
Official URL
DOI : https://doi.org/10.1109/RTSS.2018.00046

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24789

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Soni, Aakash and Li, Xiaoting and

Scharbarg, Jean-Luc and Fraboul, Christian Optimizing Network

Calculus for Switched Ethernet Network with Deficit Round Robin.

(2019) In: 39th IEEE Real-Time System Symposium (RTSS 2018),

11 December 2018 - 14 December 2018 (Nashville, United States).

Aakash SONI

ECE Paris - INPT/IRIT, Toulouse

France

aakash.soni@ece.fr

Xiaoting Li

ECE Paris

France

xiaoting.li@ece.fr

Jean-Luc Scharbarg

IRIT-ENSEEIHT, Toulouse

France

Jean-Luc.Scharbarg@enseeiht.fr

Christian Fraboul

IRIT-ENSEEIHT, Toulouse

France

Christian.Fraboul@enseeiht.fr

Abstract—Avionics Full Duplex switched Ethernet (AFDX) is
the de facto standard for the transmission of critical avionics
flows. It is a specific switched Ethernet solution based on
First-in First-out (FIFO) scheduling. Worst-case traversal time
(WCTT) analysis is mandatory for such flows, since timing
constraints have to be guaranteed. A classical approach in this
context is Network Calculus (NC). However, NC introduces some
pessimism in the WCTT computation. Moreover, the worst-case
often corresponds to very rare scenarios. Thus, the network
architecture is most of the time lightly loaded. Typically, less than
10 % of the available bandwidth is used for the transmission of
avionics flows on an AFDX network embedded in an aircraft.
One solution to improve the utilization of the network is to
introduce Quality of Service (QoS) mechanisms. Deficit Round
Robin (DRR) is such a mechanism and it is envisioned for future
avionics networks. A WCTT analysis has been proposed for
DRR. It is based on NC. It doesn’t make any assumption on
the scheduling of flows by end systems. The first contribution of
this paper is to identify sources of pessimism of this approach
and to propose an improved solution which removes part of
this pessimism. The second contribution is to show how the
scheduling of flows can be integrated in this optimized DRR
approach, thanks to offsets. An evaluation on a realistic case
study shows that both contributions bring significantly tighter
bounds on worst-case latencies.

Index Terms—Deficit Round Robin, Network Calculus, worst-
case traversal time, switched Ethernet network, offsets

I. INTRODUCTION

Up to now, Quality of Service (QoS) mechanisms are not

used in practice in the context of avionics. The de facto

standard is the AFDX network, which mainly implements a

FIFO service discipline in switch output ports. Actually, two

priority levels are available, but they are rarely used. Different

approaches have been proposed for Worst-case traversal time

analysis in the context of avionics, in particular Network

Calculus (NC) [1], Trajectories [2] and Model Checking [3].

Due to the problem of combinatorial explosion, Model Check-

ing doesn’t scale. Trajectories and NC approaches compute a

sure but often pessimistic upper bound on end-to-end delay.

NC has a strong mathematical background with successful

implementation to certify A380 AFDX backbone[4].

The pessimism of WCTT analysis as well as the fact that

worst-case scenarios have a very low probability to occur lead

to a very lightly loaded network. Typically, less than 10 %

of the available bandwidth is used for the transmission of

avionics flows on an AFDX network embedded in an aircraft

[3]. One solution to improve the utilization of the network

is to introduce Quality of Service (QoS) mechanisms. Deficit

Round Robin (DRR) and Weighted Round Robin (WRR) are

such mechanisms and they are envisioned for future avionics

networks. We have proposed a first evaluation of WRR in the

context of avionics in [5]. In this paper we focus on DRR.

Deficit Round Robin (DRR) was proposed in [6] to achieve

fair sharing of the capacity of a server among several flows.

The main interest of DRR is its simplicity of implementation.

As long as specific allocation constraints are met, it can exhibit

O(1) complexity. A lot of work has been devoted to DRR

[7], [8], [6], [9], [10]. They point out the undeniable high

latency of DRR scheduler and propose some improvements.

One of the most efficient implementations called ”Aliquem”

is proposed in [10]. It shows a remarkable gain in latency and

fairness while still preserving O(1) complexity. A comparison

of DRR scheduler with First-In-First-Out (FIFO) and Static

Priority (SP) scheduler used in AFDX network is shown in

[11]. The end-to-end delay (ETE) bounds are computed and

the paper shows the comparatively better performance of DRR

scheduler over FIFO and SP scheduler, given an optimized

network configuration. Another DRR implementation is pro-

posed in [9], which combines the DRR with SP scheduling,

to improve schedulability and makes more efficient use of

hardware resources. A detailed analysis and improvement

of DRR latency bound for homogeneous flows is given in

[8]. Some mathematical errors of [8] are pointed out and

corrected in [12]. Analysis of a server with DRR scheduler

using NC method is first discussed in [7] which also proposes

improvement in DRR latency. [7] generalizes the analysis to

network with heterogeneous flows.

The first contribution of the paper is to identify sources of

pessimism of existing worst-case end-to-end delay calculation

using NC for a network with DRR schedulers and to propose

an improved solution. An evaluation on an industrial size

configuration shows that the proposed approach outperforms

existing ones.

The approach in [7] as well as the optimized one in this

paper don’t make any assumption on the scheduling of flows

by source end systems. The second contribution of this paper

is to show how this scheduling can be integrated in our

optimized WCTT analysis for DRR. We have presented such

an integration in the existing WCTT analysis in [13].

Optimizing Network Calculus for Switched Ethernet
Network with Deficit Round Robin

The paper is organized as follows. The considered network

model is presented in section II. It is followed by a brief

recall of the DRR scheduling policy, its latency and delay

calculation using Network Calculus in section III. Section IV

exhibits sources of pessimism in DRR WCTT analysis. The

main contribution is given in section V, where we propose an

optimized NC approach for DRR scheduler based networks.

In Section VI further improvements to classical NC approach

are given, including the integration of end system scheduling.

An evaluation on an industrial configuration is given in section

VII. Section VIII concludes the paper and gives directions for

future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet

network. It is composed of a set of end systems, interconnected

by switched Ethernet network via full-duplex links. Thus, there

are no collisions on links. Each link offers a bandwidth of R
Mbps in each direction.

Each end system manages a set of flows, and each switch

forwards a set of flows through its output ports, based on a

statically defined forwarding table. This forwarding process

introduces a switching latency, denoted by sl. Each port h of

a switch Sx, denoted by Sh
x , can be connected at most to one

end system or another switch. Each output port, of a switch or

of an end system, has a set of buffers managed by a scheduler

supporting a scheduling policy, for example: First-In-First-Out

(FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc.

In this paper, the considered network uses Deficit Round Robin

(DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each spo-

radic flow vi gives rise to a sequence of frames emitted

by a source end system with respect to the minimum inter-

arrival duration imposed by a traffic shaping technique. This

minimum inter-arrival duration is called the period Ti of flow

vi. If the duration between any two successive emissions of

a flow vi is Ti, then, the flow vi is periodic. The size of

each frame of flow vi is constrained by a maximum frame

length (lmax
i) and a minimum frame length (lmin

i). Each flow

vi follows a predefined path Pi from its source end system till

its last visited output port, and then arrives at its destination

end system.

