Compiling for notifying memories: issues and challenges
Compiler pour les Notifying Memories : enjeux et défis

Kevin J. M. Martin

Univ. Bretagne-Sud
UMR CNRS 6285, Lab-STICC
Lorient, France

11/06/2019
Journées nationales du GDR GPL 2019

\ rm: kN Qzl@ @sncc

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 1/33

Outline

0 Context
Q What are Notifying Memories?

e Issues and challenges

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories

Outline

a Context

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories

What memory is needed for?

e storing data
e storing instructions
e saving temporary values

e synchronizing processes/threads

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 4/33

Context

It's the memory, stupid!

@ more than 80% of the chip area is dedicated to caches, memories,
memory controllers, interconnects and so on, whose sole purpose is to
buffer data or control the buffering of data [1]

@ = workarounds which are making systems ever more complex

@ more than 62% of the entire measured system energy is spent on moving
data between memory and the computation units [1]

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 5/33

Context

It's the memory, stupid!

@ more than 80% of the chip area is dedicated to caches, memories,
memory controllers, interconnects and so on, whose sole purpose is to
buffer data or control the buffering of data [1]

@ = workarounds which are making systems ever more complex

@ more than 62% of the entire measured system energy is spent on moving
data between memory and the computation units [1]

v

Enabling the continued performance scaling of smaller systems

requires significant research breakthroughs in three key areas [3]

@ power efficiency
@ programmability
© execution granularity

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 5/33

Topical subject

-\@’-Stop or reduce moving data
| Process the data where it is: in the memory!

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 6/33

Topical subject

-@’-Stop or reduce moving data
| Process the data where it is: in the memory!

Sort this out!

Computing-In-Memory, Processing In Memory, In-memory computing,
Logic In Memory, Near-Memory Computing, Intelligent Memory,

Smart memories, Near-memory processing, Active memory, Memory-
driven computing

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 6/33

Topical subject

Active Research

Displaying results 1-25 of 119 for (("Document Title":in-memory) AND "Document Title":processing) x
 Filters Applied: Conferences x Journals & Magazines x

Displaying results 1-25 of 136 for (("Document Title":in-memory) AND "Document Title":computing)
w Filters Applied: Conferences = Journals & Magazines =

Year In-memory AND processing | In-memory AND computing
2019 (up to April) 10 8
2018 30 51
2017 31 32
2016 17 18
2015 9 16
2014 3 4
2013 1 4
2012 0 0
2011 0 0
1995-2010 18 3

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 7/33

Context

Related work

Processing In Memory (PIM) [Gokhale 1995]: Offload computation in the
memory [5]

Intelligent Memory [Kozyrakis 1997] [6]

Smart memory [Mai 2000]: Modular reconfigurable architecture [7]

Active memory processor [Yoo 2012] [9]

Logic In Memory [Gaillardon 2016]: Fine grained, Technology dependent [4]
Compute cache [Aga 2017] [2]

Near Memory Computing [NeMeCo]
Computation-In-Memory [MNEMOSENE]

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019

8/33

Context

Related work

@ Processing In Memory (PIM) [Gokhale 1995]: Offload computation in the
memory [5]

Intelligent Memory [Kozyrakis 1997] [6]

Smart memory [Mai 2000]: Modular reconfigurable architecture [7]

Active memory processor [Yoo 2012] [9]

Logic In Memory [Gaillardon 2016]: Fine grained, Technology dependent [4]
Compute cache [Aga 2017] [2]

Near Memory Computing [NeMeCo]

Computation-In-Memory [MNEMOSENE]

/O In all cases
@ Memory are slaves

@ No notification feature

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 8/33

What about programmability ?

What about execution granu-
larity?

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 9/33

Outline

e What are Notifying Memories?
@ Application domain
@ Motivational example
@ Notifying Memories Concept
@ Experiments and results

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 10/33

What are Notifying Memories?

Application domain

Network on Chip

Network on Chip

X Long latency
x Sometimes useless for data-flow

x High Energy consumption (up to 40%)

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 11/33

What are Notifying Memories?

