
HAL Id: hal-02494143
https://hal.science/hal-02494143v1

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic collision avoidance using local cooperative
airplanes decisions

Augustin Degas, Arcady Rantrua, Elsy Kaddoum, Marie-Pierre Gleizes,
Françoise Adreit

To cite this version:
Augustin Degas, Arcady Rantrua, Elsy Kaddoum, Marie-Pierre Gleizes, Françoise Adreit. Dynamic
collision avoidance using local cooperative airplanes decisions. CEAS Aeronautical Journal, 2019, 10,
pp.309-320. �10.1007/s13272-019-00400-6�. �hal-02494143�

https://hal.science/hal-02494143v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24980

To cite this version: Degas, Augustin and Kaddoum, Elsy and Gleizes,

Marie-Pierre and Adreit, Françoise and Rantrua, Arcady Dynamic

collision avoidance using local cooperative airplanes decisions. (2019)

Council of European Aerospace Societies Aeronautical Journal, 10. 1-12.

ISSN 1869-5582

Official URL

DOI : https://doi.org/10.1007/s13272-019-00400-6

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Dynamic collision avoidance using local cooperative airplanes
decisions

Augustin Degas1,2 · Arcady Rantrua1 · Elsy Kaddoum2 · Marie-Pierre Gleizes2 · Françoise Adreit2

Abstract

In the near future, air traffic control (ATC) will have to cope with a radical change in the structure of air transport [1].

Apart from the increase in traffic that will push the system to its limits, the insertion of new aerial vehicles such as drones

into the airspace, with different flight performances, will increase its heterogeneity. Current research aims at increasing the

level of automation and partial delegation of the control to on-board systems. In this work, we investigate the collision

avoidance management problem using a decentralized distributed approach. We propose an autonomous and generic multi-

agent sys-tem to address this complex problem. We validate our system using state-of-the-art benchmarks. The results

underline the adequacy of our local and cooperative approaches to efficiently solve the studied problem.

Keywords Trajectory optimization · Automation strategies · Conflict resolution · Self-separation · Multi-agent systems ·

Self-organization

1 Introduction

Contrary to a clear majority of motion planning problems,

air traffic management does not rely on finding a compli-

cated trajectory to satisfy one aircraft. Airspace is rarely

cluttered by obstacles, except for the weather; thus, finding

a trajectory is quite straightforward. The difficulty of motion

planning for aircraft resides in finding a feasible trajectory

for each aircraft (i.e. respecting the capabilities of the air-

craft), collision free with the others, globally optimal (i.e.,

optimal for all the airplanes), and resilient to changes and

uncertainties, all this in a wide configuration space [2].

In today’s air traffic management, airspace is divided into

several zones each under the supervision of air controllers.

In order to help air controllers to manage real-time traffic

and avoid collisions, the traffic is regulated upstream. With

the increase in traffic and the insertion of new aerial vehi-

cles such as drones into the airspace, with different flight

performances, air traffic control must evolve by increasing

the level of automation and introducing partial delegation of

the control to on-board systems.

In this work, we investigated this particular kind of

motion planning in a clear environment, with dynamic con-

straints, with multiple vehicles and an objective of optimal-

ity. This kind of motion planning is mostly about following

the desired trajectory while continuously avoiding collisions

with other entities. We propose a generic approach that does

not focus on the navigation of multiple robots to a single

destination or the control of a swarm formation like in [3–5].

We propose to address the collision avoidance manage-

ment problem using a decentralized distributed approach:

the adaptive multi-agent system (AMAS) theory. It aims at

solving problems in dynamic environments by a bottom-

up design of autonomous agents, where cooperation is the

driver of the self-organization process [6]. AMAS has been

successfully used to solve different problems, such as anom-

aly detection in maritime environment [7], control and opti-

mization of heat-engine [8], or context learning [9].

 * Augustin Degas

augustin.degas@soprasteria.com

Arcady Rantrua

arcady.rantrua@soprasteria.com

Elsy Kaddoum

elsy.kaddoum@irit.fr

Marie-Pierre Gleizes

marie-pierre.gleizes@irit.fr

Françoise Adreit

francoise.adreit@irit.fr

1 Sopra-Steria Group, Colomiers, France

2 IRIT, Université Toulouse 3, Toulouse, France

In the case of the collision avoidance problem, represent-

ing each airplane by an autonomous cooperative agent with

local interactions brings a natural decentralized solution to

the complexity of the global problem. The system we pro-

pose can be used for several issues:

• Simulation The system can be used to measure the con-

sequences of the introduction/modification of airplanes

trajectories.

• Learning The openness of the system allows real-time

interactions with end-users. This can help for education

purpose. Indeed, scenarios can be defined where the con-

trol to avoid collision is given to air traffic controllers in

specific sectors and then taken back by the automated

system with the modified trajectories. The proposed solu-

tion by the controllers can also be compared to the one

proposed by the system.

• On board The system can be used by air traffic controllers

or directly on board as a decision support system to avoid

collisions.

The remainder of this paper is structured as follows. Sec-

tion 2 briefly reviews the related work. Section 3 presents

our general approach to collision avoidance. Section 4

describes its application to ATC, the experiments and the

results. Finally, Sect. 5 summarizes our findings and con-

cludes this study.

