

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/24789

Official URL

DOI : https://doi.org/10.1109/RTSS.2018.00046

To cite this version: Soni, Aakash and Li, Xiaoting and Scharbarg, Jean-Luc and Fraboul, Christian *Optimizing Network Calculus for Switched Ethernet Network with Deficit Round Robin.* (2019) In: 39th IEEE Real-Time System Symposium (RTSS 2018), 11 December 2018 - 14 December 2018 (Nashville, United States).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Optimizing Network Calculus for Switched Ethernet Network with Deficit Round Robin

Aakash SONI	Xiaoting Li	Jean-Luc Scharbarg	Christian Fraboul
ECE Paris - INPT/IRIT, Toulouse	ECE Paris	IRIT-ENSEEIHT, Toulouse	IRIT-ENSEEIHT, Toulouse
France	France	France	France
aakash.soni@ece.fr	xiaoting.li@ece.fr	Jean-Luc.Scharbarg@enseeiht.fr	Christian.Fraboul@enseeiht.fr

Abstract—Avionics Full Duplex switched Ethernet (AFDX) is the de facto standard for the transmission of critical avionics flows. It is a specific switched Ethernet solution based on First-in First-out (FIFO) scheduling. Worst-case traversal time (WCTT) analysis is mandatory for such flows, since timing constraints have to be guaranteed. A classical approach in this context is Network Calculus (NC). However, NC introduces some pessimism in the WCTT computation. Moreover, the worst-case often corresponds to very rare scenarios. Thus, the network architecture is most of the time lightly loaded. Typically, less than 10 % of the available bandwidth is used for the transmission of avionics flows on an AFDX network embedded in an aircraft. One solution to improve the utilization of the network is to introduce Quality of Service (QoS) mechanisms. Deficit Round Robin (DRR) is such a mechanism and it is envisioned for future avionics networks. A WCTT analysis has been proposed for DRR. It is based on NC. It doesn't make any assumption on the scheduling of flows by end systems. The first contribution of this paper is to identify sources of pessimism of this approach and to propose an improved solution which removes part of this pessimism. The second contribution is to show how the scheduling of flows can be integrated in this optimized DRR approach, thanks to offsets. An evaluation on a realistic case study shows that both contributions bring significantly tighter bounds on worst-case latencies.

Index Terms-Deficit Round Robin, Network Calculus, worstcase traversal time, switched Ethernet network, offsets

I. INTRODUCTION

Up to now, Quality of Service (QoS) mechanisms are not used in practice in the context of avionics. The de facto standard is the AFDX network, which mainly implements a FIFO service discipline in switch output ports. Actually, two priority levels are available, but they are rarely used. Different approaches have been proposed for Worst-case traversal time analysis in the context of avionics, in particular Network Calculus (NC) [1], Trajectories [2] and Model Checking [3]. Due to the problem of combinatorial explosion, Model Checking doesn't scale. Trajectories and NC approaches compute a sure but often pessimistic upper bound on end-to-end delay. NC has a strong mathematical background with successful implementation to certify A380 AFDX backbone[4].

The pessimism of WCTT analysis as well as the fact that worst-case scenarios have a very low probability to occur lead to a very lightly loaded network. Typically, less than 10 % of the available bandwidth is used for the transmission of avionics flows on an AFDX network embedded in an aircraft [3]. One solution to improve the utilization of the network is to introduce Quality of Service (QoS) mechanisms. Deficit Round Robin (DRR) and Weighted Round Robin (WRR) are such mechanisms and they are envisioned for future avionics networks. We have proposed a first evaluation of WRR in the context of avionics in [5]. In this paper we focus on DRR.

Deficit Round Robin (DRR) was proposed in [6] to achieve fair sharing of the capacity of a server among several flows. The main interest of DRR is its simplicity of implementation. As long as specific allocation constraints are met, it can exhibit O(1) complexity. A lot of work has been devoted to DRR [7], [8], [6], [9], [10]. They point out the undeniable high latency of DRR scheduler and propose some improvements. One of the most efficient implementations called "Aliquem" is proposed in [10]. It shows a remarkable gain in latency and fairness while still preserving O(1) complexity. A comparison of DRR scheduler with First-In-First-Out (FIFO) and Static Priority (SP) scheduler used in AFDX network is shown in [11]. The end-to-end delay (ETE) bounds are computed and the paper shows the comparatively better performance of DRR scheduler over FIFO and SP scheduler, given an optimized network configuration. Another DRR implementation is proposed in [9], which combines the DRR with SP scheduling, to improve schedulability and makes more efficient use of hardware resources. A detailed analysis and improvement of DRR latency bound for homogeneous flows is given in [8]. Some mathematical errors of [8] are pointed out and corrected in [12]. Analysis of a server with DRR scheduler using NC method is first discussed in [7] which also proposes improvement in DRR latency. [7] generalizes the analysis to network with heterogeneous flows.

The first contribution of the paper is to identify sources of pessimism of existing worst-case end-to-end delay calculation using NC for a network with DRR schedulers and to propose an improved solution. An evaluation on an industrial size configuration shows that the proposed approach outperforms existing ones.

The approach in [7] as well as the optimized one in this paper don't make any assumption on the scheduling of flows by source end systems. The second contribution of this paper is to show how this scheduling can be integrated in our optimized WCTT analysis for DRR. We have presented such an integration in the existing WCTT analysis in [13]. The paper is organized as follows. The considered network model is presented in section II. It is followed by a brief recall of the DRR scheduling policy, its latency and delay calculation using Network Calculus in section III. Section IV exhibits sources of pessimism in DRR WCTT analysis. The main contribution is given in section V, where we propose an optimized NC approach for DRR scheduler based networks. In Section VI further improvements to classical NC approach are given, including the integration of end system scheduling. An evaluation on an industrial configuration is given in section VII. Section VIII concludes the paper and gives directions for future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet network. It is composed of a set of end systems, interconnected by switched Ethernet network via full-duplex links. Thus, there are no collisions on links. Each link offers a bandwidth of R Mbps in each direction.

Each end system manages a set of flows, and each switch forwards a set of flows through its output ports, based on a statically defined forwarding table. This forwarding process introduces a switching latency, denoted by sl. Each port h of a switch S_x , denoted by S_x^h , can be connected at most to one end system or another switch. Each output port, of a switch or of an end system, has a set of buffers managed by a scheduler supporting a scheduling policy, for example: First-In-First-Out (FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc. In this paper, the considered network uses Deficit Round Robin (DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each sporadic flow v_i gives rise to a sequence of frames emitted by a source end system with respect to the minimum interarrival duration imposed by a traffic shaping technique. This minimum inter-arrival duration is called the period T_i of flow v_i . If the duration between any two successive emissions of a flow v_i is T_i , then, the flow v_i is periodic. The size of each frame of flow v_i is constrained by a maximum frame length (l_i^{max}) and a minimum frame length (l_i^{min}) . Each flow v_i follows a predefined path \mathcal{P}_i from its source end system till its last visited output port, and then arrives at its destination end system.

Figure 1 shows an example of a switched Ethernet network configuration which consists of 4 switches, S_1 to S_4 , interconnecting 10 end systems, e_1 to e_{10} , through full duplex links to transfer 20 flows, v_1 to v_{20} . In this work, each output port of a switch has a set of buffers controlled by a Deficit Round Robin (DRR) scheduler. The links provide a bandwidth of $R = 100 \ Mbits/s$. Table I summarizes flow features (interarrival duration T_i as well as minimum and maximum frame size l_i^{min} and l_i^{max}).