Application domain

Network on Chip
[po | P | (P2 P3|

Data-flow application

Network on Chip

X Long latency
X Sometimes useless for data-flow
x High Energy consumption (up to 40%)

Memory request

X processor initiates transactions
x the memory replies

x several times the same data

Kevin J. M. Martin (UBS/Lab-STICC)

Compiling for notifying memories

GPL 2019 11/33

Application domain

Network on Chip

’ Processor FIFO. I lemory
[1 : b
Adapter Adapter
Packet || Packet J Packet |[Packet
MRJIFF L I Maker |lUnmaker!
Scheduler. Scheduler.
Priority manager Priority manager

Netwaork Interface

Network Interface

32 bits

Kevin J. M. Martin (UBS/Lab-STICC)

@ Interconnection network
@ Routers
o Network interface

@ High bandwidth
@ Long latency

@ High energy consumption

Compiling for notifying memories

Application domain

Dynamic Dataflow

Network of actors Dataflow

@ Formal Model Of Computation

@ Explicit spatial and temporal parallelism

@ Static or dynamic actors

o Execute actions (“fire” actions)

@ Firing rule

e Enough tokens in input FIFOs
e Enough space in output FIFOs

Static actors

@ Fixed number of consumed and produced tokens

@ Can be solved at compile time

GPL 2019 13/33

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories

Application domain

Dynamic Dataflow

Network of actors Dataflow

@ Formal Model Of Computation

@ Explicit spatial and temporal parallelism
@ Static or dynamic actors

o Execute actions (*fire” actions)
@ Firing rule

e Enough tokens in input FIFOs
e Enough space in output FIFOs

Dynamic actors

@ Variable number of consumed /produced tokens

@ Must be solved at run time

GPL 2019 14/33

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories

Application domain

Dynamic Dataflow

Execution model

@ 2 memory requests
. i'F- numTokens_F1|>= 1){ per FIFO

Check i IZESR3 ™= numTokensF3 > 2){
Firing rule / @ If no action fired, the
same requests are

made again and again

| Index of writer - index of readers[0]

Software implementation

Index of writer @ NoC Latency = Huge
Index of readers penalty for Polllng

Base address
+4+Size * y
size_of_type Number of readers

Base addresso Content ~
+4
Base address Size

15/33

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019

Motivational example

Motivational example

Unsuccessful scheduling by the MPEG4-SP decoder for different video sequences
and formats

Video Useless Empty Full
Sequence Format attempt input FIFO output FIFO
Akiyo CIF 42.7% 63.7% 36.3%
Parkjoy 720p 21.3% 90.8% 9.2%
Foreman CIF 34.8% 90.7% 9.3%
Coastguard CIF 27.8% 98.4% 1.6%
Stefan CIF 25.9% 83.3% 16.7%
Bridge far QCIF 23.8% 38.4% 61.6%
Ice 4CIF 45.6% 70.4% 29.6%
v

3

| Useless Memory Accesses through + long NoC latency Penalty

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 16/33

Motivational example

Motivational example

Unsuccessful scheduling by the MPEG4-SP decoder for different video sequences
and formats

Video Useless Empty Full
Sequence Format attempt input FIFO output FIFO
Akiyo CIF 42.7% 63.7% 36.3%
Parkjoy 720p 21.3% 90.8% 9.2%
Foreman CIF 34.8% 90.7% 9.3%
Coastguard CIF 27.8% 98.4% 1.6%
Stefan CIF 25.9% 83.3% 16.7%
Bridge far QCIF 23.8% 38.4% 61.6%
Ice 4CIF 45.6% 70.4% 29.6%

| Useless Memory Accesses through + long NoC latency Penalty

I Monitor FIFOs and emit notifications about their status

J

Kevin J. M. Martin (UBS/Lab-STICC)

Compiling for notifying memories

GPL 2019

16/33

Notifying Memories Concept

Observer design pattern (software engineering)
@ Subject: sends the notifications
@ Observer: reacts to notifications

Implementation in the Network Interface (NI)
@ Master component that can send packets through the network
@ Component that can monitor requests
@ Independent from processor, memory, NoC parameters
@ The subject is the memory (becomes master)
@ The listener is the processor (becomes slave)

