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A RIEMANNIAN NEWTON OPTIMIZATION FRAMEWORK FOR
THE SYMMETRIC TENSOR RANK APPROXIMATION PROBLEM∗

RIMA KHOUJA†‡ , HOUSSAM KHALIL† , AND BERNARD MOURRAIN‡

Abstract. The symmetric tensor rank approximation problem (STA) consists in computing the
best low rank approximation of a symmetric tensor. We describe a Riemannian Newton iteration with
trust region scheme for the STA problem. We formulate this problem as a Riemannian optimization
problem by parameterizing the constraint set as the Cartesian product of Veronese manifolds. We
present an explicit and exact formula for the gradient vector and the Hessian matrix of the method,
in terms of the weights and points of the low rank approximation and the symmetric tensor to
approximate, by exploiting the properties of the apolar product. We introduce a retraction operator
on the Veronese manifold. The Riemannian Newton iterations are performed for best low rank
approximation over the real or complex numbers. Numerical experiments are implemented to show
the numerical behavior of the new method against perturbation, to compute the best real rank-1
approximation and the spectral norm of a real symmetric tensor, and to compare with some existing
state-of-the-art methods for higher rank sparse symmetric tensors.

Key words. symmetric tensor decomposition, homogeneous polynomials, Riemannian optimiza-
tion, Newton method, retraction, complex optimization, trust region method, Veronese manifold.
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1. Introduction. A symmetric tensor T of order d and dimension n in T d(Cn) =
Cn⊗· · ·⊗Cn := T dn , is a special case of tensors, where its entries do not change under
any permutation of its d indices. We denote their set Sd(Cn) := Sdn. The symmetric
tensor decomposition problem consists in decomposing a symmetric tensor T ∈ Sdn
into linear combination of symmetric tensors of rank one i.e.

(1.1) T =

r∑
i=1

wi vi ⊗ ...⊗ vi︸ ︷︷ ︸
d times

, wi ∈ C, vi ∈ Cn

We have a correspondence between Sdn and the set of homogeneous polynomials of
degree d in n variables denoted C[x1, . . . , xn]d =: C[x]d. Using this correspondence,
(1.1) is equivalent to express the homogeneous polynomial P associated to T as a sum
of powers of linear forms, which is by definition the classical Waring decomposition
i.e.

(1.2) P =

r∑
i=1

wi(vi,1x1 + · · ·+ vi,nxn)d, wi ∈ C, vi ∈ Cn

The smallest r such that this decomposition exists is by definition the symmetric rank
of P denoted by ranks(P ). Let d ≥ 3. The generic symmetric rank denoted by rg, is

given by the Alexander-Hirschowitz theorem [5] as follows: rg =
⌈

1
n

(
n+d−1

d

)⌉
for all

n, d ∈ N, except for the following cases: (d, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, where it
should be increased by 1. We say that T is of subgeneric rank, if its rank ranks(T ) = r
in (1.2) is strictly lower than rg, In this case, a strong property of uniqueness of the
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Waring decomposition holds [14], and the symmetric tensor T is called identifiable,
unless in three exceptions which are cited in [14, Theorem 1.1], where there are ex-
actly two Waring decompositions. This identifiability property forms an important
key strength of the Waring or equivalently the symmetric tensor decomposition. It can
explains why this decomposition problem appears in many applications for instance
in the areas of mobile communications, in blind identification of under-determined
mixtures, machine learning, factor analysis of k-way arrays, statistics, biomedical en-
gineering, psychometrics, and chemometrics. See e.g. [15, 17, 18, 46] and references
therein. The decomposition of the tensor is often used to recover structural informa-
tion in the application problem.

The Symmetric Tensor Approximation problem (STA) consists in finding the
closest symmetric tensor ∈ Sdn, which has a symmetric rank at most r for a given r ∈ N.
Equivalently, it consists in approximating a homogeneous polynomial P associated to
a symmetric tensor T by an element in σr, where σr = {Q ∈ C[x]d | ranks(Q) ≤ r},
i.e.

(STA) min
Q∈σr

1
2 ||P −Q||

2
d.

Since in many problems, the input tensors are often computed from measurements
or statistics, they are known with some errors on their coefficients and computing an
approximate decomposition of low rank often gives better structural information than
the exact or accurate decomposition of the approximate tensor [6, 7, 22].

An approach which has been investigated to address the STA problem is to extend
the Singular Value Decomposition (SVD) to this problem, since the truncated SVD
of a matrix yields its best approximation of a given rank. This so-called Highed
Order Singular Value Decomposition (HOSVD) method has been studied for tensor
decomposition [18] or for multi-linear rank computation based on matrix SVD [19, 36],
or using iterative truncation strategies [52]. However, when dealing with best low rank
approximations of tensors, these techniques do not provide the closest low rank tensor,
since the structure is not taken into account in the flattening operations involved in
these methods.

Another classical approach for computing an approximate tensor decomposition
of low rank is the so-called Alternating Least Squares (ALS) method. It consists in
minimizing the distance between a given tensor and a multilinear low rank tensor ten-
sor by alternately updating the different factors of the tensor decomposition, solving
a quadratic minimization problem at each step. See e.g. [11, 12, 25, 31]. This ap-
proach is well-suited for tensor represented in T dn but it looses the symmetry property
in the internal steps of the algorithm. The space in which the linear operations are
performed is of large dimension nd compared to the dimension

(
n+d−1

d

)
of Sdn when n

and d grow. Moreover the convergence is slow [21, 51].
Other iterative methods such as quasi-Newton methods have been considered

for tensor low rank approximation problems to improve the convergence speed. See
for instance [26, 42, 43, 45, 48, 50]. In [9, 10], a Gauss-Newton iteration on a real
Riemannian manifold associated to a sum of rank-1 multilinear tensors is presented
in order to approximate a given tensor by a tensor of low rank r i.e. by a tensor
of canonical polyadic decomposition [27], abbreviated by CPD, equal to the sum of
r tensors of rank-1. Optimization techniques based on quasi-Newton iterations for
block term decompositions of multilinear tensors over the complex numbers have also
been presented in [47, 48]. In [45] quasi-Newton and limited memory quasi-Newton
methods for distance optimization on products of Grassmannian varieties are designed
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to deal with the Tucker decomposition of a tensor and applied for best low multi-rank
tensor approximation. In all these approaches, an approximation on the Hessian is
used to compute the descent direction, and the local quadratic convergence cannot be
guaranteed.

Specific investigations have been developed, in the case of best rank-1 approxima-
tion. The problem is equivalent to the optimisation of a polynomial on the product
of unitary spheres (see e.g. [19, 55]). Global polynomial optimization methods can
be employed over the real or complex numbers, using for instance convex relaxations
and semidefinite programming [40]. However, the approach is facing scalability issues
in practice for large size tensors.

In relation with polynomial representation and multivariate Hankel matrix prop-
erties, another least square optimization problem is presented in [39], for low rank
symmetric tensor approximation. Good approximation of the best low rank approxi-
mation are obtained for small enough perturbations of low rank tensors. More recently,
a method for decomposing real even-order symmetric tensors, called Subspace Power
Method (SPM), has been proposed in [29]. It is based on a power method associated
to the projection on subspaces of eigenvectors of the Hankel operators and has a linear
convergence.

Contributions. In this paper, we present a new Riemannian Newton method with
trust region scheme for the STA problem. Exploiting the dimension reduction of the
problem by working in C[x]d, considering a suitable representation of the points on
the Riemannian manifold, and combining the properties of the apolar product with
efficient tools from complex optimization, we give an explicit, exact and tractable for-
mulation of the Newton iterations for the distance minimization on the Riemannian
manifold, which is the Cartesian product of Veronese manifolds. The explicit for-
mulation is provided for low rank symmetric tensor approximation over the real and
complex numbers. We propose an approximation method for a given homogeneous
polynomial in C[x]d into linear form to the dth power, based on the rank-1 truncation
of the SVD of Hankel matrices associated to the homogeneous polynomial. From this
approximation method, we present a retraction operator on the Veronese manifold.
To compute a rank-r approximation of a symmetric tensor, we propose to combine the
Riemannian Newton method with an algebraic method called SHD (Spectral Hankel
Decomposition) for choosing the initial point. The SHD method is based on the com-
putation of common generalized eigenvectors and generalized eigenvalues of pencils of
Hankel matrices [24, 37]. Numerical experiments show the good numerical behavior
of the new method against perturbations. The good performance of the approach ap-
pears clearly in particular, for the best rank-1 approximation of real-valued symmetric
tensors. Comparisons with existing state-of-the-art methods corroborate this analysis.

