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ABSTRACT

Background: Progression from pre-diabetes to type 2 diabetes (T2D) and from T2D to insulin requirement proceeds at very heterogenous rates
among patient populations, and the risk of developing different types of secondary complications is also different between patients. The diagnosis
of pre-diabetes and T2D solely based on blood glucose measurements cannot capture this heterogeneity, thereby preventing proposition of
therapeutic strategies adapted to individual needs and pathogenetic mechanisms. There is, thus, a need to identify novel means to stratify patient
populations based on a molecular knowledge of the diverse underlying causes of the disease. Such knowledge would form the basis for a
precision medicine approach to preventing and treating T2D according to the need of identified patient subgroups as well as allowing better follow
up of pharmacological treatment.
Scope of review: Here, we review a systems biology approach that aims at identifying novel biomarkers for T2D susceptibility and identifying
novel beta-cell and insulin target tissue genes that link the selected plasma biomarkers with insulin secretion and insulin action. This work was
performed as part of two Innovative Medicine Initiative projects. The focus of the review will be on the use of preclinical models to find biomarker
candidates for T2D prediction and novel regulators of beta-cell function. We will demonstrate that the study of mice with different genetic ar-
chitecture and widely different adaptation to metabolic stress can be a powerful approach to identify biomarkers of T2D susceptibility in humans
or for the identification of so far unrecognized genes controlling beta-cell function.
Major conclusions: The examples developed in this review will highlight the power of the systems biology approach, in particular as it allowed
the discovery of dihydroceramide as a T2D biomarker candidate in mice and humans and the identification and characterization of novel reg-
ulators of beta-cell function.

� 2019 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

A major challenge in the prevention and management of type 2 dia-
betes (T2D) is the poorly understood heterogeneity of the causes of the
disease and of their secondary complications. It is well established that
progression from a healthy state to pre-diabetes and to T2D differs in
kinetics among individuals. For instance, deterioration of T2D, i.e., time
to insulin requirement, proceeds with widely different rates between
patients, as measured, for instance, by the rate of increase in HbA1C
[1]. In addition, it is so far not possible to determine the risk of pro-
gression to, and deterioration of T2D of any individuals. Over recent
years, genetic studies have led to the identification of several hundred
genetic loci associated with increased susceptibility to T2D develop-
ment [2] but taken globally, they only have a marginal role in predicting
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the development of T2D and are not sufficient for personalized pre-
vention or therapeutic strategies [3,4] although genetic studies have
identified susceptibility loci for the development of secondary com-
plications, such as diabetes kidney diseases [5]. Recent evidence has,
nevertheless, been obtained that T2D patients can be stratified ac-
cording to diabetes characteristics and risk of complications [6]. When
six parameters were considered (age at diagnosis, body mass index
(BMI), HbA1C, glutamic acid decarboxylase antibodies, homeostatic
model assessment of insulin resistance (HOMA-IR) or of insulin
secretion (HOMA-B)) cluster analysis revealed the possibility of iden-
tifying five T2D patient subgroups with markedly different combina-
tions of diabetic characteristics and risk of developing kidney disease.
This study thus supports the need to identify additional biomarkers to
improve prediabetes and T2D stratification.
