
HAL Id: hal-02494142
https://hal.science/hal-02494142

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OntoQL: An Alternative to Semantic Web Query
Languages

Stéphane Jean, Yamine Aït-Ameur, Guy Pierra

To cite this version:
Stéphane Jean, Yamine Aït-Ameur, Guy Pierra. OntoQL: An Alternative to Semantic Web
Query Languages. International Journal of Semantic Computing, 2015, 9 (1), pp.105-137.
�10.1142/S1793351X1550004X�. �hal-02494142�

https://hal.science/hal-02494142
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24849

To cite this version: Jean, Stéphane and Ait Ameur, Yamine and

Pierra, Guy OntoQL: An Alternative to Semantic Web Query Languages.

(2015) International Journal of Semantic Computing, 9 (1). 105-137.

ISSN 1793-351X

Official URL

DOI : https://doi.org/10.1142/S1793351X1550004X

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

OntoQL: an Alternative to Semantic Web Query Languages

Stéphane Jean

LIAS-ENSMA and University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

jean@ensma.fr

Yamine Aı̈t-Ameur

IRIT/INP-ENSEEIHT
Toulouse, FRANCE

yamine@enseeiht.fr

Guy Pierra

LIAS-ENSMA and University of Poitiers

BP 40109, 86961 Futuroscope Cedex, France

pierra@ensma.fr

Ontologies are used in several application domains for representing knowledge. The de-
fined approaches differ according to the type of addressed ontology (conceptual or lin-

guistic) and to the used ontology model (e.g., OWL or PLIB). Several languages have

been proposed to manipulate ontologies and their instances, especially in the Semantic

Web domain. However these languages are often specific to a given ontology model, they

focus on conceptual ontologies and they are not compatible with database exploitation

languages. We address these three problems in this paper by proposing the OntoQL lan-

guage. This language has three main original characteristics: (1) OntoQL is based on a

core ontology model composed of the shared constructors of ontology models. This core

ontology model can be extended by the language itself, (2) OntoQL queries can be ex-

pressed with different natural languages features using the linguistic layer of an ontology,

and (3) OntoQL is fully compatible with SQL enabling a smooth integration between

SQL queries of classical database applications and ontological queries. As a theoretical
validation of this language, we present the algebra of operators that sets up its formal

semantics. On the operational side, we describe the implementation of OntoQL on the
OntoDB database and we illustrate the interest of this language by reporting several

applications where this language has been extensively used and proved powerful.

1. Introduction

The intensive use of computer applications led to the availability of a huge amount of

data in different formats (text, videos, signals, etc.) exchanged over networks like the

web or specific enterprise networks. Classical access services based on representation

formats or application and system-dependent access services have reached their

limits. Indeed, the former is usually used for exchange purpose while the latter is

application or system-dependent.

Providing high quality access services to these data is a big challenge. By quality,

one may think of (i) reducing access time and space occupancy, (ii) displaying these

data on any device (a smartphone for example), (iii) providing a user and/or context

sensitive access services, (iv) providing a semantic-based access interface or, (v)

other characteristics such as security, availability, accuracy, freshness, etc. All the

previously cited quality characteristics have drawn the attention of several research

work in the past recent years.

In this context, we have identified three relevant requirements we claim to handle

by the proposal contained in this paper. A first requirement deals with the quality

criteria related to the availability of a semantic-based access interface. Indeed, one

major concern consists in supplying a set of access services that use high level

domain knowledge close to the user knowledge, abstracting logical representations

and exchange formats. In this setting, ontologies are good candidates that contribute

to the design of such services.

Defined by T. Gruber [1] as an explicit specification of a conceptualization, an

ontology is a model for representing the semantics of data. The explicit charac-

teristics is fundamental; it makes it possible to manipulate semantic concepts of a

domain of interest as first order objects. Nowadays, ontologies are used in a lot of

diverse research and application domains including Natural Language Processing

[2], Information Retrieval [3], Semantic Web [4], Databases [5], System Engineering

[6], etc. According to the application domain, ontologies are defined in different

ways. These different modeling approaches led to the availability of:

• different types of ontologies. Indeed, two main categories of ontologies have

been identified in the literature: 1) conceptual ontologies aiming at defining

the categories and properties of objects that exist in a given domain. These

ontologies are useful in application domains like engineering where the do-

main of interest pre-exists, and 2) linguistic ontology aiming at representing

the meaning of the words used in a particular universe of discourse. These

ontologies are useful in application domains like Information Retrieval to

explicit the meaning of words;

• different ontology models. Ontology models are formal knowledge models

supporting the definition of ontology concepts and relationships as well

as the corresponding reasoning mechanisms. Here again, ontology models

have been designed according to their application domain. Note that some

of these models become a reference and are standardized. OWL [7] ontology

model for the Semantic Web and PLIB [8] ontology model for engineering

are key examples of such ontology models.

In several domains where ontologies have been set up, the amount of knowledge and

data exploited and manipulated becomes important and thus, persistence mecha-

nisms are needed. Ontological data resulting from the use of ontologies need such

mechanisms as well. Offering a persistent framework for ontological data consti-

tutes the second identified requirement. To deal with persistence, Ontology-Based

Databases (OBDBs) [9] have been introduced. OBDBs are particular database sys-

tems that store both ontologies and the associated data. The development of OB-

DBs followed the same path as the one of ontology models. Indeed, two types of

OBDBs have been defined according to the supported ontology model. Triplestores

(e.g, Jena [10] or Oracle Spatial and Graph [11]) have been defined for OWL-based

ontologies while systems such as OntoDB [9] or the Library Management Systems

developed by Toshiba Corp [12] have been developed for PLIB-based ontologies.

Finally, all the previously addressed application domains use ontologies to pro-

vide users with services capable to exploit data at a higher conceptual level provided

by the ontologies. This exploitation is performed thanks to the establishment of a

link between the concepts of an ontology and the exploited data. This link may take

several forms like annotation [13], subsumption [14], classification [15], indexation

[16], etc. When setting up an OBDB to handle ontological data, indexation takes

an important place in the design and exploitation of these data. Indeed, the use of

semantic indexation i.e., the use of ontology concepts to index the ontological data,

gave rise to semantic services that allow users to retrieve data from their semantic

characterisation. These services are defined thanks to the availability of ontology

exploitation languages. During the last decade a number of ontology query lan-

guages have been proposed especially in the Semantic Web context (see [17, 18] for

a survey) and the SPARQL query language [19] has been accepted as the standard

Semantic Web Query language. If these languages support queries on both ontolo-

gies and their instances, they are often specific to a given ontology model, they

focus on conceptual ontologies and they do not keep compatibility with the usual

Database Management System (DBMS) languages. So, as a third requirement, we

identify the need of a complete ontology exploitation language.

Therefore the aim of our work is to design an exploitation language for ontolo-

gies and their instances, namely ontological data, that fulfills the previous identi-

fied requirements. In other words, the language shall 1) support different ontology

models, 2) exploit characteristics of the different types of ontologies and 3) keep

compatibility with the standard DBMS language (SQL). The OntoQL language, we

initially proposed in [20, 21, 22], fulfills the previous requirements. During the last

years, this language has been successfully used in many applications experiences

both in research and industry. Compared to our previous work, this paper gives a

complete and up-to-date definition of this language and describes some applications

and experiences with this language.

This paper is structured as follows. Next section describes our classification

of ontologies that has impacted the definition of OntoQL. We identify different

types of ontologies and their combination in a layered model. We also show that

ontology models share common constructors and conclude this analysis by clarifying

a set of requirements for an exploitation language for ontologies and their instances.

Section 3 uses these requirements to discuss advantages and shortcomings of existing

languages. The need of a new language highlighted in this study leads us to the

definition of the OntoQL language. Section 4 and Section 5 present the formal data

model and an algebra designed for OntoQL. Furthermore, this language is presented

in Section 6 through a set of examples. As a proof of concepts, Section 7 overviews

the operational developments of the OntoQL engine. Finally, Section 8 summarizes

the main results and introduces future work.

2. Analysis of the Ontology Notion

2.1. Ontology Notion and Taxonomy

From our point of view, an ontology is a formal and consensual dictionary of cate-

gories and properties of entities of a domain and the relationships that hold among

them [23]. This definition encompasses three main characteristics of an ontology (1)

formal i.e., it is based on a formal theory used to check the ontology consistency and

to reason over the ontology-defined concepts and instances, (2) consensual as an

ontology is agreed and shared by a community and (3) it can be referenced as each

concept of an ontology has a universal identifier. Using this identifier, an ontology

concept and the semantics it represents can be referenced from any environment,

independently of the particular ontology where this concept was defined.

A criterion for classifying ontologies is their area of interest, if it consists of beings

i.e., what does exist in the world, or of words i.e., how beings are apprehended and

expressed in a particular natural language. This distinction leads to two categories

of ontologies: conceptual ontologies (CO) and linguistic ontologies (LO) [24, 8]. A

CO may only include primitive concepts, i.e. those concepts ”for which we are

not able to give a complete axiomatic definition” [1]. These ontologies, we called

Canonical Conceptual Ontologies (CCO), define a canonical vocabulary in which

each information in the target domain is captured in a unique way without defining

any synonymous constructs. A CO may also include defined concepts, i.e. those

concepts for which the ontology provides a complete axiomatic definition by means

of necessary and sufficient conditions expressed in terms of other concepts [1]. These

ontologies we called Non Canonical Conceptual Ontologies (NCCO), introduce new

reasoning capabilities and they are useful to define mappings between different

ontologies.