The paper is structured as follows. In section 2 we give the main notation and
preliminaries. Section 3 describes the different steps of the construction of the Rieman-
nian Newton with trust region scheme algorithm that we develop for the STA problem,
called RNS-TR. In subsection 3.1, we formulate the STA problem as a Riemannian
least square optimization problem. In subsection 3.2, we introduce the parameter-
ization of the points on the Riemannian manifold that we use in the computation
of the gradient vector and the Hessian matrix in subsection 3.3. In subsection 3.4,
we present a retraction operator on the Veronese manifold with its analysis. In sub-
section 3.5 we discuss the choice of the initial point in the iterative algorithm. Our
new algorithm RNS-TR is presented in subsection 3.6. Numerical experiments are
featured in section 4. The final section is for our conclusions and outlook.
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2. Notation and preliminaries. We use similar notation as in [16]. We denote
by T dn the set of outer product d times of Cn. The set of symmetric tensors in T dn is
denoted Sdn. We have a correspondence between Sdn and the set of the homogeneous
polynomials of degree d in n variables C[x1, . . . , xn]d := C[x]d. This allows to reduce
the dimension of the ambient space of the problem from nd (dimension of T dn ) to(
n+d−1

d

)
(dimension of Sdn ∼ C[x]d). The capital letters P,Q and T denote the homo-

geneous polynomials in C[x]d or equivalently elements in Sdn. A homogeneous poly-
nomial P in C[x]d can be written as: P =

∑
|α|=d

(
d
α

)
pαx

α, where x = (x1, . . . , xn) is

the vector of the variables x1, . . . , xn, α = (α1, . . . , αn) is a vector of the multi-indices
in Nn, |α| = α1 + · · · + αn, pα ∈ C, xα := xα1

1 . . . xαnn and
(
d
α

)
:= d!

α1!...αn! . The su-

perscripts .T , .∗ and .−1 are used respectively for the transpose, Hermitian conjugate,
and the inverse matrix. The complex conjugate is denoted by an overbar, e.g., w̄. We
use parentheses to denote vectors e.g. W = (wi)1≤i≤r, and the square brackets to
denote matrices e.g. V = [vi]1≤i≤r where vi are column vectors.

Definition 2.1. For P =
∑
|α|=d

(
d
α

)
pαx

α and Q =
∑
|α|=d

(
d
α

)
qαx

α in C[x]d,
their apolar product is

〈P,Q〉d :=
∑
|α|=d

(
d

α

)
p̄αqα.

The apolar norm of P is ||P ||d =
√
〈P, P 〉d =

√∑
|α|=d

(
d
α

)
p̄αpα.

The following properties of the apolar product can be verified by direct calculus:

Lemma 2.2. Let L = (v1x1 + · · ·+ vnxn)d := (vtx)d ∈ C[x]d where v = (vi)1≤i≤n
is a vector in Cn, P ∈ C[x]d, Q ∈ C[x](d−1), we have the following two properties:

1. 〈L,P 〉d = P (v̄),
2. 〈P, xiQ〉d = 1

d 〈∂xiP,Q〉(d−1), ∀1 ≤ i ≤ n.

3. Riemannian Newton optimization for the STA problem. We present
in this section a Riemannian Newton optimization framework for the STA problem.
The approach is similar to the one described in [10, 23, 33] for real multilinear tensors.
However, it differs in several ways: we develop a Riemannian Newton iteration suited
for symmetric tensors, by strictly connecting with the geometry of this case. We
exploit the symmetric setting to obtain an exact Newton iteration with simplified
computation. The retraction properties are deduced from a direct analysis of the
Hankel operators. We consider distance minimization problem for symmetric tensors
with real and complex decompositions.

Riemannian optimization methods are solving optimization problems over a Rie-
mannian manifold M [2]. In our problem, we will consider the following least square
minimization problem

(3.1) min
y∈M

1

2
||F (y)||2

where F : M 7→ RN is a smooth objective function with N ≥ dim M and M is a
Riemannian manifold associated to rank-r symmetric tensors. A Riemannian Newton
method (See Algorithm 3.1) for solving (3.1) requires a Riemannian metric, and a
retraction operator Ry from the tangent space TyM at y ∈ M to M [2, Chapter 6].
Since we will assume thatM is embedded in some space RM , we will take the metric
induced by the Euclidean space RM .
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Algorithm 3.1 Riemannian Newton method

Data: Riemannian manifold M; retraction R on M; function F : M → RN ;
objective function f = 1

2 ||F ||
2.

Input: A starting point y0 ∈M.
Output: A sequence of iterates yk.
for k = 0, 1, 2, . . . do

1. Solve the Newton equation Hess f(yk)[ηk] = − grad f(yk) for the unknown
vector ηk in the tangent space TykM of M at yk;
2. Set yk+1 ← Ryk(ηk);

end for

3.1. Formulation of the Riemannian least square problem. We describe
now the Riemannian manifold that we use for the Riemannian Newton method.

Definition 3.1. Let Φ : Cn → C[x]d, v 7→ (vtx)d =
∑
|α|=d

(
d
α

)
vαxα. The

Veronese manifold in C[x]d denoted by Vdn [28, 54] is the set of linear forms in C[x]d−
{0} to the dth power. It is the image of Φ after removing the zero polynomial i.e.
Vdn := Φ(Cn)− {0} .

Let σr ⊂ Sdn be the set of the symmetric tensors of symmetric rank bounded by
r. It is given by the image of the following map:

Σr : Vdn
×r

:= Vdn × · · · × Vdn −→ C[x]d

((vtix)d)1≤i≤r 7−→ Σr((v
t
ix)d)1≤i≤r) =

r∑
i=1

(vtix)d

The closure of the image of Σr is called the rth secant of the Veronese variety Vdn. We
consider the case of r subgeneric rank i.e. r < rg, where rg is the generic symmetric
rank given by the Alexander-Hirschowitz theorem [5]. We are interested in such cases
because Σr has a differential map which is generically an embedding and provides a
regular parametrization of σr (see “Terracini’s lemma”, e.g. in [35]).

The Riemannian manifold that we will use is the rth cartesian productM = Vdn
×r

of the Veronese variety Vdn. We reformulate the Riemannian least square problem for
the symmetric tensor approximation problem as follows:

(STA∗) min
y∈M

f(y)

where M = Vdn
×r

, y = ((vtix)d)1≤i≤r, f(y) = 1
2 ||F (y)||2d and F (y) = Σr(y)− P.

3.2. Parameterization. For a symmetric tensor P in the image of Σr, its de-
composition can be rewritten as P =

∑r
i=1 wi (vtix)d with wi ∈ R∗+ and ||vi|| = 1, for

1 ≤ i ≤ r; since we have
∑r
i=1 (ṽtix)d =

∑r
i=1 ||ṽi||d(

ṽti
||ṽi||x)d =

∑r
i=1 wi(v

t
ix)d, with

wi := ||ṽi||d and vi :=
ṽti
||ṽi|| such that ||vi|| = 1.

The vector (wi)1≤i≤r ∈ Cr in this decomposition is called ”the weight vector”,
and is denoted by W . The coefficient vectors of the linear polynomials (vtix) such
that ||vi|| = 1 form a matrix denoted V = [vi]1≤i≤r ∈ Cn×r.

The objective function f in subsection 3.1 is a real valued function of complex
variables; such function is non-analytic, because it cannot verify the Cauchy-Riemann
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conditions [44]. To apply the Riemannian Newton method, we need the second order
Taylor series expansion of f . As discussed in [47], we overcome this problem by
converting the optimization problem to the real domain, regarding f as a function of
the real and the imaginary parts of its complex variables.

Let N = {(W,<(V ),=(V )) | W ∈ R∗+
r, V ∈ Cn×r, (<(vi),=(vi)) ∈ S2n−1, ∀1 ≤

i ≤ r}, where S2n−1 is the unit sphere in R2n. Routine calculation shows that N
is a Riemannian submanifold of Rr+2nr of dimension r + r(2n − 1) = 2nr. This is
the manifold that we will use for the parametrization of M. We will consider f as a
function of N , in order to compute effectively its gradient vector and Hessian matrix.

3.3. Computation of the gradient vector and the Hessian matrix. Trans-
forming the pair (<(z),=(z)) of the real and imaginary parts of a given complex vari-
able z into the pair (z, z) is a simple linear transformation, which will allow us to
achieve explicit and simple computation of the gradient and Hessian of f .

Let Rr = {(W,<(V ),=(V )) |W ∈ Rr, V ∈ Cn×r}, Cr =
{

(W,V, V ) |W ∈ Rr,
V ∈ Cn×r} and

(3.2) K =

[
Ir 0r×2nr

02nr×r J

]

where J =

[
Inr iInr
Inr −iInr

]
. The linear map K is an isomorphism from Rr to Cr and

its inverse is given by K−1 =

[
Ir 0r×2nr

02nr×r
1
2J
∗

]
.

The computation of the gradient and the Hessian of f as a function of Cr yields
more elegant expressions than considering f as a function of Rr. For this reason, we
consider f as a function of Cr to compute them, and then we use the isomorphism K
in (3.2) to define the gradient and the Hessian of f as a function of Rr (see Lemma 3.3
below).
We call the gradient and the Hessian of f as a function of Rr (resp. Cr) at a point
(W,<(V ),=(V )) (resp. (W,V, V )) the real gradient and the real Hessian (resp. the
complex gradient and the complex Hessian) and we denote them by GR and HR (resp.
by GC and HC).

Recall that f is a function on N . We can define the gradient and the Hessian of
f at a point p ∈ N , denoted respectively by G and H, by:

G = QTGR, H = QTHRQ
where the columns of Q form an orthonormal basis of TpN [2, Ch.5].