2 Related work

2.1 Problem formalization

Motion planning, planning of trajectories for a set of mobile

entities, is a widely studied field, from the planning of a path

of a simple robot in an unknown environment to the planning

of trajectories for a set of mobile entities with constraints

in a known environment. By mobile entity, we mean every

possible entity that can move, from a robot arm, to cars,

unmanned aerial vehicles (UAV) or airplanes. Our concerns

in this vast field of motion planning lies in collision avoid-

ance for a set of mobile entities, with dynamic constraints,

and an objective of optimality.

We based our formalization on the one proposed in [2]

that introduces the notion of configuration space. This notion

was first introduced for path planning for a simple mobile, in

order to represent the space of every possible state in which

the mobile entity can be. It is easily generalized for motion

planning for multiple mobile entities or a mobile entity with

multiple parts, as it only had parameters related to the state

vector (position, speed, direction). A configuration from the

configuration space is then a vector containing a state for

every M
i
∈ M (or every part of M

i
). In the remainder of

this

paper, the configuration space is noted C, a configuration

from the configuration space is noted q. In C, some configu-

rations q are in collision with an obstacle. We note the space

of configurations with collisions with obstacles C
Obs

 and the

space without collisions C
free

 ; thus, C = C
Obs

∪ C
free

.

Our problem can be formalized as follows:

• A set of heterogeneous mobile entities, noted M,

M =

{

M
i

}

0<i≤m

• A set of obstacles, O. An obstacle can be fixed or can

move over time.

Each mobile entity is characterized by:

• A state vector, containing the position vector of M
i
 , its

velocity vector, and the three rotation angles (Euler’s

angles).

• A predetermined trajectory, noted �
p
 , a function of time.

• Capacities, containing its ability to accelerate, decelerate,

turn and so on.

• A configuration space C
i
 , in which other Mj are obstacles

with determined trajectories.

The problem consists in finding a trajectory �
i
 for each

mobile entity from a starting point, to a goal destination

while respecting �
p
 and avoiding collisions with mobile and

stationary obstacles. In other terms, the goal is to find for

each M
i
 a trajectory �

i
 that lies in C

i,free.

2.2 State of the art

The studied problem is combinatorial: the huge number of het-

erogeneous airplanes, the size of the airspace and the fourth

dimension (space + time) make the configuration space C

tremendous. The size of the configuration space has led most

research to discretize the configuration space, either for the

maneuvers or the airspace, and explore it with graph search

or evolutionary algorithms, or by using heuristics to guide the

exploration.

Meta-heuristics using discretization of maneuvers, such

as genetic algorithms [10] or ant colony algorithms [11],

along with artificial intelligence algorithm as neuronal net-

works [12], give interesting results but they scale poorly.

Indeed, [10, 11] are one of the few that handle more than 20

airplanes and still find a global optimum.

Potential fields are also expensively studied, starting from

the standard method, to its extension with navigation functions

[13], the usage of more complex potential fields [14], or the

combination between potential fields and swarming [15]. Those

methods have the particularity of providing a proof of conver-

gence. However, those methods need to be tuned carefully to be

effective. Finding generic rules to do so seems quite difficult.

Mixed-integer linear programming (MILP) solvers are

studied as well, in particular for solving a minimum weight

maximum clique model [16]. Results are interesting, but

they use important instantaneous heading or speed changes.

Constraint programming has also shown some interesting

results [17], finding solutions proved to be optimal, but also

scale badly with the number of airplanes.

Geometrical approaches have also been studied. The idea is

to detect collisions using velocity vectors, compute the mini-

mal velocity vector change to avoid the collision and divide

equally the minimal velocity vector change among the mobile

entities [18, 19]. One algorithm in particular has been suc-

cessfully applied to multi-robot [20], and some adaptations

for aircraft have been made [21]. Most of them have not been

tested in dense situations. The last ones however are interest-

ing in the way they decentralize the problem among the dif-

ferent entities and give interesting results with dense situation

as long as the constraints on maneuvers are light.

Recent studies move toward decentralization and multi-agent

systems approaches [22]. Contrary to centralized approaches

where a central node decides the actions of the different entities

involved in the problem and insures coordination, in decentral-

ized approaches, decision and coordination are autonomously

made by the entities themselves. In such approaches, computa-

tion can be distributed on several nodes. For example, in [22],

airplanes are represented by agents with the ability to modify

their velocity and departure time in order to avoid collisions.

Multi-agent system techniques allow a natural description of

the problem and have shown their adequacy to efficiently solve

complex problems addressing dynamic and scaling issues. We

believe that this decentralization will be of a growing interest in

the future as part of the delegation to the aircraft of responsibil-

ity for separation maintenance [1].

3 Collision avoidance using an adaptive
multi-agent system approach

In this part, we start by introducing the adaptive multi-agent

systems (AMAS) theory, and then, we present our general

approach, called CAAMAS for collision avoidance adaptive

multi-agent system.