The three categories of ontologies introduced previously suggest a layered view

of ontologies, we called the onion model of domain ontologies [23]. In this view,

a kernel CCO provides a formal foundation to model and to exchange efficiently

the knowledge of a domain. A NCCO layer extends the canonical vocabulary with

concepts equivalence to encompass all concepts broadly used in the domain, thus

extending inference capabilities. Finally, a LO layer adds the natural language rep-

resentation of the CCO and NCCO concepts for person-system and person-person

communication. The onion model shows that the capabilities of the different cate-

gories of ontologies can be combined. However, as we will see in Section 3, most of

the existing ontology query languages do not exploit the three layers of the onion

model. Another motivation of our work was to define a new ontology query lan-

guage that was not specific to a particular ontology model. Indeed, as shown in

next section, all ontology models share common constructors that can constitute

the foundations of a generic ontology query language.

2.2. Ontology Models

In our work, we were primarily interested in the PLIB ontology model [8] defined for

the engineering domain and in the RDF Schema (RDFS) [25] and OWL [7] ontology

models defined for the Semantic Web. From the study of these ontology models,

we have identified a set of shared constructors required to define CCOs. These

ontologies are associated to a namespace in which concepts are defined as classes

and properties. Classes are organized in a hierarchy using subsumption relation-

ships. They are associated to properties which range may be a class or a datatype.

Classes and properties can be referenced using an identifier independent of the un-

derlying system (e.g., URI). They are described by names and definitions that may

be given in different natural languages. Classes may have instances. Instances are

characterized by their belonging classes and by the values of their properties.

Figure 1 presents an example, used throughout this paper, of a toy ontology

defined with these shared constructors. It is inspired by the SIOC ontology [26].

This ontology is represented as a graph on the top of Figure 1. Its main concepts

are the following. A forum (Forum) is hosted on a site (Site). It is managed by

a moderator (has moderator). Registered users (User) may subscribe to forums

(subscriber of) and write messages (Post) on these forums (has container).

A message may have several responses (has reply). Instances of this ontology are

represented in the bottom of Figure 1. URIs of instances are represented in an oval

while literal values are represented in a rectangle. An instance of the Post class

is described. The URI of this message ends with post-sioc. Its title and content

are defined by literal values while its creator, its host forum and its responses are

defined by referencing other instances.

If the studied ontology models share a set of constructors, they may differ in

their underlying assumptions.

• Open World Assumption (OWA) vs Close World Assumption (CWA). PLIB

makes the CWA: any statement that is not known to be true is false. This

assumption is useful in the engineering context where a number of reference

ontologies are already standardized and the knowledge can be considered

as complete [8]. On the contrary, Semantic Web ontology models like RDFS

or OWL are based on the OWA: any statement that is not known can be

true. This assumption is more adapted to an open context like the Web.

• Unique Name Assumption (UNA). Under the UNA, if two objects have

different identifiers, they are different. PLIB makes this assumption while

RDFS and OWL do not. Without the UNA assumption, if two instances

(or classes, or properties) have different identifiers, we may still need to

derive by inference that they are the same.

Site

Space

Forum

Container

User

Item

Resource

Post

name String

first_name

last_name

email
String

title

note

content

has_container

has_creator

has_host

has_moderator

subscriber_of (collection)

has_reply

http://rdfs.org/sioc/ns

http://lisi .../post-sioc

title

« Creating connections between

discussion with SIOC »

http://lisi.../weblog http://lisi .../cloud

http://lisi.../comment-123928

« SIOC provides a unified vocabulary for
content and interaction description: a

semantic layer that can co-exist with

existing discussion platforms .»

content

has_creator

has_reply

has_container

 inheritance

property

property value

Legend:

Ontology

Data

Fig. 1. A graphical representation of a toy ontology

• Typing Assumption. RDFS and OWL adopt a Weak Typing Assumption:

an instance may belong to any number of non connected ontology classes.

Contrariwise, PLIB adopts a Strong Typing Assumption: (1) each in-

stance belongs to a single characterization class only and to all its sub-

classes, (2) each property is defined in the context of a class that defines

its domain and (3) only the properties defined in the context of a class can

be used for describing its instances.

Thus ontology models are complementary to define ontologies. They share com-

mon constructors to define CCOs and have specific constructors and assumptions

according to the application domain. Starting from this analysis of ontology mod-

els and of the notion of ontology, several requirements for a language aiming at

managing ontologies and their instances can be set up.

2.3. Requirements for an Ontology Exploitation Language

Ontology models share common constructors with a specific semantics (e.g., sub-

sumption relationship). The language shall support these main constructors.

Requirement 1 (Management at the Semantic Level)

The language shall offer operators or reasoning mechanisms supporting the ex-

ploitation of the usual semantics of ontology models.

As the onion model shows, ontologies have different layers (CCO, NCCO and

LO) with different capabilities. The language shall exploit these different layers.

Requirement 2 (Management of the Different Layers of an Ontology)

The language shall support the definition and exploitation of non canonical

concepts as well as linguistic definitions of concepts possibly defined in different

natural languages.

Ontology models are complementary to define ontologies. In addition to core

constructors available in all ontology models, these models provide specific con-

structors that may be useful according to the application domain. The language

shall not be defined for a specific ontology model.

Requirement 3 (Generic Ontology Exploitation Language)

The language shall support core constructors of ontology models and provide

mechanisms to support specific constructors.

Usual exploitation languages such as SQL are sub-divided into several languages

to define, manipulate and query data. These different sub-languages shall be avail-

able to manipulate ontologies and their instances.

Requirement 4 (Full Management of Ontologies and Instances)

The language shall provide Ontology and Instances Definition, Manipulation

and Query Languages.

If ontology and instances are managed in a relational database, one may want

to combine SQL queries with ontological queries. As a consequence, a seamless

integration with SQL is required.

Requirement 5 (SQL Compatibility)

The language shall preserve SQL compatibility.

We use these requirements as criteria to evaluate existing languages.

3. Related Work: the Need of a New Ontology Exploitation

Language

3.1. Existing Ontology Exploitation Languages

Several languages have been proposed to manage ontologies and their instances espe-

cially in the Semantic Web context [17]. In this section we review the most relevant

languages and give a positioning according to the previously defined requirements.

3.1.1. SPARQL

SPARQL [19] is a W3C recommandation widely used in the Semantic Web commu-

nity. An update language is also available [27]. SPARQL is a graph-matching query

language. A query consists of a pattern (a set of triples with variables and filters)

defined in a WHERE clause. This pattern is matched with a data source, and the

values obtained from this matching are processed in the SELECT clause to compute

the answer.

Example. Retrieve instances of the Item classa of the SIOC ontology.

SELECT ?i WHERE {?i rdf:type sioc:Item}

Semantics. The triple in the WHERE clause introduces the variable ?i (a variable is

prefixed by ?) to iterate over instances of the Item class. This variable is specified

in the SELECT clause to return its values.

As the previous example shows, SPARQL can be used to retrieve instances of

a class. However, the result of the previous query depends on the implementation.

Indeed, SPARQL is defined for matching RDF graphs with simple entailment i.e.,

only by using the RDF triples explicitly represented. Thus, if for a class C, a triple

(i, rdf:type, C) is represented for each direct or indirect instance of C, then the

previous query returns also all the instances of the class Post, subclass of Item.

On the contrary, if only a triple (i, rdf:type, C) is represented for each direct

instance of C, then the query returns only direct instances of C.

SPARQL can also be extended to other forms of entailment such as RDFS-

entailment i.e., the full set of triples that a RDFS description entails. In this case,

the previous query will always return all direct and indirect instances of Item. How-

ever, if only direct instances must be returned, SPARQL do not provide an explicit

operator to retrieve them. As a conclusion, ontological queries can be expressed but

their returned results depend on the represented triples or on their interpretation.

Finally, even if a SPARQL query has SELECT and WHERE clauses similar to a SQL

query, this language is adapted to RDF querying and it does not provide a smooth

integration with SQL queries used in database applications. To query relational

data with SPARQL, one needs first to publish relational data as RDF triples data

with a tool such as D2RQ [28].

3.1.2. RQL

RQL [29] is based on a functional approach similar to the OQL object-oriented lan-

guage [30]. Simple RQL queries consist of a function call. These functions exploit

the usual semantics of ontology models. For example, the query SubClassOf(Post)

retrieves all subclasses of the Post class. More elaborate RQL queries can be defined

using a traditional SELECT-FROM-WHERE syntax. The FROM clause introduces path

expressions (with variables) built from a set of predefined basic path expressions

and operators (e.g., C{X} is a basic path expression that introduces a variable X on

aFor readability and conciseness, we use names instead of URIs and omit namespaces definition.

all instances of the class C). The WHERE clause is used to define conditions on vari-

ables introduced in the FROM clause. Finally, the SELECT clause defines the selected

variables in the result.

Example. Retrieve all instances of the Item class of the SIOC ontology.

SELECT I FROM sioc:Item{I}

Semantics. The FROM clause introduces the variable I on all (direct and indirect)

instances of the Item class. The SELECT clause projects the URIs of these instances.

To retrieve only direct instances, the Item class must be prefixed with ˆ (i.e., ^Item)

RQL has an update language named RUL [31] and a view language named

RVL [32] which can be used to represent non canonical concepts such as OWL

restrictions. The data model of RQL is based on RDFS and thus it is composed

of the Class and Property constructors. This ontology model can be extended by

specialization of these two constructors. But, a constructor can not be added if it

does not inherit from Class or Property. This constraint forbids the definition of

a number of constructors such as the Document constructor of PLIB (to describe

a concept by a document) or the Ontology constructor of OWL (to regroup all

concepts defined in an ontology). Moreover, the RQL syntax is close to the one of

object-oriented languages but it does not preserve SQL compatibility.