III. DEFICIT ROUND ROBIN

In this section, we briefly recall the DRR scheduling policy. A more detailed description can be found in [6] and [7]. We

$el_{O} \frac{vl vl7}{vl2 vl2}$	→ <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	v1 v12 v13 v17 v1 v5
e7 <u>0</u> <u>v12</u> <u>v13</u>	→ ⁵¹	v2 v14 v18 v20 $v6 \dots v12$ v20
e20 $v2v14$	→ c2	$v_3 v_6 v_{15} v_{19}$ S4 $v_{15} \dots v_{20} e_8$
e40v18 v20	→ 52	v4 v7 v9 v10
e50 v3 v6 e30 v15 v19	⇒ S3	e10 • v5 <i>v8 v11</i> v16

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows v_i	$T_i(\mu sec)$	$l_i^{max}(byte)$	$l_i^{min}(byte)$
v_{12}, v_{20}	512	100	80
$v_1, v_7, v_8, v_9, v_{17}$	512	99	80
$v_2, v_4, v_5, v_{10}, v_{13}, v_{16}, v_{18}$	256	100	80
$v_3, v_{11}, v_{14}, v_{15}, v_{19}$	256	99	80
v_6	96	100	80

then summarize the DRR worst-case analysis in [7], [8]. This analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity among flows. DRR is mainly a variation of Weighted Round Robin (WRR) which allows flows with variable packet length to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers based on few predefined classes. Each class receives service sequentially based on the presence of a pending frames in a class buffer and the credit assigned to the class. Each class buffer follows FIFO queuing to manage the flow packets. The DRR scheduler service is divided into rounds. In each round all the active classes are served. A class is said to be active when it has some flow packet in output buffer waiting to be transmitted. The basic idea of DRR is to assign a credit quantum Q_x^h to each flow class C_x at each switch output port h. Q_x^h is the number of bytes which is allocated to C_x for each round at port h. At any time, the current credit of a class C_x at a port h is called its deficit Δ_x^h . Each time C_x is selected by the scheduler, Q_x^h is added to its deficit Δ_x^h . As long as C_x queue is not empty and Δ_x^h is larger than the size of C_x queue head-of-line packet, this packet is transmitted and Δ^h_x is decreased by this packet size. Thus, the scheduler moves to next class when either C_x queue is empty or the deficit Δ^h_x is too small for the transmission of C_x queue head-of-line packet. In the former case, Δ_x^h is reset to zero. In the latter one, Δ_x^h is kept for the next round.

The credit quantum Q_x^h is defined for each port *h*. It must allow the transmission of any frame from class C_x crossing *h*. Thus, Q_x^h has to be at least the maximum frame size of C_x flows at port *h*. Let $\mathcal{F}_{C_x}^h$ be the set of flows of class C_x at output port *h*. Let $l_{C_x}^{max,h}$ and $l_{C_x}^{min,h}$ be the max and min frame size among all class C_x flows at output port *h*. We have:

$$l_{C_x}^{max,h} = \max_{i \in \mathcal{F}_{C_x}^h} l_i^{max}, \quad l_{C_x}^{min,h} = \min_{i \in \mathcal{F}_{C_x}^h} l_i^{min} \qquad (1)$$

Algorithm 1 shows an implementation of DRR at a switch output port h with n traffic classes. First, deficits are set to 0

(lines 1-3). Then queues are selected in a round robin order (lines 4-16). Empty queues are ignored in each round (line 6). Each non-empty queue is assigned an extra credit of Q_i^h in each round (line 7). Packets are sent as long as the queue is not empty and the deficit is larger than the size of the head-of-line packet (lines 8-12). If the queue becomes empty, the deficit is reset to 0 (lines 13-14).

Let us illustrate DRR with the network configuration in Figure 1. Three traffic classes are considered. C_1 includes flows v_1 to v_5 (in black and bold font in Figure 1), while C_2 includes flows v_6 to v_{12} (in red and italics font in Figure 1) and C_3 includes flows v_{13} to v_{20} (in blue and regular font in Figure 1), as listed in Table II.

Figure 2 shows a possible scenario for DRR scheduling in the upper port of switch S4 (port S_4^1). All the flows in Figure 1 cross this port. In the example in Figure 2, the credit quantum $Q_x^{S_4^1}$ is 199 bytes (1592 bits) for each class C_x (x = 1, 2, 3). It is larger than the maximum frame size $l_{C_x}^{max,S_4^1}$ for each class at port S_4^1 . Indeed, we have $l_{C_x}^{max,S_4^1} = 100$ bytes for $1 \le x \le 3$.

TABLE II: DRR scheduler configuration

Fig. 2: DRR rounds at output port S_4^1

In the scenario in Figure 2, there are no pending frames before time t_0 in output port S_4^1 . At this time, five frames arrive: four belonging to class C_2 (from flows v_{12} , v_6 , v_7 and v_8 in this order in the queue) and one belonging to class C_3 (from flow v_{20}). Since there are no pending frames before t_0 , either C_2 or C_3 can be served first. In Figure 2, we assume that class C_2 is served first. Thus, at t_0 , C_2 receives a credit equal to its assigned quantum value, we have $\Delta_2^{S_4^1} = 199$ bytes. The size of C_2 head-of-line packet is 100 bytes (from v_{12}). Since it is smaller than C_2 current deficit, v_{12} packet is transmitted and C_2 deficit becomes $\Delta_2^{S_4^1} = 199 - 100 = 99$ bytes. The

new C_2 head-of-line packet (from v_6) of 100 bytes is larger than remaining deficit. Thus, it cannot be transmitted and next active class (C_3) is served. Now C_3 gets credit equal to its assigned quantum value, so we have $\Delta_3^{S_4^1} = 199$ bytes. C_3 head-of-line packet (flow v_{20}) has a size of 100 bytes. Thus, it is immediately transmitted and $\Delta_3^{S_4^1}$ is reduced to 99 bytes. Meanwhile, five new frames from flows v_9 , v_{13} , v_{14} , v_{15} and v_{16} arrive in port S_4^1 and they are buffered in their class queue. New C_3 head-of-line packet (from v_{13}) is larger than current credit and cannot be transmitted leaving a deficit $\Delta_3^{S_4^1} = 99$ bytes and next active class C_2 can be served. Indeed, C_1 has no pending packet at that time. Credit $Q_2^{S_4^1}$ is added to $\Delta_2^{S_4^1}$, leading to a deficit of 298 bytes. Three C_2 pending packets, from flows v_6 , v_7 and v_8 , have a cumulated size of 298 bytes. Thus, they are all transmitted in the current round, leading to a null deficit for C_2 . The same occurs for next active class C_3 , with v_{13} , v_{14} and v_{15} packets. Next active class is C_1 . Indeed, packets from v_5 , v_4 , v_3 , v_2 and v_1 have arrived. C_1 deficit $\Delta_1^{S_4^1}$ is 199 bytes. It allows the transmission of the first pending frame (from v_5) and $\Delta_1^{S_4^1}$ is 99 bytes. Frame transmissions go on in the same manner.

