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Central limit theorem for the prefix exchange distance under Ewens sampling formula
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The prefix exchange distance of a permutation is the length of its shortest factorisation into transpositions that all contain 1. Using a probabilistic approach, we obtain expressions for the mean and the variance, and prove the asymptotic normality of the distribution of this distance for a random permutation verifying the Ewens sampling formula. Analogous results in the uniform setting follow as simple corollaries.

Introduction

A prefix exchange is a restricted kind of transposition that swaps any element of a permutation with its first element. The prefix exchange distance of a permutation was introduced by [START_REF] Akers | A group-theoretic model for symmetric interconnection networks[END_REF] in the context of interconnection network design, and corresponds to the minimum number of prefix exchanges required to transform a given permutation into the identity permutation. Many work has been devoted to the study of this distance: [START_REF] Portier | Whitney numbers of the second kind for the star poset[END_REF] first gave expressions, recurrences and generating functions for computing its distribution (with later corrections by [START_REF] Shen | On the Whitney numbers of the second kind for the star poset[END_REF]). Alternative explicit formulas, recurrence formulas and other properties of that distance and of its distribution have since appeared in various other works [START_REF] Imani | Some topological properties of star graphs: The surface area and volume[END_REF]; Cheng et al. (2009b); [START_REF] Qiu | On some properties of the star graph[END_REF]; [START_REF] Grusea | Asymptotic normality and combinatorial aspects of the prefix exchange distance distribution[END_REF].

In our previous work [START_REF] Grusea | Asymptotic normality and combinatorial aspects of the prefix exchange distance distribution[END_REF], we proved the asymptotic normality of the prefix exchange distribution for a uniform random permutation. In the present work, we consider a more general family of probability distributions on the set of permutations, which includes the uniform distribution as a special case. This distribution is related to the Multivariate Ewens distribution, also known as the Ewens sampling formula. In this setting, a given permutation with k cycles is chosen with probability proportional to θ k , where θ > 0 is a fixed parameter.

Background and known results

Permutations, cycles, and prefix exchanges

For n ≥ 1, we let S n denote the symmetric group, i.e. the set of all permutations of {1, 2, . . . , n}, together with the usual function composition operation • applied from right to left. We view permutations as sequences, i.e. π = π 1 π 2 • • • π n , where π i = π(i) for 1 ≤ i ≤ n. As is well-known, every permutation decomposes in a single way into disjoint cycles (up to the ordering of cycles and of elements within each cycle). We say that a permutation is written in canonical cycle notation if the cycles are ordered by their smallest element, which appears first in each cycle. For instance, when π = 7 5 3 2 4 8 1 6 , its disjoint cycle decomposition written in canonical notation is π = (1, 7)(2, 5, 4)(3)(6, 8). We use c i (π) (resp. c ≥i (π)) to denote the number of cycles of length i (resp. at least i) of π for 1 ≤ i ≤ n.

For every i = 2, 3, . . . , n, the prefix exchange (1, i) applied to a permutation π in S n transforms π into π • (1, i) by swapping elements π 1 and π i . The prefix exchange distance of π, denoted by pexc(π), is the minimum number of prefix exchanges needed to sort π, i.e. to transform it into the identity permutation ι = 1 2 • • • n . [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF] proved the following formula for computing the prefix exchange distance:

Theorem 2.1 [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF]). The prefix exchange distance of π in S n is

pexc(π) = n + c ≥2 (π) -c 1 (π) - 0 if π 1 = 1, 2 otherwise. (1)
2.2. The joint distribution of cycle counts and the Ewens sampling formula Let n be fixed and let θ > 0 be a fixed parameter. We let π denote a random permutation in S n chosen according to the following probabilities: any permutation with k cycles is chosen with probability θ k /θ n, where θ n = θ(θ + 1) • • • (θ + n -1) denotes the rising factorial. Note that the uniform distribution on S n is obtained in the particular case θ = 1. Under this probability distribution, the joint distribution of the cycle counts is given by the Ewens sampling formula of parameter θ: if we denote C i = c i (π) the number of cycles of length i in a random permutation π following this distribution, then for 1 ≤ i ≤ n we have

P(C 1 = a 1 , . . . , C n = a n ) =      n! θ n n j=1 1 a j ! θ j a j if n j=1 ja j = n, 0 otherwise. 
(2) [START_REF] Ewens | The sampling theory of selectively neutral alleles[END_REF] introduced this sampling formula in the context of population genetics, in order to describe the probability distribution of the partition of a sample of n selectively equivalent genes into a number of different gene types (alleles). The same formula was discovered independently by [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian parametric problems[END_REF] in the context of Bayesian statistics.