3.1 The adaptive multi-agent systems theory

Multi-agent systems (MAS) are composed of different enti-

ties called agents. An agent is a physical or software entity,

that is autonomous, evolves in an environment with perceive,

decide and act abilities. The agent has a partial perception

of the environment. As a result, agents do not share the

same information, and do not take decisions knowing the

global state of their environment. This results in a system

that might make more adjustments, but is more scalable and

more robust. An agent is able to communicate with other

agents, has its own resources and capacities, and can offer

services. An agent follows a life cycle composed of three

steps, repeated until the agent achieves its local goal: per-

ception, decision, action. During the perception, it acquires

new information about its environment. It then decides the

next action to perform. Then, it realizes this action. The

agents’ execution can be done synchronously—all agents

perform in parallel a life cycle before starting a new one—,

asynchronously—agents perform their life cycles without

waiting others—, or iteratively (used in the experimenta-

tion conducted in this paper)—the agents execute their life

cycle one after the other; the order of the agents execution

is being randomly changed (or not) at each step of the sys-

tem execution. From the agents local interactions, with their

environment or between themselves, a self-organization is

established making the solution emerge.

In some cases, an agent may be non-cooperative, which

means it may bother other agents in their task, or it can-

not fulfill its goal and thus cannot help the group at all.

In the AMAS approach, the cooperation among agents

interactions is the engine of the self-organization. The

AMAS approach aims to create MAS in which agents act

cooperatively between themselves in order to maintain a

cooperative behavior. The AMAS theory identifies seven

generic non-cooperative situations [23] among the three

steps of the life cycle. In such situations, the agent has to

decide cooperative actions in order to solve difficult situa-

tions (conflict, concurrence, ambiguity, etc.), based on the

criticality of the agents.

3.2 The CAAMAS approach

We introduce in this section our decentralized colli-

sion avoidance adaptive multi-agent system (CAAMAS)

approach, for collision avoidance management for multiple

heterogeneous mobile entities with dynamic constraints. In

our model, every M
i
 is represented by an agent following

the life cycle described in Algorithm 1.

3.2.1 Perception phase

Every M
i
 perceives its local environment defined by its per-

ception zone Zp
i
 of the airspace. In this zone, M

i
 is able to

perceive other mobile entities called its neighborhood.

Different communication means can be used in order

to exchange information among the mobile entities. In our

model, we use messages, but other means can be easily

added. In the perception phase, M
i
 receives messages from

other mobile entities Mj (i ≠ j). Note that every Mj perceived

by M
i
 belongs to Zp

i
 (Mj ∈ Zpi).

Those messages contain two important parts:

• The current situation of the mobile entity: its position and

velocity vectors. They will be used to determine some

criticalities, in particular the collision criticalities.

• The criticality of the sender, Critj . This criticality is com-

puted for the action the mobile Mj is currently doing. It

is used by M
i
 to determine its behavior regarding Mj.

During the perception phase, the agent only stores the per-

ceived information and uses them in the decision phase.

3.2.2 Decision phase and action phase

In the decision phase, the mobile entity cooperatively

decides, based on its evaluation of the current situation,

which action to perform at the action phase.

(a) Action Given its capacities, a mobile entity M
i
 can real-

ize at each step a set of finite actions in order to explore

the configuration space C
i
 (cf. Sect. 2.1). In a fourth

dimension C (space + time), those actions can be, for

example, to climb, descend, stay put, turn left, turn

right, accelerate or decelerate. We note Ac
i
 the set of

n actions that M
i
 can do, Ac

i
=

{

Ac
i,k

}

0<k≤n
 . For each

possible action, the agent associates a criticality.

(b) Criticality For an agent, criticality represents the degree

of non-satisfaction of its own goal [24]. We note Crit
i

the criticality of the mobile M
i
 . Crit

i
 might be a simple

real number, or a tuple of different measures. In our

model, the criticality of a mobile entity M
i
 is a couple,

Crit
i
= (Crit

i,coll, Crit
i,traj):

• Collision criticality, noted Crit
i,coll which represents

the degree of non-satisfaction of M
i
 regarding the

objective of avoiding collisions.

• Trajectory criticality, noted Crit
i,traj which repre-

sents the degree of non-satisfaction of M
i
 regarding

the objective of following its desired trajectory.

 These criticalities are computed for every possi-

ble action Ac
i,k as shown in Algorithm 2. The algo-

rithm starts by evaluating the collision criticalities for

each Ac
i,k regarding each Mj in the perception zone,

Criti,j,k,coll . The calculated criticalities are stored in a

collision criticality list collCLAc
i
,k ordered by Critj asso-

ciated with a Ac
i,k . Then, the trajectory criticality if M

i

performs Ac
i,k , Crit

i,k,traj , is evaluated.

To sort the criticalities, the algorithm first considers

the collision criticality. The trajectory criticality is con-

sidered if the collision criticality is equal or if no collision

is detected.

Evaluation of the collision criticality of an action Ac
i,k

The evaluation of the collision criticality is based on an

extrapolation called nominal projection in the literature

[25]. It is a simple extrapolation of position and veloc-

ity vectors. The idea is to consider that the situation of a

mobile entity Mj will evolve in the same way it does cur-

rently (same speed and same direction) and thus to calcu-

late the criticality of the possible occurrence of a collision

if M
i
 realizes Ac

i,k.

Considering that, the collision criticality of M
i
 if it does

Ac
i,k regarding Mj , Criti,j,k,coll is an ordered couple:

• C1,k representing the criticality regarding the minimal

distance than can be reached between M
i
 and Mj if Mi

realizes Ac
i,k.

• C2,k representing the criticality regarding the time at

which the minimal distance between M
i
 and Mj if Mi

realizes Ac
i,k occurs.