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Established T2D is characterized by insulin resistance of liver, fat and
muscle, and by insufficient insulin secretion by pancreatic beta-cells to
counteract the insulin resistance of target tissues. A recurrent ques-
tion, discussed now for decades, is whether T2D is initiated by primary
defects in insulin sensitivity or in insulin secretion. This question now
appears mundane. Indeed, it is clear now that glucose homeostasis is
regulated by the balance between insulin secretion and insulin action
[7] and that reduced insulin secretion leads to increased insulin
sensitivity, and vice-versa, with the ultimate goal for the system to
maintain normoglycemia. Viewed in this way, it appears obvious that
any physiological defects, which can impair the insulin secretion/in-
sulin action balance, can lead to T2D. From human genetic studies, in
particular monogenic forms of diabetes [8], as well as from countless
mouse models with tissue-specific inactivation of genes involved in
differentiation, metabolic, or signaling pathways, it is recognized that
prediabetes and T2D can originate from mutations in genes expressed
exclusively in insulin target tissues, in beta-cells, but also in the hy-
pothalamus or other brain areas [9]. The original dysfunctional cells
then propagate metabolic alterations to other tissues, through meta-
bolic or inflammatory signals, to eventually induce diabetic hypergly-
cemia. Therefore, it becomes obvious that the current diabetes
therapies, which aim at increasing insulin secretion, at restoring insulin
action, or at triggering renal glucose excretion, in most instances only
address the symptoms rather than the causes of the disease. There is
thus a need to get more mechanistic information about the diverse
forms of T2D to improve patient’s stratification and potentially deliver
“the right treatment to the right patient at the right time”.
Over the recent years, as part of the European Innovative Medicine
Initiative projects IMIDIA (https://www.imidia.org/) and RHAPSODY
(https://imi-rhapsody.eu/), we applied different Systems Biology ap-
proaches to identify circulating biomarkers of pre-diabetes progression
and of T2D deterioration. The overall idea is derived from a prediction
made close to fifty years ago by Linus Pauling, who stated that “In-
formation about the genetic nature of an individual human being, (.),
could be obtained by the thorough quantitative analysis of body fluids.
Moreover, the thorough quantitative analysis of body fluids might
permit differential diagnosis of many diseases in a more effective way
than is possible at the present time.” [10]. We thus postulated that
biomarkers identified from extensive plasma metabolomic, lipidomic,
and peptidomic analysis could help identify individuals at risk of
developing T2D. Furthermore, we postulated that, combined with
pancreatic islet and insulin target tissue transcriptomic as well as
patient clinical information, such biomarkers could also inform us on
defects in insulin secretion and insulin action. This combined infor-
mation could then be used for better diagnostics, drug therapy, and
treatment monitoring as well as for more refined clinical trials. These
projects involve investigations in humans and the study of preclinical
models and the translation of animal studies to human T2D. On the
human side, several pre-diabetes and T2D diabetes cohorts have been
harmonized to generate a federated database that can be interrogated
and analyzed as a single large cohort, containing w50000 patients,
with extensive clinical, genetic and plasma metabolomic data. This is
complemented by the continuous development of a very large human
islet biobank with extensive functional, genetic and transcriptomic data
[11,12]. This global resource provides exceptional capacity for novel
discoveries in the pathogenesis of T2D and for patient stratification
based on clinical, genetic and omics data.
The mouse studies were initiated with the goal of performing com-
plementary studies on the pathogenesis of pre-diabetes and T2D. The
major aims are to find plasma biomarkers predictive of i) the sus-
ceptibility to develop T2D, ii) of beta-cell dysfunction, iii) of insulin
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resistance in liver, adipose tissue or muscle. In addition, we aim at
identifying whether these biomarkers are not only signatures of
deregulated insulin secretion or action but also whether they can cause
these defects and whether we can identify the tissues and metabolic
pathways that produce them; such pathways could then become new
therapeutic targets.
In the present review, we will first, illustrate the mouse studies that we
have performed to identify novel biomarkers of diabetes susceptibility
and validate them in humans [13] and, second, how this approach led
us to uncover the role of a lipid modifying enzyme in protecting beta-
cells against glucolipotoxicity [14,15].

