
HAL Id: hal-02494137
https://hal.science/hal-02494137

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Central limit theorem for the prefix exchange distance
under Ewens sampling formula

Simona Grusea, Anthony Labarre

To cite this version:
Simona Grusea, Anthony Labarre. Central limit theorem for the prefix exchange distance
under Ewens sampling formula. Discrete Mathematics, 2021, 344 (2), pp.Article 112206.
�10.1016/j.disc.2020.112206�. �hal-02494137�

https://hal.science/hal-02494137
https://hal.archives-ouvertes.fr


Central limit theorem for the prefix exchange distance

under Ewens sampling formula

Simona Grusea
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Abstract

The prefix exchange distance of a permutation is the length of its shortest
factorisation into transpositions that all contain 1. Using a probabilistic
approach, we obtain expressions for the mean and the variance, and prove
the asymptotic normality of the distribution of this distance for a random
permutation verifying the Ewens sampling formula. Analogous results in the
uniform setting follow as simple corollaries.
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1. Introduction

A prefix exchange is a restricted kind of transposition that swaps any
element of a permutation with its first element. The prefix exchange distance
of a permutation was introduced by Akers and Krishnamurthy (1989) in the
context of interconnection network design, and corresponds to the minimum
number of prefix exchanges required to transform a given permutation into
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the identity permutation. Many work has been devoted to the study of this
distance: Portier and Vaughan (1990) first gave expressions, recurrences and
generating functions for computing its distribution (with later corrections by
Shen and Qiu (2008)). Alternative explicit formulas, recurrence formulas and
other properties of that distance and of its distribution have since appeared
in various other works Imani et al. (2009); Cheng et al. (2009b); Qiu and Akl
(1995); Grusea and Labarre (2016).

In our previous work Grusea and Labarre (2016), we proved the asymp-
totic normality of the prefix exchange distribution for a uniform random
permutation. In the present work, we consider a more general family of
probability distributions on the set of permutations, which includes the uni-
form distribution as a special case. This distribution is related to the Mul-
tivariate Ewens distribution, also known as the Ewens sampling formula. In
this setting, a given permutation with k cycles is chosen with probability
proportional to θk, where θ > 0 is a fixed parameter.

2. Background and known results

2.1. Permutations, cycles, and prefix exchanges

For n ≥ 1, we let Sn denote the symmetric group, i.e. the set of all
permutations of {1, 2, . . . , n}, together with the usual function composition
operation ◦ applied from right to left. We view permutations as sequences,
i.e. π = 〈π1 π2 · · · πn〉, where πi = π(i) for 1 ≤ i ≤ n. As is well-known,
every permutation decomposes in a single way into disjoint cycles (up to
the ordering of cycles and of elements within each cycle). We say that a
permutation is written in canonical cycle notation if the cycles are ordered
by their smallest element, which appears first in each cycle. For instance,
when π = 〈7 5 3 2 4 8 1 6〉, its disjoint cycle decomposition written in
canonical notation is π = (1, 7)(2, 5, 4)(3)(6, 8). We use ci(π) (resp. c≥i(π))
to denote the number of cycles of length i (resp. at least i) of π for 1 ≤ i ≤ n.

For every i = 2, 3, . . . , n, the prefix exchange (1, i) applied to a permuta-
tion π in Sn transforms π into π ◦ (1, i) by swapping elements π1 and πi. The
prefix exchange distance of π, denoted by pexc(π), is the minimum number
of prefix exchanges needed to sort π, i.e. to transform it into the identity
permutation ι = 〈1 2 · · · n〉. Akers et al. (1987) proved the following formula
for computing the prefix exchange distance:
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Theorem 2.1 (Akers et al. (1987)). The prefix exchange distance of π in
Sn is

pexc(π) = n+ c≥2(π)− c1(π)−
{

0 if π1 = 1,
2 otherwise.

(1)

2.2. The joint distribution of cycle counts and the Ewens sampling formula

Let n be fixed and let θ > 0 be a fixed parameter. We let π denote a
random permutation in Sn chosen according to the following probabilities:
any permutation with k cycles is chosen with probability θk/θn̄, where θn̄ =
θ(θ + 1) · · · (θ + n − 1) denotes the rising factorial. Note that the uniform
distribution on Sn is obtained in the particular case θ = 1. Under this
probability distribution, the joint distribution of the cycle counts is given
by the Ewens sampling formula of parameter θ: if we denote Ci = ci(π)
the number of cycles of length i in a random permutation π following this
distribution, then for 1 ≤ i ≤ n we have

P(C1 = a1, . . . , Cn = an) =


n!