In order to calculate this couple, the algorithm determines

the minimal distance (dmin,i,j,k) between M
i
 and Mj if Mi

 does

the action Ac
i,k , and then the time tmin,i,j,k at which the mini-

mal distance occurs. If a collision is detected, the interval
[

tstartCollision, tendCollision

]

 of time during which the collision

occurs is computed. In this case, the t
startCollision

 is considered

instead of the tmin,i,j,k.

In the following, we note ||.|| the Euclidean norm, and

di,j,k(t) the distance between M
i
 and Mj if Mi

 does the action

Ac
i,k . With those notations and the previous hypothesis, we

have:

dmin,i,j,k = min
0≤t

(di,j,k(t)) = min
0≤t

|| ⃖⃖⃖⃖⃗pi,k(t) − ⃖⃖⃗pj(t)||.

With ⃖⃖⃖⃖⃗pi,k(t) the vector position of M
i
 if it does the action

Ac
i,k , and ⃖⃖⃗pj(t) the perceived position vector of Mj.

Since the speed vector is considered as constant, dmin,i,j,k

is computed using:

The value at which the derivative of ||
(
⃖⃖⃖⃖⃗pi,k(0) + t.⃖⃖⃖⃖⃗vi,k

)

−
(
⃖⃖⃗pj(0) + t.⃖⃖⃗vj

)
|| is null is then tmin,i,j,k:

Note that:

Based on both values, C1,k and C2,k are then calculated as

follows:

Where d
coll

 is the minimal distance at which two mobiles

are allowed to be. Figure 1 illustrates the computation of

C1,stayPut for M
1
 regarding two mobile entities M

2
 and M

3
 in

its perception zone.

where t
tr
 is the time required by the mobile to cross its per-

ception zone.

The goal of those two criticality measures is to compute

the difficulty an agent has to reach its goal. Thus, they allow

the mobile entity M
i
 to order its different neighbors Mj from

the most critical to the least critical and to help it to decide

cooperatively which action to perform. In our study, both

measures were normalized in the interval [0, 100] (0 corre-

sponding to a satisfied agent, 100 to a highly critical agent).

Figure 2 represents the evolution of C1,k regarding d
coll

the minimal distance at which two mobiles are allowed to

be. We consider that if two mobile entities are far enough

one from another (≥ 2d
coll

), they are satisfied (C1,k = 0).

Otherwise, the more they are close to each other, the more

the C1,k is high.

Figure 3 represents the evolution of C2,k regarding t
tr
 the

time required by the mobile to cross its perception zone.

We consider that if a mobile entity has enough time to

cross its perception zone (≥ 3t
tr
) before the minimal dis-

tance between two mobile entities is reached, then they are

dmin,i,j,k = min
0≤t

||
(
⃖⃖⃖⃖⃗pi,k(0) + t.⃖⃖⃖⃖⃗vi,k

)
−
(
⃖⃖⃗pj(0) + t.⃖⃖⃗vj

)
||.

tmin,i,j,k =
−
(
⃖⃖⃖⃖⃗pi,k(0) − ⃖⃖⃗pj(0)

)
.
(
⃖⃖⃖⃖⃗vi,k − ⃖⃖⃗vj

)

||⃖⃖⃖⃖⃗vi,k − ⃖⃖⃗vj||
.

dmin,i,j,k = di,j,k(tmin,i,j,k).

C1,k =

{

100 −
100

2dcoll

dmin,i,j,k if dmin,i,j,k < 2dcoll

0 if dmin,i,j,k ≥ 2dcoll.

C2,k =

⎧⎪⎨⎪⎩

100 if tmin,i,j,k < ttr
100 −

100

2ttr

(
tmin,i,j,k − ttr

)
if tmin,i,j,k ∈ [ttr, 3ttr]

0 if tmin,i,j,k ≥ 3ttr,
satisfied (C2,k = 0). Otherwise, more this minimal distance

is reached in a near future, more the situation is urgent.

Note that, the two parameters d
coll

 and t
tr
 were decided with

ATM experts to underline the nature (critical or not) of a

situation.

Evaluation of the trajectory criticality of an action Ac
i,k

The trajectory criticality is composed of three measures,

Crit
i,k,traj = (C3,k, C4,k, C5,k) where:

• C3,k is the distance to the predetermined trajectory �
p
 at

the next step (t+1) if Ac
i,k is performed at the next step

(t+1)

• C4,k is the distance to the position of the destination

⃖⃖⃖⃖⃖⃖⃗pgoal ∈ �
p
 if Ac

i,k
 is performed.

• C5,k is the angle �
k
 between the predetermined trajectory

�
p
 and the speed vector if Ac

i,k is performed,

C3,k = min
x⃗∈�p

{
|| ⃖⃖⃖⃖⃗pi,k(t + 1) − ⃖⃗x||

}
.

C4,k = || ⃖⃖⃖⃖⃗pi,k(t = �) − ⃖⃖⃖⃖⃖⃖⃗pgoal||.

Fig. 1 Main notations used in the computation of criticalities

Fig. 2 Criticity C1,k in function of dmin,i,j,k

The three measures are used by the agent regarding the cur-

rent situation. Two cases are to be distinguished:

• Previous trajectory modifications lead the agent to devi-

ate from its predetermined trajectory �
p
 n but still keeping

the same direction. The agent compares the trajectory

criticality between two possible actions using first C3,k ,

then C4,k (for equal C3,k) and finally C5,k (for equal C3,k

and C4,k).

