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Abstract. This paper proposes a novel localization algorithm (Pseudo
Image Localization: PIL) using a grid able to solve global localization and
robot kidnapping issues. The proposed approach has 2 steps. The off-line
step is a learning phase during which a simulated robot completely learns
its environment at attitude θ = 0. Several orientation-free level functions
are defined. These functions are the different filters on which the on-line
phase will rely to select the position candidates. During the on-line phase
the robot smartly uses the massive data produced during the off-line
phase to recover first its position and second its orientation. The paper
proposes the theoretical development of this localization approach, some
simulation examples and an experimental validation carried out with a
Pioneer 3DX robot moving in a predefined environment.

Keywords: Localization · Grid localization · Mobile robotics · Pose
tracking · Global Localization. · Kiddnapping · Deterministic

1 Introduction

1.1 The problem

Localization is a fundamental issue for achieving autonomous mobile robot nav-
igation. Localization is the problem of determining the position and orientation
of a robot ξt =

[
xt yt θt

]
at time t, given a map of the environment and sensors

data [1–3] . Localization can be roughly divided into three main sub-problems:

– Position Tracking: Time continuous localization on a path on which the ini-

tial position ξ0 =
[
x0 y0 θ0

]
is known.

– Global Localization: Time continuous localization with unknown initial pose.
– Kidnapping: During its travel, the robot is kidnapped and brought to an-

other place. This ”academic” case aims to address the very realistic case of
potential failures recovery.
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In order to address these three sub-problems, the literature has proposed
several approaches:Extended Kalman Filters, Monte Carlo Localization, Grid
approaches and Miscellaneous approaches.

In a way, the three first approaches are different implementations of Bayes
filtering. The Bayes filter technique provides a powerful statistical tool to un-
derstand and solve robot localization problems by recursively calculating the
position belief distribution Bel(ξt) = p(ξt |a, z,m) from control data a, mea-
surement data z and a map m. This belief function is the probability density
of the position (3 random variables for a ground robot) to lie in the elementary
hyper-cylinder

[
ξt ξt + dξt

]
.

The Extended Kalman Filter approach states that the robot movements and
the measurements are Markov processes. The estimated position ξ̂t =

[
x̂t ŷt θ̂t

]
results from the fusion process of the measures and the model. It is a straight
forward powerful algorithm especially for the Position Tracking problem but
inapplicable to the Global Localization problem in its earliest stage. This lim-
itation is somehow overcome by the use of the multi-hypothesis Kalman filter
proposed in [1, 4]. The Monte Carlo Localization is based on a particle filter that
represents the posterior belief of the robot pose by a set of weighted samples
(particles) distributed according to sensor measurements [5,9].

The disadvantage of this approach is that it bears heavy on-line computa-
tional burden when the number of particles is high. However, it can solve the
Global Localization and Kidnapping problems.

Grid localization approximates the posterior using a histogram filter over a
grid decomposition of the pose space [10, 11]. The disadvantage of this approach
is that it also bears heavy on-line computational burden when the number of grid
cells is high. However, it can also solve the Global Localization and Kidnapping
problems.

The Miscellaneous approaches groups the algorithms that do not fall in the
three first approaches. For instance, the interval approach [6] is a deterministic
point of view that solves the localization problem using interval algebra.

1.2 Outline of the paper

This paper use and expande the methodology presented in [12] to adress lo-
calisation in a novel approach called Pseudo Image Localization (PIL) for the
localization of ground mobile robots using range sensors and raw data. It can
be classified into the Miscellaneous approaches group, but has some common
properties with grid algorithms. Used alone, it provides another way for solving
the Global Localization and the Kidnapping problems.

Section 2 describes the general algorithm. The localization problem can be
seen as a virtual image analysis. Distances are translated into a set of pseudo
images representing orientation-free level functions. Section 3 presents simulated
examples of kidnaping senari. In section 4 a real experiment is carried out with
a Pioneer 3DX equipped with laser range finders. finally section 5 discusses the
proposed approach and concludes this paper.
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2 Level-Localization

2.1 The robot

A ground mobile robot moves in a structured a priori known environment. It is
equipped with a full-range sensor giving Ns distances uniformly distributed all
around the robot. Its pose is a vector ξ = [x y θ]T . The Global Localization

consists in determining an estimate ξ̂ = [x̂ ŷ θ̂]T of its real pose without any
odometry information. Figure 1-left shows a simulated robot equipped with Ns =
57 sensors moving in a 20m × 20m environment. This simulation experiments
have been carried out in order to validate the proposed algorithm.

