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The Symmetric Tensor Approximation problem (STA) consists of approximating a symmetric tensor or a homogeneous polynomial by a linear combination of symmetric rank-1 tensors or powers of linear forms of low symmetric rank. We present two new Riemannian Newton-type methods for low rank approximation of symmetric tensor with complex coefficients.

The first method uses the parametrization of the set of tensors of rank at most r by weights and unit vectors. Exploiting the properties of the apolar product on homogeneous polynomials combined with efficient tools from complex optimization, we provide an explicit and tractable formulation of the Riemannian gradient and Hessian, leading to Newton iterations with local quadratic convergence. We prove that under some regularity conditions on non-defective tensors in the neighborhood of the initial point, the Newton iteration (completed with a trust-region scheme) is converging to a local minimum.

The second method is a Riemannian Gauss-Newton method on the Cartesian product of Veronese manifolds. An explicit orthonormal basis of the tangent space of this Riemannian manifold is described. We deduce the Riemannian gradient and the Gauss-Newton approximation of the Riemannian Hessian. We present a new retraction operator on the Veronese manifold.

We analyze the numerical behavior of these methods, with an initial point provided by Simultaneous Matrix Diagonalisation (SMD). Numerical experiments show the good numerical behavior of the two methods in different cases and in comparison with existing state-of-the-art methods.

Introduction

A symmetric tensor T of order d and dimension n in

T d (C n ) = C n ⊗ • • • ⊗ C n = T d
n is a special case of tensors, where its entries do not change under any permutation of its d indices. We denote their set by S d (C n ) = S d n . The symmetric tensor decomposition problem consists of decomposing a symmetric tensor T ∈ S d n into a linear combination of symmetric tensors of rank one i.e.

T = r i=1 w i v i ⊗ ... ⊗ v i d times , w i ∈ C, v i ∈ C n (1) 
For a multilinear tensor, its minimal decomposition as a sum of tensor products of vectors is called the Canonical Polyadic Decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF]. We have a correspondence between S d n and the set of homogeneous polynomials of degree d in n variables denoted C[x 1 , . . . , x n ] d =: C[x] d . Using this correspondence, (1) is equivalent to express the homogeneous polynomial p associated to T as a sum of powers of linear forms, which is by definition the classical Waring decomposition i.e.

p = r i=1 w i (v i,1 x 1 + • • • + v i,n x n ) d , w i ∈ C, v i ∈ C n (2) 
The smallest r such that this decomposition exists is by definition the symmetric rank of p denoted by rank s (p). Let d ≥ 3. The generic symmetric rank denoted by r g , is given by the Alexander-Hirschowitz theorem [START_REF] Alexander | Polynomial interpolation in several variables[END_REF] as follows:

r g = 1 n n+d-1 d
for all n, d ∈ N, except for the following cases: (d, n) ∈ { [START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF], [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF], [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF], [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF]}, where it should be increased by 1. We say that T is of subgeneric rank, if its rank rank s (T ) = r in ( 2) is strictly lower than r g . In this case, a strong property of uniqueness of the Waring decomposition holds [START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF], and the symmetric tensor T is called identifiable, unless in three exceptions which are cited in [START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF]Theorem 1.1], where there are exactly two Waring decompositions. This identifiability property forms an important key strength of the Waring or equivalently the symmetric tensor decomposition. It can explain why this decomposition problem appears in many applications for instance in the areas of mobile communications, in blind identification of under-determined mixtures, machine learning, factor analysis of k-way arrays, statistics, biomedical engineering, psychometrics, and chemometrics. See e.g. [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF][START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Smilde | Multi-way Analysis with Applications in the Chemical Sciences[END_REF][START_REF] Khouja | Tensor decomposition for learning Gaussian mixtures from moments[END_REF] and references therein. The decomposition of the tensor is often used to recover structural information in the application problem.

The Symmetric Tensor Approximation problem (STA) consists of finding the closest symmetric tensor to a given symmetric tensor T ∈ S d n , of low symmetric rank. Equivalently, for a given r ∈ N * , it consists of approximating a homogeneous polynomial p associated to a symmetric tensor T by an element in Σ r , where Σ r = {q ∈ C[x] d | rank s (q) ≤ r}, i.e.

(STA) min Since in many problems, the input tensors are often computed from measurements or statistics, they are known with some errors on their coefficients and computing an approximate decomposition of low rank often gives better structural information than the exact or accurate decomposition of the approximate tensor [START_REF] Allman | Identifiability of parameters in latent structure models with many observed variables[END_REF][START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF][START_REF] Garcia | Algebraic geometry of Bayesian networks[END_REF].

For matrices, the best low rank approximation can be computed via Singular Value Decomposition (SVD). Higher Order Singular Value Decomposition (HOSVD) has been investigated to compute a multilinear rank approximation of a tensor [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Lathauwer | On the best rank-1 and rank-(R 1 , R 2 , . . ., R n ) approximation of higher-order tensors[END_REF][START_REF] Vannieuwenhoven | A new truncation strategy for the higher-order singular value decomposition[END_REF], this, in contrast to the matrix case, does not give the best multilinear rank approximation (see for instance inequality [START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF] in [START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF]).

A classical approach for computing an approximate tensor decomposition of low rank is the so-called Alternating Least Squares (ALS) method. It consists of minimizing the distance between a given tensor and a low rank tensor by alternately updating the different factors of the tensor decomposition, solving a quadratic minimization problem at each step. See e.g. [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition[END_REF][START_REF] Chen | Maximum block improvement and polynomial optimization[END_REF][START_REF] Harshman | Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF]. This approach is well-suited for tensor represented in T d n but it looses the symmetry property in the internal steps of the algorithm. The space in which the linear operations are performed is of large dimension n d compared to the dimension n+d-1 d of S d n when n and d grow. Moreover the convergence is slow [START_REF] Espig | On the convergence of alternating least squares optimisation in tensor format representations[END_REF][START_REF] Uschmajew | Local convergence of the alternating least squares algorithm for canonical tensor approximation[END_REF].

Other iterative methods such as quasi-Newton methods have been considered for low rank tensor approximation problems to improve the convergence speed. See for instance [START_REF] Hayashi | A new algorithm to solve Parafac-model[END_REF][START_REF] Paatero | The multilinear Engine-A Table-Driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model[END_REF][START_REF] Phan | Low complexity damped Gauss-Newton algorithms for CANDECOMP/PARAFAC[END_REF][START_REF] Savas | Quasi-Newton methods on Grassmannians and multilinear approximations of tensors[END_REF][START_REF] Sorber | Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(l r , l r , 1) terms, and a new generalization[END_REF][START_REF] Tomasi | A comparison of algorithms for fitting the PARAFAC model[END_REF]. A Riemannian Gauss-Newton algorithm with trust region scheme was presented in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF], to approximate a given real multilinear tensor by one of low rank. The Riemannian optimization set is a Cartesian product of Segre manifolds (i.e. manifolds of real multilinear tensors of rank one). The retraction on the Segre manifold, called ST-HOSVD, is based on sequentially truncated HOSVD [START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF][START_REF] Hackbusch | Tensor Spaces and Numerical Tensor Calculus[END_REF][START_REF] Vannieuwenhoven | A new truncation strategy for the higher-order singular value decomposition[END_REF]. Moreover, an algorithm, called hot restarts, was introduced in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF] to avoid ill-conditioned decompositions. Closely related to these iterative methods, the condition number of join decompositions such as tensor decompositions is studied in [START_REF] Breiding | The condition number of join decompositions[END_REF].

Optimization techniques based on quasi-Newton iterations for block term decompositions of multilinear tensors over the complex numbers have also been presented in [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF][START_REF] Sorber | Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(l r , l r , 1) terms, and a new generalization[END_REF]. In [START_REF] Savas | Quasi-Newton methods on Grassmannians and multilinear approximations of tensors[END_REF] quasi-Newton and limited memory quasi-Newton methods for distance optimization on products of Grassmannian manifolds are designed to deal with the Tucker decomposition of a tensor and applied for a low multilinear rank tensor approximation. In all these approaches, an approximation of the Hessian is used to compute the descent direction, and the local quadratic convergence cannot be guaranteed.

Specific investigations have been developed, in the case of best rank-1 approximation. The problem is equivalent to the optimization of a polynomial on the product of unitary spheres (see e.g. [START_REF] Lathauwer | On the best rank-1 and rank-(R 1 , R 2 , . . ., R n ) approximation of higher-order tensors[END_REF][START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF]). Global polynomial optimization methods can be employed over the real or complex numbers, using for instance convex relaxations and semidefinite programming [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF]. However, the approach is facing scalability issues in practice for large size tensors.

In relation with polynomial representation and multivariate Hankel matrix properties, another least square optimization problem is presented in [START_REF] Nie | Low rank symmetric tensor approximations[END_REF], for low rank symmetric tensor approximation. Good approximations of the low rank approximation are obtained for small enough perturbations of low rank tensors. More recently, a method for decomposing real evenorder symmetric tensors, called Subspace Power Method (SPM), has been proposed in [START_REF] Kileel | Subspace power method for symmetric tensor decomposition and generalized PCA[END_REF]. It is based on a power method associated to the projection on subspaces of eigenvectors of the Hankel operators and has a linear convergence.

Contributions

In this paper, we present two new Riemannian Newton-type methods for the low rank approximation problem (STA) for symmetric tensors with complex coefficients.

The first method uses the parametrization of the set of tensors of rank at most r by weights and vectors on the unit sphere. Exploiting the properties of the apolar product on homogeneous polynomials combined with efficient tools from complex optimization, we provide an explicit and tractable formulation of the Riemannian gradient and Hessian, leading to Newton iterations with local quadratic convergence. We prove that under some regularity conditions on non-defective tensors in the neighborhood of the initial point, the iteration (completed with a trust-region scheme) is converging to a local minimum.

The second method is a Riemannian Gauss-Newton method on the Cartesian product of Veronese manifolds. We describe an explicit orthonormal basis of the tangent space of this Riemannian manifold. We use this basis to obtain the Riemannian gradient and the Gauss-Newton approximation of the Riemannian Hessian. We present an approximation method for a given homogeneous polynomial in C[x] d into linear form to the d th power, based on the rank-1 truncation of the SVD of Hankel matrix associated to the homogeneous polynomial. From this approximation method, we propose a new retraction operator on the Veronese manifold. We point out that the Riemannian Gauss-Newton iteration on the Cartesian product of Segre manifolds presented in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF] is related to our approach in the sense that the design of the algorithm depends mainly on the geometry of the targeted manifold (Segre manifold in the multilinear case, Veronese manifold in the symmetric case) and its tangent space. In this context, the Riemannian Gauss-Newton iteration that we describe is adapted to the symmetric setting by considering the reduced vector space C[x] d and by exploiting the apolar identities. In our approach we consider symmetric tensors with complex coefficients. The constraint set is parameterized via the complex Veronese manifolds, which leads us to a complex optimization problem with geometric constraints, and this, to the best of our knowledge, has not been addressed previously in tensor approximation.

We analyze the numerical behavior of these methods, choosing for the initial point the approximate decomposition provided by the Simultaneous Matrix Diagonalisation (SMD) of a pencil of Hankel matrices [START_REF] Harmouch | Structured low rank decomposition of multivariate Hankel matrices[END_REF][START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]. Numerical experiments show the good numerical behavior of the new methods for the best rank-1 approximation of real-valued symmetric tensors, for low rank approximation of sparse symmetric tensors, and against perturbations of symmetric tensors of low rank. Comparisons with existing state-of-the-art methods corroborate this analysis.

Outline

The paper is structured as follows. In section 2 we give the main notation and preliminaries. In section 3, we describe the set of non-defective rank-r symmetric tensors. In subsection 4.1, we formulate the STA problem as a Riemannian least square optimization problem using the parametrization by weights and unit vectors. We compute explicitly the Riemannian gradient vector and the Hessian matrix in subsection 4.1.1 (the proofs are in Appendix A) and describe the retraction in subsection 4.1.2. In subsection 4.2, we describe the Riemannian Gauss-Newton method on the product of Veronese manifolds. We present in subsection 4.2.1 a new retraction operator on the Veronese manifold with its analysis. In subsection 4.3, we recall the trust-region extension scheme, and prove under some regularity assumptions the convergence of the exact Riemannian Newton method with trust region steps to a local minimum of the distance function. Numerical experiments are featured in section 5. The final section is for our conclusions and outlook.