• Previous trajectory modifications lead the agent to devi-

ate from its predetermined trajectory �
p
 , but with oppo-

site direction. The agent compares the trajectory critical-

ity between two possible actions using first C5,k , then C3,k

(for equal C5,k) and finally C4,k (for equal C5,k and C3,k).

Decide which action to perform After evaluating the critical-

ities of all Ac
i,k ∈ Ac

i
 , the agent cooperatively decides which

action to perform in order to help the most critical agents.

The decision process presented in Algorithm 3 distinguishes

between the two cases: A collision is detected or not.

If a collision is detection, the idea is to consider the criti-

calities of every Mj ∈ Zpi from the highest to the lowest,
and determine, using the criticality collision lists collCLAc

i,k

of each Ac
i,k computed in Algorithm 3, which action(s) can

help the most.

If several actions can be done to help most critical agents

or no collision is detected, the agent decision is based on the

trajectory criticality as defined above.

C5,k =

{

0 if �
k
<

�

2
100
�

2

×

(

�
k
−

�

2

)

if �
k
≥

�

2

.

Note that, for a given mobile entity, the most critical

agent might be an agent Mj ∈ Zpi or itself.

Once the action Ac
i,k to perform is decided, the agent

determines its criticality as

Action phase The action part for the agent is straightforward.

M
i
 does the action decided by Algorithm 3, and sends mes-

sages containing its current situation and its criticality to the

mobile entities inside its perception zone.

4 Experiments and results

To validate our model, we apply it on air traffic manage-

ment (ATM): Mobile entities are airplanes with realistic

characteristics.

4.1 Air traffic control

We briefly introduce here some characteristics of air traf-

fic control (ATC) which explains the instantiation of the

CAAMAS approach.

In ATC, airplanes are separated for safety by a protection

zone determined using different human and material factors.

The protection zone is a cylinder oriented vertically with a

height h of 1000 feet (1000 ft = 304.9 m) and a radius r of

5 nautical miles (r = 5 NM = 9.26 km)

Airplanes fly from geographical points to geographical

points, called waypoints. Their trajectory from one airport to

another is then reduced to a list of waypoints, called flight-

plan. Experience shows that they do not always follow their

flightplan [26] for different reasons such as controller orders

or weather. In our study, we consider that their predeter-

mined trajectory �
p
 is approximated by a broken line.

Airplanes are increasingly capable of communicating

data to each other such as their positions, heading or speed

by means of messages. Messages can be transmitted using

automatic dependant surveillance-broadcast (ADS-B).

(1)Crit
i
=

(

max
(

collCLAc
i,k

)

, Crit
i,k,traj

)

.

Fig. 3 Criticity C2,k in function of dtmin,i,j,k

4.2 Instantiating CAAMAS

(a) Perception zone The neighborhood of the airplane is a

cylinder of radius r
Z

p

 of 100 nautical miles

(100 NM = 182.5 km) and a height of h
Z

p

 of 4000 feet

(4000 ft = 1219.2 m) centered on it (Fig. 4). The

radius of the perception zone is the half of the horizon-

tal range of ASD-B, in order to take into account pos-

sible congestions or loss of signals. The height allows

the airplane to perceive two airways above and two

airways below it, based on the most common actual

structure of the air traffic management. We consider

that every obstacle Oj (mobile Mj or stationary) in the

cylinder is perceived by M
i
 . In the conducted experi-

mentation, only mobile obstacles Mj were considered.

(b) Collision detection In ATC, two airplanes are consid-

ered in conflict whenever a violation of the protection

zone is detected. For the sake of clarity, in the follow-

ing an ATC loss of separation will be refereed as a col-

lision, and is considered as a collision by CAAMAS.

In order to take into account the fact that the verti-

cal distance is not on the same scale as the horizontal

distance, the collision criticality is calculated on the

horizontal plan and the vertical plan. Thus, we have

two values for dmin,i,j,k : dmin,i,j,k,h and dmin,i,j,k,v , and two

values for time tmin,i,j,k (or an interval): tmin,i,j,k,h and

tmin,i,j,k,v with every other Mj for every Ac
i,k . Then, the

collision criticality Criti,j,k,coll regarding Mj for action

Ac
i,k is calculated as follows:

• C1,k = min(C1,k,v, C1,k,h)

• C2,k = min(C2,k,v, C2,k,h),

 where C1,k,v and C2,k,v being, respectively, the equiva-

lent of the previous C1,k and C2,k for the vertical plan,

and C1,k,h and C2,k,h for the horizontal plan.

(c) Actions Airplanes can modify their speed (or not), by

accelerating or decelerating, but also change their head-

ing (or not), and modify their altitude as well (or not).

These actions have a fixed parameter such as an accel-

eration rate or a turning rate. We consider that they can

realize those three changes at the same time, which

means that at every step of Δt = 1s an airplane has to

choose between three actions for each, that is 27 pos-

sibilities (3 × 3 × 3). This results in 27 possible future

positions represented in Fig. 5. In this study, we only

experiment in the horizontal plane,1 so the number of

actions available for the airplane if we authorize speed

changes is only of 9 (3 × 3) as in Fig. 6.