2.2 The Learning phase (off-line)

The map is build accordingly to a given desired resolution. Considering the size
of the map this give us a grid of dimensions LMax × CMax to be able co cover
the all space. For instance, if the desired resolution for a 20m × 20m square
environment is r = 20cm , we will choose LMax = CMax = 100. In this grid
some tiles may be invalide if their center is outside of the consided environement
or inside an obstacle. A pseudo-images corresponds to what a unique robot sensor
sees from all tiles of the map.
During the learning phase, a simulated robot moves from the center of all of the
valid tiles, keeping its orientation at θ = 0. At each of those positions, it builds
Ns points (pixels) of Ns level pseudo-images of dimensions LMax × CMax. The
images have been chosen to cover the entire simulated valid robot space and all
of this results from the homogeneous transformation:[

L C 1
]T

= M
[
x y 1

]T
(1)

where L and C are the line and column coordinates in the image space, x and
y the coordinates of the robot in its ”real” simulated space and M the homoge-
neous tranformation matrix between these two sets of coordinates. The intensity
of the the (L,C) pixel in image k is chosen in order to reflect the perceived
distance Ds(L,C, k) of sensor k at point (x, y). In order to deal with normalized
images, its value is normalized as follows:

I(L,C, k) = 1− Ds(L,C, k)

R
(2)

where R is the range of the sensors.
Considering the previous example dimensions, the learned map will be a set

of Ns intensity pseudo images of dimensions 100×100. Figure 1-center and right
show what the robot has seen for respectively its sensors k = 21 and k = 42.

Clear zones correspond to short distances and dark zones to large distances.
White zones correspond to D = 0 (the robot is inside an obstacle: tile invalid)
and black zones to blind zones (the robots is too far from the walls to see them).
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Fig. 1. Left: Robot in its environment with Ns = 57 sensors of 6m range. Robot view
on sensor k = 21 (center) and on sensor 42 (right)

2.3 The Transformation phase (off-line)

Once the map has been learned, in order to localize (i.e. to find P̂ = [x̂ ŷ θ̂]T ),
the map consisting in Ns level pseudo-images has to be processed in order guide
the researtch process in the map. For this, NOLF independences Orientation-free
Level Functions (pseudo-images In) are build off-line. Here are some examples
of these images:

– Energy pseudo-image (I1): the image is obtained by summing the Ns

images (and dividing the sum by Ns in order to keep normalization). See
figure 2-left.

– Percentage pq% pseudo-image (I2): the image is obtained by counting
the number of sensors having value p ≤ I(:, :, k) ≤ q (and dividing the count
by Ns in order to keep normalization). See figure 2-right.

Fig. 2. The energy image obtained by summing the Ns images, and dividing the sum
by Ns (left), and the pq% image with p = 0.25 and q = 0.75 (right)

It is quite obvious that these images are independent of the robot orientation.
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2.4 The (x, y) Localization phase (on-line)

The real robot is placed in its environment (kidnapping at time t0 = 0). The
perceived distances Dr(:) are transformed according to equation 2:

I(L,C, k) = 1− Dr(k)

R
(3)

where now, L and C are unknown. The problem consists in inverting this equa-
tion (i.e. finding L and C given the set X(L,C) = {I(L,C, k) 1 ≤ k ≤ Ns}).

The same transformations as before are applied to this set. For this, NOLF

orientation-free intensity values En are build on-line:

– Energy: E1 = 1
Ns

Ns∑
k=1

I(L,C, k)

– Percentage pq%: E2 = 1
Ns
card {p ≤ I(L,C, k) ≤ q /1 ≤ k ≤ Ns}

Once these numbers computed, a resulting binary pseudo-image is produced
by:

I =

NOLF⋂
n=1

αn |In − En| < σn (4)

where αn is the weighting factor of each En and σn the arbitrary threshold
corresponding to the accepted tolerance. The obtained pixels are the candidates
(L,C) that are translated back to the cartesian space:[

x̂ ŷ 1
]T

= M−1
[
L C 1

]T
(5)

Figure 3-left shows the resulting image for the dual (Energy, pq%) when the
robot is situated at x = 1.8m, y = −0.8m in the reference frame.

Fig. 3. Left: the resulting binary image αn = 1 and σn = 0.05 ∀n. Right: the real profile
Dr(:) in blue and the profile Ds(L,C, :) shifted for sake of clarity. The simulated profile
has been learned without sensor noise while the real profile shows measurement noise.
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2.5 The θ Localization phase (on-line)

For each of these candidates, we then extract the corresponding profile Ds(L,C, :
) (one point in each of the Ns pseudo-images) and compare it with the real profile
Dr(:) (see figure 3-right).