Figure 1 shows an example of a switched Ethernet network

configuration which consists of 4 switches, S1 to S4, intercon-

necting 10 end systems, e1 to e10, through full duplex links

to transfer 20 flows, v1 to v20. In this work, each output port

of a switch has a set of buffers controlled by a Deficit Round

Robin (DRR) scheduler. The links provide a bandwidth of

R = 100 Mbits/s. Table I summarizes flow features (inter-

arrival duration Ti as well as minimum and maximum frame

size lmin
i and lmax

i).

III. DEFICIT ROUND ROBIN

In this section, we briefly recall the DRR scheduling policy.

A more detailed description can be found in [6] and [7]. We

e1

e7

e2

e4

e5

e6

e3

v1

e10

v12

v17

v13

v2 v14

v18 v20

v6v3

v15 v19

v12v1 v13 v17

v2 v14 v18 v20

v6v3 v15 v19

v7 v9 v10v4

v8 v11v5 v16

v1 ... v5

v6 ... v12

v13 ... v20

S4

1

2

e8

e9S2

S1

S3

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows vi Ti(µsec) lmax
i (byte) lmin

i (byte)
v12, v20 512 100 80
v1, v7, v8, v9, v17 512 99 80
v2, v4, v5, v10, v13, v16, v18 256 100 80
v3, v11, v14, v15, v19 256 99 80
v6 96 100 80

then summarize the DRR worst-case analysis in [7], [8]. This

analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity

among flows. DRR is mainly a variation of Weighted Round

Robin (WRR) which allows flows with variable packet length

to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers

based on few predefined classes. Each class receives service

sequentially based on the presence of a pending frames in a

class buffer and the credit assigned to the class. Each class

buffer follows FIFO queuing to manage the flow packets. The

DRR scheduler service is divided into rounds. In each round

all the active classes are served. A class is said to be active

when it has some flow packet in output buffer waiting to

be transmitted. The basic idea of DRR is to assign a credit

quantum Qh
x to each flow class Cx at each switch output port

h. Qh
x is the number of bytes which is allocated to Cx for each

round at port h. At any time, the current credit of a class Cx

at a port h is called its deficit ∆h
x. Each time Cx is selected

by the scheduler, Qh
x is added to its deficit ∆h

x. As long as

Cx queue is not empty and ∆h
x is larger than the size of Cx

queue head-of-line packet, this packet is transmitted and ∆h
x

is decreased by this packet size. Thus, the scheduler moves

to next class when either Cx queue is empty or the deficit

∆h
x is too small for the transmission of Cx queue head-of-line

packet. In the former case, ∆h
x is reset to zero. In the latter

one, ∆h
x is kept for the next round.

The credit quantum Qh
x is defined for each port h. It must

allow the transmission of any frame from class Cx crossing

h. Thus, Qh
x has to be at least the maximum frame size of

Cx flows at port h. Let Fh
Cx

be the set of flows of class Cx

at output port h. Let lmax,h
Cx

and lmin,h
Cx

be the max and min

frame size among all class Cx flows at output port h. We have:

lmax,h
Cx

= max
i∈Fh

Cx

lmax
i , lmin,h

Cx
= min

i∈Fh
Cx

lmin
i (1)

Algorithm 1 shows an implementation of DRR at a switch

output port h with n traffic classes. First, deficits are set to 0

(lines 1-3). Then queues are selected in a round robin order

(lines 4-16). Empty queues are ignored in each round (line 6).

Each non-empty queue is assigned an extra credit of Qh
i in

each round (line 7). Packets are sent as long as the queue is

not empty and the deficit is larger than the size of the head-

of-line packet (lines 8-12). If the queue becomes empty, the

deficit is reset to 0 (lines 13-14).

Let us illustrate DRR with the network configuration in

Figure 1. Three traffic classes are considered. C1 includes

flows v1 to v5 (in black and bold font in Figure 1), while

C2 includes flows v6 to v12 (in red and italics font in Figure

1) and C3 includes flows v13 to v20 (in blue and regular font

in Figure 1), as listed in Table II.

Figure 2 shows a possible scenario for DRR scheduling in

the upper port of switch S4 (port S1
4). All the flows in Figure 1

cross this port. In the example in Figure 2, the credit quantum

Q
S1

4

x is 199 bytes (1592 bits) for each class Cx (x = 1, 2, 3).

It is larger than the maximum frame size l
max,S1

4

Cx
for each

class at port S1
4 . Indeed, we have l

max,S1

4

Cx
= 100 bytes for

1 ≤ x ≤ 3.

TABLE II: DRR scheduler configuration

Class Cx Flows vi Qx (byte) lmax
Cx

(byte) lmin
Cx

(byte)

C1 v1 to v5 199 100 80
C2 v6 to v12 199 100 80
C3 v13 to v20 199 100 80

rd1
credit

rd2 rd3

C3

C1

298

199

99

0

(bytes)

C2

5,4,

20
11

9,

19

12,6, 13,14,
7,8, 15,16 3,2,

1

17,18, 6′, 10,

Size

frames

X
S1

4

C1

D
S1

4

1

t1 t2 t3

10 11 18 194 3 2 1

100 99 100 99 100 99 100 99

6′915 16 175

99 100 99 100 100 99

12 7 8620 1413

100 99 99 100 99100100

tt′1 t′′2t′2t0

(bytes)

298

199

99

0

298

199

99

0

Y
S1

4

C1

Fig. 2: DRR rounds at output port S1
4

In the scenario in Figure 2, there are no pending frames

before time t0 in output port S1
4 . At this time, five frames

arrive: four belonging to class C2 (from flows v12, v6, v7 and

v8 in this order in the queue) and one belonging to class C3

(from flow v20). Since there are no pending frames before t0,

either C2 or C3 can be served first. In Figure 2, we assume that

class C2 is served first. Thus, at t0, C2 receives a credit equal

to its assigned quantum value, we have ∆
S1

4

2 = 199 bytes. The

size of C2 head-of-line packet is 100 bytes (from v12). Since

it is smaller than C2 current deficit, v12 packet is transmitted

and C2 deficit becomes ∆
S1

4

2 = 199 − 100 = 99 bytes. The

new C2 head-of-line packet (from v6) of 100 bytes is larger

than remaining deficit. Thus, it cannot be transmitted and next

active class (C3) is served. Now C3 gets credit equal to its

assigned quantum value, so we have ∆
S1

4

3 = 199 bytes. C3

head-of-line packet (flow v20) has a size of 100 bytes. Thus,

it is immediately transmitted and ∆
S1

4

3 is reduced to 99 bytes.

Meanwhile, five new frames from flows v9, v13, v14, v15 and

v16 arrive in port S1
4 and they are buffered in their class queue.

New C3 head-of-line packet (from v13) is larger than current

credit and cannot be transmitted leaving a deficit ∆
S1

4

3 = 99
bytes and next active class C2 can be served. Indeed, C1 has

no pending packet at that time. Credit Q
S1

4

2 is added to ∆
S1

4

2 ,

leading to a deficit of 298 bytes. Three C2 pending packets,

from flows v6, v7 and v8, have a cumulated size of 298 bytes.

Thus, they are all transmitted in the current round, leading to

a null deficit for C2. The same occurs for next active class

C3, with v13, v14 and v15 packets. Next active class is C1.