Notation and preliminaries

We use similar notation as in [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]. We denote by 

T d n = T d (C n ) = C n ⊗ • • • ⊗ C n the
:= (x 1 , . . . , x n ) is the vector of the variables x 1 , . . . , x n , α = (α 1 , . . . , α n ) is a vector of the multi-indices in N n , |α| = α 1 + • • • + α n , p α ∈ C, x α := x α 1 1 . . . x αn n and d α := d! α 1 !.
..αn! . The superscripts . t , . * and . -1 are used respectively for the transpose, Hermitian conjugate, and the inverse matrix. Let A ∈ C n×n , we denote by √ A a matrix B ∈ C n×n such that A = B 2 . The complex conjugate is denoted by an overbar, e.g., w. We use parentheses to denote vectors e.g. W = (w i ) 1≤i≤r , and the square brackets to denote matrices e.g. V = [v i ] 1≤i≤r where v i are column vectors. The concatenation of vectors v 1 , v 2 , . . . is denoted (v 1 ; v 2 ; . . .).

Definition 2.1. For p = |α|=d d α p α x α and q = |α|=d d α q α x α in C[x] d , their apolar product is p, q d := |α|=d d α pα q α .
The apolar norm of p is

||p|| d = p, p d = |α|=d d α pα p α .
The following properties of the apolar product can be verified by direct calculus:

Lemma 2.2. Let l = (v 1 x 1 + • • • + v n x n ) d := (v t x) d ∈ C[x] d where v = (v i ) 1≤i≤n is a vector in C n , q ∈ C[x] (d-1)
, we have the following two properties:

1. l, p d = p(v), p, l d = p(v), 2. p, x i q d = 1 d ∂ x i p, q d-1 , x i q, p d = 1 d q, ∂ x i p d-1 , ∀1 ≤ i ≤ n.

The set of non-defective rank-r symmetric tensors

Let Σ r ⊂ S d n be the set of symmetric tensors of symmetric rank at most r. A symmetric tensor t ∈ Σ r is the sum of d th powers

t = r i=1 (v t i x) d , for v i ∈ C n . (3) 
It is a point in the image of the following map:

ψ r : C n×r := C n × • • • × C n -→ C[x] d [v i ] 1≤i≤r -→ ψ r ((v i ) 1≤i≤r ) = r i=1 (v t i x) d .
The d th power (v t i x) d with v i = 0 are symmetric tensors of rank-1, which are on the so-called Veronese manifold.

Definition 3.1. Let ψ : C n → C[x] d , v → (v t x) d = |α|=d d α v α x α . The Veronese manifold in C[x] d denoted by V n,d is the set of linear forms in C[x] 1 -{0} to the d th power. It is the image of C n -{0} by ψ.
The Veronese variety studied in algebraic geometry is the algebraic variety of the projective space P s n,d -1 associated to V n,d , where s n,d = dim C[x] d [START_REF] Harris | Algebraic Geometry: A First Course[END_REF][START_REF] Zak | Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs[END_REF][START_REF] Landsberg | Tensors: Geometry and Applications[END_REF]. The tangent space of V n,d at a point p = (v t x) d is the vector space spanned by

x 1 (v t x) d-1 , . . ., x n (v t x) d-1 , that is the linear space T p (V n,d ) = {(u t x)(v t x) d-1 | u ∈ C n }.
The Zariski closure Σ r of Σ r is called the (r -1)th-secant variety of the Veronese variety. For r > 1, the algebraic variety Σ r is not smooth and contrarily to the case of matrices, singular points of Σ r can have a rank > r, as shown in the following example. For Proposition 5.6]. To avoid these singularities, we will restrict our theoretical analysis to points of Σ r where the map ψ r is a local embedding, since in the vicinity of singularities, the best low rank approximation problem is ill-posed (as shown by the previous example). The map ψ r is a local

d > 2, p = (v t 0 x)(v t 1 x) d-1 ∈ C[x] d with v 0 = v 1 ∈ C n is in the (Zariski) closure of Σ 2 since (v t 0 x)(v t 1 x) d-1 = lim δ→0 1 d δ (((v 1 + δv 0 ) t x) d -(v t 1 x) d ) but its symmetric rank is d > 2 [37,
embedding at y = [v i ] 1≤i≤r ∈ C n×r iff Jψ r (y) = d [x 1 (v t 1 x) d-1 , . . . , x n (v t 1 x) d-1 , . . . , x 1 (v t r x) d-1 , . . . , x n (v t r x) d-1 ]
is of rank n r. , where r g is the generic symmetric rank (except for (d, n) ∈ {(3, 5), (

} or d = 2) by Alexander-Hirschowitz theorem [START_REF] Alexander | Polynomial interpolation in several variables[END_REF]. Using "Terracini's lemma" (see e.g. [40, Lemma 5.3.1.1]), we have that Σ reg r is a dense open subset of Σ r iff the dimension of Σ r is the expected dimension n r. In this case, Σ r is also said to be non-defective. Alexander and Hirschowitz [START_REF] Alexander | Polynomial interpolation in several variables[END_REF] proved that Σ r is non-defective when r < r g (the exceptional defective cases for d > 2 being (d, n, r) ∈ {(3, 5, 7), [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF], [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Allman | Identifiability of parameters in latent structure models with many observed variables[END_REF], (4, 5, 14)}).

It is also known that for r < r g , generic tensors of ψ r have a unique decomposition, i.e. a unique inverse image by ψ r up to permutations, except for (d, n, r) ∈ {(6, 2, 9), [START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF][START_REF] Khouja | Tensor decomposition for learning Gaussian mixtures from moments[END_REF], [START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF][START_REF] Allman | Identifiability of parameters in latent structure models with many observed variables[END_REF])}, see [START_REF] Chiantini | On generic identifiability of symmetric tensors of subgeneric rank[END_REF]Theorem 1.1].

Riemannian optimization for the STA problem

In this section, we use the framework of Riemannian optimization [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] to solve the STA problem. See also [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF][START_REF] Hackbusch | Tensor Spaces and Numerical Tensor Calculus[END_REF][START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF] for real multilinear tensors. We develop a Riemannian Newton algorithm and a Riemannian Gauss-Newton algorithm exploiting the properties of symmetric tensors to obtain explicit and simplified formulation. We consider distance minimization problems for symmetric tensors with complex decompositions for both algorithms. Riemannian optimization methods are solving optimization problems over a Riemannian manifold M [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. Given p ∈ S d n ∼ C[x] d , we consider hereafter the following least square minimization problem min

y∈M f (y) (4) 
where f : M → R is half the square distance function to p i.e. f (y) = 1 2 F (y) 2 d with F (y) = Φ r (y) -p, such that Φ r : M → C[x] d is a parametrization map of Σ r the set of symmetric tensors of symmetric rank bounded by r, and M is a Riemannian manifold. A Riemannian optimization method for solving (4) requires a Riemannian metric. Since we will assume that M is embedded in some space R M , we will take the metric induced by the Euclidean space R M .

We propose to parametrize Σ r , first via weights and unit vectors. We describe an exact Riemannian Newton method for this formulation in subsection 4.1. Secondly, we parametrize Σ r via sums of the d th power of linear forms that is as sums of tensors in V n,d . We develop a Riemannian Gauss-Newton method for this formulation in subsection 4.2. A dogleg trust-region scheme in subsection 4.3 is added to the two algorithms.

Recall that a Riemannian Newton method for solving (4) [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Chapter 6] consists of starting with an initial guess y 0 ∈ M and generating a sequence y 1 , y 2 , . . . in M, with respect to the following process:

y k+1 ← R y k (η k ) with Hess f (y k )[η k ] = -grad f (y k ); (5) 
where grad f (y k ) and Hess f (y k ) are respectively the Riemannian gradient and Hessian of f at y k on M, and R y k : T y k M → M is a retraction operator from the tangent space T y k M to M. A Riemannian Gauss-Newton method [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Chapter 8] is a Riemannian quasi-Newton method where the Riemannian Hessian in ( 5) is replaced by (DF (y k )) * • (DF (y k )), namely the Gauss-Newton approximation of the Hessian.

The properties of a retraction map are described hereafter:

Definition 4.1. [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF][START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF] Let M be a manifold and y ∈ M. A retraction R y is a map T y M → M, which satisfies the following properties :

1. R y (0 y ) = y; 2.
there exists an open neighborhood U y ⊂ T y M of 0 y such that the restriction on U y is well-defined and a smooth map; 3. R y satisfies the local rigidity condition DR y (0 y ) = id TyM , where id TyM denotes the identity map on T y M.

We will also use the following property which is straightforward to show: Lemma 4.2. Let M 1 , . . . , M r be manifolds,

y i ∈ M i and M = M 1 × • • • × M r and y = (y 1 , . . . , y r ) ∈ M. Let R i : T y i M i → M i be retractions. Then R y : T y M → M defined as follows: R y (ξ 1 , . . . , ξ r ) = (R y 1 (ξ 1 ), . . . , R yr (ξ r )) for ξ i ∈ T y i M i , 1 ≤ i ≤ r, is a retraction on M.

Riemannian Newton method for STA

We normalize the decomposition (3) by choosing unit vectors for v i and positive weights. Namely, we decompose a symmetric tensor p ∈ Σ r as p = r i=1 w i (v t i x) d with w i ∈ R * + and ||v i || = 1, for 1 ≤ i ≤ r; by normalizing v i and multiplying by w i := ||v i || d if v i is not a unit vector. The vector (w i ) 1≤i≤r in this decomposition is called "the weight vector", and is denoted by W . Let V = [v i ] 1≤i≤r ∈ C n×r be the matrix of the normalized vectors.

The objective function expressed in terms of these weights and unit vectors is given by

f (W, V ) = 1 2 ||F (W, V )|| 2 d , with F (W, V ) = r i=1 w i (v t i x) d -p.
The function f is a real valued function of complex variables; such function is non-analytic, because it cannot satisfy the Cauchy-Riemann conditions [START_REF] Remmert | Theory of Complex Functions[END_REF]. To apply the Riemannian Newton method, we need the second order differentials of f . As discussed in [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF], we overcome the non-analytic problem by converting the optimization problem to the real domain, regarding f as a function of the real and imaginary parts of its complex variables.

Let N r = {(W, (V ), (V )) | W ∈ R * + r , V ∈ C n×r , ( (v i ), (v i )) ∈ S 2n-1 , ∀ 1 ≤ i ≤ r}, where S 2n-1 is the unit sphere in R 2n . Let ϕ r : (w, v 1 , . . . , v r , v 1 , . . . , v r ) ∈ N r → r i=1 w i ((v i + i v i ) t x) d .
Hereafter in this subsection, we use the following formulation to compute the different ingredients of a Riemannian Newton method:

(STA) Nr min y∈Nr f (y), where f (y) = 1 2 ||F (y)|| 2 d , with F (y) = ϕ r (y) -p.

Computation of the gradient vector and the Hessian matrix

In this section, we present the explicit expressions of the Riemannian gradient and Hessian on N r . We first describe an orthonormal basis of T y N r for y ∈ N r . Then we detail the computation of the gradient and Hessian in this basis, via the differentials of maps in complex and conjugate variables.

Lemma 4.3. Let y = (w, v 1 , . . . , v r , v 1 , . . . , v r ) ∈ N r . For all i = 1, . . . , r let vi = (v i ; v i ) ∈ S 2n-1 and let (I 2n -vi vt i ) = Q i R i P i be a rank-revealing QR-decomposition of the projector on v⊥ i in R 2n , where Q i Q t i = I 2n
, R i is upper triangular, and P i is a permutation matrix.