These two profiles are then correlated. The abscissa of the maximum of the
correlation function gives the angular shift between the simulated robot that has
learned the environment with θ = 0 and θ̂ that localizes the robot. The chosen
θ̂ is the one that maximizes the correlation Dr(:) vs Ds(L,C, :).

At this step, an estimation of the localizer P̂ = (x̂ ŷ θ̂)T has been ob-
tained.

2.6 Summary

The PIL algorithm can be divided into two main parts (see figure 4): an off-line
algorithm (Learning phase) and an on-line algorithm (Localization phase).

Fig. 4. PIL algorithm: Left: off-line phase. Right: on-line phase.

2.7 Analysis

Used alone, the previous algorithm presents some properties and also some draw-
backs. The next list presents these Properties.

– Global localization: Robot odometry is not taken into account in the algo-
rithm. Therefore, PIL is inherently a Global Localizer.

– Kidnapping: As robot odometry is not taken into account in the algorithm,
a kidnapping should produce no effect. As we will see later, in order to accel-
erate the whole process, a windowing filter is added to the initial algorithm.
This filter can produce a delay after kidnapping.

– Deterministic localization: For a given map the same mesurement will always
lead to the same localization.
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The next list presents these Drawbacks and proposes some possible solutions.

– In all cases, the Learning phase is quite time consuming. This is not really
a drawback since a robot moving in a known environment can be provided
with the map obtained off-line before its mission. However this acquisition
time can be lowered if we lower the learning precision.

– In a large map many candidat tile can satisfy 4 creating the binary pseudo
image identifying potential location tiles. It is possible to filter all the can-
didates that are not in a spatial window around the localized robot. This
window size is chosen according to the confidence the robot has on its lo-
calization. To answer the Kidnapping problem, the window cover the whole
map.

– The main drawback of the proposed approach is the fact that it is very sensi-
tive to environment modifications. As we will seen in the next paragraph, if
an obstacle has not been learned and is in the perception field of the robot, it
will considerably alter the localization process. However, if the environment
is enough stable (not too many unlearned obstacles), the algorithm will be
able to localize most of the time.

This algorithm under is developement name (SL2) is presented in a video [8].
It shows in a simulated environement the different steps of the PIL algorithm
and some cases of kidnapping. This problem will be adressed in the next section.

3 Kidnaping Simulations

The PIL algorithm (4) has been tested on a simulated mobile robot evolving
on a building floor. The programs have been developed with MATLAB on a
3.4GHz Intel Core I7 Mac processor. The robot is equipped wit a full range
laser finder (57 sensors with inter-angular distance of 6.3◦). It travels at about
v = 0.9m/s. The environment is a 30m×11m floor with an unbalanced structure.
This environment is represented by a virtual image of 152 × 56 = 8512 pixels
which means that the elementary pixel represents a 20cm× 20cm tiles. The off-
line algorithm processes only 2156 pixels it is to say one 25% of the complete
image. The Energy lists necessitate 720kB of memory.

3.1 Kidnapping to discriminating location

In this experiment (Figure 5), the robot travels during 35s from its initial posi-
tion to point 3. At time t = 30.5s (a position between point 2 and point 3) it is
kidnapped and put back to its initial position. It recovers from this kidnapping
in only one computation step. Figure 6 shows the error between the real position
and the position of the localized robot. The mean of this error is about 13cm.
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Fig. 5. The simulated environment

Fig. 6. Recovery from a kidnapping to discriminating location

3.2 Kidnapping to an ambiguous location

In this experiment, the robot travels from its initial position to point 3. At time
t = 10s (a position between point 1 and point 2) it is kidnaped and put back
to its initial position and recovers as quickly as previously. It is kidnaped again
at time t = 30s and put back to point 2. Because of the angular ambiguity
in the corridor, the robot is mistaken on its orientation. Between t = 30s and
t = 36s, it believes it has an orientation θLOC = π. it cannot instantaneously
recover is orientation but only near the point 3 when the geometrical ambiguity
desappears. Figure 7 shows the angular error during this travel.