Algorithm 1: DRR Algorithm				
Input: Per flow quantum: $Q_1^h \dots Q_n^h$ (Integer)				
Data: Per flow deficit: $\Delta_1^h \dots \Delta_n^h$ (Integer)				
Data: Counter: i (Integer)				
1 for $i = 1$ to n do				
$2 \Delta^h_i \leftarrow 0 ;$				
3 end				
4 while true do				
5 for $i = 1$ to n do				
6 if $notempty(i)$ then				
7 $\Delta_i^h \leftarrow \Delta_i^h + Q_i^h;$				
8 while $(notempty(i))$ and				
$(size(head(i)) \leq \Delta_i^h)$ do				
9 send(head(i));				
10 $\Delta_i^h \leftarrow \Delta_i^h - size(head(i));$				
11 removeHead(head(i));				
12 end				
13 if $empty(i)$ then				
14 $\Delta_i^h \leftarrow 0$				
15 end				
16 end				

B. DRR scheduler worst-case analysis

Worst-case traversal time (WCTT) analysis is needed when real-time flows are considered. Indeed, the latency of these flows has to be upper bounded. In this section, we analyze flow latency when a DRR scheduler is used. Then we summarize the state-of-the-art WCTT analysis [7], [8], based on network calculus [1].

1) DRR scheduler latency: A DRR scheduler schedules n^h traffic classes at a given output port h. Each class C_x is assigned a quantum Q_x^h .

Definition 1. Theoretical service rate: The quantum Q_x^h allocated to traffic class C_x at port h defines the theoretical service rate ρ_x^h of C_x at h, i.e. the minimum service rate that C_x should get on the long term. We have

$$\rho_x^h = \frac{Q_x^h}{\sum\limits_{1 \le j \le n^h} Q_j^h} \times R \tag{2}$$

In the example in Figure 2, output port S_4^1 is shared by $n^{S_4^1} = 3$ classes (C_1 , C_2 and C_3). All of them are assigned a quantum of 199 bytes (1592 bits). Thus, the theoretical service rate for any class C_x can be computed by Equation (2):

$$\rho_x^{S_4^1} = \frac{199}{199*3} \times 100 \ Mbits/s = \frac{100}{3} Mbits/s$$

However the service provided to C_x at h in a given time interval might be more or less than the theoretical one.

Definition 2. Actual service rate: The actual service rate is the service rate received by a given class C_x at a port h in a given time interval.

The actual service rate of a given class depends on the packets which effectively cross the output port. First, as previously defined, a class is active in an output port h when it has pending packets in h. In a given time interval, active classes share the available bandwidth. For instance, considering port S_4^1 in Figure 2, C_2 and C_3 each get half of the bandwidth in any interval where they are active and C_1 is not. Thus, a class can receive more than its theoretical service rate when some other classes are inactive. Second, since frames are transmitted sequentially, each class is served on its turn, thus getting 100 % of service for some duration. Third, since a packet cannot be transmitted in the current round if its size is more than the remaining credit of its class, a class might get less than its theoretical service rate in a round. Conversely, since the credit which is not used by a class in a round might be used in the following round, a class can get more than its theoretical service rate in a round.

The aim of a WCTT analysis is to maximize the latency of a given flow. It can be obtained by minimizing the actual service rate of its class. In [8], it is based on the DRR scheduler latency.

Definition 3. DRR scheduler latency: The DRR scheduler latency Θ_x^h experienced by a class C_x flow at output port h is defined as the maximum delay before C_x flow is served at its theoretical service rate ρ_x^h .

[8] determines a lower bound on the service that C_x receives in a given interval. To that purpose, it introduces two delays at the beginning of the considered interval:

- the delay $X_{C_x}^h$ before class C_x receives service for the first time in the interval,
- a delay Y_{Cx}^h to take into account the fact that, when C_x receives service for the first time, it can be a reduced service.

These delays are illustrated in Figure 3

- t_i is the starting time of round i,
- Round 1 starts at the arrival time of a packet of the class under study with no backlog for this class,
- $X_{C_x}^h$ is part of the first round, starting at time t_1 and ending at time t'_1 ,
- $Y_{C_x}^h$ is part of the second round, starting at time t'_2 and ending at time t''_2 .

Let us come back to the example in Figure 2 in order to illustrate the first duration (the delay $X_{C_x}^h$ before first service). The first C_1 packet arrives at time t_1 , where it just misses its turn to receive service. Before receiving the first service, it has to wait till time t'_1 while all the other active classes (C_2 , C_3) are served. This delay has been analyzed and upper bounded in [8]. It is denoted by X_x^h for class C_x in node h. It has been shown in [8] that it is maximized when class C_x has to wait for all the other classes with maximum transmission capacity. This maximum delay can be computed by the following formula:

$$X_x^h = \frac{\sum_{j=\{1,2,\dots,n^h\}, \ j \neq x} (Q_j^h + \Delta_j^{max,n})}{R}$$
(3)

where $\Delta_j^{max,h}$ is the maximum deficit of class C_j in node h at the end of its service. Since class C_j packets are served as long as the remaining deficit of class C_j is not smaller than the size of class C_j head-of-line packet, the remaining deficit has to be smaller than the largest C_j packet. Thus, we have:

$$\Delta_x^{max,h} = l_{C_x}^{max,h} - 1 \tag{4}$$

where $l_{C_x}^{max,h}$ is the size of the largest C_x packet.

This maximum delay is observed for class C_1 in round rd_1 in Figure 2. Indeed, classes C_2 and C_3 have a maximum remaining deficit at time t_1 :

$$\begin{array}{lll} \Delta_2^{max,h} &=& l_{C_2}^{max,h} - 1 = 100 - 1 = 99 \ bytes \\ \Delta_3^{max,h} &=& l_{C_2}^{max,h} - 1 = 100 - 1 = 99 \ bytes \end{array}$$

Both classes (C_2, C_3) get maximum service between t_1 and t'_1 . They both have a credit of 199 + 99 = 298 bytes. It corresponds to the cumulative size of pending packets for C_2 $(v_6, v_7 \text{ and } v_8 \text{ packets})$ as well as C_3 $(v_{13}, v_{14} \text{ and } v_{15} \text{ packets})$. Thus, the delay until first C_1 pending packet (from v_5) gets transmitted is computed by Equation (3):

$$X_1^{S_4^1} = \frac{(298 + 298) * 8}{100} = 47.68 \ \mu s$$

The second delay $Y_{C_x}^h$ comes from reduced service. It can also be illustrated with the example in Figure 2. In rd_1 , C_1 receives a reduced service (100 bytes corresponding to the transmission of a v_5 packet). Indeed, the remaining deficit (99 bytes) is smaller than head-of-line C_1 packet (100 bytes for v_4 packet) Thus, C_1 receives at least its theoretical service rate in rd_2 , after the service of C_2 and C_3 (199 bytes for each class in Figure 2). It means that, between t'_1 and t''_2 , C_1 receives a service of 100 bytes. Since, between t'_1 and t''_2 , 498 bytes are transmitted (packets from v_5 , v_9 , v_6 , v_{16} and v_{17}), C_1 receives an average service of

$$\frac{100}{498} \times 100 \simeq 20 \ Mbps$$

instead of one third of the available bandwidth, i.e. 33.33 Mbps. Another solution to compute the average service for C_1 between t'_1 and t''_2 is to split the interval in two parts:

- in the first part, C₁ receives an average service of one third of the available bandwidth,
- in the second part, it receives no service.