A\

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 17/33

Notifying Memories Concept

Listener and notifier: new components of Network Interface
@ Notifier on memory side

@ Listener on processor side

Adapter

Packet Packet
Maker Unmaker || |
Scheduler/
Priority manager i

Network Interface
Processor side

Scheduler/
Priority manager
etwork Interface
Memory side

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 18/33

Notifying Memories Concept

The notifier

@ Configuration phase
@ Specify what FIFOs to monitor
© Checking phase
o “Packet sniffer”: retrieves indexes of writers and readers Computes the
number of tokens in a FIFO
© Notification phase
o Provides the packet maker with the target location, identity number,
satisfied firing rule identity number, and the number of available tokens or
free space

Room/

. Firing Rule ID| Actor ID Header
writing index

— P ¢————r¢——>
5 bits 8 bits. 4 bits 4 bits

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 19/833

Notifying Memories Concept

The notifier

Reader_sel

notification

alert
R:reader FS:free space C:firing rule condition N: notified I: index
W:writer T:available tokens s: firing rule satisfied L: location A: actor ID

Kevin J. M. Martin (UBS/Lab-. Compiling for notifying memories

Notifying Memories Concept

The listener

@ Configuration phase
e Specifies what notification to listen to
© Execution phase

o Sets the firing rule validity bit when a notification is caught
o Clears the validity bit when the action is performed

load

Actor ID LUT o1 set/
reset
Firing rule ID ” ';:‘ § E E E - E —t.
> Q": Slos| 5| | & S| psp | K| |4 -
Notification data £ o h T TR
S:status A:actor + *

D: notification data

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 21/33

Experiments and results

Experimental Setup

\[e]®}

4x4 mesh-based SystemC cycle-accurate model

13 processors, 12 memories

Wormhole packet switching, XY routing algorithm
Routers: one arbiter per port, one buffer per input port

Round robin

Application

@ MPEG4-SP (H264) decoder
@ 41 actors, 70 FIFOs

| A\

Mapping
@ Manual mapping, minimize number of hops

@ FIFOs equally distributed in memories

v

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 22/33

Experiments and results

Results

Results of decoding 10 frames of ice video sequence in 4CIF format

Parameter Notifying Ordinary gain
memory memory

Latency (us) 143.42 665.06 -78.44%
Throughput (frames/s) 27.53 23.29 +15.41%
Injection rate(flits/s) 60167732 | 121635294 | -50.53%
Switch conflicts 71182509 | 288574519 | -75.33%
Transported flits 109264000 | 261123000 | -58.16%
Transported packets 15376400 | 107050000 | -85.64%

Kevin J. M. Martin (UBS/Lab-STICC)

Compiling for notifying memories

GPL 2019

23/33

Experiments and results
Results

@ Data packets: tokens
@ Control packets: mapping information, memory requests, notifications

- 2 8]
00 000 000 00000 000 m Ordinary = Notifying
75 000 000 150 000 000
= [t} =
50 000 000 : o N~ 100 000 000 N o
= N N o
o N S 00 ~
o 00 © [} 1%
25000000 - 535 < 50000 000 s =Y
o o o o o
Data Packets ~ Control Packets Data Flits Control Flits
(a) (b)

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 24/33

Experiments and results

Results

@ Control flits classification

1000 000 000

100 000 000

10000 000

1000 000

100 000

10000

1000

100

10

1

Kevin J. M. Martin (UBS/Lab-STICC)

Ordinary Notifying

Compiling for notifying memories

notification
M request/retrieve index
MW set index

mapping info

Experiments and results

Results

Notification memory gain for decoding 10 frames of different video

sequences

Video Throughput | Latency Injection | Switch Flits
Sequence | Format rate conflicts | number
Bridgefar QCIF +15.53% -73,96% | -45,80% | -71,38% | -54,22%
bus CIF +2.84% -73,79% | -53,40% | -72,90% | -54,73%
grandma QCIF +16.79% -68,96% | -60,78% | -85,50% | -67,36%
foreman CIF +14.26% -78,41% | -46,81% | -72,86% | -54,39%
ice 4CIF +15.41% -78,44% | -50,53% | -75,33% | -58,16%

