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What memory is needed for?
storing data

storing instructions

saving temporary values

synchronizing processes/threads
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Context

It’s the memory, stupid!
more than 80% of the chip area is dedicated to caches, memories,
memory controllers, interconnects and so on, whose sole purpose is to
buffer data or control the buffering of data [1]

⇒ workarounds which are making systems ever more complex

more than 62% of the entire measured system energy is spent on moving
data between memory and the computation units [1]

Enabling the continued performance scaling of smaller systems
requires significant research breakthroughs in three key areas [3]

1 power efficiency
2 programmability
3 execution granularity
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Topical subject

Process the data where it is: in the memory!

Stop or reduce moving data

Computing-In-Memory, Processing In Memory, In-memory computing,
Logic In Memory, Near-Memory Computing, Intelligent Memory,
Smart memories, Near-memory processing, Active memory, Memory-
driven computing

Sort this out!
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Topical subject
Active Research

Year In-memory AND processing In-memory AND computing
2019 (up to April) 10 8

2018 30 51
2017 31 32
2016 17 18
2015 9 16
2014 3 4
2013 1 4
2012 0 0
2011 0 0

1995-2010 18 3
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Context
Related work

Processing In Memory (PIM) [Gokhale 1995]: Offload computation in the
memory [5]

Intelligent Memory [Kozyrakis 1997] [6]

Smart memory [Mai 2000]: Modular reconfigurable architecture [7]

Active memory processor [Yoo 2012] [9]

Logic In Memory [Gaillardon 2016]: Fine grained, Technology dependent [4]

Compute cache [Aga 2017] [2]

Near Memory Computing [NeMeCo]

Computation-In-Memory [MNEMOSENE]

Memory are slaves

No notification feature

In all cases
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What about programmability?

What about execution granu-
larity?
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What are Notifying Memories?
Application domain

Network on Chip

Data-flow application

Network on Chip
× Long latency

× Sometimes useless for data-flow

× High Energy consumption (up to 40%)

Memory request
× processor initiates transactions

× the memory replies

× several times the same data

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 11 / 33



What are Notifying Memories?
Application domain

Network on Chip Data-flow application

Network on Chip
× Long latency

× Sometimes useless for data-flow

× High Energy consumption (up to 40%)

Memory request
× processor initiates transactions

× the memory replies

× several times the same data

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 11 / 33



Application domain
Network on Chip

Interconnection network
Routers
Network interface

High bandwidth

Long latency

High energy consumption
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Application domain
Dynamic Dataflow

Network of actors Dataflow

Formal Model Of Computation

Explicit spatial and temporal parallelism

Static or dynamic actors

Execute actions (”fire” actions)

Firing rule

Enough tokens in input FIFOs
Enough space in output FIFOs

Static actors

Fixed number of consumed and produced tokens

Can be solved at compile time
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Application domain
Dynamic Dataflow

Execution model

2 memory requests
per FIFO

If no action fired, the
same requests are
made again and again

NoC Latency = Huge
penalty for Polling
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Motivational example
Motivational example

Unsuccessful scheduling by the MPEG4-SP decoder for different video sequences
and formats

Video Useless Empty Full
Sequence Format attempt input FIFO output FIFO
Akiyo CIF 42.7% 63.7% 36.3%
Parkjoy 720p 21.3% 90.8% 9.2%
Foreman CIF 34.8% 90.7% 9.3%
Coastguard CIF 27.8% 98.4% 1.6%
Stefan CIF 25.9% 83.3% 16.7%
Bridge far QCIF 23.8% 38.4% 61.6%
Ice 4CIF 45.6% 70.4% 29.6%

Useless Memory Accesses through + long NoC latency Penalty

Monitor FIFOs and emit notifications about their status
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Notifying Memories Concept

Observer design pattern (software engineering)
Subject: sends the notifications

Observer: reacts to notifications

Implementation in the Network Interface (NI)
Master component that can send packets through the network

Component that can monitor requests

Independent from processor, memory, NoC parameters

The subject is the memory (becomes master)

