
HAL Id: hal-02494138
https://hal.science/hal-02494138v1

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Adapted Derivative-Free Optimization Method for
an Optimal Design Application with Mixed Binary and

Continuous Variables
Thi-Thoi Tran, Delphine Sinoquet, Sébastien da Veiga, Marcel Mongeau

To cite this version:
Thi-Thoi Tran, Delphine Sinoquet, Sébastien da Veiga, Marcel Mongeau. An Adapted Derivative-
Free Optimization Method for an Optimal Design Application with Mixed Binary and Continuous
Variables. Advanced Computational Methods for Knowledge Engineering, Advances in Intelligent
Systems and Computing (1121), Springer, pp.88-98, 2020, Advanced Computational Methods for
Knowledge Engineering. ICCSAMA 2019., 978-3-030-38363-3. �10.1007/978-3-030-38364-0_8�. �hal-
02494138�

https://hal.science/hal-02494138v1
https://hal.archives-ouvertes.fr


An adapted derivative-free optimization method
for an optimal design application with mixed

binary and continuous variables

Thi-Thoi Tran1, Delphine Sinoquet1, Sébastien Da Veiga2, and Marcel
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Abstract. Numerous optimal design applications are black-box mixed
integer nonlinear optimization problems: with objective function and
constraints that are outputs of a black-box simulator involving mixed
continuous and integer (discrete) variables. In this paper, we address an
optimal design application for bladed disks of turbo-machines in aircraft.
We discuss the formulation of an appropriate distance with respect to
discrete variables which can deal with the cyclic symmetry property of
the system under study. The necklace concept is introduced to charac-
terize similar blade configurations and an adapted distance is proposed
for discrete space exploration of a derivative-free optimization method.
The results obtained with this method on a simplified industrial applica-
tion are compared with results of state-of-the-art black-box optimization
methods.

Keywords: Mixed integer non-linear programming · black-box simula-
tion · derivative free trust region method · necklace distance.

1 Motivation

Air traffic is one of the most important means of transportation, especially in Eu-
rope. Besides, it is connected with very high costs of fuel [1,2], and also with high
costs of maintenance and of manufacturing. Thus, reducing fuel consumption by
increasing engine efficiency and maintenance savings by decreasing vibrations
are two major concerns of the aviation industry.

There are several ways to optimize costs in aircraft: optimal trajectories,
optimal seat arrangement designs, optimal cargo arrangements . . . In our case,
we want to optimize the design of turbo-machines, precisely, by maximizing the
efficiency of compressor and minimizing the vibrations.

In the concrete application proposed by SAFRAN, the optimization variables
are of 2 types: continuous shape parameters, x, e.g. thickness, length of blades
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and binary variables y associated to each blade, with the value 0 for a reference
shape and 1 for the other predefined shape (mistuning shape). Binary variables
are used to locate these reference blade shapes on the disk. This parameteriza-
tion provides the distribution of the two shapes around the turbine disk.

There is a strong symmetry in this problem that should be taken into ac-
count. Two bladed disks that differ only by a rotation of the blade pattern
around the disk will lead to the same simulation outputs, such arrangements are
considered as the same solution or called redundant solution : e.g. 001101001101
and 010011010011. Note that the number of identical solutions increases rapidly
with the number of blades (see Table 1).

In practice, engineers try to overcome this difficulty in practical optimiza-
tion by using Reduce Order Modeling Technique (ROMT), detailed in [15,6,8,7].
Briefly, grouping blades by sectors of 2 patterns - 00 or 11 and 10 or 01 - tends
to reduce the number of discrete variables from n to n/2.

In general these mixed problems are NP-hard and difficult to solve. Espe-
cially, for real applications, the difficulty lies in evaluating computationally ex-
pensive cost function: it can take several hours or even days to compute the
functions to be optimized. Moreover, the derivatives are often not available.
Most of algorithms for solving black-box Mixed Integer Nonlinear Problem are
based on genetic algorithms which require a lot of function evaluations which
are particularly costly in our application. In the next section, we motivate the
use of derivative-free trust-region method.

Total number of Number of distinct Total number of
blades on the disk (N) arrangements (v 2N/N) arrangements (2N )

2 3 4

3 4 8

5 8 32

10 108 1024

12 352 4096

20 52488 1048576

Table 1: Number of distinct and total arrangements for a given number of blades

2 Derivative free trust-region method

Among Derivative-free optimization (DFO) methods, one distinguishes direct
search methods (e.g., directional or Nelder Mead simplex) and trust region meth-
ods based on simple interpolation or regression models (linear or quadratic). The
direct search methods require a large number of simulations, whereas the second
type of methods is generally more efficient to converge to a local solution. Con-
vergence results to local minima are proved for the later methods but it requires
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adaptations to hope to converge to a global optimal solution (e.g., a multi-start
approach with several initial points).