Since C_1 gets a service of 100 bytes at t'_1 , it gets on average one third of the available bandwidth between t'_1 and t'_2 . Indeed, 300 bytes are transmitted between these two instants. Then, C_1 gets no service between t'_2 and t''_2 . These intervals are illustrated in Figure 3

In [8], the computation of the largest possible duration of such an interval with no service is formalized. The authors in [8] prove an upper bound on this duration and show a scenario leading to this upper bound. We compute the duration corresponding to such a scenario and show that it corresponds to a worst-case. This worst-case duration Y_x^h for a class C_x in a node h is given by:

$$Y_{x}^{h} = \frac{Q_{x}^{h} - \Delta_{x}^{max,h} + \sum_{1 \le j \le n^{h}} Q_{j}^{h}}{R} - \frac{Q_{x}^{h} - \Delta_{x}^{max,h}}{\rho_{x}^{h}}$$
(5)

The first fraction computes the duration between t'_1 and t''_2 , while the second one corresponds to the duration between t'_1 and t'_2 . The delay $t''_2 - t'_2$ is the impact of the reduced service on class C_x . The first fraction corresponds to the situation where class C_x receives its minimum possible credit $Q^h_x - \Delta^{max,h}_x$ (its deficit for the following round is maximized) while other classes receive exactly the credit corresponding to their quantum. The second fraction computes the duration of a round where class C_x receives its minimum possible credit and its theoretical service rate. Y_x^h can be greater if one class C_j $(j \neq x)$ receives more than its quantum in round rd_2 : C_j receives a credit of $Q_i^h + d$ with $0 < d \le \Delta_i^{max,h}$. In that case, C_i has a deficit of at least d form round rd_1 . However, in the computation of X_x^h , we consider that class C_j consumes its maximum possible credit $Q_i^h + \Delta_i^{max,h}$ in rd_1 , leading to no deficit. Thus, adding a credit of d to class C_j in rd_2 comes to remove a credit of at least d from C_j in round rd_1 . Therefore it does not increase the sum $X_x^h + Y_x^h$

Considering the example in Figure 2, it gives:

$$Y_1^{S_4^1} = \frac{(199 - 99) * 8 + (199 + 199) * 8}{100} - \frac{(199 - 99) * 8}{\frac{100}{3}}$$

= 15.84\mu s

This scenario in Figure 2 corresponds to a worst-case for class C_1 , with maximum values for $X_1^{S_4^1}$ and $Y_1^{S_4^1}$.

Finally, the DRR scheduler latency Θ_x^h is defined as the delay before C_x packets are served at their theoretical service rate at port *h*. Thus:

$$\Theta_x^h = X_x^h + Y_x^h \tag{6}$$

In the example in Figure 2, we have:

$$\Theta_1^{S_4^1} = X_{C_1}^{S_4^1} + Y_{C_1}^{S_4^1} = 63.52 \ \mu s$$

2) Network Calculus applied to DRR scheduling: WCTT analysis for DRR has been modeled with Network Calculus in [7]. In this paragraph, this modeling is summarized. The Network Calculus (NC) theory is based on the (min, +) algebra. It has been proposed for worst-case backlog and delay analysis in networks [1]. It models traffic by arrival curves and network elements by service curves. Upper bounds on buffer size and delays are derived from these curves.

a) Arrival Curve: The traffic of a flow v_i at an output port h is over-estimated by an arrival curve, denoted by $\alpha_i^h(t)$. The leaky bucket is a classical arrival curve for a sporadic traffic:

$$\alpha_i^h(t) = r \times t + b$$
, for $t > 0$ and 0 otherwise.

It can be used to model a flow v_i at its source end system e_k . We have:

$$\alpha_i^{e_j}(t) = \frac{l_i^{max}}{T_i} \times t + l_i^{max}, \text{ for } t > 0 \text{ and } 0 \text{ otherwise}.$$

It means that v_i is allowed to send at most one frame of maximum length l_i^{max} bits every minimum inter-frame arrival time $T_i \ \mu$ s.

Any flow v_i can be modeled in a similar manner at any switch output port h it crosses. However, since a frame of flow v_i can be delayed by other frames before it arrives at port h, a jitter J_i^h has to be introduced. It is the difference between the worst-case delay and the best-case delay for a frame of flow v_i from its source end system to port h [2].

Since flows of class C_x are buffered in their class queue and scheduled by FIFO policy, an overall arrival curve is used to constrain the arrival traffic of class C_x at port h. It is denoted by $\alpha_{C_x}^h$ and calculated by:

$$\alpha_{C_x}^h(t) = \sum_{i \in \mathcal{F}_{C_x}^h} \alpha_i^h(t) \tag{7}$$

where $\mathcal{F}_{C_x}^h$ is the set of C_x flows crossing port h.

As an example, let us consider the output port S_4^1 in Figure 2. 5 flows of class C_1 are scheduled by FIFO, leading

to $\mathcal{F}_{C_1}^{S_4^1} = v_1, v_2, v_3, v_4, v_5$. The overall arrival curve of class C_1 can be computed by:

$$\alpha_{C_1}^{S_4^1}(t) = \sum_{i \in \mathcal{F}_{C_1}^{S_4^1}} \alpha_i^{S_4^1}(t)$$

which is illustrated by blue line in Figure 4a.

Fig. 4: NC curves at S_4^1

b) Service Curve: According to NC, the full service provided at a switch output port h with a transmission rate of R (*bits/s*) is defined by:

$$\beta^h(t) = R[t - sl]^+$$

where sl is the switching latency of the switch, and $[a]^+$ means $\max\{a, 0\}$.

According to [8] and [7], the full service is shared by all DRR classes at an output port h and each class C_x has a predefined service rate ρ_x^h based on its assigned credit quantum Q_x as explained in Section III-B Equation (2). Besides a reduced service rate, each class C_x could experience a DRR scheduler latency Θ_x^h before receiving service with the predefined rate ρ_x^h . The scheduler latency can be calculated by Equation (6). Therefore, based on the NC approach, the residual service $\beta_{C_x}^{DRR}$ to each class C_x is given by:

$$\beta_{C_x}^h(t) = \rho_x^h [t - \Theta_x^h - sl]^+ \tag{8}$$

 Y_x^h delay is considered right after X_x^h , in order to get a convex service curve.

In the example of the output port S_4^1 , class C_1 service curve is:

$$\beta_{C_1}^{S_4^1}(t) = \rho_1^{S_4^1} * [t - \Theta_1^{S_4^1} - sl]^+ = \frac{100}{3}(t - 63.52 - sl)^+$$

which is illustrated in Figure 4a.