Indeed, packets from v5, v4, v3, v2 and v1 have arrived. C1

deficit ∆
S1

4

1 is 199 bytes. It allows the transmission of the

first pending frame (from v5) and ∆
S1

4

1 is 99 bytes. Frame

transmissions go on in the same manner.

Algorithm 1: DRR Algorithm

Input: Per flow quantum: Qh
1 . . . Q

h
n (Integer)

Data: Per flow deficit: ∆h
1 . . .∆

h
n (Integer)

Data: Counter: i (Integer)

1 for i = 1 to n do

2 ∆h
i ← 0 ;

3 end

4 while true do

5 for i = 1 to n do

6 if notempty(i) then

7 ∆h
i ← ∆h

i +Qh
i ;

8 while (notempty(i)) and

(size(head(i)) ≤ ∆h
i) do

9 send(head(i));

10 ∆h
i ← ∆h

i − size(head(i));
11 removeHead(head(i));

12 end

13 if empty(i) then

14 ∆h
i ← 0

15 end

16 end

B. DRR scheduler worst-case analysis

Worst-case traversal time (WCTT) analysis is needed when

real-time flows are considered. Indeed, the latency of these

flows has to be upper bounded. In this section, we analyze flow

latency when a DRR scheduler is used. Then we summarize

the state-of-the-art WCTT analysis [7], [8], based on network

calculus [1].
1) DRR scheduler latency: A DRR scheduler schedules

nh traffic classes at a given output port h. Each class Cx

is assigned a quantum Qh
x.

Definition 1. Theoretical service rate: The quantum Qh
x

allocated to traffic class Cx at port h defines the theoretical

service rate ρhx of Cx at h, i.e. the minimum service rate that

Cx should get on the long term. We have

ρhx =
Qh

x
∑

1≤j≤nh

Qh
j

×R (2)

In the example in Figure 2, output port S1
4 is shared by

nS1

4 = 3 classes (C1, C2 and C3). All of them are assigned

a quantum of 199 bytes (1592 bits). Thus, the theoretical

service rate for any class Cx can be computed by Equation

(2):

ρ
S1

4

x =
199

199 ∗ 3
× 100 Mbits/s =

100

3
Mbits/s

However the service provided to Cx at h in a given time

interval might be more or less than the theoretical one.

Definition 2. Actual service rate: The actual service rate is

the service rate received by a given class Cx at a port h in a

given time interval.

The actual service rate of a given class depends on the

packets which effectively cross the output port. First, as previ-

ously defined, a class is active in an output port h when it has

pending packets in h. In a given time interval, active classes

share the available bandwidth. For instance, considering port

S1
4 in Figure 2, C2 and C3 each get half of the bandwidth in

any interval where they are active and C1 is not. Thus, a class

can receive more than its theoretical service rate when some

other classes are inactive. Second, since frames are transmitted

sequentially, each class is served on its turn, thus getting 100

% of service for some duration. Third, since a packet cannot

be transmitted in the current round if its size is more than

the remaining credit of its class, a class might get less than

its theoretical service rate in a round. Conversely, since the

credit which is not used by a class in a round might be used

in the following round, a class can get more than its theoretical

service rate in a round.

The aim of a WCTT analysis is to maximize the latency

of a given flow. It can be obtained by minimizing the actual

service rate of its class. In [8], it is based on the DRR scheduler

latency.

Definition 3. DRR scheduler latency: The DRR scheduler

latency Θh
x experienced by a class Cx flow at output port

h is defined as the maximum delay before Cx flow is served

at its theoretical service rate ρhx.

[8] determines a lower bound on the service that Cx receives

in a given interval. To that purpose, it introduces two delays

at the beginning of the considered interval:

• the delay Xh
Cx

before class Cx receives service for the

first time in the interval,

• a delay Y h
Cx

to take into account the fact that, when Cx

receives service for the first time, it can be a reduced

service.

These delays are illustrated in Figure 3

• ti is the starting time of round i,
• Round 1 starts at the arrival time of a packet of the class

under study with no backlog for this class,

• Xh
Cx

is part of the first round, starting at time t1 and

ending at time t′1,

• Y h
Cx

is part of the second round, starting at time t′2 and

ending at time t′′2 .

X
S1

4

C1

D
S1

4

1

t1 t2 t3
t

t′1 t′′2t′2

rd1 rd2 rd3

delay

Y
S1

4

C1

delay
reduced service

interval with

theoretical service

interval with
no service

interval with

Fig. 3: DRR scheduler latency

Let us come back to the example in Figure 2 in order to

illustrate the first duration (the delay Xh
Cx

before first service).

The first C1 packet arrives at time t1, where it just misses its

turn to receive service. Before receiving the first service, it has

to wait till time t′1 while all the other active classes (C2, C3)

are served. This delay has been analyzed and upper bounded

in [8]. It is denoted by Xh
x for class Cx in node h. It has been

shown in [8] that it is maximized when class Cx has to wait for

all the other classes with maximum transmission capacity. This

maximum delay can be computed by the following formula:

Xh
x =

∑

j={1,2,...,nh}, j 6=x

(Qh
j +∆max,h

j)

R
(3)

where ∆max,h
j is the maximum deficit of class Cj in node h

at the end of its service. Since class Cj packets are served as

long as the remaining deficit of class Cj is not smaller than

the size of class Cj head-of-line packet, the remaining deficit

has to be smaller than the largest Cj packet. Thus, we have:

∆max,h
x = lmax,h

Cx
− 1 (4)

where lmax,h
Cx

is the size of the largest Cx packet.

This maximum delay is observed for class C1 in round

rd1 in Figure 2. Indeed, classes C2 and C3 have a maximum

remaining deficit at time t1:

∆max,h
2 = lmax,h

C2
− 1 = 100− 1 = 99 bytes

∆max,h
3 = lmax,h

C3
− 1 = 100− 1 = 99 bytes

Both classes (C2, C3) get maximum service between t1 and

t′1. They both have a credit of 199 + 99 = 298 bytes. It

corresponds to the cumulative size of pending packets for C2

(v6, v7 and v8 packets) as well as C3 (v13,v14 and v15 packets).

Thus, the delay until first C1 pending packet (from v5) gets

transmitted is computed by Equation (3):

X
S1

4

1 =
(298 + 298) ∗ 8

100
= 47.68 µs

The second delay Y h
Cx

comes from reduced service. It can

also be illustrated with the example in Figure 2. In rd1, C1

receives a reduced service (100 bytes corresponding to the

transmission of a v5 packet). Indeed, the remaining deficit (99

bytes) is smaller than head-of-line C1 packet (100 bytes for v4
packet) Thus, C1 receives at least its theoretical service rate in

rd2, after the service of C2 and C3 (199 bytes for each class

in Figure 2). It means that, between t′1 and t′′2 , C1 receives a

service of 100 bytes. Since, between t′1 and t′′2 , 498 bytes are

transmitted (packets from v5, v9, v6, v16 and v17), C1 receives

an average service of

100

498
× 100 ≃ 20 Mbps

instead of one third of the available bandwidth, i.e. 33.33

Mbps. Another solution to compute the average service for

C1 between t′1 and t′′2 is to split the interval in two parts:

• in the first part, C1 receives an average service of one

third of the available bandwidth,

• in the second part, it receives no service.