We focus on surrogate DFO methods [10,4]. These methods aim to explore
the optimization variable space by replacing the costly-to-evaluate functions by
response surfaces, with a choice of the points to simulate based on a compromise
between exploration (points far from points simulated at previous iterations)
and exploitation of information captured by the response surface (points around
potential optima). Most popular response surfaces for surrogate optimization are
Radial Basis Functions (RBF) and Gaussian processes [17,14,11].

Besides, derivative-free trust-region algorithm is based on local quadratic
models defined inside a trust region

m(z) = α+ gT z +
1

2
zTHz,

whose coefficients are determined as the solution of minimal Frobenius norm
problem  min

α,g,H=HT

1

2
‖H‖2F

m(zi) = fi, i = 0, . . . , p.

where Z = (z0, . . . , zp) is the interpolation set for both continuous and binary
variables z = (x, y), fi the associated objective function evaluations and ‖.‖F
the Frobenius norm. The interpolation set is assumed to be poised, see details
in [10,4].

The brief idea of the algorithm is to replace the initial problem, which in-
volves the expensive simulations with quadratic optimization problem, simple to
optimize. At the first step, we fix the binary variables to the best current solu-
tion and solve the quadratic sub-problem within the trust region with respect to
continuous variables only. When a better point is obtained in this first step (a
smaller objective function), the second step consists in minimizing the quadratic
model with respect to both continuous and binary variables, thus solving a mixed
binary continuous quadratic problem.

The model is built in order to efficiently approximate the function and fulfills
the fully-linear or fully-quadratic model properties to ensure the local conver-
gence of the algorithm. Thus, model improvement steps are performed in order
to optimize the geometry of the interpolation set, see details in [10,9,4].

The introduction of binary (or integer) variables requires an adapted trust
region definition. In [9], the authors introduce a l1−norm trust region for con-
tinuous variables and the Hamming distance trust region for binary variables
defined as ∑

j:ycj=0

yj +
∑

j:ycj=1

(1− yj) ≤ ∆y, (1)

with ∆y, the size of the trust region for binary variables.
When the algorithm reaches a ”local solution” (no further improvement), an
exploration phase is necessary in binary variable domain. It is performed by



4 T.T. TRAN et al.

adding a ”no-good-cut” constraint to escape from this local solution y∗, defined
as ∑

j:y∗j=0

yj +
∑
j:y∗j=1

(1− yj) > ∆∗y, (2)

where (y∗, ∆∗y) are respectively the local solution and the current radius of the
”sufficiently explored” area around this solution. Note that this approach leads
to a bunch of constraints, one for each explored local solution.

In the next section, we propose an adapted distance that will be used for the
trust region associated with binary variables for our application.

3 Adapted distance for blade design application

To avoid the solution redundancy (illustrated in Table 1), engineers use ROMT
which reduces the optimization problem size but has the disadvantage of remov-
ing a large number of feasible solutions. Safran’s application with 12 blades has
352 distinct arrangements but only 28 distinct arrangements for the two sub-
problems of ROMT, limiting a lot the explored configuration set with a high
probability to remove ”good” candidates.

Therefore, we attempt to define a new distance which can avoid the redun-
dant solutions without arbitrary removal of configurations. The new distance
should lead to simple constraints as the Hamming distance which leads to linear
constraints (1).

In order to detect similar blade arrangements, we introduce the concept of
”necklace” [12,13]. In combinatorics, a k-ary necklace of length n is an equiv-

alence class of n-character strings over an alphabet
∑k

= {a1, . . . , ak} of size
k, taking all rotations as equivalent. It represents a structure with n circularly
connected beads which have k available colors. Our blade design application can
be seen as a 2-color necklace optimization with a fixed number of beads.

Using the concept of necklace gives an exact formula of the number of
distinct arrangements which is the number of necklace for given n beads :
1/n

∑
d|n φ(d)2n/d, where φ is Euler’s totient function, the summation is taken

over all divisors d of n.
There are numerous applications based on ”necklace” concept and various

distances, e.g. geometry distance for music, swap distance [22,23,24], Hamming
distance with shift [16], and necklace alignment distance (NAD) [5].