Let Q i,re (resp. Q i,im ) be the matrix given by the first n rows (resp. the last n rows) and the first 2n -

1 columns of Q i . Let Q = Q re Q im ∈ R 2nr×(2n-1)r
, where Q re = diag(Q i,re ) 1≤i≤r and

Q im = diag(Q i,im ) 1≤i≤r . Then the columns of Q = diag(I r , Q) form an orthonormal basis of T y N r . Proof. We have T y N r T w (R * + ) r × T Z S r , where S r = {( (V ), (V )) | V ∈ C n×r , ||v i || 2 = 1, ∀1 ≤ i ≤ r} and Z = ( (V ), (V )) = (v 1 , . . . , v r , v 1 , . . . , v r ) ∈ R n×2r .
As T w (R * + ) r = R r , I r represents an orthonormal basis of T w (R * + ) r . We verify now that Q is an orthonormal basis of T Z S r . For i = 1, . . . , r, vi ∈ S 2n-1 ⊂ R 2n and the first (2n-1) columns of the factor Q i of a rank-revealing QR-decomposition of I 2n -vi vt i give an orthonormal basis of the image v⊥ i of (I 2n -vi vt i ), that is T vi S 2n-1 . The vector space T Z S r , of dimension r(2n -1), is the Cartesian product of the tangent spaces T vi S 2n-1 . Therefore, by construction, the columns of Q form an orthonormal basis of T Z S r .

We deduce that

Q = diag(I r , Q) represents an orthonormal basis of T y N r in the canonical basis of R 2nr . Let R r = {(W, (V ), (V )) ∈ R r × R n×r × R n×r | W ∈ R r , V ∈ C n×r }
and let f R be the function f seen as a function on R r . The gradient and the Hessian of f R at a point p R ∈ R r are called the real gradient and the real Hessian. We denote them by G R and H R . We will describe their computation, after the next proposition, relating them to the Riemannian gradient and Hessian.

Proposition 4.4. Let p = (w, v 1 , . . . , v r , v 1 , . . . , v r ) ∈ N r , Q ∈ R (r+2nr)×(r+(2n-1)r) such that its columns form an orthonormal basis of T y N r . Let G R = (g 0 , g 1 , . . . , g r , g 1 ,. . . , g r ) ∈ R r+2nr (resp. H R ∈ R (r+2nr)×(r+2nr) ) be the gradient vector (resp. the Hessian matrix) of f R at p R in the canonical basis. The Riemannian gradient vector (resp. Hessian matrix) of f at p with respect to the basis Q is given by:

G = Q t G R , H = Q t (H R + S)Q,
where S = diag(0 r×r , S, S), with S = diag(s 1 I n , . . . , s r I n ),

s i = v i , g i + v i , g i .
The proof is given in Appendix A.1. Let us describe now explicitly the real gradient G R :

Proposition 4.5. The gradient G R of f R on R r is the vector G R =   G 1 (G 2 ) -(G 2 )   ∈ R r+2nr , where • G 1 = ( r i=1 w i ((v * j v i ) d ) -(p(v j ))) 1≤j≤r ∈ R r , • G 2 = (d r i=1 w i w j (v * i v j ) (d-1) vi -w j ∇ x p(v j )) 1≤j≤r ∈ C nr .
The matrix of the real Hessian can be computed as follows:

Proposition 4.6. The real Hessian matrix H R is the following block matrix:

H R =   A (B) t -(B) t (B) (C + D) -(C + D) -(B) (D -C) (D -C)   ∈ R (r+2nr)×(r+2nr) , with • A = ([(v * i v j ) d ] 1≤i,j≤r ) ∈ R r×r , • B = [dw i (v * j v i ) d-1 vj + δ i,j (d r l=1 w l (v * l v i ) d-1 vl -∇ x p(v j ))] 1≤i,j≤r ∈ C nr×r , where δ i,j is the Kronecker delta, • C = diag[d(d -1)[ r i=1 w i w j v i,k v i,l (v * i v j ) d-2 ] 1≤k,l≤n -w j ∆ x p(v j )] 1≤j≤r ∈ C nr×nr , where ∆ x p(v j ) := [∂ x k ∂ x l p(v j )] 1≤k,l≤n , • D = [dw i w j (v * i v j ) d-2 ((v * i v j )I n + (d -1)v j v * i )] 1≤i,j≤r ∈ C nr×nr .
The Appendix A.2 is devoted to discussing the computation details of the real gradient and Hessian, where the proofs of propositions 4.5 and 4.6 are covered respectively in Appendix A.2.1 and Appendix A.2.2.

Retraction on N r

To complete this Riemannian Newton method, we need to define a retraction operator on N r . Let us assume that the Riemannian Newton equation is solved at a point y = (w, v 1 , . . . , v r , v 1 , . . . v r ) ∈ N r , in local coordinates with respect to the basis Q as in lemma 4.3. It yields a solution vector η ∈ R r+r(2n-1) . The tangent vector η ∈ T y N r of size r + 2nr is given by η = Q η = (ν, η 1 , . . . , η r , η 1 , . . . , η r ). The new point R y (η) = ( w, ṽ1 , . . . , ṽr , ṽ 1 , . . . , ṽ r ) ∈ N r is defined using the product of the retractions on each component, that is the identity map on R r and the projection map on the sphere S 2n-1 [START_REF] Absil | Projection-like retractions on matrix manifolds[END_REF] as follows:

• w = R w (ν) = w + ν; • (ṽ j , ṽ j ) = R (v j ;v j ) (η j , η j ) = (v j +η j ;v j +η j ) ||(v j +η j ;v j +η j )|| .
By lemma 4.2, this defines a retraction from T y N r to N r since R w (resp. R (v j ;v j ) ) is a retraction on R r (resp. S 2n-1 ).

Riemannian Gauss-Newton for STA

In this subsection, we consider the STA problem over the product of r Veronese manifolds V n,d . By separating the real and imaginary parts of the coefficients of a polynomial, the nonzero points

(v t x) d with v ∈ C n \ {0} form a smooth Riemannian variety in C[x] d . We equip the R-vector space C[x] d ∼ R 2s n,d with the real inner product: ∀p, q ∈ C[x] d , p, q R d = ( p, q d ). Let V r := V n,d × • • • × V n,d . The map σ r : y = (y 1 , . . . , y r ) ∈ V r → y 1 + • • • + y r ∈ C[x]
d is a parameterization of the set Σ r of symmetric tensors of symmetric rank at most r. We formulate the STA problem as a Riemannian least square problem over V r as follows:

(STA) Vr min y∈Vr f (y), where f (y) = 1 2 ||F (y)|| 2 d , with F (y) = σ r (y) -p for y ∈ V r . The differential map DF = Dσ r at y = (y 1 , . . . , y r ) ∈ V r with y i = (v t i x) d , v i ∈ C n is Dσ r (y) : T y 1 V n,d × • • • × T yr V n,d → T σr(y) C[x] d = C[x] d (η 1 , . . . , η r ) → η 1 + • • • + η r ,
where

T y i V n,d = (u t x)(v t i x) d-1 | u ∈ C n is of dimension 2n over R.
Recall that the Gauss-Newton equation is given by [41, Chapter 8]:

(DF (y)) * • (DF (y))[η] = -(DF (y)) * [F (y)], (6) 
where DF (y) :

T y V r → C[x] d is the differential map of F at y. The map (DF (y)) * • (DF (y)) :
T y V r → T y V r is the so-called Gauss-Newton approximation of the Hessian of f at y. We are going to describe explicitly the matrix of this map in a convenient basis of T y V r . For a non-zero complex vector v ∈ C n , we define the inner product: 2 . The symmetric matrix associated to this inner product in the canonical basis of R 2n is

∀u, u ∈ C n , u, u v = u * u + (d -1)(u * v)(v * u ) v -2 It is a positive definite inner product on C n ∼ R 2n since u, u v = u 2 +(d-1)|(v * u)| 2 v -2 ≥ 0 and it vanishes iff u = 0. Notice that v, v v = d v
M v := I 2n + (d -1) v -2 (v R v t R + v I v t I ) where v R = ( (v); (v)), v I = (-(v); (v))
are the vectors of R 2n obtained by concatenating the real and imaginary part (resp. opposite imaginary and real part

) of v ∈ C n . Let u 1 = v R v and u 2 = v I v .
We notice that u 1 and u 2 can be completed to an orthonormal basis of R 2n . Let U denotes the matrix of this basis i.e. U = [u 1 , . . . , u 2n ]. Then U U t = I 2n , so that an eigenvalue decomposition of the symmetric matrix M v of •, • v in the canonical basis of R 2n can be written as follows:

M v = U diag(1 + (d -1), 1 + (d -1), 1, . . . , 1)U t = U diag(d, d, 1, . . . , 1)U t . (7) 
For shortness, we denote the strictly positive diagonal matrix diag(d, d, 1, . . . , 1) by S.

Lemma 4.7. Let v = 0 ∈ C n ∼ R 2n and p = (v t x) d ∈ C[x] d . Let u 1 , . . . , u 2n ∈ C n be an orthonormal R-basis for the inner product •, • v with u 1 = v √ d v .
Then

q i = √ d v -d+1 (u t i x)(v t x) d-1 , i = 1, . . . , 2n is an orthonormal basis of T p V n,d for the inner product •, • R d .
Proof. Using the apolar identities in lemma 2.2, we have

q i , q j R d = √ d v -d+1 (u t i x)(v t x) d-1 , q j d = √ d -1 v -d+1 (u * i ∇ x q j )(v) = v -2d+2 (u * i u j )(v * v) d-1 + (d -1)(u * i v)(v * u j )(v * v) d-2 = (u * i u j ) + (d -1)(u * i v)(v * u j ) v -2 = u i , u j v .
We deduce that q i , q j R d = δ i,j and (q i ) i=1,...,2n is an orthonormal basis of

T (v t x) d V n,d for the inner product •, • R d . We describe now how to compute an orthonormal basis for •, • v . Lemma 4.8. Let M v = U SU t be the eigenvalue decomposition of M v as in (7). Let û1 = √ S -1 U t v R √ d v and let Q ∈ R 2n×2n
be the orthogonal factor of a rank-revealing QR-decomposition of I 2n -û1 ût 1 = QRP where R is upper triangular and P is a permutation matrix. Let

u R,1 = v R √ d v , u R,i = U √ S -1 Q [:,i-1] i = 2, . . . , 2n.
Then the orthonormal R-basis u 1 , . . . ,

u 2n ∈ C n for •, • v is such that u i = (u R,i ) [1:n] + i (u R,i ) [n+1:2n] ∈ C n for i = 1, . . . , 2n.
Proof. As M v = U SU t with U U t = I 2n and S ∈ R 2n×2n a strictly positive diagonal matrix, we have

√ S -1 U t M v U √ S -1 = I 2n . Thus the column vectors of U √ S -1 form an orthonormal basis of R 2n for •, • v . The vector û1 = √ S -1 U t v R √ d v is representing the vector v R √ d v in this orthonormal basis. The first 2n -1 columns of the factor Q in a rank-revealing QR-decomposition of I 2n - û1 ût 1 = QRP are orthonormal vectors û2 , . . . , û2n for •, • v , expressed in the basis U √ S -1 . An orthonormal basis u R,1 , u R,2 , . . . , u R,2n ∈ R 2n for •, • v is thus given by u R,1 = v R √ d v , u R,i = U √ S -1 Q [:,i-1] , i = 2, . . . , 2n. The corresponding vectors ∈ C n are u i = (u R,i ) [1:n] + i (u R,i ) [n+1:2n] ∈ C n for i = 1, . . . , 2n.
Notice that when v is real and u, u are real such that v, u = v, u = 0, u, u v = u, u is the standard inner product of u, u . Consequently in the real case, an orthonormal basis (u i ) i=1,...,n ⊂ R n can be obtained directly from u 1 = v v and a rank-revealing QR-decomposition of

I n -u 1 u t 1 . For y = (y 1 , . . . , y r ) ∈ V r with y i = (v t i x) d ∈ V n,d , ∀1 ≤ i ≤ r, let (q i,j ) j=1,.
..,2n be the orthonormal basis associated to v i defined in lemma 4.7 and let Q i = [q i,1 , . . . , q i,2n ] ∈ R 2s n,d ×2n be the coefficient matrix of the polynomials (q i,j ) j=1,...,2n in the canonical R-basis of C[x] d . The columns of the matrix

Q = diag(Q i ) 1≤i≤r ,
represent an orthonormal basis of T y V r for the inner product induced by

•, • R d on each compo- nent.
Therefore, the Jacobian matrix J of σ r at y, which is the matrix associated to Dσ r (y) = DF (y), with respect to the orthonormal basis Q on T y V r and the standard real basis on C[x] d is given by:

J = [Q 1 , . . . , Q r ] ∈ R 2s n,d ×2nr .
Proposition 4.9. The Gauss-Newton equation ( 6) in the orthonormal basis