θn̄

n∏
j=1

1

aj!

(
θ

j

)aj
if
∑n

j=1 jaj = n,

0 otherwise.

(2)

Ewens (1972) introduced this sampling formula in the context of popula-
tion genetics, in order to describe the probability distribution of the partition
of a sample of n selectively equivalent genes into a number of different gene
types (alleles). The same formula was discovered independently by Antoniak
(1974) in the context of Bayesian statistics.

For k ≥ 1 and x in R, let xk = x(x − 1) · · · (x − k + 1) denote the
falling factorial, with the convention x0 = 1. The following result of Watter-
son (1974) gives the joint factorial moments of the cycle counts. For every
k1, . . . , kn ∈ N, denoting m = n−

∑n
j=1 jkj, we have the following formula:

E
(
C
k1
1 · · ·C

kn
n

)
=


n!

m!

θm̄

θn̄

n∏
j=1

(
θ

j

)kj
if m ≥ 0,

0 otherwise.

(3)

2.3. Limit distribution of cycle counts and Feller coupling

Let us now assume that n → ∞ and denote C
(n)
j the number of cycles

of length j in a random permutation in Sn chosen according to the Ewens
sampling formula of parameter θ. Then we have the following result.
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Proposition 2.1 (Arratia et al. (1992)). The process of cycle counts (C
(n)
j )j≥1

converges in distribution, when n→∞, to (Z1, Z2, . . .), where Zj, j ≥ 1 are
independent Poisson random variables, with E(Zj) = θ/j.

In the case θ = 1, which corresponds to the uniform distribution, this
convergence result is due to Goncharov (1944) and Kolchin (1971).

We next describe the following construction, due to Arratia et al. (1992)
for arbitrary θ and to Feller (1945) in the case θ = 1, which results in a

coupling of (C
(n)
1 , C

(n)
2 , . . .) and (Z1, Z2, . . .) for all n simultaneously — the so-

called Feller coupling. This coupling will prove very useful in the sequel. Let
ξi, i ≥ 1 be independent Bernoulli random variables with P(ξj = 1) = θ

θ+j−1
.

Note that P(ξ1 = 1) = 1. We use the random sequence (ξn, ξn−1, . . . , ξ1)
to construct a random permutation in Sn satisfying the Ewens sampling
formula, the permutation being written in canonical cycle notation.

The construction proceeds as follows (see Arratia et al. (1992) for more
details). We start with 1 in the first cycle. If ξn = 1, then we close that cycle
and start the next cycle with the smallest available integer, which in this case
is 2; if ξn = 0, then we choose at random one of the n− 1 available integers
and place it to the right of 1 in the same cycle. If ξn−1 = 1, then we close the
current cycle and start the next cycle with the smallest available integer; if
ξn−1 = 0, then we choose at random one of the n − 2 available integers and
place it to the right in the current cycle. Continuing in this manner yields a
random permutation in Sn written in canonical cycle notation and satisfying
the Ewens sampling formula.

Note that the number of cycles of the resulting permutation is:

n∑
j=1

C
(n)
j =

n∑
j=1

ξj. (4)

Moreover, the lengths of the cycles correspond exactly to the lengths of
the spacings between consecutive ones in the sequence (1, ξn, ξn−1, . . . , ξ1).

The number C
(n)
j of cycles of length j is the number of j-spacings, that is,

the number of patterns of two ones separated by j − 1 zeros:

C
(n)
j =

n−j∑
i=1

ξi(1−ξi+1) · · · (1−ξi+j−1)ξi+j+ξn−j+1(1−ξn−j+2) · · · (1−ξn). (5)

For j ≥ 1, let us now define C
(∞)
j to be the number of j-spacings in the infi-

nite sequence (ξ1, ξ2, . . .), that is C
(∞)
j =

∑∞
i=1 ξi(1− ξi+1) · · · (1− ξi+j−1)ξi+j.
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As n → ∞, the sequence of cycle counts (C
(n)
1 , C

(n)
2 , . . .) converges in dis-

tribution to (C
(∞)
1 , C

(∞)
2 , . . .), where C

(∞)
j , j ≥ 1 are independent Poisson

random variables, with E(C
(∞)
j ) = θ/j.