Following the idea of NAD, we propose a new distance, that we call in the
following the necklace distance,

dneck(y, y′) = min
r
dH(y,Rotr(y′)), (3)

where dH denotes the Hamming distance, Rotr(y) is the rotation of r positions
from y. It is clear that this distance satisfies

– the non-negativity property: dneck(y, y′) ≥ 0,
– the reflexivity property : dneck(y, y) = 0,
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– the commutativity property: dneck(y, y′) = dneck(y′, y),
– the triangle inequality property: dneck(y, y′′) ≤ dneck(y, y′) + dneck(y′, y′′).

Besides these metric properties, dneck has one important property

dneck(y, y′) = 0⇐⇒ y ∈ Rot(y′) (4)

which ensures to detect all the necklaces in the set. The definition of the necklace
distance is not linear because of ”min” operator. We propose in the next section
an adaptation of this distance for the trust region and no-good-cut constraints
used in the trust region algorithm.

Reformulating the distance for trust region DFO algorithm
The mixed binary continuous sub-problem associated with the minimization

of the quadratic model is written as
min
x,y

m(x, y)

min(g1(y, yc), . . . , gn(y, yc)) ≤ ∆y

‖x− xc‖l1 ≤ ∆x,
x ∈ Rn, y ∈ {0, 1}n,

(5)

with xc and yc the current centers of the two trust regions in continuous and
binary variable space with ∆x and ∆y, the size of the trust region for respectively
the continuous and binary variables and gi(y, yc) = dH(y,Roti(yc)), i = 1, . . . , n.

To deal with ”min” operator in the constraints, we add slack variables t,
integer, and yn+1, yn+2, . . . , yn+n, binaries, and propose an exact reformulation,

min
x,y,t

mµ(x, y, t) = min
x,y,t

m(x, y) + µt

t ≥ g1(y, yc)−Myn+1

. . .
t ≥ gn(y, yc)−Myn+n∑n
i=1 yni

= n− 1
t ≤ ∆y

‖x− xc‖l1 ≤ ∆x,
x ∈ Rn, y ∈ {0, 1}2n, t ∈ Z+,

(6)

with a real parameter µ > 0 and an integer parameter M > n.
As explained before, the exploration phase uses ”no-good-cut” constraints

(2) to enforce to explore new values for binary variables. The maximum number
of constraints is 2n − 1. If we apply the same trick as in (6) for exploration
phase, we highly increase the dimension of the problem due to the additional
slack variables, n + 1 for each ”no-good-cut” constraint. We use instead the
equivalence

min(g1, g2, . . . , gn) ≥ ∆∗y ⇐⇒ gi ≥ ∆∗y, i = 1, . . . , n,

and thus replace no-good-cut constraints by at most n linear constraints

dH(y,Rot(y∗)) ≥ ∆∗y, . . . , dH(y,Rotn(y∗)) ≥ ∆∗y.

Note that, in practice, we use ∆∗y = 1.
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4 Toy problem

The problem of determining the best-case (or worst-case) mistuning pattern
and maximizing the forced response vibration amplification by the addition of
a small mistuning to a perfectly cyclical bladed disk is mentioned in litera-
ture [19,20,15,6,8,7,21]. We use a single degree-of-freedom (DOF) per blade disk
model (see Figure 1).

Fig. 1: Single DOF per blade disk model ([7])

The DOF problem is formulated as

minimize
ω,y

‖A‖∞

subject to ω ∈ [ωmin, ωmax],

yi ∈ {0, 1},

(7)

where A = T−1F̄ , F̄i = F0e
jφi , T =


T0 −kc 0 . . . 0 −kc
−kc T1 −kc . . . 0 0

...
...

...
. . .

...
...

−kc 0 0 . . . −kc TN−1

 ,

Ti = −miω
2 + jωc+ 2kc + (1 + δi)kb. The nomenclature is detailed in [7].

5 Preliminary numerical results

We present some preliminary results of our trust-region method, called DFOb
in the following, applied to the toy problem and to a simplified application pro-
vided by SAFRAN.

Results for the Toy problem
In general, optimization researchers ideally seek for an algorithm which pro-

vides the smallest objective function value comparing to alternative algorithms.
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But, for derivative free optimization methods dealing with expensive-to-evaluate
simulations, the efficiency of an optimization algorithm is generally measured by
comparing the objective function value for a given budget of simulations (fixed
number of simulations).
On this toy example, we run 10 times our method DFOb with different ini-
tial random points with two different distances for binary variables : Hamming
distance and the necklace distance proposed in previous section (equation 3).
The new implementation allows to reach a better point than the Hamming dis-
tance implementation as shown in Figure 2. The number of simulations to reach
the same objective value, 9.68272e − 04, is larger with Hamming distance (90
simulations) than with the necklace distance (60 simulations).