Q of T y V r is of the form H η = -G,
where ηt = (η t 1 , . . . , ηt r ) ∈ R 2nr is the unknown coordinate vector of an element of the tangent space T y V r in the basis Q and

• G = [G k ] k=1,...,2nr with for 1 ≤ i ≤ r, 1 ≤ j ≤ 2n, G 2n(i-1)+j = √ d -1 v i -d+1 d r k=1 (u * i,j v k )(v * i v k ) d-1 ) -u * i,j ∇ x p(v i ) , • H = [H k,k ] 1≤k,k ≤2nr with for 1 ≤ i, i ≤ r, 1 ≤ j, j ≤ 2n, H 2n(i-1)+j,2n(i -1)+j = v i -d+1 v i -d+1 (u * i,j u i ,j )(v * i v i ) d-1 +(d-1) u * i,j v i )(v * i u i ,j ) (v * i v i ) d-2 .
Proof. As the matrix of Dσ r (y) = DF (y) in the orthonormal basis Q on T y V r and the standard real basis on C[x] d is J, we have that the Gauss-Newton equation ( 6) is

H η = -G with • G = J t vec(σ r (y) -p) = ( q i,j , σ r (y) -p R d ), • H = J t J = [Q 1 , . . . , Q r ] t [Q 1 , . . . , Q r ] = ( q i,j , q i ,j R d ).
By the apolar identities in lemma 2.2, we have

q i,j , σ r (y) -p R d = √ d -1 v i -d+1 r k=1 (u * i,j ∇ x (v t k x) d (v i ) -u * i,j ∇ x p(v i )) = √ d -1 v i -d+1 r k=1 d(u * i,j v k )(v * i v k ) d-1 -u * i,j ∇ x p(v i ) .
Similarly,

q i,j , q i ,j R d = v i -d+1 v i -d+1 u * i,j ∇ x ((u t i ,j x)(v t i x) d-1 )(v i ) = v i -d+1 v i -d+1 (u * i,j u i ,j )(v * i v i ) d-1 + (d -1)(u * i,j v i )(v * i u i ,j )(v * i v i ) d-2 ,
which ends the proof of the proposition.

The Gauss-Newton equation

H η = -G,
solved in local coordinate with respect to the basis Q, yields a vector η = (η 1 ; . . . ; ηr ) ∈ R 2nr . The components of the tangent vector η

= (η 1 , . . . , η r ) ∈ T y V r ∈ C[x] d are then η i = √ d||v i || -d+1 (v t i x) d-1 2n k=1 ηi,k (u t i,k x), i = 1, . . . , r.

Retraction on the Veronese manifold

We define the retraction of a tangent vector η ∈ T y V r to a new point ỹ on the manifold V r as follows: ỹ = (ỹ 1 , . . . , ỹr ) = (R y 1 (η 1 ), . . . , R yr (η r )),

where R y i : T y i V n,d → V n,d is a retraction operator on the Veronese manifold for i ∈ {1, . . . , r} that we describe hereafter (see lemma 4.2). The retraction on the Veronese manifold that we are going to describe is implemented directly on y i + η i in the ambient space C[x] d without considering any tensor compression techniques on the symmetric tensor associated to y i + η i , as is elaborated for instance in [START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF] for multilinear tensors. We will use the following matrix construction to define the retraction on V n,d .

Definition 4.10. The Hankel matrix of degree (k, d -k) associated to a polynomial p in C[x] d is given by:

H k,d-k p = ( p, x α+β d ) |α|=k,|β|=d-k .
This matrix is also known as the Catalecticant matrix of the symmetric tensor p in degree (k, d -k) or the flattening of p in degree (k, d -k). In this definition, we implicitly assume that we have chosen a monomial ordering (for instance the lexicographic ordering on the monomials indexing the rows and columns of H k,d-k p ) to build the Hankel matrix. The properties of Hankel matrices that we will use are independent of this ordering. Such a matrix is called a Hankel matrix since, as in the classical case, the entries of the matrix depend on the sum of the exponents of the monomials indexing the corresponding rows and columns.

When k = 1, using the apolar relations p,

x i x β d = 1 d ∂ x i p, x β d-1 , we see that H 1,d-1
p is nothing else than the transposed of the coefficient matrix of the gradient 1 d ∇ x p in the basis

x β d-1 β -1 |β|=d-1 . When p = (v t x) d ∈ V n,d , H 1,d-1
p can thus be written as the rank-1 matrix

v ⊗ (v t x) d-1 .
Our construction of a retraction on V n,d is described in the following definition.

Definition 4.11.

For v ∈ C n \ {0}, let π v : C[x] d → V n,d be the map such that ∀q ∈ C[x] d , π v (q) = ψ(v), q d ψ(v) 2 d ψ(v), (8) 
where

ψ : v ∈ C n → (v t x) d ∈ V n,d is the parametrization of the Veronese variety. For p ∈ C[x] d , let θ(p) ∈ C n be the first left singular vector of H 1,d-1 p . For p ∈ V n,d , let R p : T p V n,d → V n,d q → π θ(p+q) (p + q).
The retraction that we are going to describe on the Veronese manifold is closely related to the one on the Segre manifold used in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF]. In fact, since the Segre manifold coincides with the manifold of tensors of multilinear rank (1, . . . , 1), the retraction in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF] is deduced from the truncated multilinear rank (1, . . . , 1) HOSVD of a real multilinear tensor, i.e. from the truncated rank one SVD of the matricization in the different modes [START_REF] Kressner | Low-rank tensor completion by Riemannian optimization[END_REF]. For a symmetric tensor, the matricization with respect to any mode gives the same Catalecticant matrix in degree (1, d-1). Hereafter, we show, by different techniques, that a single truncated SVD of the Catalecticant matrix in degree (1, d -1) gives a retraction on the Veronese manifold.

By the apolar identities, we check that R p (q) = (p(ū) + q(ū)) (u t x) d where u = θ(p + q). We also verify that π λ u = π u for any λ ∈ C \ {0} and any u ∈ C n \ {0}.

By the relation [START_REF] Khouja | Tensor decomposition for learning Gaussian mixtures from moments[END_REF], for any v ∈ C n \ {0}, π v (q) is the vector on the line spanned by ψ(v), which is the closest to q for the apolar norm. In particular, we have π v (ψ(v)) = ψ(v).

We verify now that R p is a retraction on V n,d .

Lemma 4.12. Let p ∈ V n,d . Then, p is a fixed point by π u where u is the first left singular vector of

H 1,d-1 p . Proof. If p = (v t x) d = ψ(v) ∈ V n,d with v ∈ C n \ {0}, then the first left singular vector u of H 1,d-1 p is up to a scalar equal to v. Thus we have π u (p) = π v (ψ(v)) = ψ(v) = p. Proposition 4.13. Let p ∈ V n,d . There exists a neighborhood U p ⊂ C[x] d of p such that the map ρ : q ∈ U p → π θ(q) (q) is well-defined and C ∞ smooth. Proof. Let p ∈ V n,d and θ : q ∈ C[x] d → q ∈ C n
where q is the first left singular vector of the SVD decomposition of

H 1,d-1 q . Let γ : C[x] d → V n,d = ψ • θ be the composition map by the parametrization map ψ of V n,d .
By construction, we have ρ : q → q, γ(q) d γ(q). Let O denotes the open set of homogeneous polynomials q ∈ C[x] d such that the Hankel matrix H 1,d-1 q has a nonzero gap between the first and the second singular values. It follows from [START_REF] Chern | Smoothness and periodicity of some matrix decompositions[END_REF] that the map θ is well-defined and smooth on O. As p is in V n,d and H 

ψ : v ∈ C n → (v t x) d ∈ V n,d
is a parametrization of the Veronese variety V n,d , the tangent space of V n,d at a point ψ(v) is spanned by the first order vectors Dψ(v) q of the Taylor expansion of ψ(v + t q) = ψ(v) + t Dψ(v) q + O(t 2 ) for q ∈ C n . We are going to use this observation to prove the rigidity property of R p . Proposition 4.14. For p ∈ V n,d , q ∈ T p (V n,d ),

p + t q -R p (t q) = O(t 2 ).
Proof. As p ∈ V n,d , q ∈ T p V n,d , there exist v, q ∈ C n such that p = ψ(v), q = Dψ(v) q. In particular, we have p + t q -ψ(v

+ t q) = O(t 2 ). This implies that H 1,d-1 p+t q -H 1,d-1 ψ(v+t q) = O(t 2 )
. By differentiability of simple non-zero singular values and their singular vectors [START_REF] Stewart | Matrix Algorithms: Volume II: Eigensystems[END_REF], we have u t -v t = O(t 2 ) where u t = θ(p + t q) and v t = θ(ψ(v + t q)) are respectively the first left singular vectors of H 1,d-1 p+t q and H 1,d-1 ψ(v+t q) . Since H 1,d-1 ψ(v+t q) is a matrix of rank 1 and its image is spanned by v + t q, v t is a non-zero scalar multiple of v + t q and we have π vt = π v+t q . By continuity of the projection on a line, we have

π ut (p + t q) = π vt (p + t q) + O(t 2 ) = π v+t q (p + t q) + O(t 2 ). Since ψ(v + t q) = ψ(v) + t Dψ(v)q + O(t 2 ) = p + t q + O(t 2
), we have

π v+t q (p + t q) = π v+t q (ψ(v + t q)) + O(t 2 ) = ψ(v + t q) + O(t 2 ).
We deduce that p + t q -R p (t q) = p + t q -π ut (p + t q) = p + t q -ψ(v + t q) + (ψ(v + t q) -π vt (p + t q)) + (π vt (p + t q) -π ut (p

+ t q)) = ψ(v) + t Dψ(v)q -ψ(v + t q) + O(t 2 ) = O(t 2 ),
which proves the proposition.

Proposition 4.15. Let p ∈ V n,d . The map R p : T p V n,d → V n,d , q → R p (q) = π θ(p+q) (p + q)
is a retraction operator on the Veronese manifold V n,d .

Proof. We have to prove that R p verifies the three properties in definition 4.1.

1. R p (0 p ) = π θ(p) (p + 0 p ) = π θ(p) (p) = p, by using lemma 4.12. 2. Let S p : T p V n,d → C[x] d , q → p + q.
The map S p is well-defined and smooth on T p V n,d .

By proposition 4.13, π is well-defined and smooth in a neighborhood U p of p ∈ V n,d . Thus R p = ρ • S p is well-defined and smooth in a neighborhood U p ⊂ T V n,d of 0 p . 3. By proposition 4.14, (p + tq) -R p (t q) = O(t 2 ), which implies that d dt R p (t q) | t=0 = q, or equivalently DR p (0 p )q = q. Therefore we have DR p (0 p ) = id TpV n,d .

Adding a trust-region scheme (c.f. [41, Chapter 7])

Recall that Riemannian Newton (resp. Gauss-Newton) is looking for a critical point of a real-valued function f , without distinguishing between local minimizer, saddle point and local maximizer. Furthermore, the convergence of this algorithm may not occur from the beginning. For these reasons, a trust region scheme is usually added to such algorithm in order to enhance the algorithm, with the desirable properties of convergence to a local minimum, with a local superlinear rate of convergence. In fact, trust region method ensures that f decreases at each iteration, which reinforces, when convergence occurs, the possibility of finding a local minimizer. Nevertheless, a global convergence to a local minimizer from any initial points is not guaranteed even after adding the trust region scheme (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Subsection 7.4.1] for the global convergence of Riemannian trust-region methods). We prove in proposition 4.17 that under regularity assumptions, a local convergence for the Riemannian-Newton algorithm with trust region scheme can be obtained. Studying global or further local convergence properties for the Riemannian Newton (resp. Gauss Newton) method with trust region scheme for the STA problem is beyond the scope of this article.

Let M denote the Riemannian manifold N r in subsection 4.1 (resp. V r in subsection 4.2), and let y k ∈ M. The idea is to approximate the objective function f to its second order Taylor series expansion in a ball of center 0 y k ∈ T y k M and radius ∆ k denoted by

B ∆ k := {η ∈ T y k M | ||η|| ≤ ∆ k }, and to solve the subproblem min η∈B ∆ k m y k (η), (9) 
where

m y k (η) := f (y k ) + G t k η + 1 2 η t H k η, G k
is the gradient of f at y k and H k is respectively the Hessian of f at y k for the Riemannian Newton method and the Gauss-Newton approximation of f at y k for the Riemannian Gauss-Newton method.