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 26/33

Experiments and results

Preliminary synthesis results

Worst-case implementation

e Same notifier in all memories: able to deal with the 70 FIFOs
e Same listener in all processors: able to deal with the 41 actors

Cadence Encounter RTL Compiler 65nm (500MHz, 25 degC)
Leakage and dynamic power

°
°
@ NoC adopting notifying memories saves 49.1% of energy
@ Power overhead of notifying NoC is 16.3%

o

Area overhead of notifying NoC is 12.4%

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 27/33

Notifying Memories

@ Notifying memories concept [8]

e The memories send notifications to processors
o Notifiers on memory side
o Listeners on processor side

@ SystemC model

o Notifiers and listeners in the Network Interface of the NoC
o New kind of packet : the notification packet

@ Simulation results
o Latency (-78%), injection rate (-60%)
@ Synthesis results

o Worst-case implementation
e +12% area
o -49% energy

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019

28/33

Outline

e Issues and challenges
@ Issues
@ Challenges

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories

Issues and challenges

Issues

Architectural assumptions
@ Distributed memory architecture

@ No cache
@ Network on Chip

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 30/33

Issues and challenges

Issues

Architectural assumptions

@ Distributed memory architecture

@ No cache
@ Network on Chip

v

What about programmability ?

@ Code handly adapted (rewritten)

@ Code handly “partitioned”

@ Code handly mapped

N\

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 30/33

Issues and challenges
Challenges

Need for a compilation tool to automatically generate:
@ Binary code of the application
o Automatic "partitionning”
e Mapping and scheduling?
@ Configurations for notifiers and listeners

@ Rules to check on notifier side
@ Rules to catch on listener side

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 31/33

Conclusion

Breaking memory organisation comes with huge challenges for a

compilation tool
@ How to automatically make use of Notifying Memories?

@ How to automatically "partition” the code?
@ How to automatically configure the rules to check and catch?

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 32/33

Conclusion

Breaking memory organisation comes with huge challenges for a

compilation tool
@ How to automatically make use of Notifying Memories?

@ How to automatically "partition” the code?
@ How to automatically configure the rules to check and catch?

Dataflow features
@ Firing rules are known

@ Isolated in the internal representation

Kevin J. M. Martin (UBS/Lab-STICC) Compiling for notifying memories GPL 2019 32/33

References |

)l
2]

3]

[4]

15]

6]

[7]

18]

9]

‘It's the memory, stupid’: A conversation with Onur Mutlu - Press.

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das.
Compute Caches.
In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 481-492, Feb. 2017.

B. Dally.
Power, Programmability, and Granularity: The Challenges of ExaScale Computing.
In 2011 IEEE International Parallel Distributed Processing Symposium, pages 878-878, May 2011.

P. E. Gaillardon, L. Amaro, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. D. Micheli.
The Programmable Logic-in-Memory (PLiM) computer.
In 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 427—432, Mar. 2016.

M. Gokhale, B. Holmes, and K. lobst.
Processing in memory: the Terasys massively parallel PIM array.
Computer, 28(4):23-31, Apr. 1995.

C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton,
R. Thomas, N. Treuhaft, and K. Yelick.

Scalable processors in the billion-transistor era: IRAM.

Computer, 30(9):75-78, Sept. 1997.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz.

Smart memories: A modular reconfigurable architecture.

In Proceedings of the 27th Annual International Symposium on Computer Architecture, ISCA '00, pages 161-171, New York, NY, USA,
2000. ACM.

K. J. M. Martin, M. Rizk, M. J. Sepulveda, and J.-P. Diguet.

Notifying memories: A case-study on data-flow applications with NoC interfaces implementation.

In 53rd DAC Conf., New York, NY, USA, 2016. ACM.

J. Yoo, S. Yoo, and K. Choi.
Active memory processor for network-on-chip-based architecture.
IEEE Transactions on Computers, 61(5):622—635, May 2012.

M. Martin (UBS/Lab-STICC) Compiling for notifying memories

	Context
	What are Notifying Memories?
	Application domain
	Motivational example
	Notifying Memories Concept
	Experiments and results

	Issues and challenges
	Issues
	Challenges

	Conclusion
	References