The listener is the processor (becomes slave)
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Notifying Memories Concept

Listener and notifier: new components of Network Interface
Notifier on memory side

Listener on processor side
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Notifying Memories Concept
The notifier

1 Configuration phase
Specify what FIFOs to monitor

2 Checking phase
“Packet sniffer”: retrieves indexes of writers and readers Computes the
number of tokens in a FIFO

3 Notification phase
Provides the packet maker with the target location, identity number,
satisfied firing rule identity number, and the number of available tokens or
free space

Actor ID Firing Rule ID 
Room/ 

writing index 

Origin Destination Payload size Type 

Header 

5 bits 8 bits 4 bits 4 bits 
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Notifying Memories Concept
The notifier

R: reader FS: free space C: firing rule condition N: notified I: index 
W: writer  T: available tokens S: firing rule satisfied  L: location  A: actor ID 
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alert 

Notify_sel 

 − 

… 

… 

… 

𝐼 𝑘
[𝑅

1
]  

𝐼 𝑘
[𝑅

𝑛
𝑘

]  

… 

… 

𝐼 1
[𝑅

1
]  

𝐼 1
[𝑅

𝑛
1
]  

… 

… 

… 

… 

FIB 

FSB 

… 

… 

… 

𝑇 𝑘
[𝑅

1
]  

𝑇 𝑘
[𝑅

𝑛
𝑘

]  

… 

… 

𝑇 1
[𝑅

1
]  

𝑇 1
[𝑅

𝑛
1
]  

… 

 

R
ea

d
er

_s
el

 FIFO_sel 

 − 

… 

… 

𝐹
𝑆 1

 

𝐹
𝑆 𝑘

 

… … 
… 

𝑅𝑒𝑔 

FIFO_sel 

𝐼 1
[𝑊

]  

𝐼 𝑘
[𝑊

 

 ≤ 

C
o

m
p

ar
e_

se
l 

… 
𝑇 𝑘

[𝑅
1

]  

𝑇 𝑘
[𝑅

𝑛
𝑘

 ]
 

… 

𝑇 1
[𝑅

1
]  

𝑇 1
[𝑅

𝑛
1
]  

… … 

FSB 

𝐹
𝑆 1

 

𝐹
𝑆 𝑘

 

… … … … 

… 

𝐶
𝑘

[𝑅
1

]  

𝐶
𝑘

[𝑅
𝑛

𝑘
]  

… 

𝐶
1

[𝑅
1

] 

𝐶
1

[𝑅
𝑛

1
]  

… … 

RCB 

𝐶
1

[𝑊
]  

𝐶
𝑘

[𝑊
]  

8 
b

it
s 

9
 b

it
s 

9 
b

it
s 

… 

𝑆 𝑘
[𝑅

1
]  

𝑆 𝑘
[𝑅

𝑛
𝑘
]  

… 

𝑆 1
[𝑅

1
] 

𝑆 1
[𝑅

𝑛
1
]  

… … 

RSB 

𝑆 1
[𝑊

]  

𝑆 𝑘
[𝑊

]  

1
 b

it
 

… … … … 

… … … … 

… 

𝑁
𝑘

[𝑅
1

]  

𝑁
𝑘

[𝑅
𝑛

𝑘
]  

… 

𝑁
1

[𝑅
1

]  

𝑁
1

[𝑅
𝑛

1
]  

… … 

NHB 

𝑁
1
[W

] 

𝑁
𝑘
[W

] 

… … … … 

… … … … 

Phase_sel 

1
 b

it
 

… 

𝐿
𝑘

[𝑅
1

]  

𝐿
𝑘

[𝑅
𝑛

𝑘
]  

… 

𝐿 1
[𝑅

1
] 

𝐿
1

[𝑅
𝑛

1
]  

… … 

ALB 

𝐿
1

[𝑊
]  

𝐿
𝑘

[𝑊
]  

4 
b

it
s 

… 

𝐴
𝑘

[𝑅
1

]  