By solving (9), we obtain a solution η k ∈ T y k M. Accepting or rejecting the candidate new point y k+1 = R y k (η k ) is based on the quotient ρ k = f (y k )-f (y k+1 ) my k (0)-my k (η k ) . If ρ k exceeds 0.2 then the current point y k is updated, otherwise the current point y k remains unchanged. The radius of the trust region ∆ k is also updated based on ρ k . We choose to update the trust region as in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF] with a few changes. (1 + e -14(ρ k -1 3 ) ) -1 )∆ k , ∆ max }. We choose the so-called dogleg method to solve the subproblem (9) [START_REF] Nocedal | Numerical Optimization, 2nd Edition[END_REF]. Let η N be the Newton direction given by Hη N = -G, let η c denote the Cauchy point given by η c = -G t G G t HG G, and let η I be the intersection of the boundary of the sphere B ∆ and the vector pointing from η c to η N . Then the optimal solution η * of (9) by the dogleg method is given as follows:

η * =      η N if ||η N || ≤ ∆, -∆ ||G|| G if ||η N || > ∆ and ||η c || ≥ ∆, η I otherwise.
The algorithm of the Riemannian Newton (resp. Gauss-Newton) method with trust region scheme for the STA problem is denoted by RNE-N-TR (resp. RGN-V-TR) and is given in pseudo-code by algorithm 1.

Algorithm 1 Riemannian Newton (resp. Gauss-Newton) algorithm with trust region sheme for the STA problem "RNE-N-TR"(resp. "RGN-V-TR")

Input: The homogeneous polynomial p ∈ C[x] d associated to the symmetric tensor to approximate, r < r g . Choose initial point y 0 ∈ N r (resp. y 0 ∈ V r ). while the method has not converged do 1. Compute the gradient vector and the Hessian matrix (resp. Gauss-Newton Hessian approximation); 2. Solve the subproblem (9) for the search direction η k ∈ B ∆ k by using the dogleg method; 

y * ∈ N r (resp. y * ∈ V r ).
The algorithm 1 is stopped when ∆ k ≤ ∆ min (by default ∆ min = 10 -3 ), or when the maximum number of iterations exceeds N max . Remark 4. [START_REF] Chen | Maximum block improvement and polynomial optimization[END_REF]. In order to handle ill-conditioned Hessian (resp. Gauss-Newton Hessian approximation) matrices in algorithm 1, we use the Moore-Penrose pseudoinverse [START_REF] Bjorck | Numerical Methods for Least Squares Problems[END_REF][START_REF] Konstantinides | Statistical analysis of effective singular values in matrix rank determination[END_REF][START_REF] Stewart | Rank degeneracy[END_REF]. This can appear in cases where some vectors v i of the rank-r approximation span close lines, which yields a singularity problem in the iteration. In particular, this is the case when the symmetric border rank of the symmetric tensor is not equal to its symmetric rank [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF][START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF], [40, section 2.4]. For example, the tensor p = (v t

0 x)(v t 1 x) d-1 + T , with v 0 , v 1 ∈ R n , T ∈ R[x] d and very small, is close to the tensor (v t 0 x)(v t 1 x) d-1 = lim δ→0 1 d δ (((v 1 + δv 0 ) t x) d -(v t 1 x) d
) of border rank 2 and symmetric rank d. It can be very well approximated by a tensor of rank 2, with two vectors of almost the same direction.

Under some regularity assumption, it is possible to guarantee that RNE-N-TR algorithm converges to a local minimum of the distance function f . 

W, V R , V I ) ∈ N r → r i=1 w i ((v R,i + i v I,i ) t x) d ⊂ Σ r ⊂ C[x]
d is locally injective at a non-defective tensor, it defines a local diffeomorphism between N r,0 = ϕ -1 r (Σ 0 r ) and Σ 0 r . As B 0 is compact, N r,0 = ϕ -1 r (Σ 0 r ) is a compact Riemannian manifold. By construction, the distance between p and the iterates p i is decreasing in RNE-N-TR, so that their decomposition is in N r,0 = ϕ -1 r (Σ reg r ∩ B 0 ). As N r,0 is a compact Riemannian manifold and f is smooth on N r,0 (as a polynomial function), [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Corollary 7.4.6] implies that the iterates of RNE-N-TR of Riemannian Newton method with a trust region sheme on N r,0 converge to a local minimum of the distance function f .

The regularity assumption B 0 ∩ Σ r ⊂ Σ reg r implies that the ball centered at p and containing the initial point of the iteration does not contain a defective tensor. In this case, the iterates, which distance to p decreases, remain in the ball and the limit decomposition is a non-defective low rank tensor. This assumption, satisfied when p is far enough from the singular locus of Σ r , is a sufficient condition to ensure the regularity of the iteration points and their limit.

Numerical experiments

In this section, we present four numerical experiments using the RNE-N-TR and RGN-V-TR algorithms. These algorithms are implemented in the package TensorDec.jl 1 . We use a Julia implementation for the method SPM tested in subsection 5.4. The solvers from Tensorlab v3 [52] are run in MATLAB 7.10. The experimentation was done on a Dell Windows desktop with 8 GB memory and Intel Core i5-5300U, 2.3 GHz CPU.

Choice of the initial point

The choice of the initial point is a crucial step in iterative methods. We use the direct algorithm of [START_REF] Harmouch | Structured low rank decomposition of multivariate Hankel matrices[END_REF], based on the computation of generalized eigenvectors and generalized eigenvalues of pencils of Hankel matrices (see also [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]), to compute an initial rank-r approximation. This algorithm, denoted SMD, works only with r < r g such that ι ≤ d-1

2
where ι denotes the interpolation degree of the points in the rank-r decomposition [START_REF] Eisenbud | The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry[END_REF]Chapter 4]. This implies that r < n+d , extracts the first r singular vectors, computes a simultaneous diagonalisation of the matrices of multiplication by the variables x i by taking a random combination of them, computing its eigenvectors and deducing the points and weights in the approximate decomposition of t. The rationale behind choosing the initial point with this method is when the symmetric tensor is already of symmetric rank r with r < r g and ι ≤ d-1 2 , then this computation gives a good numerical approximation of the exact decomposition, so that the Riemannian Newton (resp. Gauss-Newton) algorithm needs few iterations to converge numerically. We will see in the following numerical experiments that this initial point is an efficient choice to get a good low rank approximation of a symmetric tensor.

Best rank-1 approximation and spectral norm

Let p ∈ S d (R n ), a best real rank-1 approximation of p is a minimizer of the optimization problem dist 1 (p) := min

t∈S d (R n ),ranks(t)=1 ||p -t|| 2 d = min (w,v)∈R×S n-1 ||p -w(v t x) d || d , (10) 
where

S n-1 = {v ∈ R n | ||v|| = 1} is the unit sphere. This problem is equivalent to min t∈T d (R n ),rank(t)=1 ||p -t|| 2
F since at least one global minimizer is a symmetric rank-1 tensor [START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF].

The real spectral norm of p ∈ S d (R n ), denoted by ||p|| σ,R is by definition:

||p|| 2 σ,R := max v∈S n-1 |p(v)|. (11) 
The two problems [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] and ( 11) are related by the following equality:

dist 1 (p) 2 = ||p|| 2 d -||p|| 2 σ,R ,
which we deduce by simple calculus and properties of the apolar norm (see also [START_REF] Lathauwer | On the best rank-1 and rank-(R 1 , R 2 , . . ., R n ) approximation of higher-order tensors[END_REF][START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF]):

dist 1 (p) 2 = min (w,v)∈R×S n-1 ||p -w(v t x) d || 2 d = min (w,v)∈R×S n-1 ||p|| 2 d -2 p, w(v t x) d d + ||w(v t x) d || 2 d = min (w,v)∈R×S n-1 ||p|| 2 d -2w p(v) + w 2 = min v∈S n-1 ||p|| 2 d -|p(v)| 2 = ||p|| 2 d -max v∈S n-1 |p(v)| 2 = ||p|| 2 d -||p|| 2 σ,R .
Therefore, if v is a global maximizer of ( 11) such that w = p(v), then w v ⊗d is a best rank-1 approximation of p. Herein, a rank-1 approximation w v ⊗d , such that w = p(v) and ||v|| = 1, is better when |w| is higher. Therefore, in the following experimentation, we report the weight w obtained by the different methods.

In [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF] the authors present an algorithm called "SDP" based on semidefinite relaxations to find a best real rank-1 approximation of a real symmetric tensor by finding a global optimum of p on S n-1 . We choose two examples from [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF], on which we apply the RNE-N-TR with initial point chosen according to the SMD algorithm adapted for 1 × 1 matrices. The reason behind using RNE-N-TR instead of RGN-V-TR is to take advantage of the local quadratic rate of convergence that distinguishes the exact Riemannian Newton iteration in RNE-N-TR [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Theorem 6.3.2]. We compare these methods with the method CCPD-NLS which is a non-linear least-square solver for the symmetric decomposition from Tensorlab v3 [52] in MATLAB 7.10, where we run 50 instances (i.e. 50 random initial points obeying Gaussian distributions), and we take the absolute value of the weight in average for this method.

We denote by |w sdp | (resp. |w rne |) the weight in absolute value given by SDP (resp. RNE-N-TR), and |w ccpd | denotes the absolute value of the weight in average given by CCPD-NLS. Note that |w sdp | is the spectral norm of p, since SDP gives a best rank-1 approximation. We report the time spent by SDP from [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF] (resp. RNE-N-TR including the computation time of the initial point) in seconds (s) and we denote it by t sdp (resp. t rne ). We denote by N rne the number of iterations in RNE-N-TR. We denote by d 0 the norm between p and the initial point of RNE-N-TR, and by d * the norm between p and the solution obtained by RNE-N-TR. We denote by t ccpd (resp. N ccpd ) the time in seconds (s) (resp. number of iterations) in average for CCPD-NLS. 

(p) i 1 ,i 2 ,i 3 = (-1) i 1 i 1 + (-1) i 2 i 2 + (-1) i 3 i 3 , corresponding to the polynomial p = |α|=3 ( n i=1 α i (-1) i i ) 3 α x α .
Example 5.2. [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF]Example 3.7]. Consider the tensor p ∈ S 5 (R n ) given as:

(p) i 1 ,...,i 5 = (-1) i 1 log(i 1 ) + • • • + (-1) i 5 log(i 5 ), corresponding to the polynomial p = |α|=5 ( n i=1 α i (-1) i log(i)) 5 α x α . The results in Table 1 show that the RNE-N-TR finds a global minimizer, starting from the initial point given by the SMD algorithm. The RNE-N-TR algorithm converges to this point in few iterations, and with very reduced time compared to the SDP algorithm especially when n grows. On the other hand, |w ccpd | is smaller than |w sdp |, implying that CCPD computes, in several cases, a local minimum, which is not a global minimum i.e. a best rank-1 approximation. In comparison for these cases, RGN-V-TR took more iterations (∼20) than RNE-N-TR and consequently more time, while reaching the same optimimum.

The fact that RNE-N-TR finds the best rank-1 approximation in these examples comes from the good initial point provided by SMD algorithm. However, we have no guarantee that RNE-N-TR with this initial point will always converge to a best rank-1 approximation. This experimentation shows that RNE-N-TR combined with SMD algorithm for the initial point is an efficient method to get a good real rank-1 approximation of a real symmetric tensor.

Symmetric rank-r approximation

We consider two examples of a real and a complex valued sparse symmetric tensors, in order to compare the performance of RNE-N-TR and RGN-V-TR with state-of-the-art non-linear least-square solvers CCPD-NLS and SDF-NLS for symmetric decomposition from Tensolab v3 with random initial point following a standard normal distribution. These solvers employ factor matrices as parameterization and use a Gauss-Newton method with dogleg trust region steps called "NLS-GNDL". We fix 200 iterations as maximal number of iterations, and we run 50 instances for these methods and we report the minimal, median and maximal residual error denoted 'err', such that, err := ||p -p * || d , where p is the symmetric tensor to approximate and p * is the approximate symmetric tensor of rank-r. In the computation of the initial point by SMD algorithm in RNE-N-TR and RGN-V-TR, we compute eigenvectors of a random linear combination of multiplication operators. This computation is sensitive to the choice of the linear combination, when the operators are not commuting, which explains why we report also the minimal, median and maximal err for these two methods. The average of time t is in seconds, and the average number of iterations N is rounded to the closest integer.