3.1.3. SOQA-QL

SOQA-QL has been designed in the context of the SIRUP project [33] aiming at

automatically integrating heterogeneous data sources according to user needs. Its

main feature is to provide access to an ontology and its instances represented in

various ontology models. This characteristic is based on the definition of a core on-

tology model named SOQA Ontology Meta Model. It contains the main constructors

of different ontology models as described in section 2.2: ontologies, classes, prop-

erties, relationships, methods and instances. SOQA-QL queries follow the usual

SELECT-FROM-WHERE syntax to retrieve characteristics of ontology components. As

the following example shows, a set of functions can be called in SOQA-QL for

complex queries.

Example. Retrieve the name and documentation of the direct super-classes of Post.

SELECT name, documentation FROM DirectSuperConcepts(sioc:Post)

Semantics. The DirectSuperConcepts function applied to Post returns all the

direct super-classes of this class. The SELECT clause returns the name and docu-

mentation (characteristics defined in the SOQA Ontology Meta Model) of these

classes.

Thus, to query ontologies, SOQA-QL follows the syntax and semantics of SQL.

However, it is necessary to use the Instances and Value functions for querying the

ontology instances. As a consequence, SQL queries can not be directly integrated

with ontological queries. Moreover, SOQA-QL does not support non canonical con-

cepts and partially linguistic information as multilingual definitions defined in an

ontology can not be used. Finally, the SOQA Ontology Meta Model is not extend-

able with new constructors.

As the above analysis shows, the aforementioned languages present some limi-

tations to support a uniform and shared manipulation of ontologies and their in-

stances. These limitations are highlighted in Table 1. They motivated us to propose

a new ontology exploitation language, we name OntoQL.

Requirements SPARQL RQL SOQA-QL

Management at the RDF Triples Yes Yes

Semantic Level (entailment)

Management of the CCO/LO CCO/NCCO CCO

Different Ontology Layers

Generic Ontology RDF RDFS Fixed Core Model

Exploitation Language

Full Management of Query Query/Update Query

Ontologies and Instances /Update /View

SQL Compatibility No No No

Table 1. Fulfilled requirements by the main ontology query languages

3.2. Other Related Work

In addition to the previous analysis of existing query languages for ontologies, we

position our approach with respect to several work that aim at combining DBMS

and ontologies.

Ontology extraction from a persistent corpus of documents in a DBMS. Recently,

Garcia-Alvarado and Ordonez have proposed the ONTOCUBO system [34] built

on their previous work on ONTOCUBE [35] and CUBO [36]. This system allows

users to automatically extract an ontology from a corpus of documents where each

document is characterised by a set of keywords. This extraction process identifies

two steps: (1) concept extraction by analysing the most frequent keywords, gener-

ating combinations of these keywords and keeping the most relevant combinations

using statistical measures and (2) ontology building by identifying is a and has a

relationships between the extracted concepts of the previous step. The resulting

ontology can be modified by an expert, then it is summarized by building an OLAP

cube. The dimensions of this cube are the ontology classes. It aggregates a set of de-

sired measurements. For managing large corpus efficiently, ONTOCUBO has been

completely implemented within a DBMS. ONTOCUBO together with the OntoQL

language, proposed in this paper, are complementary. On the one hand, OntoQL

assumes the existence of an ontology stored inside a DBMS. This ontology can be

produced with ONTOCUBO and plays the role of a conceptual model. On the other

hand, ONTOCUBO does not offer a declarative language to modify and query the

resulting ontology. The OntoQL language has been designed for this purpose.

Ontology extraction from a relational database. Many approaches have been pro-

posed to build an ontology from a relational database (see [37] for a survey). For

example, Astrova [38] proposes a rule-based approach which specifies how construc-

tors of the relational model are mapped to the OWL metamodel. These rules are

then applied on a given relational database to produce the resulting ontology. Like

ONTOCUBE, these approaches are complementary with OntoQL.

Mapping a relational database to an ontology. Several approaches such as D2RQ

[28] propose to map a relational database to an existing ontology. Using this ap-

proach, the relational data can be directly accessed from an ontology query language

such as SPARQL or OntoQL.

Enhancing DBMS data with ontologies. Wiegand [5] has given concrete exam-

ples and use cases of the potential of ontologies to enhance geographical data stored

inside a DBMS. More precisely, examples are given for data organization, query ex-

pansion, feature-based modelling and a linked knowledge base with explicit spatial

relations. These examples have been implemented within the Oracle DBMS using

SQL table functions to query RDF data [11]. These examples could also be im-

plemented in OntoQL and extended with the specific features of OntoQL (e.g., to

perform query expansion in different natural languages).

Ontology-based design of Semantic Data Warehouse (SDW). Several approaches

have proposed to design a SDW using an ontology. For example, Bellatreche et al.

[14] have proposed a SDW design methodology covering the steps of its life cycle.

In this design methodology, the required data for each design step need to be stored

in the SDW. This approach has been successfully implemented on top of OntoDB

using the OntoQL language proposed in this paper.

4. The OntoQL Data Model

Before presenting the data model of OntoQL, it is necessary to precise our as-

sumptions. Indeed, as we have seen in section 2.2, ontology models share common

constructors but differ on their assumptions. Since our work mainly targets the

engineering domain, we have chosen to follow the PLIB assumptions. Thus the

close-world and unique names assumptions are made. Under these assumptions, we

have designed the data model of OntoQL. It is composed of two related parts: on-

tology and content. Instances are managed in the content part while ontologies are

managed in the ontology part.

4.1. Ontology.

The ontology part represents ontologies as instances of an ontology model. It is

formally defined by a 7-tuple as < E, OC, A, SuperEntities, TypeOf, AttDomain,

AttRange, Val >.

• E is a set of entities representing the ontology model. It provides with

a global super entity Concept, the predefined entities C and P described

below and user-defined entities.

• OC is the set of ontology concepts (classes, properties . . .). They have a

unique identifier.

• A is the set of attributes describing each ontology concept.

• SuperEntities : E → 2Eb is a partial function associating a set of super en-

tities to an entity. It defines a lattice of entities. Its semantics is inheritance

and it ensures substitutability.

• TypeOf : OC → E associates to each concept of an ontology the lower

(strongest) entity in the hierarchy it belongs to.

• AttributeDomain, AttributeRange : A → E define respectively the domain

and the range of each attribute.

• Val : OC× A → OC gives the attribute value of an ontology concept.

The OntoQL data model provides with atomic types (Int, String, Boolean)

and with two parameterized types Set[T] and Tuple. Set[T] denotes a type for col-

lections of elements of type T and {o1, . . . , on} is an object of this type (the oi’s

are objects of type T). The Tuple[< (A1, T1), . . . , (An, Tn) >] parameterized type

creates relationships between objects. It is constructed by providing a set of at-

tribute names (Ai) and attribute types (Ti). Tuple[< (A1, T1), . . . , (An, Tn) >] de-

notes a tuple type constructed using the Ai attribute names and Ti attribute types.

< A1 : o1, . . . , An : on > is an object of this type (the oi’s are objects of type Ti). The

Tuple type is equipped with the Get Ai value functions to retrieve the value of an

attribute Ai in the Tuple object o. The application of this function is abbreviated

using the dot-notation (o.Ai).

E provides the predefined entities C and P. Instances of C and P are respectively

the classes and properties of the ontologies and the types that can be built from

them. Entity C defines the attribute SuperClasses : C → SET[C] and entity P defines

the attributes PropDomain : P → C and PropRange : P → C. The description of these

attributes is similar to the definitions given for SuperEntities, AttributeDomain

and AttributeRange replacing entities by classes and attributes by properties. A

global super-class Root is predefined to initialize the hierarchy.

Finally, an ontology gives a precise definition of concepts with more attributes

(comment, version, multi-lingual definition, synonymous names, . . .) to describe

classes and properties of ontologies. These predefined entities and attributes consti-

bWe use the symbol 2E to denote the power set of E.

tute the kernel of the ontology models we have considered. Notice that this kernel

is defined with the various constructors shared by the common standard ontology

models PLIB, RDFS and OWL. As discussed in section 6.2, user-defined entities

(e.g., an illustration) and attributes (e.g., a remark) may be added to this kernel in

order to take into account the specific features of an ontology model.

Example. The following statements illustrate the formal data model of the ontology

part. It presents an extract of the ontology part of the chosen illustrative ontology

of Figure 1.

• E = { C, P }.

• A = { oid, code, name, definition, PropDomain, ... }.

• AttScope(PropDomain) = P ; AttRange(PropDomain) = C.

• C = { Post, User, ... }.

• P = { title, content, note, has creator, has reply, ... }.

• PropScope(URI) = Post ; PropRange(URI) = String.

4.2. Content.

The content part manages instances of ontology classes. It is formalized by a 5-tuple

< EXTENT, I, TypeOf, SchemaProp, Val >.

• EXTENT is a set of extensional definitions of ontology classes.

• I is the set of instances. Each instance has an identity.

• TypeOf : I → EXTENT associates to each instance the extensional definition

of the class it belongs to (collection of its instances).

• SchemaProp : EXTENT → 2P gives the properties used to describe the in-

stances of an extent (the set of properties that have a value for its in-

stances).

• Val : I× P → I gives the value of a property occurring in a given instance.

