̃ij,a∈V a
j , so that

ρ̃ij = cij +
∑
a∈Vj

ρ̃ij,a, (10.19)

∥∥K 1
2∇cij

∥∥2
+
∑
a∈Vj

∥∥K 1
2∇ρ̃ij,a

∥∥2

ωa
j

≤ C2
SD,K‖K

1
2∇ρ̃ij‖2, (10.20)

where C2
SD,K ≥ 1 only depends on the space dimension d, the mesh shape regularity parameter κT , the

quasi-uniformity parameter Cqu, the strength refinement parameter Cref , and the ratio of the largest and the
smallest eigenvalue of the diffusion coefficient K.

Proof. We now rely on the stable decomposition result of Schöberl et al. [29] for a one-level setting. We will
first show, as in [29, Lemma 3.1], that the coarse contribution cij satisfies

‖∇cij‖2+ ‖∇(ρ̃ij − cij)‖2 +
∑
K∈Tj

h−2
K ‖(ρ̃

i
j − cij)‖2K ≤

(
5 +

( 2Capp

CrefC2
qu

)2)
‖∇ρ̃ij‖2. (10.21)
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Then, one can construct local contributions ρ̃ij,a ∈ V a
j as in [29, Section 3], which by [29, Proof of Theorem

2.1] gives us

‖∇cij‖2 +
∑
a∈Vj

‖∇ρ̃ij,a‖2ωa
j
≤ C2

SD‖∇ρ̃ij‖2,

and the claim (10.20) follows by taking into consideration the variations of K.
To show (10.21), we first use Definition 10.6 of cij

‖∇cij‖2 = (∇cij ,∇cij)
(10.11)

= (∇cij ,∇ρ̃ij) ≤ ‖∇cij‖‖∇ρ̃ij‖. (10.22)

This allows to estimate the first and second term (after using the triangle inequality) of (10.21). The third
term is then estimated by∑

K∈Tj

h−2
K ‖(ρ̃

i
j − cij)‖2K

(6.3)

≤ C−2
qu h

−2
j

∑
K∈Tj

‖(ρ̃ij − cij)‖2K≤ 2C−2
qu h

−2
j

(
‖ρ̃ij‖2+‖cij‖2

)
(10.13)
(10.14)

≤ 2
( Capp

CrefC2
qu

)2

(‖∇ρ̃ij‖2 + ‖∇cij)‖2)
(10.22)

≤ 4
( Capp

CrefC2
qu

)2

‖∇ρ̃ij‖2.

Remark 10.10 (Localized writing of level-wise components). Note that since ρ̃ij = cij +
∑

a∈Vj ρ̃
i
j,a, we can

decompose the piecewise linear cij ∈ V 1
j using the nodal basis functions. We can then write

ρ̃ij = cij +
∑
a∈Vj

ρ̃ij,a =
∑
a∈Vj

(cij,aψj,a + ρ̃ij,a), (10.23)

where cij,a is the nodal value on vertex a ∈ Vj of cij, and cij,aψj,a + ρ̃ij,a ∈ V a
j .

Lemma 10.11 (L2-stability of nodal decomposition). For all j ∈ {1, . . . , J} and all vj ∈ V 1
j decomposed

into the hat functions vj =
∑

a∈Vj vj,aψj,a, we have

‖vj‖2 ≤ (d+ 1)
∑
a∈Vj

‖vj,aψj,a‖2ωa
j
, and

∑
a∈Vj

‖vj,aψj,a‖2ωa
j
≤ C2

nd‖vj‖2, (10.24)

where Cnd ≥ 1 only depends on the space dimension d and the mesh shape regularity parameter κT .

Proof. For the first estimate, we apply the usual overlapping argument as done for (10.1). As for the second
estimate, consider a patch ωa

j and element K contained in the patch. Since vj ∈ V 1
j and by mesh shape

regularity and equivalence of norms in finite dimension, we have

‖vj,aψj,a‖ωa
j
≤ CκT ,d‖vj,aψj,a‖K ≤ CκT ,d‖vj,aψj,a‖∞|K|

1
2

≤CκT ,d
∥∥∥ ∑

a∈VK

vj,aψj,a

∥∥∥
∞
|K| 12 =CκT ,d‖vj‖∞,K |K|

1
2 ≤ CκT ,dC̃κT ,d‖vj‖K ,

where CκT ,d ≥ 1 and C̃κT ,d ≥ 1 only depend on the mesh shape regularity parameter κT and space
dimension d. The result is obtained by summing both sides over all vertices.

Lemma 10.12 (Level-wise estimation of cij). Let j ∈ {1, . . . , J} and let cij =
∑

a∈Vj
cij,aψj,a be given by

Definition 10.6. Then there holds∑
a∈Vj

∥∥K 1
2 cij,a∇ψj,a

∥∥2

ωa
j

≤ C2
stab,K

∥∥K 1
2∇cij

∥∥2
, (10.25)

where Cstab,K ≥ 1 only depends on the space dimension d, the mesh shape regularity parameter κT , the
quasi-uniformity parameter Cqu, the strength refinement parameter Cref , and the ratio of the largest and the
smallest eigenvalue of the diffusion coefficient K.
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Proof. We start by using an inverse inequality, denoting by hωa
j

the diameter of patch ωa
j and then use the

quasi-uniformity assumption (6.3)∑
a∈Vj

‖K
1
2 cij,a∇ψj,a‖2ωa

j
≤ C2

K
∑
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j
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2
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∑
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j
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2
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(10.24)

≤ C2
KC
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2
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−2
j ‖c
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(10.14)

≤
C2

KC
2
invC

2
ndC

2
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C4
quC

2
ref

‖∇cij‖2 ≤
C2

KC
2
invC

2
ndC

2
app

C4
quC

2
refc

2
K

‖K
1
2∇cij‖2 = C2

stab,K‖K
1
2∇cij‖2,

where c2K, C2
K are respectively constants that depend on the smallest and the largest eigenvalue of the

diffusion coefficient K. Note that the resulting constant Cstab,K can be safely assumed to be greater than
1, otherwise replace it by max(1, Cstab,K).