Since C1 gets a service of 100 bytes at t′1, it gets on average

one third of the available bandwidth between t′1 and t′2. Indeed,

300 bytes are transmitted between these two instants. Then,

C1 gets no service between t′2 and t′′2 . These intervals are

illustrated in Figure 3

In [8], the computation of the largest possible duration of

such an interval with no service is formalized. The authors

in [8] prove an upper bound on this duration and show a

scenario leading to this upper bound. We compute the duration

corresponding to such a scenario and show that it corresponds

to a worst-case. This worst-case duration Y h
x for a class Cx

in a node h is given by:

Y h
x =

Qh
x −∆max,h

x +
∑

1≤j≤nh

j 6=x

Qh
j

R
−

Qh
x −∆max,h

x

ρhx
(5)

The first fraction computes the duration between t′1 and t′′2 ,

while the second one corresponds to the duration between

t′1 and t′2. The delay t′′2 − t′2 is the impact of the reduced

service on class Cx. The first fraction corresponds to the

situation where class Cx receives its minimum possible credit

Qh
x−∆max,h

x (its deficit for the following round is maximized)

while other classes receive exactly the credit corresponding to

their quantum. The second fraction computes the duration of

a round where class Cx receives its minimum possible credit

and its theoretical service rate. Y h
x can be greater if one class

Cj (j 6= x) receives more than its quantum in round rd2: Cj

receives a credit of Qh
j +d with 0 < d ≤ ∆max,h

j . In that case,

Cj has a deficit of at least d form round rd1. However, in the

computation of Xh
x , we consider that class Cj consumes its

maximum possible credit Qh
j +∆max,h

j in rd1, leading to no

deficit. Thus, adding a credit of d to class Cj in rd2 comes to

remove a credit of at least d from Cj in round rd1. Therefore

it does not increase the sum Xh
x + Y h

x

Considering the example in Figure 2, it gives:

Y
S1

4

1 =
(199− 99) ∗ 8 + (199 + 199) ∗ 8

100
−

(199− 99) ∗ 8
100
3

= 15.84µs

This scenario in Figure 2 corresponds to a worst-case for class

C1, with maximum values for X
S1

4

1 and Y
S1

4

1 .

Finally, the DRR scheduler latency Θh
x is defined as the

delay before Cx packets are served at their theoretical service

rate at port h. Thus:

Θh
x = Xh

x + Y h
x (6)

In the example in Figure 2, we have:

Θ
S1

4

1 = X
S1

4

C1
+ Y

S1

4

C1
= 63.52 µs

2) Network Calculus applied to DRR scheduling: WCTT

analysis for DRR has been modeled with Network Calculus

in [7]. In this paragraph, this modeling is summarized. The

Network Calculus (NC) theory is based on the (min, +)

algebra. It has been proposed for worst-case backlog and delay

analysis in networks [1]. It models traffic by arrival curves and

network elements by service curves. Upper bounds on buffer

size and delays are derived from these curves.

a) Arrival Curve: The traffic of a flow vi at an output

port h is over-estimated by an arrival curve, denoted by αh
i (t).

The leaky bucket is a classical arrival curve for a sporadic

traffic:

αh
i (t) = r × t+ b, for t > 0 and 0 otherwise.

It can be used to model a flow vi at its source end system ek.

We have:

α
ej
i (t) =

lmax
i

Ti

× t+ lmax
i , for t > 0 and 0 otherwise.

It means that vi is allowed to send at most one frame of

maximum length lmax
i bits every minimum inter-frame arrival

time Ti µs.

Any flow vi can be modeled in a similar manner at any

switch output port h it crosses. However, since a frame of

flow vi can be delayed by other frames before it arrives at

port h, a jitter Jh
i has to be introduced. It is the difference

between the worst-case delay and the best-case delay for a

frame of flow vi from its source end system to port h [2].

Since flows of class Cx are buffered in their class queue and

scheduled by FIFO policy, an overall arrival curve is used to

constrain the arrival traffic of class Cx at port h. It is denoted

by αh
Cx

and calculated by:

αh
Cx

(t) =
∑

i∈Fh
Cx

αh
i (t) (7)

where Fh
Cx

is the set of Cx flows crossing port h.

As an example, let us consider the output port S1
4 in

Figure 2. 5 flows of class C1 are scheduled by FIFO, leading

to F
S1

4

C1
= v1, v2, v3, v4, v5. The overall arrival curve of class

C1 can be computed by:

α
S1

4

C1
(t) =

∑

i∈F
S1
4

C1

α
S1

4

i (t)

which is illustrated by blue line in Figure 4a.

bits

Q
S1

4

1 -∆
max,S1

4

1

D
S1

4

1

1
R

1

t
(µsec)sl

α
S1

4

C1

∑

i∈F
S1
4

C1

(bi)

X
S1

4

C1
Y

S1

4

C1

Θ
S1

4

C1

β
S1

4

C1

ρ
S1

4

C1

∑

1≤j≤3

Q
S1
4

j −∆
max,S1

4

1

R

bits

Qh
x-∆max,h

x

Dh
i

1

R
1

t
(µsec)

sl

αh
x,SER

∑

i∈Fh
Cx

(bi)

Xh
x Y h

x

Θh
x

βh
x

ρhx
max
i∈Fh

x

(bi)

(a) NC curves at S1

4
(b) NC Curves with serialization

Fig. 4: NC curves at S1
4

b) Service Curve: According to NC, the full service

provided at a switch output port h with a transmission rate

of R (bits/s) is defined by:

βh(t) = R[t− sl]+

where sl is the switching latency of the switch, and [a]+ means

max{a, 0}.

According to [8] and [7], the full service is shared by

all DRR classes at an output port h and each class Cx has

a predefined service rate ρhx based on its assigned credit

quantum Qx as explained in Section III-B Equation (2).

Besides a reduced service rate, each class Cx could experience

a DRR scheduler latency Θh
x before receiving service with the

predefined rate ρhx. The scheduler latency can be calculated

by Equation (6). Therefore, based on the NC approach, the

residual service βDRR
Cx

to each class Cx is given by:

βh
Cx

(t) = ρhx[t−Θh
x − sl]+ (8)

Y h
x delay is considered right after Xh

x , in order to get a convex

service curve.

In the example of the output port S1
4 , class C1 service curve

is:

β
S1

4

C1
(t) = ρ

S1

4

1 ∗ [t−Θ
S1

4

1 − sl]+ =
100

3
(t− 63.52− sl)+

which is illustrated in Figure 4a.

The actual service curve is a staircase one (shown by the

dashed black line in Figure 4a), as a flow alternates between

being served and waiting for its DRR opportunity, as explained

in [8]. For computation reason, NC approach employs the

convex curve represented by equation (8) which is an under-

estimated approximation of actual staircase curve.

c) Delay bound: According to NC, the delay experienced

by a Cx flow vi constrained by the arrival curve αh
Cx

(t) in a

switch output port h offering a strict DRR service curve βh
Cx

(t)
is bounded by the maximum horizontal difference between the

curves αh
Cx

(t) and βh
Cx

(t). Let Dh
i be this delay. It is computed

by:

Dh
i = sup

s≥0
(inf{τ ≥ 0|αh

Cx
(s) ≤ βh

Cx
(s+ τ)}) (9)

Therefore, the end-to-end delay upper bound of a Cx flow

vi is denoted by DETE
i and it is calculated by:

DETE
i =

∑

h∈Pi

Dh
i (10)

Based on the equation (9) and (10), the delay bound calcu-

lated for flow v1 of class C1 is found to be D
S1

4

1 = 234.91 µs
and DETE

1 = 387.63 µs.