This property must be used in the extensional definition of the class the

instance belongs to.

Example. Extract of the content part of our example ontology.

• Extent = { Extent Post }.

• I = { $1 }, where $1 is the instance whose URI ends with post-sioc.

• TypeOf(I) = Extent Post.

• SchemaProp(Extent Post) = { title, content, has creator,

has reply, has container }.

• Val(I, has creator) = $1, where $2 is the instance whose URI ends with

cloud.

4.3. Linking Ontology and Content Parts

The relationship between an ontology and its instances (content) is defined by

the partial function Nomination : C → EXTENT. It associates a definition by in-

tension with a definition by extension of this class. In the previous example,

Nominiation(Post) = Extent Post. A class without extensional definition is said

to be abstract. The set of properties used in an extensional definition of a class must

be a subset of the properties defined in the intensional definition of a class:

(propDomain−1(c) ⊇ SchemaProp(nomination(c))).

As a first step for the design of an exploitation language for ontologies and its

instances, we build a query algebra for this data model. The interest of this algebra

is the ability to express the full extraction operators.

5. The OntoQL Query Algebra: OntoAlgebra

Since the OntoQL data model uses extensively object-oriented database (OODB)

features, we suggest to specialize, extend and reuse the operators issued from the

ENCORE algebra [39].

5.1. Main operators of OntoAlgebra

The signatures of the operators defined on the OntoQL data model belong to

(E ∪ C)× 2OC∪I → (E ∪ C)× 2OC∪I. The main operators of this algebra are OntoIm-

age, OntoProject, OntoDupEliminate, OntoSelect, OntoOJoin, OntoNest and *. The

complete definition of this algebra being outside the scope of this paper, solely these

operators, restricted to the content part, are formally presented below. Their signa-

ture is C× 2I → C× 2I. The interested reader can refer to [21, 40] for the complete

definition of this algebra. These papers show that the defined semantics is adapted

for querying both ontology, content and simultaneously ontology and content parts.

- OntoImage. The OntoImage operator returns the collection of objects re-

sulting from applying a function to a collection of objects. Its signature is

C× 2I × Function → C× 2I. Function contains all the properties in P and all

properties that can be defined by composing properties of P (path expressions).

Differently from the object-oriented data model, several properties occurring in the

function parameter may not be valued in the extensional definition of an ontology

class. Notice that this capability weakens the data model in order to support richer

and flexible descriptions than those allowed in classical OODBs. Thus, it becomes

necessary to extend the domain of the Val function to the properties defined on the

intensional definition of a class but not used in its extensional definition. This exten-

sion requires the introduction of the UNKNOWN value. We call OntoVal this extension

of Val, it is defined by:

OntoVal(i, p) = Val(i, p), if p ∈ SchemaProp(TypeOf(i)) else, UNKNOWN .

UNKNOWN is a special instance like NULL is a special value for SQL. Whereas NULL

may have many different interpretations like value unknown, value inapplicable or

value withheld, the only interpretation of UNKNOWN is value unknown, i.e., there is

some value, but we don’t know what it is. To preserve composition, OntoVal applied

to a property which value is UNKNOWN returns UNKNOWN (strict interpretation). Thus

we have chosen to interpret UNKNOWN as a NULL in SQL. With the introduction of

OntoVal, the semantics of OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =

(PropRange(f), {OntoVal(i1, f), . . . , OntoVal(in, f)}) .

- OntoProject. The OntoProject operator extends OntoImage allowing the appli-

cation of more than one function to an object. The result type is a Tuple which

attribute names are taken as parameter. It is defined by:

Project(T, It,{(A1, f1), . . . (An, fn)}) =

(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : OntoVal(i, f1), . . . , An : OntoVal(i, fn) > |i ∈ It}) .

It returns the type of elements together with the set of corresponding values.

- OntoDupEliminate. It is used with the OntoImage and OntoProject operators

to eliminate duplicates in a query result. It is based on the equality of two elements of

I. Two elements are equals if one of the following conditions is fulfilled: (1) they are

both collections of the same cardinality and there is a one-to-one equality between

their members , (2) they are two tuples of the same arity and their corresponding

attribute values are equal, (3) they have the same value of the same atomic type,

(4) they are two ontology instances with the same identifier. With these definitions,

OntoDupEliminate is defined by:

OntoDupEliminate(T, It) = (T, Ir) .

Ir is a collection without duplicates (Set[T]) built from the collection It.

- OntoSelect. It creates a collection of objects satisfying a selection predicate. Its

signature is C× 2I × Predicate → C× 2I and its semantics is defined by:

OntoSelect(T, It, pred) = (T, {i|i ∈ It ∧ pred(i)}) .

If the predicate taken as parameter of OntoSelect contains function applications,

then OntoVal must be used. So, operations involving UNKNOWN, that may appear in

a predicate, must be extended to handle this value (interpreted like NULL). If any

operator involves this value as parameter, then it returns UNKNOWN.

- OntoOJoin. It creates relationships between elements of two collections. This

operator is similar to a Θ-join in the relational algebra i.e., the result of this oper-

ation consists of all combinations of elements of the two collections that satisfy the

predicate Θ (denoted pred in the following). It is defined by:

OntoOJoin(T, It, R, Ir, A1, A2, pred) =

(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)}) .

In this definition, r and t must be valid input of pred.

- OntoNest. It is used to represent tuples as a nested relation. The comparisons

made by this operator are based on the equality relationship previously defined for

the OntoDupEliminate operator. It is defined by:

OntoNest(TUPLE[< (A1, T1), . . . , (Ai, Ti), . . . , (An, Tn) >], It, Ai) =

(TUPLE[< (A1, T1), . . . , (Ai, SET[Ti]), . . . , (An, Tn) >],

{< A1 : s.A1, . . . , Ai : t, . . . , An : s.An > | ∀r ∈ t ∃s ∈ It.(s.Ai = r)})

- Operator *. It is the explicit polymorphic operator to distinguish between queries

on instances of a class C and instances of all the classes subsumed by C and denoted

C∗. It is based on the functions ext and ext∗. ext : C → 2I returns direct instances

of a class and ext∗ : C → 2I its deep extent. If c is a class and c1, . . . cn are the

direct sub-classes of c, ext and ext∗ are derived recursivelyc by:

ext(c) = TypeOf−1(Nomination(c)) .

ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn) .

The ext and ext∗ make it possible to define the ∗ operator as ∗ : C → C× 2I

where ∗(T) = (T, ext∗(T)).

In addition to these main operators, OntoAlgebra includes set operations (On-

toUnion and OntoDifference) and collection operations (OntoFlatten and On-

toUnNest).

5.2. Properties and Complexity of OntoAlgebra

The closure and relational completeness properties are two important properties of

query languages which have been used to characterize the SQL language but also

RDF [41] and XML [42] query languages.

The closure property expresses composability; it requires that the result of an

operator can be the input of another operator. OntoAlgebra is closed as all its

operators return a collection of either class instances (which can be atomic values

or tuples) or entity instances. This property can also be seen by the signatures of

the operators which belong to (E ∪ C)× 2OC∪I → (E ∪ C)× 2OC∪I.

The notion of relational completeness has been introduced by Codd [43] to char-

acterize the expressive power of query languages. An algebra A is relational complete

if for all expressions built from the relational algebra, there is an equivalent expres-

sion built from the operators of A. OntoAlgebra has this property as its operators

can be used to compute the different operations of the relational algebra:

• OntoImage and OntoProject are used to compute projections;

• OntoSelect is used to compute selections;

• OntoOJoin is used to compute cartesian product (with a predicate always

true) and the different forms of joins;

cTo simplify notation, we extend all functions f by f(∅) = ∅

• OntoUnion and OntoDifference are used to compute set operations.

Another important characteristic is the complexity of the operators. Similarly

to the relational algebra [44], the complexity of the main operators of OntoAlgebra

is defined in terms of the number of operations required and based on the input

cardinality without considering physical implementation details.

• OntoImage, OntoProject and OntoSelect require to iterate on the in-

stances of the input class (or entity). Thus, the complexity of these opera-

tors is O(n) where n denotes the number of class instances.

• OntoDupEliminate and OntoNest require to iterate on the instances of a

class for each instance of this same class. Thus, the complexity of these

operators is O(n2). This complexity can be reduced to O(n ∗ log n) if the

class instances are sorted on the identifier attribute and O(n) if hashing

techniques are used.

• OntoOJoin and set operations (OntoUnion and OntoDifference) require to

iterate on the instances of a class for each instance of an other class. Thus

the complexity of these operators is also O(n2) (which can be reduced as

explained previously).

OntoAlgebra expressions and the * operator are a composition of OntoAlgebra

operations and thus their complexities can be deduced from the complexity of the

previous operators.

5.3. Query optimization techniques based on OntoAlgebra

Traditional optimization techniques defined for the relational algebra can be applied

with OntoAlgebra. For example, the strategy consisting in pushing selections past

joins is characterized by the following equivalence rule:

OntoSelect(OntoOJoin(T, It, R, Ir, pred), predt)

⇔ OntoOJoin(OntoSelect(T, It, predt), R, Ir, pred)

Besides traditional optimization techniques, optimizations based on partial

evaluation techniques can be set up. Indeed, some of the properties defined on

an ontology class may not have a value for the instances of this class. Thus it is

not necessary to search the values of these properties. More formally, let p be a

property, C a class, Ic its instances and pred a predicate in conjunctive normal

form involving p, then:

p /∈ usedProperties(nomination(C)) ⇒ OntoSelect(C, Ic, pred)) = ∅

This rule can also be defined for the OntoOJoin operator as it also involves a

predicate.