4 Experimental results

4.1 Context Description

The experimental context can be described by the following points:

– The mobile platform is a unicycle type Pioneer 3DX (Figure 8-Top-left)
equipped with several sensors. Among them two URG-04 LX Hokuyo lasers
allow for full horizontal scanning of the environment. Their data are merged
to cover the 360◦ around the robot and are used for PIL localization.
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Fig. 7. Kidnappings at times t = 10s and t = 30s: Angular error in radians

– The robot mission is a 187 meters long autonomous patrolling in the lab-
oratory to inspect the state (open/close) of two valves (V1-V2) (Figure 8-
Bottom).

– A PIL map have been made from the coridor environment with an tile size
of 20cmx20cm and Ns=57 giving us a resolution of 0.11 rad.

– We choose to observe PIL algorithm performances between the starting point
DS and V1 (F area).

4.2 Simulation performance

In order to estimate the efficiency of the PIL approach in our environement we
virtualy put the robot simulation in a grid cell (pixel) of the grid (pseudo-image),
with a random but known pose. A window of 4 m square is used to limit the
research area. Then we look at the PIL algorithm results to see if it selects a
good grid-cell or not. This test is repeated 63 times for each pseudo-image pixel
generating a statistical analysis of the PIL algorithm efficiency.The Figure( 8-
Top-Right shows the results of this study.In red, we can find the areas where the
PIL algorithm succeed with more than 80% to find the correct robot place. The
blue color identifies the areas where the success is lower than 50%. It is clear
that the results are better when the environment does not present a high level
of symmetry witch is a recurring known problem for indoor localization.

4.3 Experimental result

The robot velocity in the area F is set to V = 0.2m/s. If a position is computed by
the PIL localization algorithm, the robot position is updated according to these
results, each 2s. Figure 9-Top shows the real robot and localization positions.
The localization data are associated with time. The experimentation video record
and time localization are then synchronized to deduce the real robot positions.
The real robot angle is deduced by analyzing the sensors signature according to
the robot position and attitude.
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Fig. 8. Top-Left: The robot Pioneer3DX used. Top-Right: PIL localisation sucess rate
in the map (error<20cm) with a 4m spatial window. Bottom: Mission description

Figure 9-Bottom shows the localization errors. Position errors (x and y errors)
are most of the time between −0.25m and 0.25m. However some localization
errors exceed 0.5 m. That is explained by environment symmetry in some areas.
The angular error (θ error) is between −0.2rd and 0.2rd whatever the robot
position. That can be explained by the insensibility of the localization algorithm
from angle viewpoint to the environment symmetry. We must note that the
previous errors include the difference between laser data recruiting moment and
updating the robot position one. Between these two moments the robot moves
and the resulting position and angular offsets are not considered.

5 Discussion and conclusion

The PIL algorithm proposed allows to solve the global localization and the robot
kidnapping issues. It is based on a off-line massive accumulation of perceived
distances all around a simulated planar mobile robot. These data are organized
into level functions that are orientation-free.The smart filtering of these data
during the on-line phase allows a fast detection of possible localization candi-
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Fig. 9. Top: Real robot position versus the localization results. Bottom: Angular and
position localization errors according to real robot pose

dates. These candidates are then compared to the real measurement provided
by the real robot. This correlation-based process eliminates all but one of these
candidates and provides the robot orientation. The efficiency of this approach
have been estimated in simulation and experimentaly using Pioneer 3DX robot
in an indoor environement.At this point, we can emphasize important remarks
and foresee the improvements that could be brought to this algorithm:

– The proposed approach is direct, e.g. it does not rely on the data fusion
with proprioceptive information (odometers). This is an advantage (even if
the robot is lost, due to unknown obstacles,it will be able to recover as soon
as it will move in a known and learned area), and a disadvantage in the
sense that a fusion process would certainly help the global filtering (better
windowing for instance).

– The proposed approach is not, a priori, compatible with the SLAM (Simulta-
neous Localization an Mapping) approach. But it could become compatible
if associated with a SLAM algorithm (FastSLAM, GraphSLAM,...) as a pre-
caching technique [7] that would accelerate the localization process.
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– Only a few orientation-free level functions have been proposed here (Energy,
Percentage) and some improvements should be brought by seeking the ’good’
functions that would lead to a better filtering of the position candidates.
These functions must own the fundamental property of orientation-freeness
and should own other properties that have not been discussed here. For
instance, robustness with respect to unknown obstacles.

– The heart of the proposed method is the explicit analogy between maps and
images. What has not been developed here, but that could bring a substan-
tial improvement, is the study and the pre-processing of the transformed
pseudo-images. For instance, histogram equalizations could be used to im-
prove contrast, pseudo-color transformation to augment the level of seen
details, derivation (image gradients) to localize pathways,...
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