IV. PESSIMISM OF DRR WCTT ANALYSIS

The delay upper bound Dh
i for flow vi from class Cx

presented in the previous section assumes that, at each output

port h, every interfering class Cy consumes maximum service.

More precisely, it assumes that, in any DRR round rdk, each

class Cy (y 6= x) is always active and transmits frames of at

least the size of its quantum value Qh
y . Such an assumption

might be pessimistic. Indeed, the traffic from one or several

Cy classes might be too low to consume quantum values Qh
y

in each round. The effect of such a pessimism on service curve

is shown in Figure 5.

bits

t

rd1 rd2 rd3

C1, C2, C3

active
C1, C2

active

t

rd1 rd2 rd3 service

C1, C2, C3

active
C1, C2, C3

active

t
C1, C2, C3

active
C1, C2

active

Case 1

Case 1

Case 2

Case 2

β‘C1

βC1

end of
service
end of

Fig. 5: Pessimism in DRR Service

This pessimism can be illustrated with the example in Figure

6. This example is based on the network architecture in Figure

1. The difference is that part of C2 and C3 flows that are

transmitted from S4 to e8 in Figure 1 are transmitted to e9 in

Figure 6.

S2

S1

S3

e6

v12v1 e172e14

v2 e152e162e30

v6v3 e1v2e18

v7 v9 v10v4

v8 v11v5 e1
e10

S4
1

2

v1 ... v5

v6 v7 v8 v12

e172e152e1v2e30

v9 ... v11

e1 2299922e18

. 6

. 8

Fig. 6: Switched Ethernet network (Example 2)

We focus on output port S1
4 to calculate the delay experi-

enced by flow v1 from class C1. In the given example, it is

worth noting that the considered class C1 has more flows to be

served as compared to the class C2 and C3. The corresponding

DRR schedule rounds are shown in Figure 7. The scenario in

rd1

credit

rd2 rd3

C3

C1

298
199

99
0

(bytes)

C2

5,4,
3,2,
1

6′

Size

frames

X
S1

4

C1

D
S1

4

1

t1 t2 t3

4 3 2 1

100 99 100 99

6′15 5

99 100

7 86 1413

100 99 99 100 99 100

t

20

12,6,
14,157,8,

13,

12

100

20

100

t0 t′1 t′2
(bytes)

298
199

99
0

298
199

99
0

Fig. 7: DRR cycles at S1
4

the example given in Figure 7 is similar to the scenario in

Figure 2, where the first C1 packet arrive at time t1 and it

experience a delay X
S1

4

C1
= 47.68 µs before being served for

the first time. As shown in Figure 7, at t′1, class C3 has served

all its frames in the buffer, by transmitting frames from v13,

v14 and v15. Its deficit is reduced to ∆
S1

4

3 = 0 and it has no

more frames to further delay class C1 flows. Similarly, class

C2 consumes all its deficit by transmitting frames from v6, v7
and v8 and its deficit is also reduced to ∆

S1

4

2 = 0. Another

frame from flow v6 has arrived at t′1. At t2, class C2 receive

service of 100 bytes (corresponding to frame of v6). At t′2,

there are no more frames from class C2 and C3 to be served,

class C1 gets the deficit of ∆
S1

4

1 = 199 + 99 = 298 bytes to

serve frames from v4 and v3. Since the remaining deficit is

less than the size of next frame from v2, and there are no other

active classes, class C1 receives an additional credit equal to

its quantum value. Thus, it has a deficit of ∆
S1

4

1 = 298 bytes
to serve v2 and v1 flows. Between t′1 and t′2, C1 receives a

service of 100 bytes. Since, between t′1 and t′2, 200 bytes are

transmitted, it means C1 received an average service of

100

200
× 100 = 50 Mbps

which is greater than its theoretical service rate (from equation

(2)) ρ
S1

4

1 = 199
199+199+199 × 100 = 33.33 Mbps Thus, in

this scenario class C1 flows do not experience any reduced

service. Therefore, the total latency observed by class C1 flows

before they could be served at their theoretical service rate is

47.68 µs, which is much less than that considered by the NC

approach i.e. 47.68 + 15.84 = 63.52 µs. In this case, the

delay bounds, calculated from Equation (9) and (10), for flow

v1 of class C1 are D
S1

4

1 = 215.9 µs and DETE
1 = 366.87 µs.

However, the scenario in Figure 7 might not lead to the

worst-case. In next section, we show how to upper bound the

effective impact of interfering classes.

V. TAKING INTO ACCOUNT THE EFFECTIVE LOAD OF

INTERFERING CLASSES

As illustrated in the previous section, maximizing the ser-

vice of interfering classes when computing the worst-case end-

to-end delay for packets of a given class Cx can introduce

pessimism, since these interfering classes might generate too

few traffic to consume all their allocated service. In this section

we show how it is possible to upper bound the traffic of

these interfering classes that impact the worst-case delay of

Cx packets. Each time this upper bound is smaller than the

maximized service for interfering classes, the difference can

be safely removed from the worst-case delay of Cx packets.

The approach considers the following steps.

1) We compute the worst-case delay Dh
x of class Cx flows

in node h, using the NC approach from [8], [7] presented

in previous sections (equation (9) and (10)). Indeed, all

the flows of a given class experience same delay at a

given output port.

2) We determine the service load SLh
y(t) available for class

Cy at a node h between 0 and Dh
x . It corresponds to the

maximized service of interfering classes Cy used by the

NC approach from [8], [7].

3) We calculate the effective maximum load Lmax,h
y (t) of

a class Cy at a node h between 0 and Dh
x . It gives an

upper bound on the Cy traffic which has to be served at

node h between 0 and Dh
x .

4) If Lmax,h
y (Dh

x) < SLh
y(D

h
x), the difference can be

safely removed from the worst-case delay Dh
x of class

Cx flows in node h

The first step is a direct application of what has been presented

in previous sections. The three other steps are detailed in the

following paragraphs.

A. Maximized service of interfering classes

The NC approach in [8], [7] considers a maximized service

for an interfering class Cy that is not the same for all the time

intervals. The time starts when the first Cx frame arrives at

node h.

• The first interval (0,Xh
x] corresponds to the delay Xh

x

before Cx is served for the first time. In this interval, the

NC approach assumes that Cy gets a service of at most

Qh
y +∆max,h

y bytes.

• The second interval starts at Xh
x and stops when Cx gets

service for the second time. In this interval, Cx gets a

service of Qh
x−∆max,h

x bytes while each other class Cy

gets a service of Qh
y bytes.

• The following intervals are all identical. As in the second

one, each Cy class gets a service of Qh
y bytes. The

difference with the second interval is that Cx class also

gets a service of Qh
x bytes. Thus, each of these intervals

is a bit longer than the second one.