Example. Figure 2 presents an example of an optimization based on the pre-

vious rule. This example assumes that the User class has a subclass named

Administrator. The property email is used (resp. not used) for describing the

instances of the class User (resp. Administrator).

OntoImage

OntoSelect

like (email, ‘%.fr’)

title

OntoOJoin

*

Post

*

User

Post User

OntoUnion

like (email, ‘%.fr’)

OntoImage

OntoSelect title

OntoOJoin

like (email, ‘%.fr’)

OntoImage

OntoSelect title

OntoOJoin

 (a) Post User Post Administrator (b) (c)

like (email, ‘%.fr’)

OntoImage

OntoSelect title

OntoOJoin

Fig. 2. Example of an optimization based on a partial evaluation technique

Semantics. Figure 2(a) presents the OntoAlgebra query tree of the initial query.

This query searches for the title of the post written by users whose email ends with

.fr. In Figure 2(b), the operator * is erased from the query plan by using a union

operator as we have seen in its definition. The result is the union of two queries:

one for the User class and one for the Administrator class. As the email, property

is not used for describing the instances of Administrator, the second query can be

erased from the query plan and thus we obtained the optimized query plan depicted

in Figure 2(c).

Once OntoAlgebra is defined, it can be used to interpret OntoQL instructs. Next

section shows the main constructs of the OntoQL language through its concrete

syntax.

6. The OntoQL Language

The OntoQL language provides access to (1) ontology instances through its

Data Definition, Manipulation, and Query Languages (Section 6.1), (2) ontologies

through its Ontology Definition, Manipulation, and Query Languages (Section 6.2)

and both ontologies and their instances (Section 6.3).

6.1. The OntoQL Data Definition, Manipulation, and Query

Languages (DDL, DML and DQL)

SQL compatibility. OntoQL should preserve SQL compatibility in order to in-

tegrate OntoQL queries with SQL queries used in existing database application

(requirement 5). A particularity of an ontology compared to a relational schema is

that its components (classes and properties) have a universal identifier based on a

namespace. Thus the distinction between the two data access levels (relational and

ontological) is based on the availability of a namespace in identifiers. OntoQL sup-

ports two mechanisms for namespaces. The USING NAMESPACE clause of OntoQL

specifies namespaces used in the scope of a query while the SET NAMESPACE On-

toQL statement specifies namespaces for all statements executed in a session. If

these clauses are not used, OntoQL processes queries as SQL statements.

Access to the CCO layer. The CCO layer is manipulated through three sub-

languages of OntoQL: the DDL, DML and DQL. Since our algebra is based on

an object-oriented algebra, we have chosen to define the OntoQL syntax starting

from the SQL relational-object syntax [45] for manipulating user types. We have

extended and adapted it to ontologies specific features. The following example il-

lustrates these sublanguages.

Example. Create the class Post (statement 1) with its extent (statement 2) assum-

ing that a post is only described by its title and creator. Insert an instance of this

class (statement 3). Finally, find the last names of posts’ creators (statement 4).

CREATE #Class Post UNDER Item (

DESCRIPTOR (#version = ’001’)

#Property (title String, content String, note Int,

has creator REF(User) DESCRIPTOR (#version = ’v1’)))

Statement 1

CREATE EXTENT OF Post (title, has creator) Statement 2

INSERT INTO Post (title, has creator)

VALUES (’Title’, 10)

Statement 3

SELECT p.has creator.last name FROM ONLY(Post) AS p Statement 4

Semantics. Statement 1 creates the Post class with its properties and its descrip-

tion (DESCRIPTOR clause). After the CREATE keyword the type of class is specified

by an entity. In the OntoQL syntax, entities and attributes are prefixed by # (e.g.,

#version) to distinguish them from ontology classes and properties (e.g., title).

#Class and #Property are two built-in entities that represent respectively the set of

classes and properties. Statement 2 creates the extent of the Post class. An extent

of a class corresponds to a typed table in the SQL object-relational data model.

However, contrary to a database schema which prescribes the attributes character-

izing the instances of a user-defined type, an ontology only describes the properties

that may be used to characterize the instances of a class. As a consequence the

extent of class is only composed of the subset of properties that are really used

to describe its instances. Statement 3 inserts an instance of the Post class with a

statement similar to the one of SQL. Statement 4 is a DQL query similar to an

SQL query. This langage includes object-oriented operators such as path expres-

sions (e.g., p.has creator.lastname) or type operators (e.g., Only(Post) is used

to retrieve direct instances of the Post class).

Access to the NCCO layer. Ontology models include different types of NCCO

constructs. Indeed, OWL supports NCCO class definitions using boolean expres-

sions and restrictions and NCCO property definitions using inverse property. PLIB

supports NCCO property definitions using derivation functions. Defining dedicated

built-in operators for these operators raises many technically challenging problems,

both theoretical and practical [46]. As a first step to manage NCCO constructs we

have added a View Definition Language (VDL) to OntoQL. Using this language,

a class is defined as non canonical using the AS VIEW keywords and its extent is

computed using an OntoQL query.

Example. Create the PostDupont class defined as all messages of Dupont.

CREATE #Class PostDupont AS VIEW UNDER Post;

CREATE VIEW OF PostDupont AS

SELECT * FROM Post AS p WHERE p.has_creator.last_name = ’Dupont’;

Semantics. The first statement creates the PostDupont class. The position of this

class in the hierarchy must be specified by the user. In our example, the PostDupont

class is a non canonical class (AS VIEW) subsumed by the Post class (UNDER Post).

The second statement creates the extent of this class using an OntoQL query. This

query returns instances of Post having Dupont as author. These instances are those

of the PostDupont non canonical class.

Non canonical classes are queried as canonical classes using the usual query

rewriting mechanism. In contrast, adding, updating or deleting instances through

a non canonical class brings back to the view update problem. Thus this operation

runs only if the view corresponding to the extent of the class can be updated.

Access to the LO layer. In the previous examples, we have used identifiers of

ontology classes and properties to manipulate them. However, in many real ontolo-

gies, these identifiers do not correspond to a name. For example, in the PLIB IEC

ontology describing electronic components [47], the identifier of the class of resis-

tances is AAA089. As a consequence, it is not straightforward to use identifiers in

queries. OntoQL uses the LO layer of an ontology to overcome this difficulty.

Example. Retrieve the first and last names of users with identifiers and names in

English and in French of the corresponding ontology classes and properties.

SELECT first_name, <=> SELECT "first name", <=> SELECT prénom,

last_name "last name" nom

FROM User FROM User FROM Utilisateur

USING LANGUAGE EN USING LANGUAGE FR

(A) (B) (C)

Semantics. Query (A) does not use the LO layer of an ontology. Classes and prop-

erties are referenced through their identifiers. Query (B) is equivalent to query (A)

but it is written using names of the used classes and properties expressed in English.

Quotes are used for names that include a space (e.g., "first name"). Query (C) is

also equivalent to the previous queries but it is written with the names expressed

in French.

In this section, we have shown that ontology instances are manipulated in On-

toQL both at the logical level, keeping SQL compatibility, and at the ontological

level according to the three layers of an ontology. Next section presents the capa-

bilities of OntoQL to manipulate ontologies themselves.

6.2. The OntoQL Ontology Definition, Manipulation, and Query

Languages (ODL, OML and OQL)

OntoQL shall support the manipulation of ontologies defined with constructors of

different ontology models. To fulfill this requirement, OntoQL is based on a core

ontology model that can be extended by the language itself. This core ontology

model is composed of the shared constructors of different ontology models that we

have identified in section 2.2. The following example illustrates the extension of this

core ontology model.

Example. Add the AllValuesFrom OWL constructor to the core ontol-

ogy model (statement 1). Then, create the class named InvalidPost of

our example ontology with an instance (statement 2). Finally, search the

AllValuesFrom restrictions defined on the hasModifiers property (statement 3).

CREATE ENTITY #OWLAllValuesFrom UNDER #Class (

#onProperty REF(#Property),

#allValuesFrom REF(#Class))

Statement 1

INSERT INTO #OWLRestrictionAllValuesFrom

(#name[en], #name[fr], #onProperty, #allValuesFrom)

VALUES (’InvalidPost’, ’Post invalide’,

’hasModifiers’, ’Post’)

Statement 2

SELECT #name[en], #allValuesFrom.#name[en]

FROM #OWLRestrictionAllValuesFrom

WHERE #onProperty.#name[en] = ’hasModifiers’

Statement 3

Semantics. Statement 1 adds the OWLAllValuesFrom entity to our core ontology

model as a sub-entity of the Class entity. This entity is created with two attributes,

onProperty and allValuesFrom, which respectively take as values identifiers of

properties and identifiers of classes. Statement 2 creates the OWLAllValuesFrom

InvalidPost restriction with an INSERT statement. As we have seen previously,

the definition of this class could also be made with a CREATE statement of the

DDL. Indeed, syntactic equivalences are defined between OML and DDL state-

ments. These two syntactic constructions are valid but in general the second one is

more compact. Statement 3 is a query. As we can see OQL queries are similar to

the one of the DQL except that entities and properties are used instead of classes

and properties.

This section showed that OntoQL language can be used to query both ontologies

instances or ontologies themselves. Next section shows how these capabilities are

combined.

6.3. Querying both Ontologies and Instances

From ontology to instances. The OQL language part of OntoQL can be used

to retrieve ontology classes and properties. In distributed applications where the

network traffic should be minimized, retrieving simultaneously instances and values

of these classes and properties instead of executing two queries may prove useful.