2. HETEROGENOUS METABOLIC ADAPTATION OF INBRED MICE
TO A HIGH FAT, HIGH SUCROSE DIET

Mice fed a high fat, high sucrose (HFHS) diet develop insulin resistance
and obesity, and progressively increase their fasting glycemia and
insulinemia. These are characteristic parameters of pre-diabetes,
which develop at different rates and extents in various inbred strains
of mice [16e21]. Here, we first characterized the adaptation to HFHS
of six inbred strains of mice (C57Bl/6J, AKR/J, Balb/cJ, DBA/2J,
129S2/SvPas, A/J). We measured body weight, basal insulinemia, oral
glucose tolerance tests and oral glucose-stimulated insulin secretion,
fasting glycemia and intraperitoneal insulin tolerance tests, as well as
pancreatic islet alpha and beta-cell areas. These phenotypic mea-
surements were performed at day 2, 10, 30 and 90 after initiation of
HFHS feeding of 8 week-old male mice; mice fed a regular chow for
the same periods of time were used as controls. Pancreatic islets were
prepared from mice from each strain, at each time point, and in the two
feeding conditions; islet transcriptome was then characterized by RNA
sequencing (RNASEq) analysis. Plasma from the same mice were also
collected for quantitative measurements of glycerophospholipids,
sphingolipids, glycerolipids, free cholesterol and cholesteryl esters
totaling w135 lipid species. Figure 1 shows that these six strains of
mice display marked differences in body weight gain, glucose toler-
ance, and basal and stimulated insulinemia. For instance, DBA/2J mice
showed the fastest and highest body weight increase whereas C57Bl/
6J mice showed only moderate body weight gain. HFHS diet induced a
very strong glucose intolerance in Balb/cJ mice with no change in
basal insulinemia, whereas DBA/2J mice displayed lower increase in
glucose intolerance with a strong up-regulation of basal insulinemia.
Thus, these different mouse strains show very different interactions
between nutrition and genetic background in their susceptibility to
develop glucose homeostasis dysregulations with diverse insulin
secretion and insulin resistance defects. We therefore took advantage
of this phenotypic diversity to: 1) search for plasma lipids that correlate
with specific diabetic parameters across strains and conditions as an
approach to identify biomarkers of diabetes susceptibility; 2) search for
islet gene expression modules (groups of genes that behave in a co-
ordinate manner) and specific genes that correlate with glycemia and
insulin secretion to identify novel regulators of beta-cell function.
Highlight: Mice with different genetic architectures display highly
divergent adaptation to the same metabolic stress. They are therefore
useful models to investigate plasma biomarkers predictive of, and
gene pathways causing susceptibility to, type 2 diabetes development.

3. IDENTIFICATION OF DIHYDROCYERAMIDES AS DIABETES
SUSCEPTIBILITY BIOMARKERS

Quantitative plasma lipidomic data obtained from the mice described
in Figure 1 revealed that the lipid profiles were influenced by diet but
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Impact of HFD and age on metabolic parameters. Mice of the indicated strains were fed a regular chow (RC) or a high fat high sucrose diet (HFHS) for the indicated
periods of time. They were then phenotyped as detailed in [14]. Boxplots show differences between HFHS (yellow) and RC (green) diet in the 6 mouse strains over time for (A) Body
weight (g), (B) AUC glycemia measured during the glucose tolerance test (OGTT), (C) Basal insulinemia (ng/ml) measured at the start of the OGTT, and (D) Stimulated Insulinemia
(ng/ml) measured at 15 min following glucose administration. Statistical significance between HFHS and RC at each time-point was measured using the two-sided Student’s t-test
and p-values were corrected for multiple comparisons using the Benjamini Hochberg FDR method. Statistically significant comparisons following FDR correction (FDR 0.05) are
indicated by a double asterisk. Marginally significant comparisons (raw p-value 0.05) are indicated by a single asterisk. Figure reproduced from [14].