Hereafter, we detail the computation of Q, GR and HR.

Proposition 3.2. Let p = (W,<(V ),=(V )) ∈ N . For all i in {1, . . . , r}, we
denote by ui the vector (<(vi),=(vi)) ∈ R2n, and by Qi,re (resp. Qi,im) the matrix
given by the first n rows (resp. the last n rows) and the first 2n − 1 columns of
the factor Qi of the QR decomposition of I2n − uiuti: (I2n − uiuti)Pi = QiRi such
that QiQ

T
i = I2n, Ri is upper triangular, and Pi is a permutation matrix. Let M =[

Qre
Qim

]
∈ R2nr×(2n−1)r, where Qre = diag(Qi,re)1≤i≤r and Qim = diag(Qi,im)1≤i≤r.

Then the columns of Q = diag(Ir,M) form an orthonormal basis of TpN .

Proof. Denote (<(V ),=(V )) by Z. Using that TpN ' TW (R∗+)r × TZV, where
V =

{
(<(V ),=(V )) | V ∈ Cn×r, ||vi||2 = 1, ∀1 ≤ i ≤ r

}
. We have TW (R∗+)r = Rr

and Ir is an orthonormal basis of TW (R∗+)r.
We verify that M is an orthonormal basis of TZV. Firstly, for each i ∈ {1, · · · , r},
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ui ∈ S2n−1 ⊂ R2n, thus the first (2n− 1) columns of the factor Qi of the QR decom-
position of I2n − uiuti give an orthonormal basis of the image of (I2n − uiuti), which
is TuiS2n−1.

Secondly, TZV is a vector space of dimension r(2n − 1) which is the cartesian
product of the tangent spaces TuiS2n−1. Therefore, by construction, the columns of
M form an orthonormal basis of TZV.

Finally Q = diag(Ir,M) is an orthonormal basis of TpN .

Lemma 3.3. The complex gradient GC can be transformed into the real gradient
GR as follows:

(3.3) GR = KTGC

Similarly HR and HC are related by the following formula:

(3.4) HR = KTHCK

Proof. As the first block of the matrix K in (3.2) is equal to the identity matrix
Ir, we just have to verify that: ∂f

∂zR
= JT ∂f

∂zC
, where z := (vi)1≤i≤r, x := <(z), y :=

=(z), zR := (x, y), and zC := (z, z̄).
We have that x = 1

2 (z+ z̄) and y = i
2 (z̄− z), thus ∂f

∂z = ∂x
∂z

∂f
∂x + ∂y

∂z
∂f
∂y = 1

2 (∂f∂x − i
∂f
∂y ),

similarly we have that ∂f
∂z̄ = 1

2 (∂f∂x + i∂f∂y ), which implies that ∂f
∂x = ∂f

∂z + ∂f
∂z̄ , and

∂f
∂y = i(∂f∂z −

∂f
∂z̄ ), herein ∂f

∂zR
= JT ∂f

∂zC
. The formula (3.4) follows from the fact that:

∂2

∂zR∂zRT
= ∂

∂zR
( ∂
∂zR

)T = JT ∂
∂zC

( ∂
∂zCT

J) = JT ∂2

∂zC∂zCT
J .

Proposition 3.4. The gradient GR of f on Rr is the vector

GR =

 G1

<(G2)
−=(G2)

 ∈ Rr+2nr,

where
• G1 = (

∑r
i=1 wi<((v∗j vi)

d)−<(P̄ (vj)))1≤i≤r ∈ Rr

• G2 = (d
∑r
i=1 wiwj(v

∗
i vj)

(d−1)v̄i − wj∇P̄ (vj))1≤j≤r ∈ Cnr.
Proof. We can write f as:

(3.5)
1

2
(f1 − f2 − f3 + f4)

where:

f1 =
∣∣∣∣∣∣ r∑
i=1

wi(v
t
ix)d

∣∣∣∣∣∣2
d

=
∣∣∣∣∣∣ r∑
i=1

wi
∑
|α|=d

(
d

α

)
vαi x

α
∣∣∣∣∣∣2
d

=
∣∣∣∣∣∣ ∑
|α|=d

(
d

α

)( r∑
i=1

wiv
α
i

)
xα
∣∣∣∣∣∣2
d

=
∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)( r∑
i=1

wiv
α
i

)
(by using the norm in Definition 2.1),

f2 = 〈
r∑
i=1

wi(v
t
ix)d, P 〉d =

r∑
i=1

wiP (v̄i) (by using 1. in Lemma 2.2), f3 = f̄2 =

r∑
i=1

wiP̄ (vi), and f4 = ||P ||2d.

Let us decompose GC as GC =

G1

G̃2

G̃3

 with G1 = ( ∂f
∂wj

)1≤j≤r, G̃2 = ( ∂f∂vj )1≤j≤r and

G̃3 = ( ∂f∂vj )1≤j≤r. As f is a real valued function, we have that ∂f
∂v̄j

= ∂f
∂vj

[38, 44],
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thus G̃3 = G̃2. Let us start by the computation of G1:

∂f1

∂wj
=

∂

∂wj

( ∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)( r∑
i=1

wiv
α
i

))

=
∑
|α|=d

(
d

α

)(
v̄αj

( r∑
i=1

wiv
α
i

)
+ vαj

( r∑
i=1

wiv̄
α
i

))

=

r∑
i=1

wi
∑
|α|=d

(
d

α

)
vαi v̄

α
j +

r∑
i=1

wi
∑
|α|=d

(
d

α

)
v̄αi v

α
j

=

r∑
i=1

wi〈(vtjx)d, (vtix)d〉d +

r∑
i=1

wi〈(vtix)d, (vtjx)d〉d (by Definition 2.1)

=

r∑
i=1

wi(v
∗
j vi)

d +

r∑
i=1

wi(v
∗
i vj)

d = 2

r∑
i=1

wi<((v∗j vi)
d) (by Lemma 2.2 (1)),

∂f2

∂wj
=

∂

∂wj
(

r∑
i=1

wiP (v̄i)) = P (v̄j),
∂f3

∂wj
= P̄ (vj), and

∂f4

∂wj
= 0.

Thus:
∂f

∂wj
=

1

2

(
2

r∑
i=1

wi<((v∗j vi)
d)− P (v̄j)− P̄ (vj)

)
=

r∑
i=1

wi<((v∗j vi)
d)−<(P̄ (vj))

Now, for the computation of G̃2, let P =
∑
|α|=d

(
d
α

)
aαxα, and 1 ≤ k ≤ n:

∂f1

∂vj,k
=
∑
|α|=d

(
d

α

)( r∑
i=1

wiv̄
α
i

)
(wjαkv

α−ek
j )

= wj

r∑
i=1

wi
∑
|α|=d

(
d

α

)
αkv̄

α
i v

α−ek
j

= wj

r∑
i=1

wi〈∂xk(vtix)d, (vtjx)d−1〉d−1 (by Lemma 2.2 (1))

= dwj

r∑
i=1

wi〈(vtix)d, xk(vtjx)d−1〉d (by Lemma 2.2 (2))

= dwj

r∑
i=1

wiv̄i,k(v∗i vj)
d−1 (by Lemma 2.2 (1)),

∂f2

∂vj,k
= 0,

∂f3

∂vj,k
= wj

∑
|α|=d

(
d

α

)
āααkv

α−ek
j = wj∂xk P̄ (vj), and

∂f4

∂vj,k
= 0

Thus:
∂f

∂vj
=

1

2

(
dwj

r∑
i=1

wi(v
∗
i vj)

(d−1)v̄i − wj∇P̄ (vj)
)

We have GR = KTGC from (3.3). By multiplication of these two matrices, we

obtain: GR =

 G1

G̃2 + G̃2

i(G̃2 − G̃2)

 =

 G1

2<(G̃2)

−2=(G̃2)

. Finally dividing by 2, we get GR =
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<(G2)
−=(G2)

 where G2 = 2G̃2, which ends the proof.

Proposition 3.5. The real Hessian HR is given by the following block matrix:

HR =

 A <(B)
T −=(B)

T

<(B) <(C +D) −=(C +D)
−=(B) =(D − C) <(D − C)

 ∈ R(r+2nr)×(r+2nr)

with
• A = <([(v∗i vj)

d]1≤i,j≤r) ∈ Rr×r,
• B = [dwi(v

∗
j vi)

d−1v̄j + δi,j(d
∑r
l=1 wl(v

∗
l vi)

d−1v̄l −∇P̄ (vj))]1≤i,j≤r ∈ Cnr×r,
• C = diag[d(d − 1)[

∑r
i=1 wiwjvi,kvi,l(v

∗
i vj)

d−2]1≤k,l≤n − wj∆P̄ (vj)]1≤j≤r ∈
Cnr×nr,

• D = [dwiwj(v
∗
i vj)

d−2((v∗i vj)In + (d− 1)vjv
∗
i )]1≤i,j≤r ∈ Cnr×nr.