For k ≥ 1 and x in R, let

x k = x(x -1) • • • (x -k + 1
) denote the falling factorial, with the convention x 0 = 1. The following result of [START_REF] Watterson | The sampling theory of selectively neutral alleles[END_REF] gives the joint factorial moments of the cycle counts. For every k 1 , . . . , k n ∈ N, denoting m = n -n j=1 jk j , we have the following formula:

E C k 1 1 • • • C kn n =      n! m! θ m θ n n j=1 θ j k j if m ≥ 0, 0 otherwise.
(3)

Limit distribution of cycle counts and Feller coupling

Let us now assume that n → ∞ and denote C

(n) j

the number of cycles of length j in a random permutation in S n chosen according to the Ewens sampling formula of parameter θ. Then we have the following result.

Proposition 2.1 [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF]). The process of cycle counts (C (n) j ) j≥1 converges in distribution, when n → ∞, to (Z 1 , Z 2 , . . .), where Z j , j ≥ 1 are independent Poisson random variables, with E(Z j ) = θ/j.

In the case θ = 1, which corresponds to the uniform distribution, this convergence result is due to [START_REF] Goncharov | Some facts from combinatorics[END_REF] and [START_REF] Kolchin | A problem of the allocation of particles in cells and cycles of random permutations[END_REF].

We next describe the following construction, due to [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF] for arbitrary θ and to [START_REF] Feller | The fundamental limit theorems in probability[END_REF] in the case θ = 1, which results in a coupling of (C

(n) 1 , C (n)
2 , . . .) and (Z 1 , Z 2 , . . .) for all n simultaneously -the socalled Feller coupling. This coupling will prove very useful in the sequel. Let ξ i , i ≥ 1 be independent Bernoulli random variables with P(ξ j = 1) = θ θ+j-1 . Note that P(ξ 1 = 1) = 1. We use the random sequence (ξ n , ξ n-1 , . . . , ξ 1 ) to construct a random permutation in S n satisfying the Ewens sampling formula, the permutation being written in canonical cycle notation.

The construction proceeds as follows (see [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF] for more details). We start with 1 in the first cycle. If ξ n = 1, then we close that cycle and start the next cycle with the smallest available integer, which in this case is 2; if ξ n = 0, then we choose at random one of the n -1 available integers and place it to the right of 1 in the same cycle. If ξ n-1 = 1, then we close the current cycle and start the next cycle with the smallest available integer; if ξ n-1 = 0, then we choose at random one of the n -2 available integers and place it to the right in the current cycle. Continuing in this manner yields a random permutation in S n written in canonical cycle notation and satisfying the Ewens sampling formula.

Note that the number of cycles of the resulting permutation is:

n j=1 C (n) j = n j=1 ξ j . (4) 
Moreover, the lengths of the cycles correspond exactly to the lengths of the spacings between consecutive ones in the sequence (1, ξ n , ξ n-1 , . . . , ξ 1 ). The number C (n) j of cycles of length j is the number of j-spacings, that is, the number of patterns of two ones separated by j -1 zeros:

C (n) j = n-j i=1 ξ i (1-ξ i+1 ) • • • (1-ξ i+j-1 )ξ i+j +ξ n-j+1 (1-ξ n-j+2 ) • • • (1-ξ n ). (5) For j ≥ 1, let us now define C (∞) j
to be the number of j-spacings in the infinite sequence (ξ 1 , ξ 2 , . . .), that is

C (∞) j = ∞ i=1 ξ i (1 -ξ i+1 ) • • • (1 -ξ i+j-1 )ξ i+j .
As n → ∞, the sequence of cycle counts (C