Lemma 10.13 (p-robust level-wise error estimation). Let j ∈ {1, . . . , J} and let ρ̃ij and ρij be defined
by (3.3) and (4.2), respectively. Then there holds∥∥K 1

2∇ρ̃ij
∥∥2 ≤ 2C2

SD,KC
2
stab,K

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

. (10.26)

Proof. We begin by using the splitting (10.19) in the form (10.23), which gives∥∥K 1
2∇ρ̃ij

∥∥2 (10.23)
=
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K∇ρ̃ij ,∇(cij,aψj,a + ρ̃ij,a)

)
ωa

j

(10.4)
=
∑
a∈Vj

((
K∇ρij,a,∇(cij,aψj,a+ ρ̃ij,a)

)
ωa

j

−
j−1∑
k=1

(
K∇(ρ̃ik − λikρik),∇(cij,aψj,a + ρ̃ij,a)

)
ωa

j

)
(10.23)

=
∑
a∈Vj

(
K∇ρij,a,∇(cij,aψj,a + ρ̃ij,a)

)
ωa

j

−
j−1∑
k=1

(
K∇(ρ̃ik − λikρik),∇ρ̃ij

)
(10.3)

=
∑
a∈Vj

(
K∇ρij,a,∇

(
cij,aψj,a + ρ̃ij,a

))
ωa

j

− 0

≤ C2
SD,KC

2
stab,K

∑
a∈Vj

∥∥K 1
2∇ρij,a

∥∥2

ωa
j

+

∑
a∈Vj

∥∥K 1
2∇(cij,aψj,a + ρ̃ij,a)

∥∥2

ωa
j

4C2
SD,KC

2
stab,K

≤ C2
SD,KC

2
stab,K

∑
a∈Vj

‖K
1
2∇ρij,a‖2ωa

j
+

∑
a∈Vj

(∥∥K 1
2 cij,a∇ψj,a

∥∥2

ωa
j

+
∥∥K 1

2∇ρ̃ij,a
∥∥2

ωa
j

)
2C2

SD,KC
2
stab,K

(10.25)
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SD,KC

2
stab,K

∑
a∈Vj

∥∥K 1
2∇ρij,a
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ωa
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+
1

2

∥∥K 1
2∇ρ̃ij
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,

which leads to the assertion (10.26).

We can now give a concise proof of Theorem 6.6.

Proof of Theorem 6.6. (p- and J-robust estimator efficiency under Assumption 6.4) To estimate the alge-
braic error, we use the level-wise decomposition (3.6). Each level’s contribution was estimated in Lemma 10.13.
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Summing over different levels,

∥∥K 1
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λij
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2
stab,K(d+ 1)

(
ηialg

)2
.

Thus we have showed ηialg ≥ β
∥∥K 1

2∇(uJ − uiJ)
∥∥ for β := 1√

2(d+1)CSD,KCstab,K
> 0.

11 Conclusions and future work

In this work we presented a multilevel algebraic solver whose construction is inherently interconnected with
an a posteriori estimator of the algebraic error. The solver can be seen as a geometric multigrid relying
on V-cycles with zero pre- and one post-smoothing, where the smoother is additive Schwarz associated to
patches of elements (block-Jacobi). A crucial difference compared to classic multigrid solvers is the use of
an optimal step-size in the error correction stage on each level of the mesh hierarchy. This significantly
improves the behavior of the solver and conveniently enough, makes the analysis easier leading in particular
to the Pythagorean error decrease formula (4.9a). We also presented a simple and efficient way for the
solver to automatically increase the number of post-smoothing steps on each level to the amount needed,
based on the a posteriori estimator of the algebraic error. We showed that the non-adaptive version of the
solver (with only one post-smoothing step) contracts the error in each iteration robustly with respect to
the polynomial degree p of the underlying finite element discretization; this result is equivalent to showing
p-robust efficiency of the a posteriori algebraic error estimate. If we, additionally, assume H2-regularity in
the sense of Assumption 6.4, we can show that these results are also robust with respect to the number
of mesh levels J . An interesting side property is that the error estimator is equivalent to a sum of level-
and patchwise-localized computable contributions by formula (6.7). Future work [20] will explore how to
incorporate this information in the solver so that it adaptively tackles only problematic regions contributing
most to the algebraic error (local adaptive smoothing). Finally, numerical results indicate that even for
singular test cases, for quasi-uniform meshes, the solver behaves robustly with respect to the polynomial
degree p, the number of levels J , as well as the diffusion coefficient K.
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[29] J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr, Additive Schwarz preconditioning
for p-version triangular and tetrahedral finite elements, IMA J. Numer. Anal., 28 (2008), pp. 1–24.

[30] E. G. Sewell, Automatic generation of triangulations for piecewise polynomial approximation, Pro-
Quest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)–Purdue University.

[31] H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid algorithms for high-order contin-
uous finite element discretizations, Numer. Linear Algebra Appl., 22 (2015), pp. 664–680.

[32] A. Thekale, T. Gradl, K. Klamroth, and U. Rüde, Optimizing the number of multigrid cycles
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