Each airplane has a preferred cruise speed depending on

general airplane performances and airline preferences that

we call vpref . The airplanes are able to decelerate and accel-

erate within a speed range of [vpref − 6%, vpref + 3%] which

are considered as plausible values in real life [27]. It can

accelerate and decelerate with speed modification of 0.33%

at each step. In the experiment, we consider that airplanes

have the same vpref and that an airplane can modify its head-

ing by 3◦
s
−1 [28, p. 18], which makes a complete 360

◦ turn

in 2 min.

4.3 Benchmark

We experiment our approach with two benchmarks, a round-

about and a random case like in [29]. We experimented

Fig. 4 Perception zone of the black airplane

Fig. 5 The possible actions of the airplane (not to scale)

Fig. 6 The possible actions of the airplane in the horizontal plane

(not to scale)

1 This slightly simplifies the experimental setup while also providing

problems that are harder to solve, as the agents are more constrained.

indeterminism in the resulting solutions, our system has

been tested 100 times per AgNb for both random and the

roundabout-conducted experiments. The mean computed

results are presented in the next sections.

4.4.1 Random experiment

For this experiment, the AgNb ∈ {12, 20, 40, 52, 60, 80,

100, 120} . The evaluated metrics are presented each in sepa-

rated figures as box-plots for every AgNb, with maximum

value, third quartile, median, first quartile and minimum

value. Table 1 summarizes the comparative study.

(a) Predicted and remaining collisions For each randomly

generated scenario, we compute the number of pre-

dicted collisions (Fig. 9), i.e., the number of collisions

that would occur if no change is made on the trajecto-

ries of the airplanes. We compare this number to the

remaining collisions (Fig. 10) that may be new colli-

sions created by the system while avoiding others, or

the same old collisions.

The obtained results show that in most cases more than

88.4% of the collisions have been solved (more than 99.12%

for 40 airplanes). Still, detailed studies must be conducted in

order to count the number of new collisions added by solv-

ing predicted collisions.

(b) Computation time Fig. 11 shows the time the system

uses to compute the trajectory of every airplane. Note

Fig. 7 Random experiment with 12 airplanes: 12 arrived and 0 col-

lision

with several numbers of agents AgNb: for the rounda-

bout AgNb ∈ {6, 8} and for the random benchmark

AgNb ∈ {12, 20, 40, 52, 60, 80, 100, 120} . In both experi-

ments, airplanes cannot change their altitude.

In the roundabout benchmark, we experiment on a disk

of radius R = 125NM = 231, 5 km . At the beginning of the
experiment, all the airplanes are placed at the edge of the

disk and they are all converging toward the center of the disk

with an angle of
2Π

 between them. For this experiment, only
m

heading changes are authorized, and speed is normalized.

For the random experiment, airplanes are equally placed

at each side of the square of side l = 500 NM. They are
placed randomly and have a precise point on the opposite

side of the square as destination like in Figs. 7 and 8. The

arrival and start distance must be at a distance d > 2d
coll

from each other.

We evaluate our experiments regarding the number of

predicted collisions, the number of remaining collisions,

the computation time, and the delays caused to airplanes.

Comparison with the results obtained in [29] underline the

advantages of our approach.

4.4 Results

In this section, separated results for the random and the

roundabout experiments are presented. The tests were per-

formed on a computer equipped with a 2.50 GHz i7-6500

processor and 8 GB of RAM. We implemented the algo-

rithms in Java 8. Due to the decentralized and distrib-

uted nature of multi-agent systems that introduce some

Fig. 8 Random experiment with 80 airplanes: 76 arrived and 0 col-

lision

that, for the benchmark with 120 airplanes, the algo-

rithm takes less than 12 s to compute the solution. In

average, it takes 212 ms, 418 ms, 1305 ms, 2048 ms,

2826 ms, 5072 ms, 7660 ms and 11891 ms to com-

pute the algorithm with, respectively, 12, 20, 40, 52,

60, 80, 100, 120 airplanes. Note that CAAMAS can be

deployed on a distributed computation network which

can drastically reduce the computation time.

(c) Delays caused to airplanes Fig. 12 shows the results

concerning the delays caused to airplanes in order to

avoid collisions. The results show that for each bench-

mark, more than 75% of the airplanes have very short

delays. Still in high-density benchmarks (i.e., 120

airplanes),some airplanes can be delayed significantly.

This can be due to the limited nine actions given to the

airplane. Still, a detailed study will be conducted in

order to understand the characteristics of such bench-

marks (density, new generated collisions while solving

predicted ones, etc.) and to be able to propose better

trajectory for highly delayed airplanes.

(d) Comparative study Table 1 summarizes the compari-

sons realized between CAAMAS and [29].

For the comparative study, the speed range has been set

to [vpref − 5%, vpref + 5%] . An aircraft can still accelerate and

decelerate with speed modifications of 0.33% at each step

and modify their heading by 3◦
s
−1 . We compare with the

results of Table I and Table II from [29], with s
lat

= 0.05

and slong = 0.05.

For the slight scenarios (10 and 20 airplanes) presented

in Table 1 CAAMAS solves all the collisions, while the

comparative algorithm is not able to solve some of them.

When the number of airplanes increases too much (from

100 to 120), the number of collisions increases significantly

for both, but Durand et al. [29] do not give delays since

the algorithm cannot bring any aircraft to its destination.

The last scenario with 120 airplanes could be considered

as very overloaded because the collision number increases

significantly. The max delay is quite high (from 50 to 140%)
compared to the Durand et. al. [29] or reality, and represent
isolated aircraft. Nevertheless, the mean flight delay is not
so high (10%).