The following result (see Arratia et al. (1992)) will also prove useful:

n∑
j=1

E(|C(n)
j − C

(∞)
j |) ≤ nθ(θ + 1)

n+ θ
. (6)

3. Mean and variance of the prefix exchange distance distribution

Let both n ≥ 1 and θ > 0 be fixed, and let π be a random permutation
in Sn verifying the Ewens sampling formula. We will drop the superscripts
and simply denote Cj the number of cycles of length j in the permutation π,
for j = 1, . . . , n. Theorem 2.1 and the definition of ξn allow us to write:

pexc(π) = n+
n∑
i=2

Ci − C1 − 2(1− ξn) = n− 2 +
n∑
i=1

Ci − 2C1 + 2ξn. (7)

Theorem 3.1. The expected value µn = E(pexc(π)) of the prefix exchange
distance for a random permutation π ∈ Sn verifying the Ewens sampling
formula of parameter θ is:

µn = n− 2 + θ
n−1∑
i=0

1

θ + i
− 2θ(n− 1)

θ + n− 1
. (8)

Proof. For every i ≥ 1, ξi is Bernoulli distributed with mean E(ξi) = θ
θ+i−1

.
Moreover, Watterson’s formula in Equation (3) gives:

E(C1) =
nθ

θ + n− 1
. (9)

The stated formula easily follows, using Equation (4) and Equation (7).

In the particular case θ = 1, corresponding to the uniform distribution
on Sn, Equation (8) yields

Corollary 3.1. The expected value µn of the prefix exchange distance for a
uniform random permutation in Sn equals µn,unif = n + Hn − 4 + 2

n
, where

Hn =
∑n

i=1
1
i

denotes the n-th harmonic number.
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Note that the same expression for µn,unif can be obtained as a particular
case of Theorem 6.1, page 203 of Cheng et al. (2009a) by setting k = n−1 in
the formula they derive. In our previous paper Grusea and Labarre (2016), we
gave an analytic proof of the same expression using the probability generating
function, known in the case of a uniform random permutation, and first
obtained by Portier and Vaughan (1990).

We now turn to proving an expression for the variance σ2
n of the prefix

exchange distance. The following equations will be useful in that regard:
taking j = 1 in Equation (5) gives

C1 =
n−1∑
i=1

ξiξi+1 + ξn. (10)

Equation (4) and Equation (7) yield

pexc(π) = n− 2 +
n−1∑
i=1

ξi(1− 2ξi+1) + ξn. (11)

Theorem 3.2. Let n ≥ 2 and θ > 0. The variance σ2
n = Var(pexc(π)) of

the prefix exchange distance for a random permutation π ∈ Sn verifying the
Ewens sampling formula of parameter θ, equals

σ2
n =

n∑
i=1

θ

θ + i− 1
−

n∑
i=1

θ2

(θ + i− 1)2
− 4θ2(n− 1)

(θ + n− 2)(θ + n− 1)2

+ 4θ2

n−2∑
i=0

θ(i+ 1)(θ + i− 1)− i(i+ 1− θ)(θ + i+ 1)

(θ + i− 1)(θ + i)2(θ + i+ 1)2
.

Proof. Let Yi = ξi(1− 2ξi+1), for i = 1, . . . , n− 1. Equation (11) reads

pexc(π) = n− 2 +
n−1∑
i=1

Yi + ξn.

Note that ξn is independent of Y1, Y2, . . . , Yn−2. Moreover, Yi and Yj are
independent for |i− j| > 1. Therefore:

σ2
n =

n−1∑
i=1

Var(Yi) + Var(ξn) + 2
n−2∑
i=1

Cov(Yi, Yi+1) + 2Cov(Yn−1, ξn). (12)
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Using the independence of the ξi’s and the fact that E(ξi) = θ
θ+i−1

, we obtain:

E(Yi) = E(ξi)(1− 2E(ξi+1)) =
θ

θ + i− 1

(
1− 2θ

θ + i

)
=

θ(i− θ)
(θ + i− 1)(θ + i)

.

Since ξi+1 ∈ {0, 1}, we have 1− 2ξi+1 ∈ {−1, 1}, and therefore

E(Y 2
i ) = E(ξ2

i )E((1− 2ξi+1)2) = E(ξi) =
θ

θ + i− 1
.