𝐴
𝑘

[𝑅
𝑛

𝑘
]  

… 

𝐴
1

[𝑅
1

] 

𝐴
1

[𝑅
𝑛

1
]  

… … 

AIDB 

𝐴
1

[𝑊
]  

𝐴
𝑘

[𝑊
]  

6 
b

it
s 

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 20 / 33



Notifying Memories Concept
The listener

1 Configuration phase
Specifies what notification to listen to

2 Execution phase
Sets the firing rule validity bit when a notification is caught
Clears the validity bit when the action is performed

S: status     A: actor 
D: notification data   
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Experiments and results
Experimental Setup

NoC
4x4 mesh-based SystemC cycle-accurate model

13 processors, 12 memories

Wormhole packet switching, XY routing algorithm

Routers: one arbiter per port, one buffer per input port

Round robin

Application
MPEG4-SP (H264) decoder

41 actors, 70 FIFOs

Mapping
Manual mapping, minimize number of hops

FIFOs equally distributed in memories
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Experiments and results
Results

Results of decoding 10 frames of ice video sequence in 4CIF format

Parameter
Notifying Ordinary

gain
memory memory

Latency (µs) 143.42 665.06 -78.44%
Throughput (frames/s) 27.53 23.29 +15.41%

Injection rate(flits/s) 60 167 732 121 635 294 -50.53%
Switch conflicts 71 182 509 288 574 519 -75.33%
Transported flits 109 264 000 261 123 000 -58.16%

Transported packets 15 376 400 107 050 000 -85.64%
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Experiments and results
Results

Data packets: tokens

Control packets: mapping information, memory requests, notifications
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Experiments and results
Results

Control flits classification
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Experiments and results
Results

Notification memory gain for decoding 10 frames of different video
sequences

Video
Throughput Latency

Injection Switch Flits
Sequence Format rate conflicts number
Bridgefar QCIF +15.53% -73,96% -45,80% -71,38% -54,22%

bus CIF +2.84% -73,79% -53,40% -72,90% -54,73%
grandma QCIF +16.79% -68,96% -60,78% -85,50% -67,36%
foreman CIF +14.26% -78,41% -46,81% -72,86% -54,39%

ice 4CIF +15.41% -78,44% -50,53% -75,33% -58,16%
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Experiments and results
Preliminary synthesis results

Worst-case implementation
Same notifier in all memories: able to deal with the 70 FIFOs
Same listener in all processors: able to deal with the 41 actors

Cadence Encounter RTL Compiler 65nm (500MHz, 25 degC)

Leakage and dynamic power

NoC adopting notifying memories saves 49.1% of energy

Power overhead of notifying NoC is 16.3%

Area overhead of notifying NoC is 12.4%
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Notifying Memories

Wrap-up
Notifying memories concept [8]

The memories send notifications to processors
Notifiers on memory side
Listeners on processor side

SystemC model
Notifiers and listeners in the Network Interface of the NoC
New kind of packet : the notification packet

Simulation results
Latency (-78%), injection rate (-60%)

Synthesis results
Worst-case implementation
+12% area
-49% energy
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Outline

1 Context

2 What are Notifying Memories?

3 Issues and challenges
Issues
Challenges
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Issues and challenges
Issues

Architectural assumptions
Distributed memory architecture

No cache

Network on Chip

What about programmability?
Code handly adapted (rewritten)

Code handly ”partitioned”

Code handly mapped
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Issues and challenges
Challenges

Automation
Need for a compilation tool to automatically generate:

Binary code of the application
Automatic ”partitionning”
Mapping and scheduling?

Configurations for notifiers and listeners
Rules to check on notifier side
Rules to catch on listener side
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Conclusion

Breaking memory organisation comes with huge challenges for a
compilation tool

How to automatically make use of Notifying Memories?

How to automatically ”partition” the code?

How to automatically configure the rules to check and catch?

Dataflow features
Firing rules are known

Isolated in the internal representation
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