Example 5.3. Let p ∈ S 3 (R 10 ) such that:

(p) i 1 ,i 2 ,i 3 =      i 2 1 + 1 if i 1 = i 2 = i 3 , 1 if [i 1 , i 2 , i 3 ] ≡ [i, i, j] with i = j, 0 otherwise. ([i 1 , i 2 , i 3 ] ≡ [j 1 , j 2 , j 3 ] iff there exists a permutation σ ∈ S 3 such that [i σ(1) , i σ(2) , i σ(3) ] = [j 1 , j 2 , j 3 ]
). This sparse symmetric tensor corresponds to the polynomial p =

10 i=1 i 2 x 3 i + ( 10 i=1 x 2 i ) × ( 10 i=1 x i ).
Example 5.4. Let p ∈ S 3 (C 10 ) such that:

(p) i 1 ,i 2 ,i 3 =      e √ i 1 +i 2 1 √ -1 + i 1 10 √ -1 if i 1 = i 2 = i 3 , i 10 √ -1 if [i 1 , i 2 , i 3 ] ≡ [i, i, j] with i = j, 0 otherwise.
This sparse symmetric tensor corresponds to the polynomial p The numerical results in Table 2 show that the number of iterations of RNE-N-TR and RGN-V-TR method is low compared to the other methods. The iterations in RNE-N-TR and RGN-V-TR are more expensive. The numerical quality of approximation is better for RNE-N-TR and RGN-V-TR than the other methods in this test. It is of the same order as the other methods for r = 3, 5 but much better for r = 10. This can be explained by the fact that the initial point provided by SMD method is close to a good rank-10 approximation. Notice that when r = 3, 5 the initial point provided by SMD method, based on truncated SVD and eigenvector computations, yields the same behavior as a random initial point (a random linear combination of the matrices of a pencil is used to compute the eigenvectors in SMD method).

= 10 i=1 e √ i+i 2 √ -1 x 3 i + √ -1( 10 i=1 i 10 x 2 i ) × ( 10 i=1 x i ).

Approximation of perturbations of low rank symmetric tensors

In this section, we consider perturbations of random low rank tensors. For a given rank r, we choose r random vectors v i of size n, obeying Gaussian distributions and compute the symmetric tensor t = r i=1 (v t i x) d of order d. We choose a random symmetric tensor t err of order d, with coefficients also obeying Gaussian distributions, normalize it so that its apolar norm is and add it to t: t = t + terr terr d . We apply the different approximation algorithms to t and compute the relative error factor ref := t * -t d between the approximation t * of rank r computed by the algorithm and the rank-r tensor t. We run this computation for 100 random instances and report the geometric average of the relative error. The average number of iterations N is rounded to the closest integer, and the average time t is in seconds.

As the initial tensor t is in a ball of radius centered at the tensor t of rank r, we expect t * to be at distance to t smaller than and the relative error factor to be less than 1.

We compare the RNE-N-TR and RGN-V-TR methods with the initial point computed by SMD algorithm, with the recent Subspace Power Method (SPM) of [START_REF] Kileel | Subspace power method for symmetric tensor decomposition and generalized PCA[END_REF] and the state-of-theart implementation CPD-NLS of the package Tensorlab v3. Note that CPD-NLS is designed for the canonical polyadic decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF]. Nevertheless, in practice it is often observed that applying a general tensor rank approximation method (like CPD-NLS) from a symmetric starting point will usually result in a symmetric approximation. Since CPD-NLS is an efficient tensor decomposition routine of Tensorlab v3, we choose to compare our methods with this algorithm in this numerical experiment, using symmetric initial points and verifying that the obtained tensor approximations are symmetric. As SPM works for even order tensors with real coefficients, the comparison in Table 3 is run for tensors in S 4 (R 10 ). In Table 4, we compare CPD-NLS, RNE-N-TR, and RGN-V-TR for tensors in S d (C 10 ) of order d = 4 and with complex coefficients. These tables also provide a numerical comparison with the low rank approximation methods tested in Example 5.4 of [START_REF] Nie | Low rank symmetric tensor approximations[END_REF], since the setting is the same. We also run this tensor perturbation test on some complex examples in which the approximation rank is higher than the mode size of the tensor (see Table 5). We test this with the three methods RNE-N-TR, RGN-V-TR, and CPD-NLS. We run 20 instances, for each example of tensor and .

The computational time for the methods RNE-N-TR and RGN-V-TR includes the computation of the initial point by the SMD algorithm. We fix 200 iterations as maximal number of iterations for RNE-N-TR, RGN-V-TR and CPD-NLS. For SPM, the iterations are stopped when the distance between two consecutive iterates is less than 10 -10 or when the maximal number of iterations (N = 400 in this experimentation) is reached.

In Tables 3,4, the number of iterations of the RNE-N-TR and RGN-V-TR methods is significantly smaller than the number of iterations of the other methods. In SPM, the number of iterations to get an approximation of a single rank-1 term of the approximation is about 30, indicating a practical linear convergence as predicted by the theory [START_REF] Kileel | Subspace power method for symmetric tensor decomposition and generalized PCA[END_REF]Theorem 5.10]. As the method CPD-NLS is based on a quasi-Newton iteration, its local convergence is subquadratic, which also explains the relatively high number of iterations. The low number of iterations in RNE-N-TR and RGN-V-TR can be explained by the choice of the initial point by SMD algorithm. This provides a good initialization such that a solution by RNE-N-TR and RGN-V-TR can be obtained in a few number of iterations.

The cost of an iteration appears to be higher in RNE-N-TR and RGN-V-TR than in the other methods. Nevertheless, the total time is of the same order. Note that the cost of an iteration seems higher in RGN-V-TR than RNE-N-TR. Despite the fact that the first algorithm computes the Gauss-Newton approximation of the Hessian matrix, whereas the second algorithm computes the exact Hessian matrix. This can be explained by the use of a parametrization in the first algorithm (i.e. the Cartesian product of Veronese manifolds), which involves a more expensive retraction using SVD decomposition on larger matrices.

These experimentation also show a good numerical behavior for the Riemannian methods. In particular, the numerical quality of the low rank approximation is good for RNE-N-TR and RGN-V-TR, in comparison with SPM and CPD-NLS. The average of the relative error factor in RNE-N-TR and RGN-V-TR is less than 1. The numerical results in [START_REF] Nie | Low rank symmetric tensor approximations[END_REF]Example 5.4] for GP method and small perturbations ( ∈ {10 -2 , 10 -4 , 10 -6 }), show that the numerical quality in GP-OPT method is worse than with these methods. We also compare CPD-NLS, RNE-N-TR and RGN-V-TR for perturbation of random tensors of rank r > n and report the minimal and maximal relative error with the average number of iterations N (rounded to the closest integer) and the average time t (in seconds) in Table 5. The considered cases in Table 5 are for the degree d, the number of variables n and the rank r such that (d, n, r) is respectively [START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF][START_REF] Comon | Tensor decompositions, state of the art and applications[END_REF][START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], [START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF][START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition[END_REF][START_REF] Uschmajew | Local convergence of the alternating least squares algorithm for canonical tensor approximation[END_REF], [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Comon | Blind identification of under-determined mixtures based on the characteristic function[END_REF][START_REF] Lathauwer | On the best rank-1 and rank-(R 1 , R 2 , . . ., R n ) approximation of higher-order tensors[END_REF], and [START_REF] Smilde | Multi-way Analysis with Applications in the Chemical Sciences[END_REF][START_REF] Khouja | Tensor decomposition for learning Gaussian mixtures from moments[END_REF][START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition[END_REF]. We see that the maximal relative error factor ref reached by RNE-N-TR and RGN-V-TR with initial point by SMD is less than 1. There is an exception in the first case when = 1, where a large number of iterations is needed for RNE-N-TR and RGN-V-TR. On the other hand, the minimal relative error of CPD-NLS is less than 1 in almost all Table 5, whereas its maximal relative error is higher than 1 in all Table 5. This numerical experiment indicates that for these examples of random low rank tensors with random noise, SMD provides a good initial point, close enough to a good solution, so that RNE-N-TR and RGN-V-TR need a few number of iterations. In this context, the combination of an adaptive choice of initial point and a Newton-type method is successful.

Symmetric tensor with large differences in the scale of the weight vector

Consider the case of a real symmetric tensor t = r i=1 w i (v t i x) d , v i = 1, w i > 0, with large differences in the scale of the weights w i i.e. max i w i min i w i is large. More precisely, there are large differences in the norms of the rank-1 symmetric tensors w i (v t i x) d . We randomly sample real symmetric tensors of order d = 3 and dimension n = 7 with r ∈ {5, 10}, according to the following model:

t = r i=1 10 is r (v t i x) d , v i = 1.
The components of the weight vector increase exponentially from 10 s r to 10 s . We aim to compare the performance of RNE-N-TR and RGN-V-TR methods (hereafter called respectively RNE and RGN for shortness) in this configuration. We run the following test:

• Take t as above, and create a perturbated tensor t p = t t + 10 -5 terr terr , where t err ∈ R[x] d is a random symmetric tensor with coefficients obeying Gaussian distributions;

• run 20 random initial points obeying Gaussian distributions;

• run RNE and RGN with a maximum of iterations N max = 500, and report in average respectively: the relative error (in geometric average) err rel := t t -t * d , where t * is a rank-r symmetric decomposition obtained by these methods; the number of iterations N iter ; and the computation time t in seconds (s). We also report the number N opt of instances where err rel ≤ 1.1.10 -5 . The results in Table 6 show that RGN outperforms RNE. In fact, the average of the relative error in RGN is better, up to five order of magnitude, than in RNE. Moreover, starting from the same 20 random initial points in the two methods; RGN succeeded to reach an optimum, at least in 9 instances with the different order of scale s, while RNE could not find any optimum. Notice that, as we mentionned before, the cost of one iteration in RGN is higher than in RNE. The good performance of RGN compared to RNE in this test was expected, since the orthonormal basis of the tangent space computed in RGN method is independent of the weight factor. This behavior was also observed in [START_REF] Breiding | A Riemannian trust region method for the canonical tensor rank approximation problem[END_REF]Subsection 3.4] for real multilinear tensors, parametrized by Segre manifolds.

Conclusion

We presented two Riemannian Newton optimization methods for approximating a given complex-valued symmetric tensor by a low rank symmetric tensor. We used in subsection 4.1 the weighted normalized factor matrices parametrization for the constraint set. We developed an exact Riemannian Newton iteration with exact computation of the Hessian matrix (RNE-N-TR). We exploited in subsection 4.1.1 the properties of the apolar product and of partial complex derivatives, to deduce a simplified and explicit computation of the gradient and Hessian of the square distance function in terms of the points, weights of the decomposition and the tensor to approximate. We proved that under some regularity conditions on non-defective tensors in the neighborhood of the initial point, the iteration is converging to a local minimum. In subsection 4.2, we parametrized the constraint set via Cartesian product of Veronese manifolds. Taking into account the geometry of the Veronese manifold, we constructed a suitable basis for its tangent space at a given point on this manifold. Using this basis, we developed a Gauss-Newton iteration (RGN-V-TR). In subsection 4.2.1, we presented a retraction operator on the Veronese manifold. We showed that, combined with SMD method for choosing the initial point, the two methods have a good practical behavior in several experiments: in subsection 5.2 to compute a best real rank-1 approximation of a real symmetric tensor, in subsection 5.3 to compute a low rank approximation of sparse symmetric tensors, and in subsection 5.4 to compute low rank approximations of random perturbations of low rank symmetric tensors. In subsection 5.5, we showed that the numerical behavior of RNE-N-TR is affected by large differences in the scaling of the rank-1 symmetric tensor, where RGN-V-TR outperformed this algorithm in this case.