Fig. 2: Mean best average objective function obtained with 10 random initial
datasets with Hamming distance and with the proposed distance.

Results on SAFRAN application
We apply our method DFOb on the two sub-problems of ROMT and compare

the results with NOMAD, [3,18] and RBFopt [11] optimization methods with a
fixed budget of 100 simulations:

1. ROMT sub-problem 1 with patterns 00− 11,
2. ROMT sub-problem 2 with patterns 10− 01.

DFOb and RBFOpt share the same initial points (random choice from RBFOpt
method). NOMAD’s initial point is chosen as the best point of the initial set
with regard to objective function value. Some constraints are added in order to
avoid trivial solutions with only one type of patterns : only zero or one values
in vector of binaries y. Figure 3 illustrates the efficiency of DFOb coupled with
the necklace distance compared to Hamming distance for binary variables for
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Fig. 3: Comparing results obtained with Hamming and necklace distances for
the two ROMT sub-problems with patterns 00− 11 (left) and 10− 01 (right) of
Safran application

the two sub-problesm of ROMT. For ROMT sub-problem with 00−11 patterns,
DFOb with the necklace distance provides an objective function of 1.033509 af-
ter 57 simulations while the same algorithm with the Hamming distance does
not reach this value after more than 100 simulations. For the first ROMT sub-
problem (see Figure 4), DFOb method coupled with necklace distance has very
good performance compared to RBFopt and NOMAD. NOMAD and RBFopt
provide infeasible points during the exploration phasis (with small objective
function values), the constraints being handled as soft constraints. In DFOb,
the constraints are taken into account explicitely.
For the second ROMT sub-problem (see Figure 5), DFOb finds good points

rapidly after less than 10 simulations, nevertheless, it does not reach the best
objective function value obtained by NOMAD and RBFopt within the fixed bud-
get of simulations (100). With a different initial set, DFOb is able to find the
global solution within 100 simulations. A future study will focus on the sensitiv-
ity of the results of our method to the initial set and of its size.

6 Conclusions

In this study we address black-box optimization problems with costly-to-evaluate
objective functions. A trust region derivative free optimization method adapted
to mixed binary and continuous variables is presented. In order to improve the
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Fig. 4: Compare DFOb, Nomad and RBFOpt results obtained for sub-problem
with patterns 00 − 11 of Safran application. Square black symbols indicate in-
feasible points.

exploration phase of this algorithm for a blade design application, we introduce
a distance in binary variable domain, that takes into account the symmetry of
the problem. Preliminary results illustrate the performances of this new dis-
tance compared to classical Hamming distance. The comparison of the proposed
method with two state-of-the-art methods NOMAD and RBFopt shows some
encouraging results.

References

1. Air transport action group (atag), http://www.atag.org/facts-and-figures.

html

2. International air transport association, iata price analysis, http://www.iata.org/
publications/economics/fuel-monitor/Pages/price-analysis.aspx

3. Abramson, M., Audet, C., Couture, G., Dennis, Jr., J., Le Digabel, S., Tribes,
C.: The NOMAD project. Software available at https://www.gerad.ca/nomad/,
https://www.gerad.ca/nomad/

4. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series
in Operations Research and Financial Engineering, Springer International Publish-
ing, Cham, Switzerland (2017). https://doi.org/10.1007/978-3-319-68913-5

5. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J.,
Langerman, S., Patrascu, M., Taslakian, P.: Necklaces, convolutions, and X+Y.
CoRR abs/1212.4771 (2012), http://arxiv.org/abs/1212.4771

6. Choi, B., Lentz, J., Rivas-Guerra, A., Mignolet, M.: Optimization of intentional
mistuning patterns for the reduction of the forced response effects of unintentional

http://www.atag.org/facts-and-figures.html
http://www.atag.org/facts-and-figures.html
http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
https://www.gerad.ca/nomad/
https://www.gerad.ca/nomad/
https://doi.org/10.1007/978-3-319-68913-5
http://arxiv.org/abs/1212.4771


10 T.T. TRAN et al.

0 10 20 30 40 50 60 70 80 90 100
1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12
DFOb-d

new

RBFopt

NOMAD

Infeasible points

Fig. 5: Compare DFOb, Nomad and RBFOpt results obtained for sub-problem
with patterns 10− 01 of Safran application.