Proof. HC is given by the following block matrix:

HC =


[

∂2f
∂wi∂wj

]
1≤i,j≤r

[
∂2f

∂wi∂vTj

]
1≤i,j≤r

[
∂2f

∂wi∂v̄Tj

]
1≤i,j≤r[

∂2f
∂vi∂wj

]
1≤i,j≤r

[
∂2f

∂vi∂vTj

]
1≤i,j≤r

[
∂2f

∂vi∂v̄Tj

]
1≤i,j≤r[

∂2f
∂v̄i∂wj

]
1≤i,j≤r

[
∂2f

∂v̄i∂vTj

]
1≤i,j≤r

[
∂2f

∂v̄i∂v̄Tj

]
1≤i,j≤r

 .

We have that ∂2f
∂z̄∂z̄T

= ∂2f
∂z∂zT

, and ∂2f
∂z∂z̄T

= ∂2f
∂z̄∂zT

, for a complex variable z and a
real valued function with complex variables f . Using these two relations, we find

that
[

∂2f
∂wi∂wj

]
1≤i,j≤r

,
[

∂2f
∂vi∂wj

]
1≤i,j≤r

,
[

∂2f
∂vi∂vTj

]
1≤i,j≤r

, and
[

∂f
∂v̄i∂vTj

]
1≤i,j≤r

deter-

mine HC . We denote them respectively by A, B̃, C̃, and D̃. Herein, we can decompose
HC as:

HC =

A B̃T B̃∗

B̃ C̃ D̃T

B̃ D̃ C̃

 .
The computation of these four matrices can be done by taking the formula of ∂f

∂wj
and

∂f
∂vj

obtained in Proof 3, and using the apolar identities in Lemma 2.2. Using (3.4) we

obtain: HR =

 A 2<(B̃)
T −2=(B̃)

T

2<(B̃) 2<(C̃ + D̃) −2=(C̃ + D̃)

−2=(B̃) 2=(D̃ − C̃) 2<(D̃ − C̃)

. Finally, for the simplification

by 2, as in the previous proof, we redefine the formula of HR as it is given in the
proposition above, where B, C, and D are respectively equal to two times B̃,C̃, and
D̃.

3.4. Retraction. The retraction is an important ingredient of a Riemannian
optimization and choosing an efficient retraction is crucial.

Definition 3.6. [2, 4, 33] Let M be a manifold and p ∈ M. A retraction Rp is
a map TpM→M, which satisfies the following properties :

1. Rp(0p) = p;
2. there exists an open neighborhood Up ⊂ TpM of 0p such that the restriction

on Up is well-defined and a smooth map;
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3. Rp satisfies the local rigidity condition

DRp(0p) = idTpM

where idTpM denotes the identity map on TpM.

We will use the following well-known lemma to construct a retraction on
M = Vd×rn [3, 10].

Lemma 3.7. LetM1, . . . ,Mr be manifolds, pi ∈Mi andM =M1×· · ·×Mr and
p = (p1, . . . , pr) ∈ M. Let Ri : TpiMi →Mi be retractions. Then Rp : TpM→M
defined as follows: Rp(ξ1, · · · , ξr) = (Rp1(ξ1), · · · , Rpr (ξr)) for ξi ∈ TpiMi, 1 ≤ i ≤ r,
is a retraction on M.

Our construction of a retraction on Vdn is described in the following definitions.

Definition 3.8. The Hankel matrix of degree k, d− k associated to a polynomial
P in C[x]d is given by:

Hk,d−k
P = (〈P, xα+β〉d)|α|=k,|β|=d−k

In this definition, we implicit assume that we have choosen a monomial ordering (for
instance the lexicographic ordering on the monomials indexing the rows and columns
of Hk,d−k

P ) to build the Hankel matrix. The properties of Hankel matrices that we
will use are independent of this ordering. Such a matrix is called a Hankel matrix
since, as in the classical case, the entries of the matrix depend on the sum of the
exponents of the monomials indexing the corresponding rows and columns. This
matrix construction is closely related to the classical matricization or flattening of a
multilinear tensor, which can be defined in a similar way using an adequate apolar
product.

When k = 1, using the apolar relations 〈P, xixβ〉d = 1
d 〈∂xiP, x

β〉d−1, we see that

H1,d−1
P is nothing else than the transposed of the coefficient matrix of the gradient

1
d∇P in the basis

(
xβ
(
d−1
β

)−1
)
|β|=d−1

. When P = (vtx)d ∈ Vdn, H1,d−1
P can thus be

written as the rank-1 matrix v ⊗ (vtx)d−1.

Definition 3.9. For v ∈ Cn \ {0}, let Πv : C[x]d → Vdn be the map such that
∀Q ∈ C[x]d,

(3.6) Πv(Q) =
〈Φ(v), Q〉d
‖Φ(v)‖2d

Φ(v)

where Φ : v ∈ Cn 7→ (vtx)d ∈ Vdn is the parametrization of the Veronese variety Vdn.

For P ∈ C[x]d, let θ(P ) ∈ Cn be the first left singular vector of H1,d−1
P . For P ∈ Vdn,

let

RP : TVdn → Vdn
Q 7→ Πθ(P+Q)(P +Q)

By the apolar identities, we check that RP (Q) = (P (ū) + Q(ū)) (utx)d where u =
θ(P +Q). We also verify that Πλu = Πu for any λ ∈ C \ {0} and any u ∈ Cn \ {0}.

By the relation (3.6), for any v ∈ Cn \ {0}, Πv(Q) is the vector on the line
spanned by Φ(v), which is the closest to Q for the apolar norm. In particular, we
have Πv(Φ(v)) = Φ(v).

We verify now that RP is a retraction on Vdn.
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Lemma 3.10. Let P ∈ Vdn, P is a fixed point by Πu where u is the first left singular

vector of H1,d−1
P .

Proof. If P = (vtx)d = Φ(v) ∈ Vdn with v ∈ Cn \ {0}, then the first left singular

vector u of H1,d−1
P is up to a scalar equal to v. Thus we have Πu(P ) = Πv(Φ(v)) =

Φ(v) = P .

Proposition 3.11. Let P ∈ Vdn. There exists a neighborhood UP ⊂ C[x]d of P
such that the map ρ : Q ∈ UP 7→ Πθ(Q)(Q) is well-defined and C∞ smooth.

Proof. Let P ∈ Vdn and θ : Q ∈ C[x]d → q ∈ Cn where q is the first left singular

vector of the SVD decomposition of H1,d−1
Q . Let γ : C[x]d → Vdn = Φ ◦ θ be the

composition map by the parametrization map Φ of Vdn.
By construction, we have ρ : Q 7→ 〈Q, γ(Q)〉d γ(Q). Let O denotes the open set

of homogeneous polynomials Q ∈ C[x]d such that the Hankel matrix H1,d−1
Q has a

nonzero gap between the first and the second singular values. It follows from [13]

that the map θ is well-defined and smooth on O. As P is in Vdn and H1,d−1
P is of rank

1, P ∈ O. Let UP be a neighborhood of P in C[x]d such that Φ|UP is well-defined
and smooth. As the apolar product 〈., .〉d and the multiplication are well-defined and
smooth on C[x]d×C[x]d, ρ is well-defined and smooth on UP , which ends the proof.

As Φ : v ∈ Cn 7→ (vtx)d ∈ Vdn is a parametrization of the Veronese variety Vdn,
the tangent space of Vdn at a point Φ(v) is spanned by the first order vectors DΦ(v) q
of the Taylor expansion of Φ(v + t q) = Φ(v) + tDΦ(v) q +O(t2) for q ∈ Cn. We are
going to use this observation to prove the rigidity property of Rp.

Proposition 3.12. For P ∈ Vdn, Q ∈ TP (Vdn),

P + tQ−RP (tQ) = O(t2).

Proof. As P ∈ Vdn, Q ∈ TP (Vdn), there exist v, q ∈ Cn such that P = Φ(v), Q =
DΦ(v) q. In particular, we have P + tQ − Φ(v + t q) = O(t2). This implies that

H1,d−1
P+tQ − H

1,d−1
Φ(v+t q) = O(t2). By continuity of the singular value decomposition, we

have ut − vt = O(t2) where ut = θ(P + tQ) and vt = θ(Φ(v + t q)) are respectively

the first left singular vectors of H1,d−1
P+tQ and H1,d−1

Φ(v+t q).

Since H1,d−1
Φ(v+t q) is a matrix of rank 1 and its image is spanned by v + t q, vt is a

non-zero scalar multiple of v + t q and we have Πvt = Πv+t q. By continuity of the
projection on a line, we have

Πut(P + tQ) = Πvt(P + tQ) +O(t2) = Πv+t q(P + tQ) +O(t2).

Since Φ(v + t q) = Φ(v) + tDΦ(v)q +O(t2) = P + tQ+O(t2), we have

Πv+t q(P + tQ) = Πv+t q(Φ(v + t q)) +O(t2) = Φ(v + t q) +O(t2).

We deduce that

P + tQ−RP (tQ) = P + tQ−Πut(P + tQ)

= P + tQ− Φ(v + t q) + (Φ(v + t q)−Πvt(P + tQ)) + (Πvt(P + tQ)−Πut(P + tQ))

= Φ(v) + tDΦ(v)q − Φ(v + t q) +O(t2) = O(t2),

which proves the proposition.
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Proposition 3.13. Let P ∈ Vdn. The map RP : TPVdn → Vdn, Q 7→ RP (Q) =
Πθ(P+Q)(P +Q) is a retraction operator on the Veronese manifold Vdn.