The actual service curve is a staircase one (shown by the dashed black line in Figure 4a), as a flow alternates between being served and waiting for its DRR opportunity, as explained in [8]. For computation reason, NC approach employs the convex curve represented by equation (8) which is an underestimated approximation of actual staircase curve.

c) Delay bound: According to NC, the delay experienced by a C_x flow v_i constrained by the arrival curve $\alpha_{C_x}^h(t)$ in a switch output port h offering a strict DRR service curve $\beta_{C_x}^h(t)$ is bounded by the maximum horizontal difference between the curves $\alpha_{C_x}^h(t)$ and $\beta_{C_x}^h(t)$. Let D_i^h be this delay. It is computed by:

$$D_{i}^{h} = \sup_{s \ge 0} (\inf\{\tau \ge 0 | \alpha_{C_{x}}^{h}(s) \le \beta_{C_{x}}^{h}(s+\tau)\})$$
(9)

Therefore, the end-to-end delay upper bound of a C_x flow v_i is denoted by D_i^{ETE} and it is calculated by:

$$D_i^{ETE} = \sum_{h \in \mathcal{P}_i} D_i^h \tag{10}$$

Based on the equation (9) and (10), the delay bound calculated for flow v_1 of class C_1 is found to be $D_1^{S_4^1} = 234.91 \ \mu s$ and $D_1^{ETE} = 387.63 \ \mu s$.

IV. PESSIMISM OF DRR WCTT ANALYSIS

The delay upper bound D_i^h for flow v_i from class C_x presented in the previous section assumes that, at each output port h, every interfering class C_y consumes maximum service. More precisely, it assumes that, in any DRR round rd_k , each class C_y $(y \neq x)$ is always active and transmits frames of at least the size of its quantum value Q_y^h . Such an assumption might be pessimistic. Indeed, the traffic from one or several C_y classes might be too low to consume quantum values Q_y^h in each round. The effect of such a pessimism on service curve is shown in Figure 5.

Fig. 5: Pessimism in DRR Service

This pessimism can be illustrated with the example in Figure 6. This example is based on the network architecture in Figure 1. The difference is that part of C_2 and C_3 flows that are transmitted from S_4 to e_8 in Figure 1 are transmitted to e_9 in Figure 6.

\$10	
v2 e152 162 30 $v6 v7 v8 v12$	
$v_{3}v_{6}e_{1}v_{2}18$ $v_{1}e_{1}v_{2}15\varepsilon_{1}v_{2}30$, (6
$53 \vee 4 \sqrt{7} \sqrt{9} \sqrt{10} \qquad 34 \vee 2 \longrightarrow 10$	3
et <u>v5 v8 v11 e1</u> e1 <u>29992</u> e18	

Fig. 6: Switched Ethernet network (Example 2)

We focus on output port S_4^1 to calculate the delay experienced by flow v_1 from class C_1 . In the given example, it is worth noting that the considered class C_1 has more flows to be served as compared to the class C_2 and C_3 . The corresponding DRR schedule rounds are shown in Figure 7. The scenario in

Fig. 7: DRR cycles at S_4^1

the example given in Figure 7 is similar to the scenario in Figure 2, where the first C_1 packet arrive at time t_1 and it experience a delay $X_{C_1}^{S_4^1} = 47.68 \ \mu s$ before being served for the first time. As shown in Figure 7, at t'_1 , class C_3 has served all its frames in the buffer, by transmitting frames from v_{13} , v_{14} and v_{15} . Its deficit is reduced to $\Delta_3^{S_4^1} = 0$ and it has no more frames to further delay class C_1 flows. Similarly, class C_2 consumes all its deficit by transmitting frames from v_6, v_7 and v_8 and its deficit is also reduced to $\Delta_2^{S_4^+} = 0$. Another frame from flow v_6 has arrived at t'_1 . At t_2 , class C_2 receive service of 100 bytes (corresponding to frame of v_6). At t'_2 , there are no more frames from class C_2 and C_3 to be served, class C_1 gets the deficit of $\Delta_1^{S_4^1} = 199 + 99 = 298 \ bytes$ to serve frames from v_4 and v_3 . Since the remaining deficit is less than the size of next frame from v_2 , and there are no other active classes, class C_1 receives an additional credit equal to its quantum value. Thus, it has a deficit of $\Delta_1^{S_4^*} = 298 \ bytes$ to serve v_2 and v_1 flows. Between t'_1 and t'_2 , C_1 receives a service of 100 bytes. Since, between t'_1 and t'_2 , 200 bytes are transmitted, it means C_1 received an average service of

$$\frac{100}{200} \times 100 = 50 \ Mbps$$

which is greater than its theoretical service rate (from equation (2)) $\rho_1^{S_4^1} = \frac{199}{199+199+199} \times 100 = 33.33 \ Mbps$ Thus, in this scenario class C_1 flows do not experience any reduced service. Therefore, the total latency observed by class C_1 flows before they could be served at their theoretical service rate is 47.68 μs , which is much less than that considered by the NC approach i.e. $47.68 + 15.84 = 63.52 \ \mu s$. In this case, the delay bounds, calculated from Equation (9) and (10), for flow v_1 of class C_1 are $D_1^{S_4^1} = 215.9 \ \mu s$ and $D_1^{ETE} = 366.87 \ \mu s$.

However, the scenario in Figure 7 might not lead to the worst-case. In next section, we show how to upper bound the effective impact of interfering classes.

V. TAKING INTO ACCOUNT THE EFFECTIVE LOAD OF INTERFERING CLASSES

As illustrated in the previous section, maximizing the service of interfering classes when computing the worst-case endto-end delay for packets of a given class C_x can introduce pessimism, since these interfering classes might generate too few traffic to consume all their allocated service. In this section we show how it is possible to upper bound the traffic of these interfering classes that impact the worst-case delay of C_x packets. Each time this upper bound is smaller than the maximized service for interfering classes, the difference can be safely removed from the worst-case delay of C_x packets. The approach considers the following steps.

- 1) We compute the worst-case delay D_x^h of class C_x flows in node h, using the NC approach from [8], [7] presented in previous sections (equation (9) and (10)). Indeed, all the flows of a given class experience same delay at a given output port.
- We determine the service load SL^h_y(t) available for class C_y at a node h between 0 and D^h_x. It corresponds to the maximized service of interfering classes C_y used by the NC approach from [8], [7].
- We calculate the effective maximum load L^{max,h}_y(t) of a class C_y at a node h between 0 and D^h_x. It gives an upper bound on the C_y traffic which has to be served at node h between 0 and D^h_x.
- 4) If $L_y^{max,h}(D_x^h) < SL_y^h(D_x^h)$, the difference can be safely removed from the worst-case delay D_x^h of class C_x flows in node h

The first step is a direct application of what has been presented in previous sections. The three other steps are detailed in the following paragraphs.

A. Maximized service of interfering classes

The NC approach in [8], [7] considers a maximized service for an interfering class C_y that is not the same for all the time intervals. The time starts when the first C_x frame arrives at node h.

- The first interval (0,X^h_x] corresponds to the delay X^h_x before C_x is served for the first time. In this interval, the NC approach assumes that C_y gets a service of at most Q^h_y + Δ^{max,h}_y bytes.
- The second interval starts at X_x^h and stops when C_x gets service for the second time. In this interval, C_x gets a service of $Q_x^h - \Delta_x^{max,h}$ bytes while each other class C_y gets a service of Q_y^h bytes.
- The following intervals are all identical. As in the second one, each C_y class gets a service of Q_y^h bytes. The difference with the second interval is that C_x class also gets a service of Q_x^h bytes. Thus, each of these intervals is a bit longer than the second one.