Thus, the maximized service load SLh
y(t) is defined as fol-

lows:

SLh
y(t) =

0 t < Xh
x

Qh
y +∆max,h

y Xh
x ≤ t < tN

Qh
y +∆max,h

y tN ≤ t

+

(

1 +

⌊

R×(t−tN)
∑

j={1,2,...,nh} Qh
j

⌋)

Qh
y

(11)

where tN is the end of the second interval:

tN = Xh
x +

1

R

∑

j={1,2,...,nh}

j 6=x

Qh
j +Qh

x −∆max,h
x

It should be noticed that the load corresponding to a given

interval is taken into account at the end of the interval. For

instance, Qh
y +∆max,h

y is added to SLh
y(t) at the end of the

first interval, i.e. t = Xh
x . Thus, SLh

y(t) is an under-bound

of the maximized service load considered in [8]. We obtain a

step function, as illustrated in Figure 8.

X
S1

4

1

t

tN tN +

3∑

j=1

Q
S1
4

j

R

0

Served

Q
S1

4

2 +∆
max,S1

4

2

2Q
S1

4

2 +∆
max,S1

4

2

3Q
S1

4

2 +∆
max,S1

4

2

traffic

3∑

j=1

Q
S1
4

j

R

696 bytes

497 bytes

298 bytes

Fig. 8: Served traffic of class C2

Considering the example in Figure 6, for any value t, we

have:

SL
S1

4

C2
(t) =

0 t < 47.68

298 bytes 47.68 ≤ t < 87.52

298+ 87.52 ≤ t
(

1 +
⌊

100

8
×(t−87.52)

597

⌋)

199 bytes

By applying the NC computation, we obtain D
S1

4

1 = 223.32µs.

Thus, the maximized load of an interfering class Cy in the

service duration t = D
S1

4

1 of class C1 flow v1 is:

(SL
S1

4

C2
(D

S1

4

1)) = (SL
S1

4

C3
(D

S1

4

1)) = 895 bytes

B. Effective maximum load of interfering classes

The effective maximum load Lmax,h
y (t) of an interfering

class Cy at a node h in a given duration t is based on the

arrival curves of NC. Thus, Cy load at the beginning of the

duration is the sum of all the bursts of Cy flow arrival curves

and it increases, following the long-term rate of each Cy flow

arrival curve. Since the delay of class Cx flows in node h is

upper bounded by Dh
x , only packets arriving within a duration

Dh
x have a chance to delay a given Cx packet. Thus, Cy load

that can delay a given Cx packet is upper bounded by:

Lmax,h
y (Dh

x) = αh
Cy

(Dh
x) (12)

where αh
Cy

(t) is the overall arrival curve of the class Cy flows,

calculated by Equation (7).

Considering the example in Figure 6, we have DS4

1 =
223.32 µs, as depicted in the upper part in Figure 9a. The

lower part in Figure 9a shows the overall arrival curve of C2

flows in S4. Thus, we have:

L
max,S1

4

C2
(DS4

1) = 858 bytes

Similarly, for C3 flows, we have:

L
max,S1

4

C3
(DS4

1) = 784 bytes

bits

D
S1
4

1 =223.32

t
(µsec)

α
S1
4

C2

∑

i∈F
S1
4

C2

(bi)

L
max,S1

4

C2

sl +Θ
S1
4

C1

1

ρ
S1
4

C1

bits

α
S1
4

C1

∑

i∈F
S1
4

C1

(bi)

t=223.32

t
(µsec)

β
S1
4

C1

(a) Arrival traffic of C2

bits

t t
(µsec)

αh
Cy

∑

i∈Fh
Cy

(bi)

L
max,h
Cy

bits

t
(µsec)

∑

i∈Fh
Cx

(bi)

max
i∈Fh

Cx

(bi)
Dh

x

αh
SERCx

ρhCx

1

max
i∈Fh

Cy

(bi)

sl +Θh
Cx

βh
Cx

(b) Arrival traffic of Cy with
grouping

Fig. 9: Arrival traffic

C. Limitation of the service to the load

In previous paragraphs, we have computed for each class

Cy interfering at node h with class Cx under study:

• the service load SLh
y(t) taken into account by the NC

approach in [8], [7],

• an upper bound Lmax,h
y (t) on the effective load.

When this upper bound is smaller than the service load taken

into account by the NC approach, the difference can be safely

removed from the delay of Cx flow vi packets in node h.

Indeed, in a round, when a class Cy has nothing more to

transmit, DRR moves to the next class, which is then served

earlier. Therefore, following Cx packets will be served earlier,

leading to a reduced delay.

Thus, for each interfering class Cy we can remove the

following value:

max
(

SLh
y(D

h
x)− Lmax,h

y (Dh
x), 0

)

(13)

Since nh − 1 classes are interfering with Cx in node h, the

optimized delay Dh
i,opt for Cx flow vi in node h is given by:

Dh
i,opt = Dh

i −

∑

y∈1...nh
y 6=x

max
(

SLh
y(D

h
x)− Lmax,h

y (Dh
x), 0

)

R
(14)

Therefore, the end-to-end delay upper bound of a class Cx

flow vi can be computed by:

DETE
i,opt =

∑

h∈Pi

Dh
i,opt (15)

In the example in Figure 6, D
S1

4

1,opt is 211.59µs and DETE
1,opt

is 300.86µs, which gives 19.8% improvement in ETE delay

computation as compared to the DETE
1 = 375.34µs.

VI. FURTHER IMPROVEMENTS

In this section, we present three further improvements of

the worst-case delay computation. The first one concerns the

additional delay Y h
x generated by the reduced service for

class Cx when it is first served. The second one is based on

the integration of the serialization effect: packets sharing an

input link cannot arrive in the output node of the link at the

same time. The third one concerns flow scheduling at end

systems: integration of offset. The effect of integrating these

improvements in NC approach is evaluated on an industrial

configuration and shown in Table IV.

A. Optimization of Y h
x latency

The duration Y h
x of class Cx at an output port h is

computed by considering that, when Cx is served for the first

time, it consumes exactly its minimum possible service, i.e.

Qh
x − ∆max,h

x , where ∆max,h
x is the size of the largest Cx

packet crossing port h minus one byte. If we assume a port h
where all Cx packets have a size of 100 bytes and the quantum

Qh
x is 150 bytes, we have:

∆max,h
x = 100− 1 = 99 bytes

Thus,

Qh
x −∆max,h

x = 150− 99 = 51 bytes

In that case, the computation of Y h
x considers that Cx transmits

51 bytes when it is served for the first time.

However, since DRR imposes that Qh
x is at least the size

of the largest Cx frame (here 150 ≥ 100), one Cx packet is

guaranteed to be transmitted when Cx is served for the first

time. In our case, 100 bytes will be transmitted during the first

Cx service. Thus, considering only 51 bytes significantly un-

derestimate this first service and it leads to an overestimation

of Y h
x .

In the general case, at least one Cx packet with minimum

size is transmitted. Thus, the minimum first service for Cx

cannot be less than this minimum size lmin,h
Cx

. DRR guarantees

that it cannot be less than Qh
x −∆max,h

x . Therefore it cannot

be less than

max{Qh
x −∆max,h

x , lmin,h
Cx

}

This upgraded minimum first service for Cx can be inte-

grated in the computation of Y h
x . We get:

Y h
x =

max(Qh
x−∆max,h

x ,l
min,h

Cx
)+

∑

1≤j≤nh

j $=x

Qh
j

R
−

max(Qh
x−∆max,h

x ,l
min,h

Cx
)

ρh
x

(16)

B. Integration of DRR/FIFO Serialization

As explained in Section III-B2a, the arrival curve for a class

Cx in a port h is obtained by summing the arrival curves of

all Cx flows in h. This operation assumes that one frame from

each flow arrives exactly at the same time in h. This situation

might be impossible. Let us come back to the example in

Figure 1. C3 flows v14, v18 and v20 share the link between S2

and S4. Therefore they cannot arrive in S4 at the same time.