(n) 1 , C (n) 2 , . . .) converges in dis- tribution to (C (∞) 1 , C (∞) 2 , . . .), where C (∞) j , j ≥ 1 are independent Poisson random variables, with E(C (∞) j ) = θ/j.
The following result (see [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF]) will also prove useful:

n j=1 E(|C (n) j -C (∞) j |) ≤ nθ(θ + 1) n + θ . ( 6 
)

Mean and variance of the prefix exchange distance distribution

Let both n ≥ 1 and θ > 0 be fixed, and let π be a random permutation in S n verifying the Ewens sampling formula. We will drop the superscripts and simply denote C j the number of cycles of length j in the permutation π, for j = 1, . . . , n. Theorem 2.1 and the definition of ξ n allow us to write:

pexc(π) = n + n i=2 C i -C 1 -2(1 -ξ n ) = n -2 + n i=1 C i -2C 1 + 2ξ n . (7)
Theorem 3.1. The expected value µ n = E(pexc(π)) of the prefix exchange distance for a random permutation π ∈ S n verifying the Ewens sampling formula of parameter θ is:

µ n = n -2 + θ n-1 i=0 1 θ + i - 2θ(n -1) θ + n -1 . ( 8 
)
Proof. For every i ≥ 1, ξ i is Bernoulli distributed with mean E(ξ i ) = θ θ+i-1 . Moreover, Watterson's formula in Equation (3) gives:

E(C 1 ) = nθ θ + n -1 . (9) 
The stated formula easily follows, using Equation (4) and Equation ( 7).

In the particular case θ = 1, corresponding to the uniform distribution on S n , Equation (8) yields Corollary 3.1. The expected value µ n of the prefix exchange distance for a uniform random permutation in S n equals µ n,unif = n + H n -4 + 2 n , where H n = n i=1 1 i denotes the n-th harmonic number.

Note that the same expression for µ n,unif can be obtained as a particular case of Theorem 6.1, page 203 of Cheng et al. (2009a) by setting k = n -1 in the formula they derive. In our previous paper [START_REF] Grusea | Asymptotic normality and combinatorial aspects of the prefix exchange distance distribution[END_REF], we gave an analytic proof of the same expression using the probability generating function, known in the case of a uniform random permutation, and first obtained by [START_REF] Portier | Whitney numbers of the second kind for the star poset[END_REF].

We now turn to proving an expression for the variance σ 2 n of the prefix exchange distance. The following equations will be useful in that regard: taking j = 1 in Equation ( 5) gives

C 1 = n-1 i=1 ξ i ξ i+1 + ξ n . (10) 
Equation ( 4) and Equation ( 7) yield

pexc(π) = n -2 + n-1 i=1 ξ i (1 -2ξ i+1 ) + ξ n . (11) 
Theorem 3.2. Let n ≥ 2 and θ > 0. The variance σ 2 n = Var(pexc(π)) of the prefix exchange distance for a random permutation π ∈ S n verifying the Ewens sampling formula of parameter θ, equals

σ 2 n = n i=1 θ θ + i -1 - n i=1 θ 2 (θ + i -1) 2 - 4θ 2 (n -1) (θ + n -2)(θ + n -1) 2 + 4θ 2 n-2 i=0 θ(i + 1)(θ + i -1) -i(i + 1 -θ)(θ + i + 1) (θ + i -1)(θ + i) 2 (θ + i + 1) 2 . Proof. Let Y i = ξ i (1 -2ξ i+1 ), for i = 1, . . . , n -1. Equation (11) reads pexc(π) = n -2 + n-1 i=1 Y i + ξ n .
Note that ξ n is independent of Y 1 , Y 2 , . . . , Y n-2 . Moreover, Y i and Y j are independent for |i -j| > 1. Therefore:

σ 2 n = n-1 i=1 Var(Y i ) + Var(ξ n ) + 2 n-2 i=1 Cov(Y i , Y i+1 ) + 2Cov(Y n-1 , ξ n ). ( 12 
)
Using the independence of the ξ i 's and the fact that E(ξ i ) = θ θ+i-1 , we obtain:

E(Y i ) = E(ξ i )(1 -2E(ξ i+1 )) = θ θ + i -1 1 - 2θ θ + i = θ(i -θ) (θ + i -1)(θ + i) .
Since ξ i+1 ∈ {0, 1}, we have 1 -2ξ i+1 ∈ {-1, 1}, and therefore

E(Y 2 i ) = E(ξ 2 i )E((1 -2ξ i+1 ) 2 ) = E(ξ i ) = θ θ + i -1 . Using further the relation (i -θ) 2 = (θ + i) 2 -4θi, we obtain Var(Y i ) = θ θ + i -1 - θ 2 (θ + i -1) 2 + 4θ 3 i (θ + i -1) 2 (θ + i) 2 . ( 13 
)
Since ξ n is Bernoulli distributed with parameter θ θ+n-1 , we have:

Var(ξ n ) = θ(n -1) (θ + n -1) 2 . ( 14 
)
We now compute Cov(Y i , Y i+1 ), for i = 1, . . . , n -2. The independence of the ξ i 's and the relation ξ

i+1 (1 -2ξ i+1 ) = -ξ i+1 yield E(Y i Y i+1 ) = E(ξ i )E[ξ i+1 (1-2ξ i+1 )](1-2E(ξ i+2 ) = - θ 2 (i + 1 -θ) (θ + i -1)(θ + i)(θ + i + 1)
.

We deduce the following expression for the covariance between Y i and Y i+1 :

Cov(Y i , Y i+1 ) = - 2θ 2 i(i + 1 -θ) (θ + i -1)(θ + i) 2 (θ + i + 1) . (15) 
Concerning the covariance between Y n-1 and ξ n , similar arguments yield:

E(Y n-1 ξ n ) = E(ξ n-1 )E[(1-2ξ n )ξ n ] = -E(ξ n-1 )E(ξ n ) = - θ 2 (θ + n -2)(θ + n -1)
, from which we easily deduce Cov(Y n-1 , ξ n ) = -2θ 2 (n -1) (θ + n -2)(θ + n -1) 2 .

(16)

The formula in the statement follows from Equations ( 12) to (16).

using Equation ( 7) and denoting

R n := θ(H n -1 -log n) + n j=2 (C (n) j -C (∞) j ) -C (n) 1 -2(1 -ξ n ) √ θ log n . (17) 
The random variable n j=2 C

(∞) j It now suffices to note that R n converges to 0 in probability. Indeed, using Proposition 4.1, Equation ( 6) and the fact that E(C (∞) 1

) = θ and E(1

-ξ n ) = n-1
θ+n-1 ≤ 1, we have E(|R n |) -→ 0 as n → ∞, and hence R n converges to 0 in probability. This ends the proof.

  (H n -1). Using the normal approximation for the Poisson distribution (see e.g.[START_REF] Billingsley | Convergence of Probability Measures[END_REF]), we obtainn j=2 C (∞) j -θ(H n -1) √ θ log n -→ d N (0, 1).

In the case of a uniform random permutation, corresponding to θ = 1, Theorem 3.2 implies the following.

Corollary 3.2. Let n ≥ 2. The variance of the prefix exchange distance for a uniform random permutation in S n equals

In [START_REF] Grusea | Asymptotic normality and combinatorial aspects of the prefix exchange distance distribution[END_REF] we obtained the same expression for σ 2 n,unif in a more involved way, using the probability generating function of pexc(π).

Central limit theorem for the distance distribution

Proposition 4.1. We have the following asymptotics for the mean and the variance of the prefix exchange distribution as n → ∞:

where O(1) denotes a bounded sequence.

Proof. Immediate from Equation (8) and Theorem 3.2, using the well-known fact that H n = log(n) + O(1) when n → ∞.

We further prove a central limit theorem for pexc(π). Note that in Grusea and Labarre (2016) we proved a similar result in the case θ = 1.

Theorem 4.1. We have the following convergence in distribution

which means that the distribution of the prefix exchange distance for a random permutation π ∈ S n verifying the Ewens sampling formula of parameter θ, is asymptotically normal, with mean n + θ log n and variance θ log n.

, . . .) be the Feller coupling defined in Section 2.3. Let us denote