also by the mouse genetic background [13]. Correlation of lipids with
phenotypic traits yielded the network shown in Figure 2. This analysis
revealed interesting correlation of three ceramides (Cer(d18:1), one
dihydroceramide (Cer(d18:0), and two lactosyl ceramides (Lac-
Cer(d18:1)) with glucose intolerance and insulin secretion. The
evolution of the concentrations of these lipid species over time with
HFHS feeding was dependent on the mouse genetic strains, with
most plasma lipid concentrations usually increasing with time in all
mouse strain. One exception was the Balb/cJ mice which showed the
highest initial plasma ceramide (Cer(d18:1; 22:0)) concentration. As
this mouse strain is the most sensitive to HFHS -induced diabetes
(Figure 1), this suggests that the plasma level of this ceramide may
indeed by associated with increased susceptibility to diabetes
development. Overall, these mouse studies showed the highest
correlation among the measured lipid species with pre-diabetes
development in mice.
Testing the translatability of this observation to humans was made
possible by the availability plasma samples collected from population-
based human cohorts, which have been followed for several years and
which have a large number of incident diabetes case. One cohort is
DESIR [22], which included volunteers between 30 and 65 years who
were healthy at the time of recruitment, and who have been followed
on three occasions at 3 years intervals. Between 50 and 80 incident
cases have been diagnosed at each of year 3, 6, and 9 after
MOLECULAR METABOLISM 27 (2019) S147eS154 � 2019 Published by Elsevier GmbH. This is an open a
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recruitment. The second replication cohort was CoLaus [23], a
population-based cohort of approximately 6000 individuals followed
for 5 years, at which time approximately 120 incident cases had been
diagnosed. Plasma from an equivalent number of incident cases and
individuals that remained diabetes-free for the period of observations
were analyzed by targeted sphingolipid analysis. Figure 3 shows the
results obtained with the DESIR cohort. All individuals who developed
T2D at either year 3, 6 or 9, had levels of dihydroceramides that were
significantly higher as those of the control individuals from the time of
recruitment. Of note, these levels remained stable over time, sug-
gesting that plasma dihydroceramides are not elevated secondary to
glucose homeostasis deregulations but may precede them. The exact
species that are significantly increased in prospective cases are shown
in the volcano plots of Figure 3B. The same increase in plasma
dihydroceramides was observed in prospective cases of the CoLaus
study [13]. Statistical analysis of these data showed that these dihy-
droceramides are associated with increased risk of future diabetes,
even when the data are corrected for age, sex, BMI or fasting glucose.
Thus, dihydroceramides are potential biomarker candidates for dia-
betes susceptibility.
Previous studies have linked increased circulating ceramide levels with
various metabolic diseases, with a negative impact on beta-cells, adi-
pose tissue, and heart [24e30]. Dihydroceramides, which are produced
at the third step of the de novo ceramide synthesis pathway before being
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). S149
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Figure 2: Ceramides are correlated to glucose intolerance and insulin sensitivity in metabolically challenged mouse strains. Lipid-trait network showing plasma lipid
correlations with five measured phenotypic traits. Correlations are represented as edges between lipid nodes and trait nodes. Only correlations with absolute value R > 0.4 are
shown. Each trait node is depicted as a different color, and edges are colored according to the correlated trait. Edge width is proportional to correlation strength. Solid edge lines
indicate positive correlations; dashed lines indicate negative correlations. Node label size is proportional to degree (total number of connections). Ceramide lipids that were chosen
for further investigation based on their correlations to several mouse traits are boxed in red. Figure reproduced from [13].
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converted to ceramides by ceramide desaturases (Des1 or Des2) [27],
have been considered as inactive sphingolipid species. However, more
recently they have been shown to have potential negative impact on
cellular viability by regulating autophagy, reactive oxygen production,
cell proliferation and apoptosis [31e34]. Mutations in Des1 leads to
cellular accumulation of dihydroceramides and, in humans, cause
hypomyelinating leukodystrophy [35]. Dihydroceramides have also
been associated with reduced insulin sensitivity [36], obesity [37] and
other metabolic diseases [37e39]. Clearly, more needs to be learned
about the regulation of dihydroceramides, and whether their increased
plasma concentrations lead to specific cellular alterations that may drive
deregulated glucose homeostasis.