To fulfil this need, iterators on the instances of a class identified at run-time are set

up in OntoQL.

Example. Retrieve instances of the classes whose name in English ends with Post.

SELECT i.oid FROM #class AS C, C AS i WHERE C.#name[en] like ’%Post’

Semantics. In this query, the Post and InvalidPost classes fulfil the condition of

the selection. As a consequence this query returns instances identifiers of these two

classes. And since InvalidPost is a subclass of Post, instances identifiers of the

InvalidPost class are returned twice.

From instances to ontology. An ontology class hierarchy can be deep. Thus,

when a DQL queries is executed to retrieve all instances of a given class, it is useful

to retrieve the ontological description of the belonging class of each instance. To

fulfil this need, OntoQL proposes the typeOf operator to retrieve the basic class of

an instance i.e., the minorant class for the subsumption relationship of the classes

it belongs to.

Example. Retrieve the English name of the basic class of User instances.

SELECT typeOf(u).#name[en] FROM User AS u

Semantics. This query iterates on the instances of the User class and on those

of the Administrator class as well. For each instance, the query returns User or

Administrator according to its member class.

In this section, we have seen the different sub-languages of OntoQL for defining,

manipulating and querying ontologies and their instances. As operational validation

of OntoQL, we have developed a complete engine for this language.

7. An Engine for OntoQL on OntoDB

To benefit from the advantages of databases (e.g., persistence, scalability), we have

chosen to implement OntoQL and the OntoAlgebra operators on the OntoDB OBDB

[9]. This section only describes the implementation of the OntoQL query language

on ontology instances. However, a complete implementation of OntoQL, including

all its sub-languages, has been developed [40].

7.1. The OntoDB Ontology-Based Database

Figure 3 presents the OntoDB architecture. It is composed of the following 4 parts.

Class

rid name

1111 User … …

Property

rid name

1112 email … …

UML_class

ID name

11 class … …

UML_attribute

ID name

12 name … …

EUser

rid Pname Pemail

111 Durand dura@

EPost

rid Ptitle Phas_

creator_rid

Phas_creator

_tablename

112 sioc 111 EUser

Meta_table

ID name

1 EUser … …

Meta_column

ID name

2 Ptitle … …

Meta-schema part

Ontology Part

Meta-base part

Data Part
Ontology model

An ontology Ontology instances

name : string
class

name : string
property

1
1

properties

*
superclass

1 *

User

Post

name

String
Post User

‘sioc’ ‘Durand’ ‘dura@’

title namehas_creator email

Int note

title

email

(1)

(3)(4)

(2)

111

Fig. 3. The OntoDB 4-parts architecture

- The Meta-Base Part (1)

The meta-base, also often called catalog system, is a traditional part of any

database. It contains system tables used to manage all the data contained in the

database. In OntoDB, it contains specifically the description of all the tables and

columns defined in the three other parts of the architecture.

- The Data Part (3)

This part represents the objects of a domain described by the classes and proper-

ties provided by an ontology. These objects are represented following the horizontal

or table per class approach: a table is associated to each concrete class. This table

contains the rid column to identify instances and one column for each property

used to describe instances of the corresponding class. The name of the table (resp.

of a column) is the concatenation of "E" (resp. "P") with the identifier of the

corresponding class (resp. property). This naming convention establishes the link

between the ontology part and the data part.

Since a property is represented by a column, a mapping has been established

between the ontology model datatypes and the ones of the underlying DBMS: Post-

greSQL.

• Primitive datatypes have equivalent datatypes in PostgreSQL.

• The reference type is represented by two columns. The name of the first one

is suffixed by rid and provides the identifier of the referenced instance.

The second one, suffixed by tablename stores the name of the table in

which the referenced instance is stored.

• The collection datatype is mapped to the ARRAY type of PostgreSQL. Prop-

erties whose values are a collection of references are represented by two

ARRAY-type columns. The first one suffixed by rids stores identifiers of

referenced instances. The second one suffixed by tablenames stores the

names of the tables in which these instances are stored.

Example. Figure 3 part (3) presents an example of the one table per class represen-

tation for the User and Post class. The EUserd table stores instances of the User

class identified by the rid column. We assume that instances of this class are only

described by the name and email string properties and thus, this table has two

corresponding VARCHAR columns: Pname and Pemail.

The EPost table corresponds to the Post class. Its instances are described by

the title property corresponding to the VARCHAR Ptitle column. They are also

described by the has creator property whose values are references to instances of

the User class. This property is represented by two columns: one for the identifiers of

the referenced instances (Phas creator rid) and one for the names of the tables

which store these instances (Phas creator tablename).

- The ontology part (4)

It contains all the ontologies that define the semantics of the various domains

covered by the database. OntoDB supports the PLIB ontology model which includes

the core ontology model of OntoQL. Thus, this part contains a set of tables to store

PLIB ontologies. As example, we have represented the Class and Property tables

in Figure 3 part (4) which respectively store ontology classes and properties.

- The meta-schema part (2)

The meta-schema part records the set up ontology model. For the ontology part,

the meta-schema part plays the same role as the one played by the system catalog

in traditional DBMS. In Figure 3 part (2), two tables are used to store the entity

class and its attribute name (according to a UML meta-model).

OntoQL statements have been implemented according to this architecture.

7.2. Query Processing of OntoQL on OntoDB

To process OntoAlgebra operators, each of these operators is interpreted by state-

ments of the underlying query language i.e., SQL. This translation process follows

five main steps.

(1) OntoAlgebra query plan generation. The query, written in OntoQL, is

dFor readability, we use names instead of identifiers.

parsed and turned to a tree expression involving OntoAlgebra operators in

each node of this tree.

(2) OntoAlgebra query plan optimization. We have identified optimization

situations (Section 5.3) to reduce the OntoAlgebra query plan. This step is

performed together with the previous step to avoid duplication of unnecessary

parts of the tree.

(3) OntoAlgebra query plan transformation into a relational algebra tree.

This translation is achieved by applying a specific set of rules (see below).

(4) Relational algebra tree optimization. This step consists in using the dif-

ferent algebraic laws that hold for the relational algebra to turn the relational

tree into an optimized equivalent tree.

(5) Relational algebra tree translation into SQL. The optimized relational

tree is translated into an SQL query according to the underlying DBMS and

executed to get the OntoQL query result.

The complete transformation of an OntoAlgebra expression into a relational

algebra expression is outside the scope of this paper. We only present in Table 2

two translation rules to convert an OntoAlgebra expression to a relational algebra

expression (see [40] for the definition of all rules). In these rules, π and ∪ represent

respectively the projection and union operators of the relation algebra. C is a class

and p1, . . . , pn are the properties defined on this class. Among these properties only

p1, . . . , pu are used to describe their instances. The datatype of p1 is a collection

of references and the one of p2 is a single-valued reference. Other properties are

primitive.

OntoAlgebra Relational Algebra

1 OntoProject (C, ext(C), πPp1 rids,Pp2 rid,Pp3,...,Ppu,NULL→Ppu+1,...,NULL→Ppn(EC)

{(p1, p1), . . . , (pn, pn)}

2 OntoProject (C, ext∗(C), OntoProject (C, ext(C), {(p1, p1), . . . , (pn, pn)}) ∪

{(p1, p1), . . . , (pn, pn)} OntoProject (C1, ext
∗(C1), {(p1, p1), . . . , (pn, pn)}) ∪

· · · ∪

OntoProject (Cn, ext
∗(Cn), {(p1, p1), . . . , (pn, pn)})

Table 2. Example of OntoAlgebra to relational algebra translation rules

Semantics. Rule 1 computes the direct instances of the class C with their values

for all the properties of this class. The OntoProject operator of OntoAlgebra is

translated to a projection of the corresponding columns (prefixed by P) on the cor-

responding table (prefixed by E). The projection of properties not used to describe

instances are interpreted by the projection of the NULL values as defined in the

OntoAlgebra semantics. The resulting column is renamed (symbol →) according to

the OntoDB naming convention so that other operators are allowed to reference it

as a used property.

Rule 2 computes the direct and indirect instances of the class C. This recursive

operation computes the union of the direct instances of C (rule 1) with the deep

extent of all its direct subclasses (rule 2).

7.3. Tools to Exploit the OntoQL Engine

In addition to the implementation of the OntoQL engine, we have developed several

tools to ease the exploitation of this language.

Fig. 4. OntoQBE: a graphical editor for OntoQL queries similar to QBE

OntoQL*Plus is an editor of OntoQL instructions similar to SQL*Plus provided

by Oracle or isql provided by SQLServer. It provides syntax highlighting and a his-

tory of the executed commands.

OntoQBE is a graphical OntoQL interface provided as a plugin for PLIBEditor

which allows users to edit PLIB ontologies. Figure 4 shows the proposed user inter-

face. It extends the QBE interface such as the one provided by Access to take into

account the object-oriented aspects of the OntoQL language (e.g., path expressions

(TAG1) and polymorphism (TAG2)) as well as its ontological aspects (e.g., it shows

descriptions of the properties used in the query (TAG3)).

OntoAPI is a JAVA representation of the core ontology model of OntoQL. It

contains for example the interfaces EntityClass and EntityProperty representing

the classes and the properties. When new elements are added to the core model, this

API can be automatically regenerated to take them into account. This API imple-

ments the concept of lazy loading proposed for example in the hibernate framework

(http: // www. hibernate. org). With lazy loading, an object is only loaded from

the database when an user accesses it through an accessor operator. Thus a class

manipulated through the interface EntityClass is initially loaded with its primi-

tive attributes (e.g., its name) Then when the getProperties method is called, its

properties are loaded by calling an OntoQL query.