They are serialized on the link.

This serialization effect has been integrated in the NC

approach for FIFO [2]. The idea is to consider that the largest

packet among the flows sharing the link arrives first. Packets

from the other flows arrives by decreasing size, at the speed

of the link.

This approach can be adapted to DRR scheduling. Indeed,

DRR scheduling considers each class separately. Therefore,

the serialization effect can be integrated as in [2], on a class

by class basis. The principle of a curve integrating serialization

is illustrated in Figure 4b.

These serialized arrival curves are then directly used for the

worst-case delay computation.

While considering serialization with our optimized NC

approach, one should pay attention while calculating effective

maximum load of interfering classes (section V-B). In this case

one should use the arrival curve and time value t (≥ Dh
x) as

shown in Figure 9b.

C. Flow scheduling at end system

In a switched Ethernet network each end system schedules

flow transmission individually. The flow scheduling introduces

temporal separation between flows and hence reduce the effec-

tive traffic in the network. The scheduling of flows emitted by

given end system is characterized by the assignment of offsets

which constrain the arrival of flows at output ports. The offset

integration in NC was first proposed in [14] for First-In-First-

Out (FIFO) scheduler. A Similar approach can be used for

DRR schedulers.

The idea is that, if the flows are temporally separated at

source end system and they share the same input link then

they cannot arrive at an output port at the same time. Such

flows can be aggregated as a single flow.

[14] defines relative offset Oh
r,b,i at an output port h as the

minimum time interval between arrival time of a frame from

a reference flow vb and arrival time of a frame from another

flow vi after vb. Such offset computation algorithm is given in

[14], however, the aggregation technique can work with any

offset assignment algorithm.

In NC, the integration of offset affects the computation of

arrival curves. In DRR scheduler, flows of each class Cx, from

same source end system, can be aggregated as a single flow.

This is valid because the flows of a class Cx transmitted from

same source end system are affected by temporal separation

and cannot delay each other. Class Cx flows can be aggregated

by taking into account the relative offset at the given node. At

an output port h, for n flows from class Cx the overall arrival

curve αh
Cx

, can be computed as :

• Make i subsets of class Cx flows, based on the flows

sharing same source end system. Each subset SSj has

nj flows such that n1 + n2 + · · ·+ ni = n.

• Aggregate the flows of each subset SSi as one flow and

characterize its arrival curve αh
SSi

.

αh
SSi

= max{αh
v1{v2,v3,...vi}

, . . . , αh
vi{v1,v2,...vi−1}

}

where, αh
m{n} is the arrival curve obtained when flow vm

arrives before flow vn at output port h, with temporal

separation of Oh
r,m,n.

• The overall arrival curve is the sum of the arrival curve

of each subset, i.e. αh
Cx

=
i
∑

j=1

αh
SSj

.

Let us come back to the example in Figure 1, where C3 flows

v13 . . . v20 compete at output port S1
4 , n = 8, from 6 end

systems e1, e7, e2, e4, e3 and e10. Thus, there are 6 subsets:

SS1 = [v17] (n1 = 1), SS2 = [v13] (n2 = 1) , SS3 = [v14]
(n3 = 1), SS4 = [v18, v20] (n4 = 2), SS5 = [v15, v19] (n5 =
2) and SS6 = [v16] (n6 = 1). The flows v18 and v20 will be

aggregated as one flow to make aggregated arrival curve as

they share source end system e4. Similarly, v15 and v19 will

also be aggregated as one flow. The arrival curve for subsets

with only single flow is same as the arrival curve of the flow.

For details about the aggregated curve computation, readers

can refer to [14].

The obtained overall arrival curve can be used to compute

delay using equation (9). It can also be used to calculate

effective maximum load Lh
Cy

(t) of interfering class Cy to

optimize the delay using equation (14).

VII. EVALUATION

In this section, we compare the approach in [8] (classical

NC DRR) with our optimized approach (optimized NC DRR).

A. Illustrative Example

First we consider the sample examples in Figures 1 and 6.

Figure 10 shows end-to-end delay bounds obtained by both

approaches for each VL of the configuration in Figures 1 and

6. For example in Figure 1, we have average gain 13.45%, and

maximum gain 19.75%. For Figure 6, average gain is 16.84%
and maximum 29.67%.

B. Realistic case study

Next, we consider an industrial-size configuration, inspired

from [2]. It includes 96 end systems, 8 switches, 984 flows,

and 6412 paths (due to VL multi-cast characteristics).

We take into account three types of flows, namely critical

flows, multimedia flows and best-effort data flows. Each flow

 100

 200

 300

 400

 500

 600

 700

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1
0

v
1
1

v
1
2

v
1
3

v
1
4

v
1
5

v
1
6

v
1
7

v
1
8

v
1
9

v
2
0

D
e
la

y
 (

u
S
e
c)

flows

DRR_OPT_on_Example_1

DRR_on_Example_1

DRR_OPT_on_Example_2

DRR_on_Example_2

Fig. 10: End-to-end delay bound in network example 1 & 2

TABLE III: DRR Scheduler Configuration for Industrial Net-

work

Class Number
of Flows

Max Frame
Length (byte)

Qx

(byte)
T
(msec)

Category

C1 128 150 3070 4 - 128 Critical
C2 590 500 1535 2 - 128 Multimedia
C3 266 1535 1535 2 - 128 Best-effort

type is assigned to one DRR class. Table III shows the DRR

scheduler configuration.

The results of the optimized NC DRR approach are com-

pared with the delays obtained by the classical NC DRR

approach of [7] & [8]. For each path Px of each flow vi, the

upper bound DPx

i,NC computed by the classical NC approach

is taken as the reference value and it is normalized to 100.

Then the upper bound DPx

i,opt of optimized NC approach is

normalized as

DPx

i,opt,norm =
DPx

i,opt

DPx

i,NC

× 100

For illustration purpose, the paths are sorted in increasing order

of DPx

i,opt,norm.

C. Comparison of classical NC with DRR and Optimized NC

with DRR

Table V shows the delay computation improvement on

applying proposed optimization technique for NC with DRR.

As shown in Table V and Figure 11a, 11b, 11c & 11d,

the average improvement of the E2E delay bound computed

in the given industrial configuration is around 47%. This is

a significant improvement which shows that the proposed

optimizations are relevant on an industrial configuration. It

means that, on such configurations, the load in switch output

ports is not equally shared between classes.

D. Comparison of Optimized NC with DRR and Classical NC

with FIFO

In Figure 11e and 11f we have compared the delays (com-

puted by optimized NC approach) of the different flow classes

when using DRR with the delays computed when using FIFO.

It can be observed that the critical flows have smaller delays

(shown in Figure 11e) than the two other flow classes (shown

in Figure 11f) This is due to the fact that, as shown in Table

III, DRR approach allows critical flows to have more allocated

quanta in each round and hence produces smaller delay.