In future work, we plan to investigate the computation of initial points for the Riemannian Newton iterations applied to tensors of higher rank and the low rank approximation problem for other families of tensors, such as multi-symmetric or skew symmetric tensors.
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Let U vi be the Weingarten map on S 2n-1 at vi . For η = (η 0 , η 1 , . . . , η r , η 1 , . . . , η r ) ∈ T y N r , and z = (z 0 , z 1 , . . . , z r , z 1 , . . . , z r ) ∈ T y N ⊥ r with ηi = (η i , η i ) ∈ T vi S 2n-1 and ži = (z i , z i ) ∈ T vi S 2n-1 ⊥ , ∀1 ≤ i ≤ r, we have from [START_REF] Absil | An extrinsic look at the Riemannian Hessian[END_REF]: U vi (η i , ži ) = -η i vt i ži . Thus, with respect to the parameterization that we consider we find that:

U y (η, z) = -            0 r η 1 vt 1 ž1 . . . η r vt r žr η 1 vt 1 ž1 . . . η r vt r žr           
.

Let G R = (g 0 ; g 1 ; . . . ; g r ; g 1 ; . . . ; g r ) ∈ R r+2nr and ǧi = (g i , g i ), l i = vi vt i ǧi for i = 1, . . . , r. We obtain U y (η, P ⊥ y G R ) by substituting ži by l i in U y (η, z). Since vt i vi = ||v i || 2 = 1, we find that

U y (η, P ⊥ y G R ) =            0 r η 1 vt 1 ǧ1 . . . η r vt r ǧr η 1 vt 1 ǧ1 . . . η r vt r ǧr           
= Sη, where S = diag(0 r×r , S, S), with S = diag(s 1 I n , . . . , s r I n ), s i = vt i ǧi = v i , g i + v i , g i . Since, U y (η, z) = P y D η Pz, and P y • P y = P y , we can write U y (η, z) = P y U y (η, z). Hence, U y (η, P ⊥ y G R ) = P y Sη = P y SP y η, since P y η = η for η ∈ T y N r . Thus we have: Hη = P y (H R + S)P y η, and then H = P y (H R + S)P y . Herein, H can be written with respect to the basis Q as follows: H = Q t (H R + S)Q, which ends the proof.

Lemma A.1. The complex gradient G C can be transformed into the real gradient G R as follows:

G R = K t G C . (A.2)
Similarly H R and H C are related by the following formula:

H R = K t H C K. (A.3)
Proof. See [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF] and the references therein.

We can now present the proofs of propositions 4.5 and 4.6.

Appendix A.2.1. Proof of proposition 4.5

We can write f C as f C = 1 2 (f 1 -f 2 -f 3 + f 4 ), where 

f 1 =
w i (v * j v i ) d + r i=1 w i (v * i v j ) d = 2 r i=1 w i ((v * j v i ) d );
the third equality is deduced by using definition 2.1 and 1. of lemma 2.2. In addition, we have ∂f 2 ∂w j = ∂ ∂w j ( r i=1 w i p(v i )) = p(v j ), ∂f 3 ∂w j = p(v j ), and ∂f 4 ∂w j = 0. Thus, ∂f C ∂w j = r i=1 w i ((v * j v i the second (resp. third and fourth) equality are deduced by using lemma 2.2. Moreover, we have ∂f 2 ∂v j,k = 0, ∂f 3 ∂v j,k = w j |α|=d d α vα α k v α-e k j = w j ∂ x k p(v j ), and ∂f 4 ∂v j,k = 0. Thus, ∂f C ∂v j = 1 2 dw j r i=1 w i (v * i v j ) (d-1) vi -w j ∇ x p(v j ) . We have G R = K t G C from (A.2). By multiplication of these two matrices, we obtain: H C is given by the following block matrix: 

G R =    G 1 G2 + G2 i( G2 -G2 )    =   G 1 2 ( G2 ) -2 ( G2 )   .
H C =       ∂ 2 f C ∂w i ∂w j 1≤i
H C =    A Bt B * B C Dt B D C    .
The computation of these four matrices can be done by taking the formula of ∂f C ∂w j and ∂f C ∂v j obtained in the proof of proposition 4.5, and using the apolar identities in lemma 2.2. Using 

q∈Σr 1 2

 1 ||p -q|| 2 d .

  outer product d times of C n . The set of symmetric tensors in T d n is denoted S d n . We have a correspondence between S d n and the set of the homogeneous polynomials of degree d in n variables C[x 1 , . . . , x n ] d := C[x] d . This allows to reduce the dimension of the ambient space of the problem from n d (dimension of T d n ) to s n,d := n+d-1 d (dimension of S d n ∼ C[x] d ). The bold letters p, q denote homogeneous polynomials in C[x] d or equivalently elements in S d n . A homogeneous polynomial p in C[x] d can be written as: p = |α|=d d α p α x α , where x

Let ∆ y 0 :|| 2

 02 in the Riemannian Newton iteration (resp. ∆ y 0 := 10 -1 d r r i=1 ||v 0 i || 2d in the Riemannian Gauss-Newton iteration), ∆ max := 1 2 ||p|| d . We take the initial radius as ∆ 0 = min{∆ y 0 , ∆ max }, if ρ k > 0.6 then the trust region is enlarged as follows: ∆ k+1 = min{2||η k ||, ∆ max }. Otherwise the trust region is shrinked by taking ∆ k+1 = min{(

Proposition 4 . 17 .

 417 Let p ∈ C[x] d , let p 0 ∈ Σ r be the initial point of RNE-N-TR and let B 0 = B(p, ||p -p 0 || d ) be the ball of center p and radius ||p -p 0 || d in C[x] d . Assume that B 0 ∩ Σ r ⊂ Σ reg r (i.e. all points of Σ r in B 0 are non-defective), then RNE-N-TR converges to a local minimum y ∈ N r of the distance function f to Σ r . Proof. Let Σ 0 r := B 0 ∩ Σ r = B 0 ∩ Σ reg r be the set of non-defective tensors of rank r in B 0 . As ϕ r : (

- 1 d 2 . 2 ,

 122 where d = d-1 It first computes a SVD decomposition of the Hankel matrix of the tensor t in degree d-1 d -d-1 2

Example 5 . 1 .

 51 [START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF] Example 3.5]. Consider the tensor p ∈ S 3 (R n ) with entries:

  v t i x) d , p d = r i=1 w i p(v i ) (by 1. in lemma 2.2), f 3 = f2 = r i=1 w i p(v i ), and f 4 = ||p|| 2 d .Let us decompose G C as G C = G 1 = ( ∂f C ∂w j ) 1≤j≤r , G2 = ( ∂f C ∂v j ) 1≤j≤r and G3 = ( ∂f C ∂v j ) 1≤j≤r . As f C is a real valued function, we have that ∂f C ∂v j = ∂f C ∂v j[START_REF] Nehari | Introduction to Complex Analysis[END_REF][START_REF] Remmert | Theory of Complex Functions[END_REF], thus G3 = G2 . Let us start by the computation of G 1 :

1 =

 1 ) d ) -(p(v j )).Now, for the computation of G2 , let p = |α|=d d α vα x α , and 1≤ k ≤ n, ∂f 1 ∂v j,k = |α|=d d α r i=1 w i vα i (w j α k v α-e k j ) = w j r i=1 w i ∂ x k (v t i x) d , (v t j x) d-1 ddw j r i=1 w i (v t i x) d , x k (v t j x) d-1 d = dw j r i=1 w i vi,k (v * i v j ) d-1 ,

G 2

 2 Finally dividing by 2, we get G R = = 2 G2 , which ends the proof.Appendix A.2.2. Proof of proposition 4.6

(A. 3 )

 3 we obtain:H R = 2 ( C + D) -2 ( C + D) -2 ( B) 2 ( D -C) 2 ( D -C)   .Finally, for the simplification by 2, as in the previous proof, we redefine the formula of H R as it is given in proposition 4.6, where B, C, and D are respectively equal to two times B, C, and D.

  The tensors ψ r (y) with y ∈ C n×r such that rank Jψ r (y) = n r are called nondefective. The set of non-defective tensors of rank r, locally embedded in C[x] d , is the image by a local diffeomorphism of a Riemannian manifold and it is denoted Σ reg r . The map ψ r is a local diffeomorphism between an open subset of C n×r and Σ reg r ⊂ Σ r . Hereafter, we consider the cases where d > 2 and the rank r is strictly subgeneric, i.e. r < r g = 1

		n+d-1
	n	d

  Let U p be a neighborhood of p in C[x] d such that ψ |Up is well-defined and smooth. As the apolar product •, • d and the multiplication are well-defined and smooth on C[x] d × C[x] d , ρ is well-defined and smooth on U p , which ends the proof.

	As

1,d-1 p is of rank 1, p ∈ O.

  3. Compute the candidate next new point y k+1 = R y k (η k ); 4. Compute the quotient ρ k ; 5. Accept or reject y k+1 based on the quotient ρ k ; 6. Update the trust region radius ∆ k .

	end while
	Output:

Table 1 :

 1 Comparison of RNE-N-TR, CCPD-NLS and SDP for Example 5.1 and Example 5.2.

				Example 5.1				Example 5.2		
	n	10	20	30	40	50	5	10	15	20	25
	|w rne |	17.8	34.2	50.1	65.9	81.6	1.100e+2	8.833e+2	2.697e+3	6.237e+3	11.504e+3
	d 0	32.4	28.4	44	64.6	78.3	526.1	6.559e+3		64.268e+3	132.213e+3
	d *	13.2	28.3	43.8	59.5	75.3	477.5	6.096e+3	24.643e+3	60.435e+3	121.892e+3
	t rne	0.038	0.304	1.5	3.3	12.1	0.058	0.282	3.8	18.3	34.8
	N rne	5	4	4	4	6	5	4	6	6	6
	|w ccpd |	14.0	29.3	43.3	60.0	75.6	78.9	8.68e+2	2.354e+3	6.148e+3	10.587e+3
	t ccpd	0.173	0.109	0.105	0.122	0.143	0.093	0.187	1.2	5.5	16.7
	N ccpd	27	25	22	23	22	19	29	16	23	17
	|w sdp |	17.8	34.2	50.1	65.9	81.6	1.100e+2	8.833e+2	2.697e+3	6.237e+3	
	t sdp	2.0	6.0	30.0	245.0	1965.0	1.0	22.0	78.0	1350.0	

Table 2 :

 2 Comparison of RNE-N-TR, RGN-V-TR, CCPD-NLS, SDF-NLS for Examples 5.3 and 5.4.

			Example 5.3					Example 5.4		
	r	min	errrne med	max	trne avg	Nrne avg	r	min	errrne med	max	trne avg	Nrne avg
	3	70.6	96	134.3	0.03	2	3	22.4	28.8	30.9	0.04	2
	5	33.3	54.2	91.8	0.08	3	5	14.1	17.4	24.6	0.07	3
	10	0.884	0.884	94.1	0.465	6	10	0.164	0.168	0.369	0.113	2
	r	min	errrgn med	max	trgn avg	Nrgn avg	r	min	errrgn med	max	trgn avg	Nrgn avg
	3	70.6	96	136.8	0.064	3	3	22.4	27.6	36.1	0.065	3
	5	33.3	48.8	105.3	0.149	4	5	14.1	17.1	24.6	0.101	3
	10	0.886	0.886	10.1	0.836	7	10	0.162	0.164	0.169	0.219	2
	r	min	err ccpd med	max	t ccpd avg	N ccpd avg	r	min	err ccpd med	max	t ccpd avg	N ccpd avg
	3	71	102	137.1	0.067	14	3	22.9	26.8	35.2	0.084	14
	5	34.2	54.7	121	0.116	26	5	14.9	17	26.6	0.104	18
	10	7.8	7.8	9.7	0.5	90	10	4.8	4.8	11.2	0.506	60
	r	min	err sdf med	max	t sdf avg	N sdf avg	r	min	err sdf med	max	t sdf avg	N sdf avg
	3	71	96.3	136	0.155	14	3	22.9	27.4	35.2	0.254	15
	5	34.2	49.4	105.3	0.212	16	5	14.9	17.8	26.5	0.35	19
	10	7.8	8.2	38.3	2.3	158	10	4.8	6.2	12.6	2.5	144

Table 3 :