Thus, the maximized service load $SL_y^h(t)$ is defined as follows:

$$SL_{y}^{h}(t) = \begin{cases} 0 & t < X_{x}^{h} \\ Q_{y}^{h} + \Delta_{y}^{max,h} & X_{x}^{h} \le t < t_{N} \\ Q_{y}^{h} + \Delta_{y}^{max,h} & t_{N} \le t \\ + \left(1 + \left\lfloor \frac{R \times (t-t_{N})}{\sum_{j=\{1,2,\dots,n_{h}\}} Q_{j}^{h}} \right\rfloor \right) Q_{y}^{h} \end{cases}$$
(11)

where t_N is the end of the second interval:

$$t_N = X_x^h + \frac{1}{R} \left(\sum_{\substack{j = \{1, 2, \dots, n_h\}\\ j \neq x}} Q_j^h + Q_x^h - \Delta_x^{max, h} \right)$$

It should be noticed that the load corresponding to a given interval is taken into account at the end of the interval. For instance, $Q_y^h + \Delta_y^{max,h}$ is added to $SL_y^h(t)$ at the end of the first interval, i.e. $t = X_x^h$. Thus, $SL_y^h(t)$ is an under-bound of the maximized service load considered in [8]. We obtain a step function, as illustrated in Figure 8.

Fig. 8: Served traffic of class C_2

Considering the example in Figure 6, for any value t, we have:

$$SL_{C_2}^{S_4^1}(t) = \begin{cases} 0 & t < 47.68\\ 298 \ bytes & 47.68 \le t < 87.52\\ 298+ & 87.52 \le t\\ \left(1 + \left\lfloor \frac{100}{8} \times (t-87.52) \\ 597 \\ \end{bmatrix} \right) 199 \ bytes \end{cases}$$

By applying the NC computation, we obtain $D_1^{S_1^4} = 223.32 \mu s$. Thus, the maximized load of an interfering class C_y in the service duration $t = D_1^{S_1^4}$ of class C_1 flow v_1 is:

$$(SL_{C_2}^{S_4^1}(D_1^{S_4^1})) = (SL_{C_3}^{S_4^1}(D_1^{S_4^1})) = 895 \ bytes$$

B. Effective maximum load of interfering classes

The effective maximum load $L_y^{max,h}(t)$ of an interfering class C_y at a node h in a given duration t is based on the arrival curves of NC. Thus, C_y load at the beginning of the duration is the sum of all the bursts of C_y flow arrival curves and it increases, following the long-term rate of each C_y flow arrival curve. Since the delay of class C_x flows in node h is upper bounded by D_x^h , only packets arriving within a duration D_x^h have a chance to delay a given C_x packet. Thus, C_y load that can delay a given C_x packet is upper bounded by:

$$L_y^{max,h}(D_x^h) = \alpha_{C_y}^h(D_x^h) \tag{12}$$

where $\alpha_{C_y}^h(t)$ is the overall arrival curve of the class C_y flows, calculated by Equation (7).

Considering the example in Figure 6, we have $D_1^{S_4} = 223.32 \ \mu s$, as depicted in the upper part in Figure 9a. The lower part in Figure 9a shows the overall arrival curve of C_2 flows in S_4 . Thus, we have:

$$L_{C_2}^{max,S_4^+}(D_1^{S_4}) = 858 \ bytes$$

Similarly, for C_3 flows, we have:

$$L_{C_3}^{max,S_4^1}(D_1^{S_4}) = 784 \ bytes$$

Fig. 9: Arrival traffic

C. Limitation of the service to the load

In previous paragraphs, we have computed for each class C_y interfering at node h with class C_x under study:

- the service load $SL_y^h(t)$ taken into account by the NC approach in [8], [7],
- an upper bound $L_y^{max,h}(t)$ on the effective load.

When this upper bound is smaller than the service load taken into account by the NC approach, the difference can be safely removed from the delay of C_x flow v_i packets in node h. Indeed, in a round, when a class C_y has nothing more to transmit, DRR moves to the next class, which is then served earlier. Therefore, following C_x packets will be served earlier, leading to a reduced delay.

Thus, for each interfering class C_y we can remove the following value:

$$max\left(SL_{y}^{h}(D_{x}^{h}) - L_{y}^{max,h}(D_{x}^{h}), 0\right)$$
(13)

Since $n_h - 1$ classes are interfering with C_x in node h, the optimized delay $D_{i,opt}^h$ for C_x flow v_i in node h is given by:

$$D_{i,opt}^{h} = D_{i}^{h} - \frac{\sum_{\substack{y \in 1...n_{h} \\ y \neq x}} \max\left(SL_{y}^{h}(D_{x}^{h}) - L_{y}^{max,h}(D_{x}^{h}), 0\right)}{R}$$
(14)

Therefore, the end-to-end delay upper bound of a class C_x flow v_i can be computed by:

$$D_{i,opt}^{ETE} = \sum_{h \in \mathcal{P}_i} D_{i,opt}^h \tag{15}$$

In the example in Figure 6, $D_{1,opt}^{S_4^1}$ is 211.59 μs and $D_{1,opt}^{ETE}$ is 300.86 μs , which gives 19.8% improvement in ETE delay computation as compared to the $D_1^{ETE} = 375.34 \mu s$.

VI. FURTHER IMPROVEMENTS

In this section, we present three further improvements of the worst-case delay computation. The first one concerns the additional delay Y_x^h generated by the reduced service for class C_x when it is first served. The second one is based on the integration of the serialization effect: packets sharing an input link cannot arrive in the output node of the link at the same time. The third one concerns flow scheduling at end systems: integration of offset. The effect of integrating these improvements in NC approach is evaluated on an industrial configuration and shown in Table IV.

A. Optimization of Y_x^h latency

The duration Y_x^h of class C_x at an output port h is computed by considering that, when C_x is served for the first time, it consumes exactly its minimum possible service, i.e. $Q_x^h - \Delta_x^{max,h}$, where $\Delta_x^{max,h}$ is the size of the largest C_x packet crossing port h minus one byte. If we assume a port hwhere all C_x packets have a size of 100 bytes and the quantum Q_x^h is 150 bytes, we have:

Thus,

$$\Delta_x^{max,h} = 100 - 1 = 99 \ bytes$$

$$Q_x^h - \Delta_x^{max,h} = 150 - 99 = 51 \ bytes$$

In that case, the computation of Y_x^h considers that C_x transmits 51 bytes when it is served for the first time.

However, since DRR imposes that Q_x^h is at least the size of the largest C_x frame (here $150 \ge 100$), one C_x packet is guaranteed to be transmitted when C_x is served for the first time. In our case, 100 bytes will be transmitted during the first C_x service. Thus, considering only 51 bytes significantly underestimate this first service and it leads to an overestimation of Y_x^h .

In the general case, at least one C_x packet with minimum size is transmitted. Thus, the minimum first service for C_x cannot be less than this minimum size $l_{C_x}^{min,h}$. DRR guarantees that it cannot be less than $Q_x^h - \Delta_x^{max,h}$. Therefore it cannot be less than

$$\max\{Q_x^h - \Delta_x^{max,h}, l_{C_x}^{min,h}\}$$

This upgraded minimum first service for C_x can be integrated in the computation of Y_x^h . We get:

$$Y_{x}^{h} = \frac{\max(Q_{x}^{h} - \Delta_{x}^{max,h}, l_{C_{x}}^{min,h}) + \sum_{\substack{1 \le j \le n^{h} \\ j \ne x}} Q_{j}^{h}}{R} - \frac{\max(Q_{x}^{h} - \Delta_{x}^{max,h}, l_{C_{x}}^{min,h})}{\rho_{x}^{h}}$$
(16)

B. Integration of DRR/FIFO Serialization

As explained in Section III-B2a, the arrival curve for a class C_x in a port h is obtained by summing the arrival curves of all C_x flows in h. This operation assumes that one frame from each flow arrives exactly at the same time in h. This situation might be impossible. Let us come back to the example in Figure 1. C_3 flows v_{14} , v_{18} and v_{20} share the link between S_2 and S_4 . Therefore they cannot arrive in S_4 at the same time. They are serialized on the link.