Proof. We have to prove that RP verifies the three properties in Definition 3.6.
1. RP (0P ) = Πθ(P )(P + 0P ) = Πθ(P )(P ) = P , by using Lemma 3.10.

2. Let SP : TPVdn → C[x]d, Q 7→ P + Q. The map SP is well-defined and
smooth on TPVdn. By Proposition 3.11, Π is well-defined and smooth in a
neighborhood UP of P ∈ Vdn. Thus RP = ρ ◦ SP is well-defined and smooth
in a neighborhood U ′P ⊂ TVdn of 0P .

3. By Proposition 3.12,

(P + tQ)−RP (tQ) = O(t2),

which implies that d
dtRP (tQ) |t=0= Q, or equivalently DRP (0P ).(Q) = Q.

Therefore we have DRP (0P ) = idTPVdn .

3.5. Choice of the initial point. The choice of the initial point is a crutial
step in Riemannian Newton iterative methods. We use the direct algorithm of [24],
based on the computation of generalized eigenvectors and generalized eigenvalues of
pencils of Hankel matrices (see also [37]), to compute an initial rank-r approximation.
This algorithm, denoted SHD, works only with r such that r < rg and ι ≤ bd−1

2 c,
where ι denotes the interpolation degree of the points in the rank-r decomposition [20,
Ch.4]. The rationale behind choosing the initial point with this method is when the
symmetric tensor is already of symmetric rank r with r < rg and ι ≤ bd−1

2 c, then this
computation gives a good numerical approximation of the exact decomposition, so
that the Riemannian Newton algorithm needs few iterations to converge numerically.
We will see in the numerical experiment in section 4 that this initial point is an
efficient choice to get a good low rank approximation of a symmetric tensor.

3.6. Riemannian Newton algorithm with trust region scheme for the
STA problem. In the previous sections we desribed all the ingredients of a Rie-
mannian Newton algorithm for the STA problem. Unfortunately, the convergence of
this algorithm may not occur from the beginning, that is because Newton method
converges if the initial point is close enough to a fix point solution. By adding a
trust region scheme to the Riemannian Newton algorithm, we enhance the algorithm,
with the desirable global properties of convergence to a local minimum, with a local
superlinear rate of convergence [2, Chapter 7], [1].

Let pk = (Wk,<(Vk),=(Vk)) ∈ N . The idea is to approximate the objective func-
tion f to its second order Taylor series expansion in a ball of center 0pk ∈ TpkN and
radius ∆k denoted by B∆k

:= {u ∈ TpkN | ||u|| ≤ ∆k}, and to solve the subproblem

(3.7) min
u∈B∆k

mpk(u)

where mpk(u) := f(pk)+GTk u+ 1
2u

THku and Gk is the gradient at pk (Proposition 3.4)
and Hk is the Hessian of f at pk (Proposition 3.5).

By solving (3.7), we obtain a solution uk ∈ TpkN . Accepting or rejecting the

candidate new point pk+1 = Rpk(uk) is based on the quotient ρk = f(pk)−f(pk+1)
mpk (0)−mpk (uk) .

If ρk exceeds 0.2 then the current point pk is updated, otherwise the current point pk
remains unchanged.
The radius of the trust region ∆k is also updated based on ρk. We choose to update
the trust region as in [10] with a few changes.



RIEMANNIAN OPTIMIZATION FOR THE STA PROBLEM 13

Let ∆p0 := 10−1
√

d
r

∑r
i=1 ||w0

i ||2, ∆max := 1
2 ||P ||d. We take the initial radius

as ∆0 = min {∆p0
,∆max}, if ρk > 0.6 then the trust region is enlarged as follow:

∆k+1 = min {2||uk||,∆max}. Otherwise the trust region is shrinked by taking ∆k+1 =

min
{

( 1
3 + 2

3 .(1 + e−14.(ρk− 1
3 ))−1)∆k,∆max

}
.

We choose the so-called dogleg method to solve the subproblem (3.7) [41]. Let
pN be the Newton direction given by the Newton equation HpN = −G, and let pc
denotes the Cauchy point given by pc = − GTG

GTHG
G. Then the optimal solution p∗ of

(3.7) by the dogleg method is given as follows:

p∗ =


pN if ||pN || ≤ ∆

− ∆
||G||G if ||pN || > ∆ end ||pc|| ≥ ∆

pI otherwise

where pI is the intersection of the boundary of the sphere B∆ and the vector pointing
from pc to pN .
The algorithm of the Riemannian Newton method with trust region scheme for the
STA problem is denoted by RNS-TR, and it is given by:

Algorithm 3.2 Riemannian Newton algorithm with trust region sheme for the STA
problem (RNS-TR)

Input: The homogeneous polynomial P ∈ C[x]d associated to the symmetric tensor
to approximate, r < rg
Choose initial point (W0, V0)
while the method has not converged do

1. Compute the vectors G1 and G2 and the matrices A,B,C and D
2. Compute the vector GR and the matrix HR

3. Compute the basis matrix Q
4. Solve the subproblem (3.7) for the search direction uk ∈ B∆k

by using the
dogleg method
5. Compute the candidate next new point pk+1 = Rpk(uk)
6. Compute the quotient ρk
7. Accept or reject pk+1 based on the quotient ρk
8. Update the trust region radius ∆k

end while
Output: (W̃ , Ṽ )

The Algorithm 3.2 is stopped when ∆k ≤ 10−3, or when the maximum number of
iterations exceeds Nmax.

Remark 3.14. For the implementation of the retraction in the step 5 in Algo-
rithm 3.2; let us assume that the subproblem (3.7) is solved at a point
p = (W,<(V ),=(V )) ∈ N , such that W = (wi)1≤i≤r, and V = [vi]1≤i≤r, in local co-
ordinates with respect to the basis Q as in Proposition 3.2. It yields a solution vector
p̂ ∈ Rr+r(2n−1). The tangent vector p∗ ∈ TpN is given by: p∗ = Q p̂, of size r + 2nr.
For each j ∈ {1, · · · , r}, Now, let denote w∗j = p∗[j], and v∗j = p∗[r + (j − 1)n + 1 :
r + jn] + p∗[r + rn+ (j − 1)n+ 1 : r + rn+ jn]i.

Using Lemma 3.7 for each j in {1, · · · , r}, we denote Pj := wj(v
t
jx)d ∈ Vdn,

tgj := w∗j (vtjx)d + dwj(v
t
jx)d−1(v∗j

tx) ∈ TPjVdn.
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Using the retraction in Proposition 3.13, we have RPj (tgj) = (Pj+tgj)(qj) (qtjx)d,

where qj is the first left singular vector of H1,d−1
Pj+tgj

.

Finally, we define the new point (W̃ ,<(Ṽ ),=(Ṽ )) ∈ N with W̃ = (w̃j)1≤j≤r,

Ṽ = [ṽj ]1≤j≤r, such that w̃j = |zj |, ṽj = ei
θj
d qj, where zj := (Pj + tgj)(qj) ∈ C and

θj := argument of zj.

Remark 3.15. In order to handle ill-conditioned Hessian matrices in the RNS-
TR iterations, we use the Moore-Penrose pseudoinverse [8, 32, 49], which slows down
the speed of computation. Ill-conditioned Hessian matrices can appear in cases where
some vectors vi of the rank r-approximation span close lines, which yields a singularity
problem in the iteration. This can be happen when the tensor is well approximated
by a tensor of rank smaller than the rank r used in the iterations (e.g. Example 4.1,
Example 4.3 with r > 2). Another singular case is when the border rank of the
symmetric tensor is not equal to its symmetric rank [10, 16], [34, section 2.4]. For
example, the tensor P = (vt0x)(vt1x)d−1 + ε T , with v0, v1 ∈ Rn, T ∈ R[x]d and ε very
small, is close to the tensor (vt0x)(vt1x)d−1 = limδ→0

1
d δ (((v1 + δv0)tx)d − (vt1x)d) of

border rank 2 and symmetric rank d+ 1. It can be very well approximated by a tensor
of rank 2, with two vectors of almost the same direction.

4. Numerical experiments. In this section we present three numerical exper-
iments using the RNS-TR algorithm. In subsection 4.1 we choose randomly some real
and complex examples of symmetric tensors of low rank, that we perturb randomly.
To analyze the practical behavior, we compare the RNS-TR algorithm with an initial
point given by the SHD method, with other reference methods. In subsection 4.2
we explore the performance of the RNS algorithm (which is the RNS-TR algorithm
after removing the trust region scheme) to find a best real rank-1 approximation of
a real symmetric tensor. In subsection 4.3 we compare with some examples of real
and complex valued symmetric tensors, the performance of the RNS-TR algorithm
with state-of-the-art methods for best low rank approximation of tensors of high
rank. The RNS-TR algorithm is implemented in Julia version 1.1.1 in the package
TensorDec.jl1. We use a Julia implementation for the method SPM tested in section
4.1. The solvers from Tensorlab v3 [53] are run in MATLAB 7.10. The experimen-
tation have been done on a Dell Window desktop with 8 GB memory and Intel 2.3
GHz CPU.