JOBDBC is another API that supports the execution of OntoQL statements

from the JAVA programming language. This interface extends the JDBC API. For

example the interface OntoQLResultSet extends ResultSet providing methods to

retrieve instances of OntoAPI interfaces as the result of a query. Furthermore the

interface OntoQLResultSetMetaData extends ResultSetMetaData providing meth-

ods to get the ontological description (e.g., name in different natural languages,

illustration . . .) of a column of an OntoQLResultSet which references a property.

Source code of these tools is available at http://www.lias-lab.fr/forge.

7.4. Application Experiences

The OntoQL language has been put into practice in various engineering projects

(e.g, the Ewok-hub French projecte) [13, 48, 49]. In particular, its capability to ma-

nipulate the ontology model has been extensively used. We have chosen to illustrate

two extensions of the ontology model we have realized: (1) annotation of engineering

models and (2) user preference handling.

Engineering Models Annotation

The CO2 capture and storage rely on various engineering models. Engineers

have to face several interpretation difficulties due to the heterogeneity of these

models. To ease this process, we have proposed to annotate these models with

concepts of ontologies [13]. However, the notions of annotations and engineering

models were not available at the metamodel level. Thus, OntoQL introduced these

notions as first-order model concepts using a stepwise methodology. First, elements

of the engineering models were created with the CREATE ENTITY operator. Then, an

association table was defined to annotate the engineering models by a class of an

ontology. Once the metamodel was extended, OntoQL queries retrieved engineering

models from input ontology concepts.

User Preferences Handling

When the amount of ontological data (or instances) available becomes huge,

queries return an important set of results that must be sorted by a user in order to

find the relevant ones. This requirement raised during the eWokHub project where

a huge amount of documents and engineering models were annotated by concepts

and/or instances of ontologies. As a solution, we have enriched the metamodel to

handle user preferences when querying the OBDB. Our proposition is based on a

model of user preferences [48] defined at the metamodel level and stored in the

OBDB using the CREATE ENTITY operator of OntoQL. This preference model is

linked to the ontology model by associating preferences to classes or properties of

ontologies (ALTER ENTITY). Finally, OntoQL has been extended with a PREFERRING

ehttp://www-sop.inria.fr/edelweiss/projects/ewok/

clause interpreting preferences when querying the OBDB. This interpretation con-

sists in rewriting and expanding the original query by adding additional predicates

in its WHERE clause.

7.5. Analysis of OntoQL w.r.t our Requirements

Requirement 1: Management at the Semantic Level

OntoQL supports object-oriented operators as well as built-in functions to exploit

the semantics of core constructors of ontology-models. An analysis of the expressive

power of Semantic Web Query Languages on the set of queries has been reported

in [41]. The expression of these queries in OntoQL is available in [40]. This study

shows that OntoQL supports the following operators not supported by other studied

languages:

• aggregate (GROUP BY) and sorting (ORDER BY) operators;

• operators on collections (e.g, indexed-access to an element of a collection);

• multilingual operators (e.g, get a value in a given natural language);

• operators on datatypes (e.g., arithmetic operators on integer).

However it does not support recursive queries and specific features of RDF/RDFS:

reification, considering everything as a resource, properties without a domain and

applying attributes of the ontology model both at the ontology and instance levels.

Requirement 2: Management of the Different Layers of an Ontology

Non canonical classes can be defined in OntoQL. Their instances are computed by an

SQL view. Notice however that these definitions are not automatic. The user should

specify the position of the non canonical class in the hierarchy as well as the query

used to compute its instances. Compared to the other view language RVL [32], non

canonical classes and canonical classes belong to the same hierarchy. Moreover, if

non canonical classes are updated, these modifications are propagated to canonical

classes. These differences reflect different points of view on non canonical concepts.

RVL separates them to respect the logical data independence. OntoQL considers

these two kinds of concepts as part of the same ontology.

The LO layer of an ontology is used in OntoQL to express the same query in dif-

ferent natural languages. Moreover, values of multilingual properties and attributes

can be defined in different natural languages. Notice that these capabilities are only

available under two constraints: (1) names of classes should be unique for a given

namespace and natural language (2) names of properties should be unique for a

given class, namespace and natural language. SPARQL does not make these as-

sumptions and thus multilingual querying is not available. However, it introduces

useful functions to exploit the LO layer.

Requirement 3: Generic Ontology Exploitation Language

OntoQL is based on a core ontology model that can be extended using its ontology

definition language (CREATE ENTITY). By subsumption the added constructors in-

herits from the semantics hard-coded in the core ontology model. This capability is

useful for many problems as we have seen in 7.4. However, it would also be useful

to define a particular semantics for a new constructor (e.g., the computation of the

instances of an owl:UnionOf classes). This is a work in progress.

Requirement 4: Full Management of Ontologies and Instances

OntoQL provides definition, manipulation and query languages at two different

levels: ontology and instances. Moreover the two query languages are combined in

order to express queries both on ontologies and instances.

Requirement 5: SQL Compatibility

Using the namespace mechanism, OntoQL is fully compatible with SQL. Indeed,

when no namespaces are specified, SQL queries can be executed using the OntoQL

engine. This mechanism also mixes SQL queries used in database applications with

ontological queries.

8. Conclusion

Several exploitation languages proposals manipulating ontologies and their in-

stances have emerged in the last decade. These languages are often specific to a

given ontology model, not fully compatible with the SQL language, and they do

not offer a complete exploitation of the different layers (CCO, NCCO and LO) of

an ontology. In this paper, we have described the OntoQL language we have de-

signed to address these shortcomings. We have given the complete definition of this

language and described some of the many applications both in academia and in

industry where this language proved successful.

The OntoQL proposal was built in an incremental design process. As a first step,

we have formally defined a data model for ontology and their instances independent

of the used ontology model. Indeed, OntoQL manipulates ontologies according to

a layered model that characterises different categories of ontologies. This layered

model is based on a core ontology model corresponding to the shared constructors

of different ontology models. Moreover, OntoQL extends this core ontology model

in order to target specific ontology models. As a consequence, the cohabitation of

several ontology models and their corresponding ontological data in the same setting

becomes possible and thus they can be exploited by the same OntoQL constructs.

As a second step, a formal algebraic semantics was proposed. An algebra of

operators, OntoAlgebra, for querying ontology and their instances resulted from

this definition. It is built by extending the ENCORE algebra proposed for object-

oriented database. In the same way, the OntoQL language syntax, which semantics

is defined by OntoAlgebra, was set up by adapting the SQL99 syntax for relational-

object databases. As a result, OntoQL proposes different sub-languages to define,

manipulate and query ontologies and their instances at different layers. It offers

built-in services to access:

• instances at the logical level with a full SQL compatibility;

• instances at the CCO ontological level. OntoQL provides object-oriented oper-

ators to query instances from ontologies;

• instances at the NCCO ontological level. Non canonical classes are defined using

mechanisms similar to the one defined for views in classical databases;

• instances at the LO ontological level. OntoQL supports the expression of queries

in different natural languages;

• ontologies. OntoQL manipulates ontologies defined with its core ontology model.

It handles the exploitation of several ontologies in a single setting. This model

is extendable using the OntoQL language itself.

Moreover, cross-layers queries can be expressed. Indeed, it is possible to com-

bine SQL queries with ontological queries using the namespace mechanism. This

capability is useful to compose existing database applications queries with ontology

based queries. As a result, OntoQL encompasses the capability of usual DBMS lan-

guages for manipulating data according to their logical model with the capability

of Semantic Web ontology languages for manipulating data according to their se-

mantic models given in terms of ontologies. Another characteristic of OntoQL is the

expression of queries on both ontologies and their instances. This kind of queries

are relevant for two use cases (1) searching ontology concepts with their associated

instances and (2) retrieving instances with their ontological descriptions.

As a proof of concepts, we have implemented OntoQL and its algebra on the

OntoDB OBDB. This OntoQL engine is equipped with a set of tools similar to the

one used for traditional databases (e.g., Query-By-Example or JDBC). These tools

have been successfully used in various engineering projects and the source code of

this prototype is available at http://www.lias-lab.fr/forge.

The development of OntoQL is carried on in several directions. Currently, new

mechanisms to extend the core ontology model with new operators and behaviours

are under development. Here, the challenge is to enable the automatic definition of

operators behaviours without any interactive programming (without end-user pro-

gramming) but through the exploitation of a metamodel describing behavioural

modelling operators and their composition. More precisely, we are working on

adding new functions (e.g., Web Services or plugins) that could be triggered dur-

ing query processing preserving persistence of the models and their instances. Web

Services (WS) discovery using OntoQL statements is also another research path

currently followed. A registry of semantic WS based on the OntoDB architecture is

under design. It captures functional and non functional characteristics of WS using

a specific stored metamodel in OntoDB. An extension of the OntoQL language of-

fering Web Services search services in this registry using functional as well as non

functional characteristics of WS is under development. Finally, studying the substi-

tutability relationships between semantic Web Services using OntoQL statements

is another future research direction.

References

[1] Gruber, T.R.: A translation approach to portable ontology specifications, in Knowl.
Acquis. 5(2) (1993) 199–220.

[2] Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural Language Generation in the
context of the Semantic Web, in the Semantic Web journal (2013).