This serialization effect has been integrated in the NC approach for FIFO [2]. The idea is to consider that the largest packet among the flows sharing the link arrives first. Packets from the other flows arrives by decreasing size, at the speed of the link.

This approach can be adapted to DRR scheduling. Indeed, DRR scheduling considers each class separately. Therefore, the serialization effect can be integrated as in [2], on a class by class basis. The principle of a curve integrating serialization is illustrated in Figure 4b.

These serialized arrival curves are then directly used for the worst-case delay computation.

While considering serialization with our optimized NC approach, one should pay attention while calculating effective maximum load of interfering classes (section V-B). In this case one should use the arrival curve and time value $t \geq D_x^h$ as shown in Figure 9b.

C. Flow scheduling at end system

In a switched Ethernet network each end system schedules flow transmission individually. The flow scheduling introduces temporal separation between flows and hence reduce the effective traffic in the network. The scheduling of flows emitted by given end system is characterized by the assignment of offsets which constrain the arrival of flows at output ports. The offset integration in NC was first proposed in [14] for First-In-First-Out (FIFO) scheduler. A Similar approach can be used for DRR schedulers.

The idea is that, if the flows are temporally separated at source end system and they share the same input link then they cannot arrive at an output port at the same time. Such flows can be aggregated as a single flow.

[14] defines *relative offset* $O_{r,b,i}^{h}$ at an output port h as the minimum time interval between arrival time of a frame from a reference flow v_b and arrival time of a frame from another flow v_i after v_b . Such offset computation algorithm is given in [14], however, the aggregation technique can work with any offset assignment algorithm.

In NC, the integration of offset affects the computation of arrival curves. In DRR scheduler, flows of each class C_x , from

same source end system, can be aggregated as a single flow. This is valid because the flows of a class C_x transmitted from same source end system are affected by temporal separation and cannot delay each other. Class C_x flows can be aggregated by taking into account the relative offset at the given node. At an output port h, for n flows from class C_x the overall arrival curve $\alpha_{C_x}^h$, can be computed as :

- Make *i* subsets of class C_x flows, based on the flows sharing same source end system. Each subset SS_j has n_j flows such that $n_1 + n_2 + \cdots + n_i = n$.
- Aggregate the flows of each subset SS_i as one flow and characterize its arrival curve α^h_{SSi}.

$$\alpha_{SS_i}^h = \max\{\alpha_{v_1\{v_2, v_3, \dots, v_i\}}^h, \dots, \alpha_{v_i\{v_1, v_2, \dots, v_{i-1}\}}^h\}$$

where, $\alpha_{m\{n\}}^{h}$ is the arrival curve obtained when flow v_m arrives before flow v_n at output port h, with temporal separation of $O_{r,m,n}^{h}$.

• The overall arrival curve is the sum of the arrival curve of each subset, i.e. $\alpha_{C_x}^h = \sum_{j=1}^i \alpha_{SS_j}^h$.

Let us come back to the example in Figure 1, where C_3 flows $v_{13} \ldots v_{20}$ compete at output port S_4^1 , n = 8, from 6 end systems e_1 , e_7 , e_2 , e_4 , e_3 and e_{10} . Thus, there are 6 subsets: $SS_1 = [v_{17}]$ $(n_1 = 1)$, $SS_2 = [v_{13}]$ $(n_2 = 1)$, $SS_3 = [v_{14}]$ $(n_3 = 1)$, $SS_4 = [v_{18}, v_{20}]$ $(n_4 = 2)$, $SS_5 = [v_{15}, v_{19}]$ $(n_5 = 2)$ and $SS_6 = [v_{16}]$ $(n_6 = 1)$. The flows v_{18} and v_{20} will be aggregated as one flow to make aggregated arrival curve as they share source end system e_4 . Similarly, v_{15} and v_{19} will also be aggregated as one flow. The arrival curve of the flow. For details about the aggregated curve computation, readers can refer to [14].

The obtained overall arrival curve can be used to compute delay using equation (9). It can also be used to calculate effective maximum load $L_{C_y}^h(t)$ of interfering class C_y to optimize the delay using equation (14).

VII. EVALUATION

In this section, we compare the approach in [8] (classical NC DRR) with our optimized approach (optimized NC DRR).

A. Illustrative Example

First we consider the sample examples in Figures 1 and 6. Figure 10 shows end-to-end delay bounds obtained by both approaches for each VL of the configuration in Figures 1 and 6. For example in Figure 1, we have average gain 13.45%, and maximum gain 19.75%. For Figure 6, average gain is 16.84% and maximum 29.67%.

B. Realistic case study

Next, we consider an industrial-size configuration, inspired from [2]. It includes 96 end systems, 8 switches, 984 flows, and 6412 paths (due to VL multi-cast characteristics).

We take into account three types of flows, namely critical flows, multimedia flows and best-effort data flows. Each flow

Fig. 10: End-to-end delay bound in network example 1 & 2

TABLE III: DRR Scheduler Configuration for Industrial Network

Class	Number	Max Frame	Q_x	Т	Category
	of Flows	Length (byte)	(byte)	(msec)	
C_1	128	150	3070	4 - 128	Critical
C_2	590	500	1535	2 - 128	Multimedia
C_3	266	1535	1535	2 - 128	Best-effort

type is assigned to one DRR class. Table III shows the DRR scheduler configuration.

The results of the optimized NC DRR approach are compared with the delays obtained by the classical NC DRR approach of [7] & [8]. For each path \mathcal{P}_x of each flow v_i , the upper bound $D_{i,NC}^{\mathcal{P}_x}$ computed by the classical NC approach is taken as the reference value and it is normalized to 100. Then the upper bound $D_{i,opt}^{\mathcal{P}_x}$ of optimized NC approach is normalized as

$$D_{i,opt,norm}^{\mathcal{P}_x} = \frac{D_{i,opt}^{\mathcal{P}_x}}{D_{i,NC}^{\mathcal{P}_x}} \times 100$$

For illustration purpose, the paths are sorted in increasing order of $D_{i,opt,norm}^{\mathcal{P}_x}$.

C. Comparison of classical NC with DRR and Optimized NC with DRR

Table V shows the delay computation improvement on applying proposed optimization technique for NC with DRR. As shown in Table V and Figure 11a, 11b, 11c & 11d, the average improvement of the E2E delay bound computed in the given industrial configuration is around 47%. This is a significant improvement which shows that the proposed optimizations are relevant on an industrial configuration. It means that, on such configurations, the load in switch output ports is not equally shared between classes.