Using further the relation (i− θ)2 = (θ + i)2 − 4θi, we obtain

Var(Yi) =
θ

θ + i− 1
− θ2

(θ + i− 1)2
+

4θ3i

(θ + i− 1)2(θ + i)2
. (13)

Since ξn is Bernoulli distributed with parameter θ
θ+n−1

, we have:

Var(ξn) =
θ(n− 1)

(θ + n− 1)2
. (14)

We now compute Cov(Yi, Yi+1), for i = 1, . . . , n − 2. The independence of
the ξi’s and the relation ξi+1(1− 2ξi+1) = −ξi+1 yield

E(YiYi+1) = E(ξi)E[ξi+1(1−2ξi+1)](1−2E(ξi+2) = − θ2(i+ 1− θ)
(θ + i− 1)(θ + i)(θ + i+ 1)

.

We deduce the following expression for the covariance between Yi and Yi+1:

Cov(Yi, Yi+1) = − 2θ2i(i+ 1− θ)
(θ + i− 1)(θ + i)2(θ + i+ 1)

. (15)

Concerning the covariance between Yn−1 and ξn, similar arguments yield:

E(Yn−1ξn) = E(ξn−1)E[(1−2ξn)ξn] = −E(ξn−1)E(ξn) = − θ2

(θ + n− 2)(θ + n− 1)
,

from which we easily deduce

Cov(Yn−1, ξn) = − 2θ2(n− 1)

(θ + n− 2)(θ + n− 1)2
. (16)

The formula in the statement follows from Equations (12) to (16).
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In the case of a uniform random permutation, corresponding to θ = 1,
Theorem 3.2 implies the following.

Corollary 3.2. Let n ≥ 2. The variance of the prefix exchange distance for
a uniform random permutation in Sn equals

σ2
n,unif = Hn +

4

n
− 8

n2
−

n∑
j=1

1

j2
.

In Grusea and Labarre (2016) we obtained the same expression for σ2
n,unif

in a more involved way, using the probability generating function of pexc(π).

4. Central limit theorem for the distance distribution

Proposition 4.1. We have the following asymptotics for the mean and the
variance of the prefix exchange distribution as n→∞:

µn = n+ θ log n+O(1),

σ2
n = θ log n+O(1),

where O(1) denotes a bounded sequence.

Proof. Immediate from Equation (8) and Theorem 3.2, using the well-known
fact that Hn = log(n) +O(1) when n→∞.

We further prove a central limit theorem for pexc(π). Note that in Grusea
and Labarre (2016) we proved a similar result in the case θ = 1.

Theorem 4.1. We have the following convergence in distribution

pexc(π)− n− θ log n√
θ log n

−→d N (0, 1) when n→∞,

which means that the distribution of the prefix exchange distance for a random
permutation π ∈ Sn verifying the Ewens sampling formula of parameter θ,
is asymptotically normal, with mean n+ θ log n and variance θ log n.

Proof. Let (C
(n)
1 , C

(n)
2 , . . .) and (C

(∞)
1 , C

(∞)
2 , . . .) be the Feller coupling defined

in Section 2.3. Let us denote

Dn :=
pexc(π)− n− θ log n√

θ log n
=

∑n
j=2C

(∞)
j − θ(Hn − 1)
√
θ log n

+Rn,
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using Equation (7) and denoting

Rn :=
θ(Hn − 1− log n) +

∑n
j=2(C

(n)
j − C

(∞)
j )− C(n)

1 − 2(1− ξn)
√
θ log n

. (17)

The random variable
∑n

j=2C
(∞)
j is a sum of independent Poisson ran-

dom variables with parameters E(C
(∞)
j ) = θ

j
, therefore it is also Poisson

distributed with parameter
∑n

j=2
θ
j

= θ(Hn − 1). Using the normal approxi-

mation for the Poisson distribution (see e.g. Billingsley (1999)), we obtain∑n
j=2 C

(∞)
j − θ(Hn − 1)
√
θ log n

−→d N (0, 1).

It now suffices to note that Rn converges to 0 in probability. Indeed, using
Proposition 4.1, Equation (6) and the fact that E(C

(∞)
1 ) = θ and E(1−ξn) =

n−1
θ+n−1

≤ 1, we have E(|Rn|) −→ 0 as n→∞, and hence Rn converges to 0
in probability. This ends the proof.
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