 3 Computational results of SPM, RNE-N-TR, and RGN-V-TR for rank-r approximations in S 4 (R 10 ).

	r		refspm	tspm	Nspm	refrne	trne	Nrne	refrgn	trgn	Nrgn
		1	0.103	0.04	28	0.105	0.07	2	0.11	0.083	3
		10 -1	0.103	0.039	28	0.104	0.04	2	0.11	0.069	3
	1	10 -2	0.1	0.04	28	0.1	0.04	2	0.103	0.058	2
		10 -4	0.101	0.041	29	0.101	0.041	2	0.166	0.044	2
		10 -6	0.104	0.041	30	0.104	0.041	2	0.17	0.045	2
		1	0.15	0.1	69	0.175	0.137	3	0.159	0.16	3
		10 -1	0.15	0.091	65	0.153	0.076	2	0.159	0.13	3
	2	10 -2	0.144	0.086	66	0.149	0.072	2	0.15	0.111	2
		10 -4	0.148	0.089	66	0.157	0.076	2	0.199	0.076	2
		10 -6	0.146	0.087	67	0.151	0.073	2	0.195	0.073	2
		1	0.185	0.126	109	0.194	0.172	3	0.194	0.208	3
		10 -1	0.185	0.135	111	0.195	0.128	2	0.195	0.198	3
	3	10 -2	0.187	0.119	113	0.208	0.099	2	0.195	0.175	2
		10 -4	0.182	0.102	106	0.197	0.092	2	0.217	0.095	2
		10 -6	0.183	0.101	105	0.196	0.094	2	0.206	0.097	2
		1	0.217	0.159	168	0.25	0.546	8	0.225	0.278	3
		10 -1	0.218	0.161	168	0.245	0.319	4	0.228	0.241	3
	4	10 -2	0.211	0.163	162	0.241	0.134	2	0.219	0.239	3
		10 -4	0.216	0.167	169	0.26	0.128	2	0.261	0.136	2
		10 -6	0.227	0.167	168	0.259	0.126	2	0.259	0.133	2
		1	0.244	0.207	217	0.339	1.199	13	0.252	0.594	5
		10 -1	0.244	0.221	220	0.255	0.252	2	0.252	0.317	3
	5	10 -2	0.247	0.223	218	0.292	0.175	2	0.254	0.321	3
		10 -4	0.246	0.215	213	0.304	0.16	2	0.304	0.165	2
		10 -6	0.249	0.231	226	0.307	0.158	2	0.311	0.165	2

Table 4 :

 4 Computational results of CPD-NLS, RNE-N-TR, and RGN-V-TR for rank-r approximations in S 4 (C 10 ).

	r		ref cpd	t cpd	N cpd	refrne	trne	Nrne	refrgn	trgn	Nrgn
		1	0.117	0.05	10	0.11	0.06	2	0.115	0.069	3
		10 -1	0.118	0.046	10	0.108	0.054	2	0.112	0.084	3
	1	10 -2	0.116	0.043	10	0.107	0.044	2	0.11	0.06	2
		10 -4	0.114	0.042	10	0.107	0.037	2	0.227	0.038	2
		10 -6	0.113	0.037	11	0.112	0.036	2	0.237	0.037	2
		1	0.167	0.072	14	0.162	0.078	2	0.166	0.118	3
		10 -1	0.169	0.077	14	0.164	0.063	2	0.167	0.111	3
	2	10 -2	0.162	0.071	14	0.163	0.061	2	0.163	0.09	2
		10 -4	0.171	0.071	14	0.163	0.062	2	0.204	0.063	2
		10 -6	0.175	0.069	13	0.162	0.062	2	0.23	0.064	2
		1	0.201	0.115	16	0.204	0.135	2	0.204	0.163	3
		10 -1	0.223	0.109	17	0.206	0.091	2	0.203	0.157	3
	3	10 -2	0.228	0.117	17	0.209	0.086	2	0.203	0.152	2
		10 -4	0.202	0.103	15	0.205	0.091	2	0.243	0.093	2
		10 -6	0.284	0.124	19	0.211	0.088	2	0.234	0.091	2
		1	0.235	0.149	18	0.234	0.192	3	0.234	0.23	3
		10 -1	0.232	0.165	19	0.244	0.132	2	0.238	0.215	3
	4	10 -2	0.237	0.142	17	0.25	0.113	2	0.232	0.219	3
		10 -4	0.238	0.158	19	0.25	0.112	2	0.255	0.117	2
		10 -6	0.232	0.161	19	0.254	0.111	2	0.274	0.116	2
		1	0.275	0.21	22	0.261	0.269	3	0.261	0.345	3
		10 -1	0.264	0.186	19	0.269	0.211	2	0.261	0.288	3
	5	10 -2	0.266	0.211	22	0.305	0.148	2	0.264	0.292	3
		10 -4	0.265	0.169	18	0.293	0.158	2	0.299	0.163	2
		10 -6	0.266	0.206	21	0.298	0.158	2	0.301	0.161	2

Table 5 :

 5 Computational results of CPD-NLS, RNE-N-TR, and RGN-V-TR.

	d		ref cpd	t cpd	N cpd	ref rne	t rne	N rne	ref rgn	t rgn	N rgn
	n													
	r		min	max	avg	avg	min	max	avg	avg	min	max	avg	avg
	5 4 10	1 10 -2 10 -4 10 -6	0.803 0.849 1.5 776.4	7.8 881.2 9.8e+4 1.9e+7	2.1 2.3 2 2	162 172 157 184	0.834 0.718 0.711 0.789	25.7 0.933 0.933 0.912	3.4 0.197 0.0379 0.042	273 16 3 3	0.815 0.718 0.711 0.789	1.1 0.933 0.933 0.912	1.2 0.078 0.0535 0.071	49 4 3 4
	5 15 20	1 10 -2 10 -4 10 -6	0.15 0.149 0.152 0.155	1.9e+3 1.2e+5 9.2e+6 1.4e+9	9.8 12.7 13.8 11.9	45 62 67 59	0.153 0.151 0.152 0.156	0.172 0.183 0.181 0.173	22.6 13.6 13.6 13.8	3 2 2 2	0.153 0.148 0.152 0.156	0.172 0.169 0.181 0.174	27.1 26.9 14.7 14.8	3 3 2 2
	6 5 12	1 10 -2 10 -4 10 -6	0.515 0.519 0.518 1.1	109.7 2.4e+4 9.6e+5 9.7e+7	1.4 3.8 2.9 2.3	61 143 137 112	0.467 0.472 0.493 0.647	0.706 0.62 0.622 0.6	0.342 0.155 0.222 0.098	4 3 4 2	0.467 0.472 0.493 0.492	0.622 0.62 0.622 0.591	0.353 0.205 0.35 0.211	4 3 5 3
	7 8 15	1 10 -2 10 -4 10 -6	0.183 0.174 0.168 0.179	2.1e+3 5.3e+4 3.5e+6 1.1e+9	54.9 52.3 63.1 75.6	46 47 54 65	0.171 0.137 0.138 0.142	0.21 0.171 0.169 0.177	8.3 4.7 4.5 4.4	3 2 2 2	0.171 0.169 0.138 0.142	0.21 0.201 0.169 0.177	8.5 8.1 4.7 4.6	3 3 2 2

Table 6 :

 6 Computational results for RNE-N-TR and RGN-V-TR for scaled weights.

				r = 5			
	s	1		2		3	
	Alg	RNE	RGN	RNE	RGN	RNE	RGN
	err rel	0.456	5.8e-6	0.411	5.5e-6	0.246	1.4e-5
	N iter	120	39	165	61	175	77
	t	2.0	1.1	2.4	1.4	2.5	1.8
	Nopt	0	20	0	20	0	17
				r = 10			
	s	1		2		3	
	Alg	RNE	RGN	RNE	RGN	RNE	RGN
	err rel	0.372	9.4e-6	0.195	1.6e-6	0.224	6.8e-5
	N iter	423	87	270	186	392	206
	t	16.9	6.3	10.8	13.7	15.5	15.0
	Nopt	0	18	0	20	0	9

  ,j≤r∂ 2 f C ∂w i ∂v t j 1≤i,j≤r ∂ 2 f C ∂w i ∂v t j 1≤i,j≤r ∂ 2 f C ∂v i ∂w j 1≤i,j≤r ∂ 2 f C ∂v i ∂v t j 1≤i,j≤r ∂ 2 f C ∂v i ∂v t j 1≤i,j≤r ∂ 2 f C ∂v i ∂w j 1≤i,j≤r We have that ∂ 2 f ∂ z∂ zt = ∂ 2 f ∂z∂z t , and ∂ 2 f ∂z∂ zt = ∂ 2 f ∂ z∂z t ,for a complex variable z and a real valued function with complex variables f . Using these two relations, we find that ∂ 2 f C ∂w i ∂w j 1≤i,j≤r , ∂ 2 f C ∂v i ∂w j 1≤i,j≤r

				
		∂ 2 f C	∂ 2 f C	    	.
		∂v i ∂v t j 1≤i,j≤r	∂v i ∂v t j 1≤i,j≤r	
					,
	∂ 2 f C ∂v i ∂v t j 1≤i,j≤r	, and ∂f C ∂v i ∂v t j 1≤i,j≤r		

determine H C . We denote them respectively by A, B, C, and D. Herein, we can decompose H C as:

It can be obtained from https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl and run in Julia version 1.1.1. See functions rne n tr and rgn v tr.

Appendix A. Computation details

This appendix gives first the proof of proposition 4.4 which relates the Riemannian gradient and Hessian to the real gradient and Hessian (Appendix A.1), then the proof of the explicit formulas of the real gradient (Appendix A.2.1) and Hessian (Appendix A.2.2) stated respectively in propositions 4.5 and 4.6.

Appendix A.1. Proof of proposition 4.4

Let y = (w, v 1 , . . . , v r , v 1 , . . . , v r ) ∈ N r . Let P y be the orthogonal projector on T y N r . Let Q ∈ R (r+2nr)×(r+(2n-1)r) such that its columns form an orthonormal basis of the image of P y or equivalently of T y N r . As the Riemannian gradient of f is the projection of Df R , the first order differentials of f R , on the tangent space T y N r [41, Chapter 5], we have G = Q t G R , where G R is the vector which represents the classical first order partial derivatives of f R at y R in the canonical basis. Let η ∈ T y N r , z ∈ T y N ⊥ r . We have from [START_REF] Absil | An extrinsic look at the Riemannian Hessian[END_REF] that the Riemannian Hessian matrix of f at y is given by the formula:

, where H R is the matrix of the second order derivatives of f R at y R in the canonical basis, U y is the Weingarten map on N r at y given by U y (η, z) = P y D η Pz, where P is a matrix valued function on N r determined as follows: P : y ∈ N r → P y , and D η Pz represent the time derivative of y → P y z in terms of the time derivative of y i.e. ẏ ∈ T y N r applied at ẏ = η, and P ⊥ y = I -P y is the orthogonal projector on T y N ⊥ r . As y ∈ N r we have w ∈ R * + r , and vi := (v i , v i ) ∈ S 2n-1 , ∀1 ≤ i ≤ r. Let u = (u 0 , u 1 , . . . , u r , u 1 , . . . , u r ) ∈ R r+2nr , such that ǔi = (u i , u i ), ∀1 ≤ i ≤ r. Let P w (resp. P vi ) denote the orthogonal projector on T w (R * + ) r = R r (resp. T vi S 2n-1 ), we have that: P w (u 0 ) = u 0 , P vi ǔi = (I 2n -vi vt i )ǔ i , ∀1 ≤ i ≤ r, thus:

. Real gradient and Hessian

In order to give the proofs of propositions 4.5 and 4.6, we need the following discussion and auxiliary lemma. We describe the real gradient and Hessian, by using complex variables and their conjugates. Recall from Brandwood [START_REF] Brandwood | A complex gradient operator and its application in adaptive array theory[END_REF] that transforming the pair ( (z), (z)) of real and imaginary parts of a given complex variable z into the pair (z, z) is a simple linear transformation, which allows us to achieve explicit and simple computation of the gradient and Hessian of f . Recall

where J = I nr iI nr I nr -iI nr . The linear map K is an isomorphism between the R-vector spaces R r and C r . Its inverse is given by K -1 = I r 0 r×2nr 0 2nr×r 1 2 J * . Let f C be the function f seen as a function on C r . Considering f C for the computation of the gradient and the Hessian yields more elegant expressions than considering f R . For this reason, we compute first the gradient and the Hessian of f C , and then we use the isomorphism K in (A.1) to get the real gradient and the Hessian of f R .