D. Comparison of Optimized NC with DRR and Classical NC with FIFO

In Figure 11e and 11f we have compared the delays (computed by optimized NC approach) of the different flow classes when using DRR with the delays computed when using FIFO. It can be observed that the critical flows have smaller delays (shown in Figure 11e) than the two other flow classes (shown in Figure 11f) This is due to the fact that, as shown in Table III, DRR approach allows critical flows to have more allocated quanta in each round and hence produces smaller delay.

TABLE IV: Comparison result of improvements applied to classical NC approach

	NC_{SER}	NCOFF	NC _{SER,OFF}	
NC	5.04	26.98	28.83	Avg Gain %
INC	19.57	70.05	70.05	Max Gain %

TABLE V: Comparison result of optimization applied to different NC approaches

NC	NC_x^{OPT}		
$1 \vee C_X$	avg gain %	max gain %	
Classic	47.77	77.55	
Offset	48.66	75.38	
Grouping	47.2	75.11	
Offset + Grouping	48.19	76.59	

(a) Classical NC DRR vs. Opti- (b) NC DRR with Offset vs. Opmized NC DRR

timized NC DRR with Offset

(c) NC DRR with grouping vs (d) NC DRR with Offset & group-Optimized NC DRR with group- ing vs. Optimized NC DRR with offset & grouping ing

flows C_1) vs. FIFO

(e) Optimized NC DRR (Critical (f) Optimized NC DRR (Multimedia C_2 and best-effort C_3 flows) vs. FIFO

Fig. 11: Evaluation of Optimized NC approach

E. Comparison of Optimized NC with DRR and optimized NC with WRR

In this section, we compare our optimized WCTT analysis for DRR with the WCTT analysis for WRR presented in [5]. The WRR analysis cannot cope with the realistic case study presented in previous sections. Indeed, this analysis considers the largest frame size in each class. Since each class includes frames with very different sizes, the computation is very pessimistic and does not converge. This problem is not fully linked to the analysis. It mainly comes from the fact that

WRR cannot cope efficiently with packets with very different sizes in a given class.

A different case study is considered in [5]. It has a similar network architecture as well as a similar number of flows. However, as shown in Table VI, frame sizes are homogeneous per class. Table VII shows that DRR leads to better results for Classes C_1 and C_2 and not for C_3 . Therefore, in that homogeneous case, no algorithm outperforms the other one.

TABLE VI: Configuration of WRR and DRR schedulers

alass	No. of	DRR	WRR weight	frame size
Class	flows	Quantum (bytes)	(no. of packets)	range
C_1	718	$4 \ge l_{max}$	4	415-475
C_2	194	$2 \ge l_{max}$	2	911-971
C_3	72	$1 \ge l_{max}$	1	1475-1535

TABLE VII: Performance comparison of DRR and WRR schedulers

alass	DRR vs WRR	
Class	avg difference (%)	max difference (%)
C_1	29.16	52.7
C_2	29.6	52.3
C_3	-35.4	-68.8

VIII. CONCLUSION

Deficit Round Robin (DRR) scheduling policy has been defined for a fair sharing of server capacity among flows. Bandwidth sharing between traffic classes is fixed by the definition of quantum. DRR is envisioned for future avionics switched Ethernet networks, in order to improve bandwidth usage. It has good fairness properties and acceptable implementation complexity but a non-negligible latency which must be accurately evaluated.

This paper presents an improved method for the WCTT of DRR policy using network calculus. Our approach minimizes the pessimism in delay calculation using network calculus and gives tighter upper bounds on end-to-end delay as compared to previous studies. On an industrial-size case study, the proposed approach outperforms existing ones by 47 %. This improvement should allow to increase the number of flows transmitted on the network or to reduce the number of switches. We also show that, thanks to quantum, it is possible to achieve better performance for critical flows as compare to other scheduling policies like FIFO.

The WCTT analysis proposed in this paper is mandatory when critical flows are transmitted on the network. However, one goal of using DRR for avionics network is to be able to share the network between critical flows and less/not critical ones. For those later flows, an upper bound on the delay is not the most relevant metric. Thus, the WCTT analysis has to be coupled with a study of the delay distribution. Such a distribution can be obtained by simulation.

Allocating flows to traffic classes and assigning a quantum to each class has a significant impact on the end-to-end delays. We plan to precisely measure this impact in order to propose guidelines for the tuning of classes and quantum, based on traffic profiles.

REFERENCES

- J.-Y. L. Boudec and P. Thiran, Network Calculus: a theory of deterministic queuing systems for the internet. LNCS, April 2012, vol. 2050.
 H. Bauer, J.-L. Scharbarg, and C. Fraboul, "Improving the worst-
- [2] H. Bauer, J.-L. Scharbarg, and C. Fraboul, "Improving the worstcase delay analysis of an afdx network using an optimized trajectory approach," *IEEE Trans. Industrial Informatics*, vol. 6, no. 4, Nov 2010.
- [3] H. Charara, J.-L. Scharbarg, C. Fraboul, and J. Ermont, "Methods for bounding end-to-end delays on an afdx network," *Real-Time Systems*. 18th Euromicro Conference on. IEEE, p. 10, July 2006.
- [4] "Aircraft data network, parts 1,2,7 aeronotical radio inc." ARINC Specification 664, Tech. Rep., 2002 2005.
- [5] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, "Wett analysis of avionics switched ethernet network with wrr scheduling," 26th International Conference on Real-Time Networks and Systems (RTNS), 2018.
- [6] M. Shreedhar and G. Varghese, "Efficient fair queuing using deficit round-robin," *IEEE/ACM Transactions on networking*, 1996, vol. 4, no 3, p. 375-385, p. 11, 1996.
- [7] M. Boyer, G. Stea, and W. M. Sofack, "Deficit round robin with network calculus," *Performance Evaluation Methodologies and Tools* (VALUETOOLS), 2012 6th International Conference on (pp. 138-147). IEEE, p. 10, October 2012.
- [8] S. S. Kanhere and H. Sethu, "On the latency bound of deficit round robin," Computer Communications and Networks, 2002. Proceedings. Eleventh International Conference on. IEEE, 2002. p. 548-553., p. 7, October 2002.
- [9] M. Boyer, N. Navet, M. Fumey, J. Miggie, and L. Havet, "Combining static priority and weighted round-robin like packet scheduling in afdx for incremental certification and mixed-criticality support," *5TH EURO-PEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES* (EUCASS), 2013.
- [10] L. Lenzini, E. Mingozzi, and G. Stea, "Aliquem: a novel drr implementation to achieve better latency and fairness at o(1) complexity," *IEEE* 2002 Tenth IEEE International Workshop on Quality of Service, 2002.
- [11] Y. Hua and X. Liu, "Scheduling design and analysis for end-to-end heterogeneous flows in an avionics network," 2011 Proceedings IEEE INFOCOM, April 2011.
- [12] A. Kos and S. Tomazic, "A more precise latency bound of deficit roundrobin scheduler," *Elektrotehnivski vestnik*, vol. 76, pp. 257–262, January 2009.
- [13] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, "Integrating offset in worst case delay analysis of switched ethernet network with deficit round robbin," *IEEE 23rd International Conference on Emerging Technologies* and Factory Automation (ETFA), 2018.
- [14] X. Li, J.-L. Scharbarg, and C. Fraboul, "Improving end-to-end delay upper bounds on an afdx network by integrating offsets in worst-case analysis," *IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA)*, pp. 1–8, Sept 2010.