[3] Dragoni, M., da Costa Pereira, C., Tettamanzi, A. G.: A conceptual representation
of documents and queries for information retrieval systems by using light ontologies,
in Expert Systems with applications. 39(12) (2012) 10376-10388.

[4] Breslin, J. G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic Web computing in
industry, in Computers in Industry. 61(8) (2010) 729-741.

[5] Wiegand, N.: Ontologies and Database Management System Technology for The Na-
tional Map, in Cartographica (2010) 121–126.

[6] Zayas, D. S., Monceaux, A., Ait-Ameur, Y.: Using knowledge and expressions to
validate inter-model constraints, In Proc. of the 18th IFAC Wolrd Congress (IFAC’11)
(2011) 2737-2742.

[7] Bao, J., Kendall E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web On-
tology Language, World Wide Web Consortium (2012) http://www.w3.org/TR/

owl2-overview/.
[8] Pierra, G.: Context Representation in Domain Ontologies and its Use for Semantic

Integration of Data, in Journal Of Data Semantics (JODS) X (2007) 34–43.
[9] Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An Ontology-Based Database

for Data Intensive Applications, in Proc. of the 12th International Conference on
Database Systems for Advanced Applications (DASFAA’07) (2007) 497–508.

[10] Wilkinson, K.: Jena Property Table Implementation in Proc. of the 2nd International
Workshop on Scalable Semantic Web Knowledge Base Systems (2006) 35-46.

[11] Chong, E. I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL based RDF Query-
ing Scheme, in Proc. of the 31st International Conference on Very Large Data Bases
(VLDB’05) (2005) 1216-1227.

[12] Mizoguchi-Shimogori, Y., Murayama, H., Minamino, N.: Class Query Language and
its application to ISO13584 Parts Library Standard. In: Proceedings of the 9th Eu-
ropean Concurrent Engineering Conference (ECEC’02). (2002) 128–135

[13] Mastella, L.S., Aı̈t-Ameur, Y., Jean, S., Perrin, M., Rainaud, J.F.: Semantic exploita-
tion of persistent metadata in engineering models: application to geological models, in
Proc. of the IEEE International Conference on Research Challenges in Information
Science (RCIS 2009) (2009) 147–156.

[14] Bellatreche, L., Khouri, S., Berkani, N.: Semantic Data Warehouse Design: From ETL
to Deployment la Carte, in Proc. of the 18th International Conference on Database
Systems for Advanced Application (DASFAA’13) (2013) 64–83.

[15] Romero, A. A., Grau, B. C., Horrocks, I.: MORe: Modular combination of OWL
reasoners for ontology classification, in Proc. of the 11th International Semantic Web
Conference (ISWC’12) (2012) 1-16.

[16] Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N. F., Musen, M. A., Shah,
N. H.: NCBO Resource Index: Ontology-based search and mining of biomedical re-
sources, in Web Semantics: Science, Services and Agents on the World Wide Web.
9(3) (2011) 316–324.

[17] Bailey, J., Bry, F., Furche, T., Schaffert, S.: Semantic Web Query Languages, in
Encyclopedia of Database Systems (2009) 2583–2586.

[18] Jean, S., Ameur, Y.A., Pierra, G.: Ontology Query Languages for Ontology-Based
Databases: a Survey, in Data Warehousing Design and Advanced Engineering Appli-
cations: Methods for Complex Construction (2009).

[19] Harris, S., Seaborne, A.: SPARQL 1.1 Query Language, W3C Recommendation 21
March 2013 (2013) http://www.w3.org/TR/sparql11-query/.

[20] Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying Ontology Based Database Using On-
toQL (an Ontology Query Language), in Proc. of On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated Interna-
tional Conferences (ODBASE’06) (2006) 704–721.

[21] Jean, S., Aı̈t-Ameur, Y., Pierra, G.: An Object-Oriented Based Algebra for Ontologies
and their Instances, in Proc. of the 11th East European Conference in Advances in
Databases and Information Systems (ADBIS’07) (2007) 141–156.

[22] Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying ontology based databases. The OntoQL
proposal, in Proc. of the 18th Internation Conference on Software Engineering and
Knowledge Engineering (SEKE’06) (2006) 166–171.

[23] Jean, S., Pierra, G., Ameur, Y.A.: Domain Ontologies: A Database-Oriented Analysis,
in Web Information Systems and Technologies, International Conferences, WEBIST
2005 and WEBIST 2006. Revised Selected Papers (2007) 238–254.

[24] Cullot, N., Parent, C., Spaccapietra, S., Vangenot, C.: Ontologies: A Contribution to
the DL/DB Debate, in Proc. of the 1st International Workshop on the Semantic Web
and Databases (SWDB’03) (2003) 109–129.

[25] Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema,
World Wide Web Consortium (2004) http://www.w3.org/TR/rdf-schema/.

[26] Breslin G. J., Harth A., Bojars, U., Descker, S.: Towards Semantically-Interlinked
Online Communities, in Proc. of the 2nd European Semantic Web Conference
(ESWC’05) (2005) 238–254.

[27] Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update, W3C Recommendation
21 March 2013 (2013) http://www.w3.org/TR/sparql11-update/.

[28] Bizer, C., Seaborne, A.: D2RQ - Treating Non-RDF Databases as Virtual RDF
Graphs, in Proc. of the 3rd International Semantic Web Conference (ISWC’04)
(2004).

[29] Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL:
a declarative query language for RDF, in Proc. of the Eleventh International World
Wide Web Conference (WWW’02). (2002) 592–603.

[30] Cattell, R.G.G.: The Object Database Standard: ODMG-93 , Morgan Kaufmann
(1993).

[31] Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A Declar-
ative Update Language for RDF, in Proc. of the 4th International Semantic Web
Conference (ISWC’05) (2005) 506–521.

[32] Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the Seman-
tic Web Through RVL Lenses, in Journal of Web Semantics 1(4) (2004) 359–375.

[33] Ziegler, P., Sturm, C., Dittrich, K.R.: Unified Querying of Ontology Languages with
the SIRUP Ontology Query API, in Datenbanksysteme in Business, Technologie und
Web (BTW’05) (2005) 325–344.

[34] Garcia-Alvarado, C., Ordonez, C.: ONTOCUBO: Cube-based Ontology Construction
and Exploration, in Proc. of the 2014 ACM SIGMOD Conference (SIGMOD’14)
(2014) 1083–1086.

[35] Garcia-Alvarado, C., Chen, Z., Ordonez, C.: ONTOCUBE: Efficient Ontology Ex-
traction using OLAP Cubes, in Proc. of the 20th ACM Conference on Information
and Knowledge Management (CIKM’11) (2011) 2429–2432.

[36] Garcia-Alvarado, C., Ordonez, C.: Query Processing on Cubes Mapped from Ontolo-
gies to Dimension Hierarchies, in Proc. of the 15th ACM International Workshop on
Data Warehousing and OLAP (DOLAP’12) (2012) 57–64.

[37] Sequeda, J. F., Tirmizi S., Corcho O., Miranker D. P.: Survey of directly mapping
SQL databases to the Semantic Web, in Knowledge Eng. Review 26(4) (2011) 445–
486.

[38] Astrova, I.: Rules for Mapping SQL Relational Databases to OWLOntologies, in Proc.
of the 2nd International Conference on Metadata and Semantics Research (MTSR’07)
(2007) 415–424.

[39] Zdonik, S.B., Mitchell, G.: ENCORE: An Object-Oriented Approach to Database
Modelling and Querying, in IEEE Data Engineering Bulletin 14(2) (1991) 53–57.

[40] Jean, S.: OntoQL, un langage d’exploitation des bases de données à base ontologique,
PhD thesis, LISI/ENSMA and University of Poitiers (2007).

[41] Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query Lan-
guages, in Proc. of the 3nd International Semantic Web Conference (ISWC’04) (2004)
53–57.

[42] Deutsch, A., Fernández, M. F., Florescu, D., Levy, A. Y., Suciu, D.: A Query Lan-
guage for XML, in Computer Networks 31(11-16) (1999) 1155–1169.

[43] Codd, E. F.: Relational Completeness of Data Base Sublanguages, in Database Sys-
tems, Prentice Hall and IBM Research Report RJ 987 (1972) 65–98.

[44] Özsu, T., Valduriez P.: Principles of Distributed Database Systems , Prentice Hall
Press (2007).

[45] Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E., Zemke, F.: SQL:2003 Has Been
Published, in SIGMOD Record 33(1) (2004) 119–126.

[46] Bazhar, Y., Chakroun, C., Aı̈t-Ameur, Y., Bellatreche, L., Jean, S.: Extending
Ontology-Based Databases with Behavioral Semantics, in Proc. of On the Move to
Meaningful Internet Systems 2012: CoopIS, DOA-SVI, and ODBASE, OTM Confed-
erated International Conferences (ODBASE’12) (2012) 879–896.

[47] IEC61360-4: Standard data element types with associated classification scheme for
electric components - part 4 : Iec reference collection of standard data element types,
component classes and terms, Technical report, International Standards Organization
(1999).

[48] Tapucu, D., Diallo, G., Aı̈t-Ameur, Y., Ünalir, M.O.: Ontology-based database ap-
proach for handling preferences, in Data Warehousing Design and Advanced Engi-
neering Applications: Methods for Complex Construction (2009) 248–271.

[49] Belaid, N., Ait-Ameur, Y., Rainaud, J.F.: A semantic handling of geological mod-
eling workflows, in Proc. of the International ACM Conference on Management of
Emergent Digital EcoSystems (MEDES’09) (2009) 83–90.