mistuning: Formulation and assessment. Journal of Engineering for Gas Turbines
and Power 125(1), 131–140 (1 2003). https://doi.org/10.1115/1.1498270

7. Choi, B.: Pattern optimization of intentional blade mistuning for the reduction of
the forced response using genetic algorithm. KSME International Journal 17(7),
966–977 (Jul 2003). https://doi.org/10.1007/BF02982981, https://doi.org/10.
1007/BF02982981

8. Choi, B., Eun, K.H., Jung, K.H., Haneol, J., DongSik, G., Kwan, K.M.: Opti-
mization of intentional mistuning for bladed disk : Intentional mistuning intensity
effect. In: Mathew, J., Kennedy, J., Ma, L., Tan, A., Anderson, D. (eds.) Engineer-
ing Asset Management. pp. 1024–1029. Springer London, London (2006)

9. Conn, R., D’Ambrosio, C., Liberti, L., Sinoquet, D.: A trust region method for
solving grey-box mixed integer nonlinear problems with industrial applications,
https://mode2016.sciencesconf.org/file/223761

10. Conn, R., Scheinberg, K., Vicente, L.: Introduction to Derivative-Free
Optimization. Society for Industrial and Applied Mathematics (2009).
https://doi.org/10.1137/1.9780898718768, https://epubs.siam.org/doi/abs/

10.1137/1.9780898718768

11. Costa, A., Nannicini, G.: Rbfopt: an open-source library for black-box optimiza-
tion with costly function evaluations. Mathematical Programming Computation
10(4), 597–629 (Dec 2018). https://doi.org/10.1007/s12532-018-0144-7, https:

//doi.org/10.1007/s12532-018-0144-7

12. Fredricksen, H., Kessler, I.J.: An algorithm for generating neck-
laces of beads in two colors. Discrete Mathematics 61(2), 181 – 188
(1986). https://doi.org/https://doi.org/10.1016/0012-365X(86)90089-0,
http://www.sciencedirect.com/science/article/pii/0012365X86900890

https://doi.org/10.1115/1.1498270
https://doi.org/10.1007/BF02982981
https://doi.org/10.1007/BF02982981
https://doi.org/10.1007/BF02982981
https://mode2016.sciencesconf.org/file/223761
https://doi.org/10.1137/1.9780898718768
https://epubs.siam.org/doi/abs/10.1137/1.9780898718768
https://epubs.siam.org/doi/abs/10.1137/1.9780898718768
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/https://doi.org/10.1016/0012-365X(86)90089-0
http://www.sciencedirect.com/science/article/pii/0012365X86900890


DFO for optimal design application with mixed variables 11

13. Gabric, D., Sawada, J.: Constructing de bruijn sequences by concatenat-
ing smaller universal cycles. Theoretical Computer Science 743, 12 – 22
(2018). https://doi.org/https://doi.org/10.1016/j.tcs.2018.06.039, http://www.

sciencedirect.com/science/article/pii/S0304397518304559

14. Gutmann, H.M.: A radial basis function method for global optimiza-
tion. Journal of Global Optimization 19(3), 201–227 (Mar 2001).
https://doi.org/10.1023/A:1011255519438, https://doi.org/10.1023/A:

1011255519438

15. Han, Y., Murthy, R., Mignolet, M.P., Lentz, J.: Optimization of Inten-
tional Mistuning Patterns for the Mitigation of the Effects of Random Mis-
tuning. Journal of Engineering for Gas Turbines and Power 136(6) (02
2014). https://doi.org/10.1115/1.4026141, https://doi.org/10.1115/1.4026141,
062505

16. Jiang, M.: On the sum of distances along a circle. Discrete Mathematics 308(10),
2038 – 2045 (2008). https://doi.org/https://doi.org/10.1016/j.disc.2007.04.025,
http://www.sciencedirect.com/science/article/pii/S0012365X07002555

17. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization 13(4), 455–492 (Dec
1998). https://doi.org/10.1023/A:1008306431147, https://doi.org/10.1023/A:

1008306431147

18. Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the MADS
algorithm. ACM Transactions on Mathematical Software 37(4), 1–15 (2011)

19. Liao, H., Wang, J., Yao, J., Li, Q.: Mistuning Forced Response Characteristics
Analysis of Mistuned Bladed Disks. Journal of Engineering for Gas Turbines and
Power 132(12) (08 2010). https://doi.org/10.1115/1.4001054, https://doi.org/
10.1115/1.4001054, 122501
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