4.1. Approximation of perturbations of low rank symmetric tensors. In
this section, we consider perturbations of random low rank tensors. For a given rank r,
we choose r random vectors vi of size n, obeying Gaussian distributions and compute
the symmetric tensor T =

∑r
i=1(vtix)d of order d. We choose a random symmetric

tensor Terr of order d, with coefficients also obeying Gaussian distributions, normalize
it so that its apolar norm is ε and add it to T : T̃ = T+ε Terr

‖Terr‖d . We apply the different

approximation algorithms to T̃ and compute the relative error err= ‖T∗−T‖d
ε between

the approximation T∗ of rank r computed by the algorithm and the rank-r tensor T .
We run this computation for 100 random instances and report the minimal, median
and maximal relative error, the average number of iterations N (rounded to the closest
integer) and the average time t (in seconds).

As the initial tensor T̃ is in a ball of radius ε centered at the tensor T of rank r,
we expect T∗ to be closer to T and the relative error to be less than 1.

1It can be obtained from ”https://gitlab.inria.fr/AlgebraicGeometricModeling/TensorDec.jl”.
See functions RNS and RNS-TR.
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We compare the RNS-TR method with the initial point computed by SHD algo-
rithm, with the recent Subspace Power Method (SPM) of [29] and the state-of-the-art
implementation CPD-NLS of the package Tensorlab v3 [53], which is designed for
the canonical polyadic decomposition [27], but using it with symmetric initial point
provides symmetric approximation. Since SPM works for even order tensors with real
coefficients, the comparison in Table 1 is run for tensors in S4(R10). In Tables 2 and
3, we compare CPD-NLS and RNS-TR for tensors in Sd(C10) of order d = 3, 4 and
with complex coefficients. These tables also provide a numerical comparison with the
low rank approximation methods tested in Example 5.4 of [39], since the setting is
the same.

The timing for the method RNS-TR includes the computation of the initial point
by the SHD algorithm. For the methods SPM and RNS-TR, the iterations are stopped
when the distance between two consecutive iterates is less than 10−6 or when the max-
imal number of iterations (Nmax = 200 in this experimentation) is reached.

Table 1
Computational results of SPM and RNS-TR for rank-r approximations in S4(R10).

r ε
errspm tspm Nspm errrns trns Nrns

min med max avg avg min med max avg avg

1

1 0.042 0.099 0.171 0.031 21 0.0389 0.102 2.607 0.094 3

10−1 0.048 0.102 0.16 0.034 23 0.047 0.102 0.16 0.082 2

10−2 0.05 0.095 0.164 0.031 21 0.05 0.096 0.165 0.071 2

10−4 0.055 0.331 3.9 0.036 21 0.062 0.104 0.185 0.081 2

10−6 0.631 27.7 673.8 0.032 19 0.053 0.103 0.162 0.074 2

2

1 0.076 0.151 2.1 0.079 49 0.098 0.154 0.233 0.122 3

10−1 0.097 0.148 0.226 0.074 49 0.091 0.156 0.23 0.124 2

10−2 0.083 0.153 0.222 0.062 44 0.085 0.156 0.217 0.102 2

10−4 0.136 0.774 12.7 0.069 48 0.092 0.155 0.252 0.107 2

10−6 3.2 91 943.5 0.066 47 0.1 0.157 0.238 0.104 2

3

1 0.134 0.183 0.325 0.097 78 0.117 0.19 0.265 0.225 4

10−1 0.122 0.191 0.248 0.091 76 0.146 0.199 1.9 0.202 3

10−2 0.13 0.193 0.898 0.076 78 0.125 0.206 0.375 0.125 2

10−4 0.225 1.2 12.1 0.093 76 0.148 0.206 0.394 0.13 2

10−6 24 148 1264.8 0.106 79 0.131 0.201 0.518 0.132 2

4

1 0.172 0.226 473482.3 0.147 109 0.168 0.231 0.705 0.359 4

10−1 0.152 0.217 0.285 0.151 112 0.16 0.227 13.4 0.258 3

10−2 0.162 0.224 0.376 0.149 110 0.169 0.251 0.401 0.17 2

10−4 0.385 2.3 16 0.153 115 0.18 0.24 0.789 0.162 2

10−6 31.6 231 4218.8 0.15 109 0.181 0.244 0.469 0.164 2

5

1 0.184 0.245 1500.9 0.192 143 0.171 0.252 2.5 0.75 6

10−1 0.179 0.243 0.322 0.19 141 0.188 0.255 0.339 0.327 3

10−2 0.177 0.252 0.329 0.196 147 0.198 0.287 0.478 0.221 2

10−4 0.339 3.1 29.6 0.19 141 0.207 0.297 3 0.2 2

10−6 48.8 330.9 1921.2 0.196 144 0.213 0.3 1 0.197 2

In all these experimentations (see Table 1, Table 2, Table 3), the number of
iterations of the RNS-TR method is significantly smaller than the number of iterations
of the other methods. In SPM, the number of iterations to get an approximation of
a single rank-1 term of the approximation is about 20, indicating a practical linear
convergence as predicted by the theory [29, Theorem 5.10]. As the method CPD-NLS
is based on a quasi-Newton iteration, its local convergence is sub-quadratic, which also
explains the relatively high number of iterations. The local quadratic convergence of
RNS-TR is revealed, in these experimentations, by the low number of iterations.

The cost of an iteration appears to be higher in RNS-TR method than in the
other methods. Nevertheless, the total time is of the same order. The timing of SPM
method is better than the timing of RNS-TR, which is better than CPD-NLS timing.
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Table 2
Computational results of CPD-NLS and RNS-TR for rank-r approximations in S3(C10).

r ε
errcpd tcpd Ncpd errrns trns Nrns

min med max avg avg min med max avg avg

1

1 0.382 32.9 311.7 0.035 23 0.137 0.207 0.298 0.012 2

10−1 0.155 9.6 324.4 0.024 11 0.132 0.208 0.306 0.015 2

10−2 0.047 9.5 116.5 0.02 9 0.158 0.206 0.304 0.015 2

10−4 0.331 10.9 58.4 0.023 9 0.14 0.205 0.348 0.046 5

10−6 0.015 8.6 74.5 0.024 9 0.15 0.206 0.278 0.047 6

2

1 10.7 135.7 315 0.09 35 0.219 0.306 0.379 0.055 3

10−1 8.7 35.5 318.4 0.044 15 0.239 0.312 0.392 0.029 2

10−2 5.8 32.4 112.2 0.037 12 0.237 0.326 0.624 0.026 2

10−4 4.8 33 125.2 0.04 12 0.223 0.314 0.627 0.026 2

10−6 4.3 33.2 99.2 0.037 12 0.225 0.313 0.482 0.026 2

3

1 33 173.8 318.5 0.193 47 0.29 0.362 0.425 0.096 4

10−1 19.2 54.1 147.2 0.072 16 0.3 0.375 0.53 0.064 3

10−2 17.9 57.9 152.3 0.066 14 0.331 0.444 0.695 0.039 2

10−4 17.3 57.2 120 0.063 14 0.331 0.448 0.729 0.04 2

10−6 17 54.8 129.4 0.062 13 0.313 0.435 0.745 0.039 2

4

1 92.4 188.3 372.5 0.254 53 0.347 0.429 0.489 0.126 4

10−1 32.3 83.2 535.2 0.101 19 0.352 0.425 0.512 0.088 3

10−2 34.9 84.9 500 0.085 16 0.388 0.555 0.803 0.054 2

10−4 40.2 79.8 4.2e+4 0.08 15 0.446 0.563 0.671 0.048 2

10−6 38.1 90.1 4.6e+6 0.081 15 0.438 0.603 0.94 0.048 2

5

1 89.8 214.5 344.8 0.37 73 0.415 0.475 0.55 0.163 4

10−1 50.3 109.4 352.2 0.13 24 0.38 0.46 0.554 0.116 3

10−2 48.7 101.5 223 0.106 19 0.402 0.525 0.761 0.085 3

10−4 39.2 97.6 215.8 0.1 17 0.547 0.805 1.1 0.061 2

10−6 47.6 101.9 178.3 0.111 19 0.525 0.782 0.972 0.061 2

Table 3
Computational results of CPD-NLS and RNS-TR for rank-r approximations in S4(C10).