TABLE IV: Comparison result of improvements applied to

classical NC approach

NCSER NCOFF NCSER,OFF

NC
5.04 26.98 28.83 Avg Gain %
19.57 70.05 70.05 Max Gain %

TABLE V: Comparison result of optimization applied to

different NC approaches

NCx
NCOPT

x

avg gain % max gain %

Classic 47.77 77.55
Offset 48.66 75.38

Grouping 47.2 75.11
Offset + Grouping 48.19 76.59

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

flow paths

DRR normalized to 100

DRR_OPT compared to DRR

(a) Classical NC DRR vs. Opti-
mized NC DRR

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

flow paths

DRR_OFF normalized to 100

DRR_OFF_OPT compared to DRR_OFF

(b) NC DRR with Offset vs. Op-
timized NC DRR with Offset

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

flow paths

DRR_SER normalized to 100

DRR_SER_OPT compared to DRR_SER

(c) NC DRR with grouping vs
Optimized NC DRR with group-
ing

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

flow paths

DRR_OFF_SER normalized to 100

DRR_OFF_SER_OPT compared to DRR_OFF_SER

(d) NC DRR with Offset & group-
ing vs. Optimized NC DRR with
offset & grouping

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900

flow paths

FIFO_SER normalized to 100

DRR_OPT Compared to FIFO_SER

(e) Optimized NC DRR (Critical
flows C1) vs. FIFO

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

flow paths

FIFO_SER normalized to 100

DRR_OPT Compared to FIFO_SER

(f) Optimized NC DRR (Multime-
dia C2 and best-effort C3 flows)
vs. FIFO

Fig. 11: Evaluation of Optimized NC approach

E. Comparison of Optimized NC with DRR and optimized NC

with WRR

In this section, we compare our optimized WCTT analysis

for DRR with the WCTT analysis for WRR presented in

[5]. The WRR analysis cannot cope with the realistic case

study presented in previous sections. Indeed, this analysis

considers the largest frame size in each class. Since each class

includes frames with very different sizes, the computation is

very pessimistic and does not converge. This problem is not

fully linked to the analysis. It mainly comes from the fact that

WRR cannot cope efficiently with packets with very different

sizes in a given class.

A different case study is considered in [5]. It has a similar

network architecture as well as a similar number of flows.

However, as shown in Table VI, frame sizes are homogeneous

per class. Table VII shows that DRR leads to better results

for Classes C1 and C2 and not for C3. Therefore, in that

homogeneous case, no algorithm outperforms the other one.

TABLE VI: Configuration of WRR and DRR schedulers

class
No. of DRR WRR weight frame size
flows Quantum (bytes) (no. of packets) range

C1 718 4 x lmax 4 415-475
C2 194 2 x lmax 2 911-971
C3 72 1 x lmax 1 1475-1535

TABLE VII: Performance comparison of DRR and WRR

schedulers

class
DRR vs WRR

avg difference (%) max difference (%)

C1 29.16 52.7
C2 29.6 52.3
C3 -35.4 -68.8

VIII. CONCLUSION

Deficit Round Robin (DRR) scheduling policy has been

defined for a fair sharing of server capacity among flows.

Bandwidth sharing between traffic classes is fixed by the

definition of quantum. DRR is envisioned for future avionics

switched Ethernet networks, in order to improve bandwidth

usage. It has good fairness properties and acceptable imple-

mentation complexity but a non-negligible latency which must

be accurately evaluated.

This paper presents an improved method for the WCTT of

DRR policy using network calculus. Our approach minimizes

the pessimism in delay calculation using network calculus and

gives tighter upper bounds on end-to-end delay as compared to

previous studies. On an industrial-size case study, the proposed

approach outperforms existing ones by 47 %. This improve-

ment should allow to increase the number of flows transmitted

on the network or to reduce the number of switches. We also

show that, thanks to quantum, it is possible to achieve better

performance for critical flows as compare to other scheduling

policies like FIFO.

The WCTT analysis proposed in this paper is mandatory

when critical flows are transmitted on the network. However,

one goal of using DRR for avionics network is to be able to

share the network between critical flows and less/not critical

ones. For those later flows, an upper bound on the delay is

not the most relevant metric. Thus, the WCTT analysis has

to be coupled with a study of the delay distribution. Such a

distribution can be obtained by simulation.

Allocating flows to traffic classes and assigning a quantum

to each class has a significant impact on the end-to-end delays.

We plan to precisely measure this impact in order to propose

guidelines for the tuning of classes and quantum, based on

traffic profiles.

REFERENCES

[1] J.-Y. L. Boudec and P. Thiran, Network Calculus: a theory of determin-

istic queuing systems for the internet. LNCS, April 2012, vol. 2050.
[2] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-

case delay analysis of an afdx network using an optimized trajectory
approach,” IEEE Trans. Industrial Informatics, vol. 6, no. 4, Nov 2010.

[3] H. Charara, J.-L. Scharbarg, C. Fraboul, and J. Ermont, “Methods for
bounding end-to-end delays on an afdx network,” Real-Time Systems.

18th Euromicro Conference on. IEEE, p. 10, July 2006.
[4] “Aircraft data network, parts 1,2,7 aeronotical radio inc.” ARINC

Specification 664, Tech. Rep., 2002 - 2005.
[5] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “Wctt analysis of avion-

ics switched ethernet network with wrr scheduling,” 26th International

Conference on Real-Time Networks and Systems (RTNS), 2018.
[6] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit

round-robin,” IEEE/ACM Transactions on networking, 1996, vol. 4, no

3, p. 375-385, p. 11, 1996.
[7] M. Boyer, G. Stea, and W. M. Sofack, “Deficit round robin with

network calculus,” Performance Evaluation Methodologies and Tools

(VALUETOOLS), 2012 6th International Conference on (pp. 138-147).

IEEE, p. 10, October 2012.
[8] S. S. Kanhere and H. Sethu, “On the latency bound of deficit round

robin,” Computer Communications and Networks, 2002. Proceedings.

Eleventh International Conference on. IEEE, 2002. p. 548-553., p. 7,
October 2002.

[9] M. Boyer, N. Navet, M. Fumey, J. Miggie, and L. Havet, “Combining
static priority and weighted round-robin like packet scheduling in afdx
for incremental certification and mixed-criticality support,” 5TH EURO-

PEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES

(EUCASS), 2013.
[10] L. Lenzini, E. Mingozzi, and G. Stea, “Aliquem: a novel drr implemen-

tation to achieve better latency and fairness at o(1) complexity,” IEEE

2002 Tenth IEEE International Workshop on Quality of Service, 2002.
[11] Y. Hua and X. Liu, “Scheduling design and analysis for end-to-end

heterogeneous flows in an avionics network,” 2011 Proceedings IEEE

INFOCOM, April 2011.
[12] A. Kos and S. Tomazic, “A more precise latency bound of deficit round-

robin scheduler,” Elektrotehnivski vestnik, vol. 76, pp. 257–262, January
2009.

[13] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “Integrating offset in
worst case delay analysis of switched ethernet network with deficit round
robbin,” IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA), 2018.
[14] X. Li, J.-L. Scharbarg, and C. Fraboul, “Improving end-to-end delay

upper bounds on an afdx network by integrating offsets in worst-case
analysis,” IEEE 15th Conference on Emerging Technologies Factory

Automation (ETFA), pp. 1–8, Sept 2010.