The above data also demonstrate that exploiting the genetic variability
of different inbred strains of mice and their differential response to
metabolic stress can be used for the identification of circulating bio-
markers that are also relevant to predict disease susceptibility in
humans. The interest of using animal models is the possibility to
experimentally test whether the identified plasma biomarkers correlate
with, and possibly cause, specific gene expression deregulations in
pancreatic islets or in insulin target tissues. If this can be achieved,
determining which tissue produces such biomarkers and which
enzymatic step(s) is/are involved in generating them becomes
possible. These enzymes could then form novel targets to prevent or
treat diabetes.
Highlight: Increased plasma dihydroceramides have been identified in
preclinical studies to be associated with prediabetes development. In
humans, they have been found to be elevated compared to healthy
individuals up to nine years before T2D diagnosis. Dihydroceramides
are T2D susceptibility biomarkers.
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4. ELOVL2 AS A NOVEL REGULATOR OF GLUCOSE-
STIMULATED INSULIN SECRETION

Pancreatic islets were isolated from the mouse strains and feeding
conditions mentioned above (Figure 1) and their RNA was extracted
for transcript profiling. Weighted correlation gene network analysis
was then performed [40] to identify groups of islet genes (gene
expression modules) that correlated with the measured phenotypes
[14]. Figure 4A shows that gene modules were identified that
showed various positive and negative correlations with the phe-
notypes. The gene modules are labeled with arbitrarily chosen color
names. We focused our analysis on the blue-violet module, which
shows a strong negative correlation with insulin secretion (insulin
area under the curve (AUC)) and glucose intolerance (AUC glycemia
in an oral glucose tolerance test). Figure 4B shows a scatter plot of
all genes of the blue-violet module distributed according to their
correlation with AUC glycemia and module membership (correlation
to the module eigenegenes). Genes with the strongest correlations
to both the module (Spearman’s jRj � 0.5) and to AUC glycemia
(Spearman’s jRj � 0.4) were then used to generate a network of
genes related to glucose tolerance (Figure 4C). Two prominent,
highly connected genes in this network were Sfrp4, negatively
correlated with AUC glycemia, and Elovl2 (elongase of very long
chain fatty acids 2) which was positively correlated with glucose
intolerance. Regarding insulin secretion in response to glucose,
Sfrp4 was negatively correlated to the AUC insulinemia whereas
Elovl2 was positively correlated. This finding is in line with previous
findings showing that Sfrp4 is a negative regulator of insulin
secretion [41]. Elovl2 is involved in the elongation of n-3 fatty acids
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: Mean lipid concentration of dihydroceramides are significantly elevated at all time points in the DESIR Study.
(A) Mean plasma concentrations of dihydroceramides plotted over time. The left two plots show the individual lipid species Cer(d18:0/22:0) and Cer(d18:0/24:0). The rightmost plot
represents the class for total Cer(d18:0) species. The group means are consistently higher in diabetes cases as compared to control samples. x axis: time point of collection. y axis:
mean lipid concentration in each of the groups. Error bars: SEM of the lipid concentration. Asterisks at each time point represent significance of the statistical test comparing cases
to controls (age- and sex-corrected linear model): *adjusted p < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001 (p values adjusted for multiple correction across 37 lipids by the
Benjamini-Hochberg method). (B) Volcano plots of statistical tests comparing 37 lipid species in each group of diabetic subjects versus the control samples from the same sample
collection period (linear model, containing factors for sex and age). The plots shown are from DESIR group of individuals tested 9, 6, and 3 years before diabetes diagnostic.