r ε
errcpd tcpd Nrns errrns trns Nrns

min med max avg avg min med max avg avg

1

1 0.004 339.5 1.4e+3 0.047 16 0.064 0.109 0.175 0.051 2

10−1 0.004 13.2 1.1e+3 0.033 11 0.066 0.108 0.153 0.05 2

10−2 0.001 9.9 688.2 0.033 11 0.064 0.12 0.150 0.05 2

10−4 0.016 17.1 127.6 0.032 10 0.055 0.118 0.154 0.05 2

10−6 0.007 12.5 155 0.032 11 0.064 0.111 0.157 0.05 2

2

1 10.3 636.6 2.2e+3 0.096 23 0.112 0.165 0.218 0.116 2

10−1 8.6 87 6.7e+3 0.072 17 0.115 0.166 0.217 0.086 2

10−2 4.3 58.3 448.5 0.064 14 0.118 0.159 0.257 0.085 2

10−4 3.8 62.8 9.9e+5 0.063 14 0.122 0.168 0.298 0.092 2

10−6 6.9 63.9 4.9e+3 0.061 14 0.111 0.167 0.221 0.086 2

3

1 76.2 753.8 2.4e+3 0.14 28 0.156 0.202 0.245 0.211 3

10−1 19.4 150.9 5e+3 0.096 19 0.155 0.203 0.272 0.139 2

10−2 19.3 118.9 416.3 0.087 16 0.156 0.204 0.256 0.129 2

10−4 16.2 132.3 512.6 0.087 16 0.15 0.209 0.294 0.145 2

10−6 17.7 138.1 4e+3 0.084 16 0.156 0.203 0.262 0.146 2

4

1 87.5 929.6 1.8e+3 0.229 39 0.191 0.232 0.297 0.34 3

10−1 38.8 224.4 3.9e+3 0.137 22 0.192 0.245 0.309 0.24 2

10−2 58.4 213.1 6.8e+3 0.115 18 0.198 0.256 0.337 0.188 2

10−4 36 195.8 828.8 0.137 20 0.199 0.248 0.354 0.188 2

10−6 257.3 193.2 689 0.117 18 0.196 0.252 0.344 0.191 2

5

1 424.8 1.1e+3 3.4e+3 0.291 41 0.213 0.262 0.314 0.399 3

10−1 118.4 318.7 5.3e+3 0.176 24 0.222 0.273 0.336 0.299 3

10−2 103.8 274 608.1 0.153 19 0.232 0.293 0.473 0.204 2

10−4 68.7 224.1 9.5e+3 0.154 20 0.247 0.296 0.469 0.176 2

10−6 56.5 269 2.9e+4 0.157 20 0.247 0.293 0.427 0.175 2

It should be noticed that CPD-NLS is not exploiting the symmetry of the tensors in
these computations, whereas the other methods applies directly to symmetric tensors.
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These experimentations also show that the numerical quality of low rank approx-
imation is better for RNS-TR. In most of the computations, the relative error in
RNS-TR method is less than 1, corroborating the idea that RNS-TR found the best
low rank approximation in these cases. In the other methods, the local optimum found
can be very far from the best low rank approximation. The same remark applies to
the numerical results in [39, Example 5.4] for GP method and small perturbations
(ε ∈ {10−2, 10−4, 10−6}), whereas the numerical quality in GP-OPT method of the
same order as in RNS-TR though slightly worst. This can be explained by the choice
of a random vector as initial point in SPM and CPD-NLS methods. The relatively
high error in SPM method for small perturbations (ε = 10−6) can be explained by
the fact that the threshold used to stop the iterations is of the same order as the
perturbation ε, which deteriorates the approximation quality of the final low rank
tensor.

4.2. Best rank-1 approximation and spectral norm. Let P ∈ Sd(Rn), a
best real rank-1 approximation of P is a minimizer of the optimization problem

(4.1) dist1(P ) := min
X∈Sd(Rn),rankX=1

||P −X||2d = min
(w,v)∈R×Sn−1

||P − w(vtx)d||d.

where Sn−1 = {v ∈ Rn | ||v|| = 1} is the unit sphere. This problem is equivalent to
minX∈T d(Rn),rankX=1 ||P τ −X||2F since at least one global minimizer is a symmetric
rank-1 tensor [55].

The real spectral norm of P ∈ Sd(Rn), denoted by ||P ||σ,R is by definition:

(4.2) ||P ||2σ,R := max
v∈Sn−1

|P (v)|

The two problems (4.1) and (4.2) are related by the following equality:

dist1(P )2 = ||P ||2d − ||P ||2σ,R

which we deduce by simple calculus and properties of the apolar norm (see also [19,
55]):

dist1(P )2 = min
(w,v)∈R×Sn−1

||P − w(vtx)d||2d

= min
(w,v)∈R×Sn−1

||P ||2d − 2〈P,w(vtx)d〉d + ||w(vtx)d||2d

= min
(w,v)∈R×Sn−1

||P ||2d − 2wP (v) + w2

= min
v∈Sn−1

||P ||2d − |P (v)|2 = ||P ||2d − max
v∈Sn−1

|P (v)|2 = ||P ||2d − ||P ||2σ,R.

Therefore if v is a global maximizer of (4.2) such that w = P (v), then w v⊗d is a
best rank-1 approximation of P . Herein, a rank-1 approximation w v⊗d, such that
w = P (v) and ||v|| = 1, is better when |w| is higher. Therefore, in the following
experimentation, we report the weight w obtained by the different methods.

In [40] the authors present an algorithm called hereafter ”SDP” based on semidef-
inite relaxations to find a best real rank-1 approximation of a real symmetric tensor
by finding the global optimum of P on Sn−1. In our second numerical experiment
we choose to apply, on some of examples from [40] our method RNS with real ini-
tial point chosen according to the SHD algorithm as in subsection 3.5. Recall that
the RNS algorithm is an exact Riemannian Newton method, and then it has a local
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quadratic rate of convergence [2, Theorem 6.3.2]. Note that the computations in [40]
are implemented in MATLAB 7.10 on a Dell Linux desktop with 8 GB memory and
Intel 2.8 GHz CPU.

We denote by wrns(v
t
rnsx)d (resp. wsdp(v

t
sdpx)d) the rank-1 approximation of

P ∈ R[x]d obtained by RNS method (resp. SDP method). Note that |wsdp| is the
spectral norm of P , since SDP gives a best rank-1 approximation. We report the
time spent by RNS method in the seconds (s) and we denote it by trns, while the
computation time in SDP method, in the format hours:minutes:seconds, is denoted
by tsdp. We denote by Nrns the number of iterations needed for the convergence of
RNS method. We denote by d0 the norm between P and the initial point of RNS
method, and by d∗ the norm between P and the local minimizer obtained after the
convergence of the RNS method.

Example 4.1. [40, Example 3.5]. Consider the tensor P ∈ S3(Rn) with entries:

(P )i1,i2,i3 =
(−1)i1

i1
+

(−1)i2

i2
+

(−1)i3

i3
.

Table 4
Comparision of RNS-TR and SDP for Example 4.1

n 10 20 30 40 50

|wrns| 17.8 34.2 50.1 65.9 81.6
d0 32.4 80.8 133.5 188 290.3
d∗ 28.4 64.9 102.2 139.8 177.8
trns 0.099 0.782 3.2 7.2 14.9
Nrns 5 6 8 7 6

|wSDP | 17.8 34.2 50.1 65.9 81.6
tSDP 0:00:02 0:00:06 0:00:30 0:04:05 0:32:45

In this example the RNS algorithm finds a best rank-1 approximation, which
implies that the RNS algorithm found a minimizer in a neighborhood of the initial
point chosen by the SHD algorithm, and it is in fact a global minimizer, and it
converged quadratically to this point with very reduced time compared to the SDP
algorithm especially when n grows.

Example 4.2. [13, Example 3.7]. Consider the tensor P ∈ S5(Rn) given as:

(P )i1,...,i5 = (−1)i1 log(i1) + · · ·+ (−1)i5 log(i5).

Table 5
Comparison of RNS-TR and SDP for Example 4.2

n 10 20 30 40 50

|wrns| 1.100e+2 8.833e+2 2.697e+3 6.237e+3 11.504e+3
d0 526.1 6.559e+3 26.318e+3 64.268e+3 132.213e+3
d∗ 477.5 6.096e+3 24.643e+3 60.435e+3 121.892e+3
trns 0.058 0.501 3.8 18.3 34.8
Nrns 5 5 6 6 6

|wsdp| 1.100e+2 8.833e+2 2.697e+3 6.237e+3
tsdp 0:00:01 0:00:22 0:01:18 0:22:30

In the experimentation results of Table 5 we find, as in the previous example,
that RNS finds a best rank-1 approximation with very reduced time compared to



RIEMANNIAN OPTIMIZATION FOR THE STA PROBLEM 19

tsdp which increases a lot with n. For example, for n = 20, SDP method needs 22.5
minutes to find a best rank-1 approximation. For the last column in Table 5, for
n = 25, no experimental result is available for SDP method because of its difficulty
to treat the problem due to its high complexity. Nevertheless, for n = 25, the RNS
algorithm needs only 6 iterations to converge in 34.8 seconds to a local minimum,
which we expect but cannot certify to be the best rank-1 approximation.

Example 4.3. [40, Example 3.10]. Let P ∈ Sd(Rn) such that

(P )i1,...,id = sin(i1 + · · ·+ id).