4.4.2 Roundabout experiment

For this experiment, we defined a benchmark with, respec-
tively, 6, 8 and 10 airplanes with specific trajectories to
simulate the roundabout experiment.

The evaluated metrics (mean delay, standard deviation,
first and third quartile) are presented in Table 2. The mean

Fig. 9 The number of collisions predicted at the start of the test

Fig. 10 The number of remaining collisions after the test

Fig. 11 Time to compute the solution in milliseconds

Fig. 12 Delays caused to airplanes

relative delays are acceptable. The standard deviation under-
lines the fact that the relative delay is not always equally dis-
tributed among airplanes. This is due to the implementation
made for this experimentation in which airplanes (agents)
decide iteratively; thus, the first-executed airplanes are more
penalized than the others. Finally, in our approach, agents
return to their trajectory once the collision is avoided before
going to their destination, while in most algorithms airplanes
go directly to the destination. This can increase the relative
delay caused to airplanes.

Another interesting point in this experiment is the emer-
gence of the usual pattern called roundabout expected to
avoid collision in such scenario. Figures 13, 14 and 15,
respectively, show the obtained trajectories for 6, 8 and 10
airplanes.

5 Conclusion

The proposed collision avoidance system is a fully decen-
tralized distributed approach based on adaptive multi-agent
technology. We have shown its relevance with several crite-
ria: efficiency of management even for dense traffic, limited
amount of communication between airplanes, and small
computation time.

In this system, each airplane is an agent that decides
by itself of its trajectory giving its local point of view. As
shown in Fig. 16, one airplane will only perceive a restricted
number of airplanes (those in its perception zone described
by Fig. 4) per step of life cycle, and only partial information
about its neighbors (as explained in Sect. 3.2.1). This kind
of decentralization brings more resilience to the system, and
should allow to take into account non-cooperative obstacles
in the scenarios, such as airplanes unable to avoid others or
weather.

Moreover, since CAAMAS is naturally distributed and
decentralized, it could eventually be implemented on board,
removing the need to rely on ground equipment. As it does
not rely on a computed plan, we can assert that our method
is fully adaptive when facing unexpected events. For exam-
ple, an airplane could become highly critical, due to a loss
of an engine, and others would take this new event and this
new criticality into account when deciding their trajectories.

Nevertheless, despite the encouraging obtained results
concerning the remaining collision and the relative delays,

Table 1 Comparative study
(dimensionless measures)

NB acft CAAMAS Durand et. al. [29]

Rem Coll Mean delay Max delay Rem Coll Mean delay Max delay

10 0 1.04504 1.58842 0 1.00094 1.00898

20 0 1.04745 1.56263 2 1.00431 1.03019

50 1 1.06049 1.91479 16 1.01376 1.03342

100 18 1.08122 2.05103 92 Void Void

120 38 1.08897 2.39579 100 Void Void

Table 2 Relative airplane delays due to collision avoidance

NB acft Mean delay Std. deviation Q1 Q3

6 1.00735 0.01210 1.0 1.013531799729364

8 1.01310 0.02028 1.00000 1.02029

10 1.02291 0.03447 1.00338 1.03721

Fig. 13 Near-optimal solution for 6 airplanes

Fig. 14 A solution for 8 airplanes

CAAMAS is unable to solve all conflicts for overloaded
scenarios. Experiments with additional possible actions for
airplanes will be conducted. A further study of the impact
of the density of the scenario must be done.

We also plan to test our algorithm when some communi-
cations are lost, and adding non-cooperative obstacles in the
scenarios, such as airplanes or weather, to prove it resilience
and to experiment the benefits of having a percentage of
cooperative airplane in the traffic. Testing other means of
perception, such as radar, would also be an interesting case
study.

To more thoroughly evaluate the performances of
CAAMAS, we intend to implement a standard global opti-
mization method—commonly used for solving similar prob-
lems—in order to compare the difference in terms of com-
putation time and result optimality.

Eventually, CAAMAS could be used as a support deci-
sion system for air traffic controllers because it is able to
work over different scales of time and space. This would
require comprehensive experiments with data obtained from
real air traffic.

Acknowledgements The authors thank Sopra Steria Group and the
ANRT for their support in this research work.

Funding This work was supported by the Association Nationale de la
Recherche et de la Technologie (Grant no. 2016/0940).

References

1. Prandini, M., Piroddi, L., Puechmorel, S., Brázdilová, S.L.:
Toward air traffic complexity assessment in new generation Air
Traffic Management systems. IEEE Trans. Intell. Transp. Syst.
12(3), 809–818 (2011). [Online]. https ://hal-enac.archi ves-ouver
tes.fr/hal-01020 894

2. Latombe, J.-C.: Robot Motion Planning, vol. 124. Springer Sci-
ence & Business Media, Berlin (2012)

3. Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: Decen-
tralized centroid and formation control for multi-robot systems.
In: Robotics and Automation (ICRA), 2013 IEEE international
conference on. IEEE, pp. 3511–3516 (2013)

4. Huang, C., Chen, X., Zhang, Y., Qin, S., Zeng, Y., Li, X.: Hier-
archical model predictive control for multi-robot navigation. In:
Brewka, G. (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI’16), pp. 3140–
3146. AAAI Press