Figure reproduced from [13].
and leads to increased production of docosahexaenoic acid (DHA)
[42]. Silencing Elovl2 expression in mouse and human insulin cell
lines markedly reduced glucose-stimulated insulin secretion
(Figure 4D). Elovl2 also protected beta-cells against
glucolipotoxicity-induced apoptosis and the loss of protection
induced by Elovl2 silencing could be rescued by addition of DHA in
rodent and human beta cells [15]. Interestingly, the inhibition of
MOLECULAR METABOLISM 27 (2019) S147eS154 � 2019 Published by Elsevier GmbH. This is an open a
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beta cell apoptosis by the Elovl2/DHA axis was associated with a
decrease in ceramide content. This effect was linked to an increase
in palmitate oxidation, as demonstrated by its attenuation by in-
hibition of carnitine palmitoyltransferase 1, the rate-limiting enzyme
in fatty acid b-oxidation [15]. Finally, these results formally iden-
tified Elovl2 as a critical pro-survival enzyme for preventing beta
cell death and dysfunction induced by glucolipotoxicity.
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Figure 4: A gene co-expression module correlated to insulin secretion and oral glucose intolerance. (A) Heat map showing correlations between module eigengenes and
mouse phenotypic traits: darker colors indicate higher Spearman correlation. The red box indicates the correlations corresponding to the blue-violet module. (B) Scatter plot of AUC
glycemia correlation against module membership (correlation to module) for all genes of the blue-violet module. Genes with the strongest correlations to both the module and to
AUC glycemia are highlighted by red points. Elovl2 is indicated by a yellow diamond. (C) Network generated from the selected module genes. Node size is proportional to degree
and node color indicates correlation to AUC glycemia (blue: negative correlation; red: positive correlation). Edges (connections) between nodes indicate correlation between genes
(blue: negative; red: positive). Elovl2 and Sfrp4 are indicated in the network. (D) Effects of Elovl2 loss of function on glucose-stimulated insulin secretion in the human EndoC-bH1
cell line. Left: Elovl2 mRNA silencing; middle: insulin secretion expressing in ng/ml; right: insulin secretion as % of content. Values are mean (�SE) of three independent ex-
periments. ***p < 0.001; **p < 0.01; *p < 0.05. Panels reproduced from [13].
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5. CONCLUSIONS

The studies described above support the hypothesis that comparing the
adaptation to metabolic stress, over several early time points, of multiple
mouse lines with different genetic architectures is a powerful approach to
identifying circulating biomarkers of diabetes susceptibility and genes
whose deregulation may cause impaired insulin secretion or insulin ac-
tion. In addition, we showed that this information can be translated to
humans. This was shown for the dihydroceramides and their potential role
as biomarkers for susceptibility to T2D. The role of Elovl2, which is
required for the production of DHA, has now been well established, and
silencing this gene in both mouse and human insulin cells leads to
reduced glucose-stimulated insulin and increased susceptibility to
glucolipotoxicity-induced apoptosis. Therefore, these animal studies are
complementary to the study of human cohorts where clinical, genetic, and
omics data can be combined to improve T2D patient stratification [6].
These complementary approaches have the potential to establish better
treatment options for patient subgroups. An additional advantage of the
mouse studies is the possibility to test whether the identified plasma
biomarkers have not only predictive value on disease progression but also
a have a direct impact on either beta-cell function or insulin action on liver,
adipose tissue or muscle. If such direct effects of biomarkers on cellular
function can be evidenced, then identification of the tissue and metabolic
S152 MOLECULAR METABOLISM 27 (2019) S147eS154 � 2019 Published by Elsevier GmbH. This is
pathway that generate such biomarkers can provide new therapeutic
targets. Furthermore, identification of specific metabolic, differentiation,
or signaling pathways in beta-cells or insulin target tissues inmice, which
when deregulated can lead to T2D, may be confirmed to be relevant to
human diabetes using the wealth of clinical, genetic, and omics data
available through the mentioned IMI2 project. This should lead to
refinement of patient stratification according to risk of disease develop-
ment but also to the underlying molecular pathogenic mechanisms. The
hope is to develop improved precision medicine for T2D.
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