In this example we compare the performance of RNS, SPD, SHOPM [30], SDF-NLS
and CCPD-NLS, which are non-linear least-square solvers for the symmetric decom-
position from Tensorlab v3, all together, for d = 3 with n = 10, 15, 20, 25, and for
d = 4 with n = 10, 15. The numerical results of SPD and SHOPM (resp. SDF-NLS
and CCPD-NLS) are taken from [40] (resp. the test of the methods implemented
in Tensorlab V3.0 in MATLAB 7.10). For CCPD-NLS and SDF-NLS we run 50 in-
stances and we take the mean of the absolute value of the 50 weights given by each
of these two methods. The time spent by SHOPM and SDP methods is not available
in [40]. We mention the time spent by the other methods in this comparison. We
denote by tsdf (resp. tccpd) the average of time in seconds(s) spent by SDF-NLS (resp.
CCPD-NLS). We denote by Nsdf (resp. Nccpd) the number of iterations in average
needed in the SDF-NLS (resp. CCPD-NLS) method.

Table 6
Computational results for Example 4.3 with d = 3, 4.

d = 3 d = 4
n 10 15 20 25 10 15

|wrns| 12.1 22.1 33 44.5 27.3 58.8
trns 0.071 0.278 0.86 1.701 0.221 0.85
Nrns 6 8 8 8 6 6

|wsdf | 11.2 20.7 31.5 44.2 25.2 55.6
tsdf 0.132 0.118 0.122 0.12 0.152 0.176
Nsdf 18 19 19 18 20 21

|wccpd| 11.2 20.7 31.6 44.2 24.9 55.1
tccpd 0.124 0.089 0.084 0.094 0.101 0.158
Nccpd 18 18 18 19 20 20

|wshopm| 3 13.7 27 33.3 1.2 50.4

|wsdp| 12.1 22.1 33 44.5 27.3 61.4

The computational results presented in Table 6 show that SHOPM didn’t find
best rank-1 approximation. The mean, in all cases of n, of the absolute value of
weights given by 50 instances with CCPD-NLS or SDF-NLS is not equal to |wSDP |,
which is as we mentioned before refree to the best rank-1 approximation, it is trivial
since for each instance we start from a random initial point and we find one of the
local-minima which is can be or not the best rank-1 approximation, this mean is in fact
the mean of the absolute value of weights of local minima for rank-1 approximation.
On the other side, RNS method found a best rank-1 approximation in all cases except
when d = 4 and n = 15; but even with this case the rank-1 approximation given by
the RNS method is better than SHOPM methods. Note that we run RNS only for
one instance since SHD gives a unique rank-1 initial point.
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These numerical experiments show that RNS algorithm with initial point chosen ac-
cording to the SHD algorithm gives a best real rank-1 approximation for real symmet-
ric tensor in all examples except Example 4.3 with d = 4, n = 15. We noticed that the
combination between the RNS algorithm and this method to choose the initial point
respectively outperforms the SDP method in term of the consumed time, and the
SDF-NLS, CCPD-NLS and SHOPM methods in term of the rank-1 approximation
given by each of these algorithms. Nevertheless, we have no certification that RNS-
TR method converges to a best rank-1 approximation. All we can say is that RNS
method with initial point chosen by using the SHD algorithm is an efficient method
to get a good real rank-1 approximation of a real symmetric tensor.

4.3. RNS-TR, CCPD-NLS, and SDF-NLS for symmetric rank-r ap-
proximation. In this section, we consider two examples of a real and a complex
valued sparse symmetric tensors of high rank, in order to compare the performance of
RNS-TR with initial point computed by SHD, with state-of-the-art non-linear least-
square solvers CPD-NLS, CCPD-NLS and SDF-NLS from Tensolab v3 with initial
point following a standard normal distribution. These solvers employ factor matrices
as parameterization and use a trust region method with dogleg steps called “NLS-
GNDL” which means that they use the Gauss-Newton approximation of the Hessian
matrix. Thus, mainly the difference between RNS-TR and the other solvers from
tensorlab CPD-NLS, CCPD-NLS, and SDF-NLS is the parameterization using the
Veronese manifolds, the use of the exact Hessian matrix and the choice of the initial
point by SHD method. Note that we use CPD-NLS with symmetric initial point in
order to obtain a symmetric approximation.

We fixe 200 iterations as maximal number of iterations, and we run 50 instances
for these four methods and we report the minimal, median and maximal residual error,
the average of time t (in seconds), and the average number of iterations N (rounded
to the closet integer). The time of the RNS-TR method includes the time of the SHD
method for the initial point.

Example 4.4. Let P ∈ S3(R10) such that:

(P )i1,i2,i3 =


i21 + 1 if i1 = i2 = i3

1 if i1 = i2 6= i3

0 otherwise

This sparse symmetric tensor corresponds to the polynomial P =
∑n
i=1 i

2x3
i

+ (
∑n
i=1 x

2
i ) ×(

∑n
i=1 xi).

Example 4.5. Let P ∈ S3(C10) such that:

(P )i1,i2,i3 =


e
√
i1+i21

√
−1 + i1

n

√
−1 if i1 = i2 = i3

i1
n

√
−1 if i1 = i2 6= i3

0 otherwise

This sparse symmetric tensor corresponds to the polynomial P =
∑n
i=1 e

√
i+i2
√
−1 x3

i

+
√
−1(

∑n
i=1

i
nx

2
i )× (

∑n
i=1 xi).

The numerical results in Table 7 show that the number of iterations of RNS-
TR method is low compared to the other methods, as expected for an exact Newton
method with a local quadratic convergence, though the first steps are governed by the
Trust-Region criteria and can progress sub-quadratically. The cost of the iterations
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Table 7
Comparison of RNS-TR, CPD-NLS, CCPD-NLS, SDF-NLS for Examples 4.4 and 4.5.

Example 4.4

r
errrns trns Nrns

min med max avg avg
3 70.6 96 134.3 0.084 4
5 33.3 54.2 91.8 0.453 10
10 0.884 0.884 0.884 0.465 6

r
errcpd tcpd Ncpd

min med max avg avg
3 71.5 102 137.2 0.042 13
5 34.5 55.2 302.9 0.041 14
10 10.7 24 80.1 0.095 27

r
errccpd tccpd Nccpd

min med max avg avg
3 71 102 137.1 0.067 14
5 34.2 54.7 121 0.116 26
10 7.8 7.8 9.7 0.5 90

r
errsdf tsdf Nsdf

min med max avg avg
3 71 96.3 136 0.155 14
5 34.2 49.4 105.3 0.212 16
10 7.8 8.2 38.3 2.3 158

Example 4.5

r
errrns trns Nrns

min med max avg avg
3 22.4 28.8 30.9 0.127 6
5 14.1 17.1 22.2 0.195 6
10 0.162 0.162 0.162 0.335 5

r
errcpd tcpd Ncpd

min med max avg avg
3 23.1 28.1 34.5 0.087 14
5 15.5 18.7 27.6 0.086 17
10 6.4 8.6 18.1 0.205 32

r
errccpd tccpd Nccpd

min med max avg avg
3 22.9 26.8 35.2 0.084 14
5 14.9 17 26.6 0.104 18
10 4.8 4.8 11.2 0.506 60

r
errsdf tsdf Nsdf

min med max avg avg
3 22.9 27.4 35.2 0.254 15
5 14.9 17.8 26.5 0.35 19
10 4.8 6.2 12.6 2.5 144

in RNS-TR is more expensing, resulting in a total timing which is bigger than the
fastest method CPD-NLS, though it remains competitive. The numerical quality of
approximation of RNS-TR method is the best one in this test. It is of the same order
than the other methods for r = 3, 5 but much better for r = 10. This can be explained
by the fact that the initial point provided by SHD method is close to the best rank-10
approximation. In the other methods the initial point is chosen at random and over
50 trials, these methods have not found one initial point in the region of convergence
to the best rank-10 approximation of P . Notice that when r = 3, 5 the initial point
provided by SHD method, based on truncated SVD and eigenvector computations,
yields the same behavior as a random initial point (a random linear combination of
the matrices of a pencil is used to compute the eigenvectors in SHD method).

5. Conclusions. We presented the first Riemannian Newton optimization fra-
mework for approximating a given complex-valued symmetric tensor by a low rank
symmetric tensor. We parametrized in subsection 3.1 the constraint set as the Carte-
sian product of Veronese manifolds. We have developed an exact Riemannian Newton
iteration without approximating the Hessian matrix. We proposed in subsection 3.2
a suitable representation of the points in the constraint set, and we exploited in sub-
section 3.3 the properties of the apolar product and of partial complex derivatives,
to deduce a simplified and explicit computation of the gradient and Hessian of the
square distance function in terms of the points, weights of the decomposition and
the tensor to approximate. In subsection 3.4, we presented a retraction operator on
the Veronese manifold. We show that, combined with SHD method for choosing the
initial point, the new Riemannian Newton method has a good practical behavior in
several experiments, in subsection 4.1 to compute low rank approximations of random
perturbations of low rank symmetric tensors, in subsection 4.2 to compute a best real
rank-1 approximation of a real symmetric tensor, and in subsection 4.3 to compute
a low rank approximation of sparse symmetric tensors. In future works, we plan to
investigate the computation of initial points for the Riemannanian Newton iterations
applied to tensors of higher rank and the low rank approximation problem for other
families of tensors, such as multi-symmetric or skew symmetric tensors.
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