5. Tian, Y., Sarkar, N.: Formation control of mobile robots subject
to wheel slip. In: Robotics and automation (ICRA), 2012 IEEE
International Conference on. IEEE, pp. 4553–4558 (2013)

6. Serugendo, G.D.M., Gleizes, M.-P., Karageorgos, A.: Self-Organ-
ising Software: From Natural to Artificial Adaptation. Springer
Science & Business Media, Berlin (2011)

7. Brax, N.: Self-adaptive multi-agent systems for aided decision-
making: an application to maritime surveillance, Ph.D. disserta-
tion, Université de Toulouse, Université Toulouse III-Paul Saba-
tier (2013)

8. Boes, J., Migeon, F., Gatto, F.: Self-organizing agents for an adap-
tive control of heat engines. ICINCO 1, 243–250 (2013)

9. Nigon, J., Gleizes, M.-P., Migeon, F.: Self-adaptive model gen-
eration for ambient systems. Procedia Comput. Sci. 83, 675–679
(2016)

 10. Delahaye, D., Peyronne, C., Mongeau, M., Puechmorel, S.: Air-
craft conflict resolution by genetic algorithm and b-spline approxi-
mation. In: EIWAC 2010, 2nd ENRI International Workshop on
ATM/CNS, pp. 71 (2010)

 11. Durand, N., Alliot, J.-M.: Ant colony optimization for air traffic
conflict resolution. In: ATM Seminar 2009, 8th USA/Europe air
traffic management research and development seminar (2009)

 12. Christodoulou, M.A., Kontogeorgou, C.: Collision avoidance in
commercial aircraft free flight via neural networks and non-linear
programming. Int. J. Neural Syst. 18(05), 371–387 (2008)

 13. Roussos, G., Kyriakopoulos, K.J.: Completely decentralised
navigation functions for agents with finite sensing regions with
application in aircraft conflict resolution. In: Decision and control
and european control conference (CDC-ECC), 2011 50th IEEE
Conference on. IEEE, pp. 7470–7475 (2011)

 14. Guys, L., Puechmorel, S., Lapasset, L.: Automatic conflict solving
using biharmonic navigation functions. Procedia Soc. Behav. Sci.
54, 1378–1387 (2012)

 15. Maas, J., Sunil, E., Ellerbroek, J., Hoekstra, J.: The effect of
swarming on a voltage potential-based conflict resolution algo-
rithm. In: submitted to the 7th international conference on
research in air transportation (2016)

Fig. 15 A solution for 10 airplanes

Fig. 16 Number of perceived airplanes at one step by one airplane
during the different random experiments

 16. Lehouillier, T., Nasri, M.I., Soumis, F., Desaulniers, G., Omer, J.:
Solving the air conflict resolution problem under uncertainty using
an iterative biobjective mixed integer programming approach.
Transp. Sci. 51, 1242–1258 (2017)

 17. Allignol, C., Barnier, N., Durand, N., Alliot, J.-M.: A new frame-
work for solving en-routes conflicts. In: ATM 2013, 10th USA/
Europe Air Traffic Management Research and Development Semi-
nar, Chicago, United States, pp 1–9. [Online]. https ://hal-enac.
archi ves-ouver tes.fr/hal-00828 736 (2013)

 18. Machado, P., Bousson, K.: Automatic collision avoidance system
based on geometric approach applied to multiple aircraft. In: 6th
international conference on research in air transportation (ICRAT
2014) (2014)

 19. Lin, C.E., Lee, C.-J.: Conflict detection and resolution model for
low altitude flights. In: Methods and models in automation and
robotics (MMAR), 2015 20th International Conference on. IEEE,
pp. 406–411 (2015)

 20. Van Den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal
n-body collision avoidance. Robot. Res. 2011, 3–19 (2009)

 21. Allignol, C., Barnier, N., Durand, N., Blond, E.: Detect & avoid,
uav integration in the lower airspace traffic. In: ICRAT 2016, 7th
international conference on research in air transportation (2016)

 22. Breil, R., Delahaye, D., Lapasset, L., Féron, É.: Multi-agent sys-
tems for air traffic conflicts resolution by local speed regulation.
In: 7th international conference on research in air transportation
(ICRAT 2016) (2016)

 23. Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The amas
theory for complex problem solving based on self-organizing

cooperative agents. In: Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on. IEEE, pp. 383–388
(2003)

 24. Bonjean, N., Mefteh, W., Gleizes, M.P., Maurel, C., Migeon, F.:
Adelfe 2.0. In: Handbook on agent-oriented design processes.
Springer, pp. 19–63 (2014)

 25. Kuchar, J.K., Yang, L.C.: A review of conflict detection and reso-
lution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4),
179–189 (2000)

 26. Rantrua, A., Maesen, E., Chabrier, S., Gleizes, M.-P.: Learning
aircraft behavior from real air traffic. J. Air Traffic Control 57(4),
10–14 (2015)

 27. Averty, P., Johansson, B., Wise, J., Capsie, C.: Could erasmus
speed adjustments be identifiable by air traffic controllers. In: 7th
USA/Europe air traffic management research and development
seminar (ATM2007), vol. 22 (2007)

 28. Authority, F.A.: Aeronautical information manual: Official guide
to basic flight information and ATV procedures (2006)

 29. Durand, N., Barnier, N.: Does atm need centralized coordination?
Autonomous conflict resolution analysis in a constrained speed
environment. Air Traffic Control Q. 23(4), 325–346 (2015)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

