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ABSTRACT
The classic approach to image matching consists in the detection,
description and matching of keypoints. In the description, the local
information surrounding the keypoint is encoded. This locality en-
ables affine invariant methods. Indeed, smooth deformations caused
by viewpoint changes are well approximated by affine maps. De-
spite numerous efforts, affine invariant descriptors have remained
elusive. This has led to the development of IMAS (Image Match-
ing by Affine Simulation) methods that simulate viewpoint changes
to attain the desired invariance. Yet, recent CNN-based methods
seem to provide a way to learn affine invariant descriptors. Still,
as a first contribution, we show that current CNN-based methods
are far from the state-of-the-art performance provided by IMAS.
This confirms that there is still room for improvement for learned
methods. Second, we show that recent advances in affine patch nor-
malization can be used to create adaptive IMAS methods that se-
lect their affine simulations depending on query and target images.
The proposed methods are shown to attain a good compromise: on
the one hand, they reach the performance of state-of-the-art IMAS
methods but are faster; on the other hand, they perform significantly
better than non-simulating methods, including recent ones. Source
codes are available at https://rdguez-mariano.github.
io/pages/adimas.

Index Terms— image comparison, affine invariance, IMAS,
SIFT, RootSIFT, convolutional neural networks.

1. INTRODUCTION

Image matching, which consists in deciding whether or not several
images represent some common or similar objects, is a problem rec-
ognized as difficult, especially because of the viewpoint changes be-
tween images. The classic approach to image matching consists in
three steps: detection, description and matching [1]. First, keypoints
are detected in both images. Second, regions around these points are
described by local descriptors. Finally, all these descriptors are com-
pared and possibly matched. Both the detection and description steps
are usually designed to ensure some invariance to various geometric
or radiometric changes. A benefit of local descriptors is that view-
point deformations are well approximated by affine maps. Indeed,
for any smooth deformation, its first order Taylor approximation is
an affine map. This observation has motivated the development of
comparison methods based on local descriptors that are as affine in-
variant as possible.

The best established image comparison method is SIFT [1]. This
method was shown in [2] to be invariant to image rotations, trans-
lations, and camera zoom-outs. SIFT has inspired numerous vari-
ations over the past 15 years [3, 4, 5]. In this paper, we refer to

(a) Common object to query and target images

(b) Kernel density estimations.

Fig. 1: Kernel density estimations in the Space of Tilts of affine
maps extracted by Affnet [16] for both images in the ‘cat’ pair from
the EVD [13] dataset.

these methods as Scale Invariant Image Matching (SIIM). Several
attempts have also been made to create local image descriptors in-
variant to affine transformations [6, 7, 8]. Yet the affine invariance
of these SIIM methods in images acquired with real cameras is lim-
ited by the fact that optical blur and affine transforms do not com-
mute, as shown in [9]. Thus, none of the previously mentioned
descriptors can be considered fully affine invariant. In [10], Root-
SIFT [5] was reported to be the robustest descriptor to affine view-
point changes (up to 60◦). To overcome this limitation, several Im-
age Matching by Affine Simulation (IMAS) solutions have been pro-
posed: ASIFT [11], FAIR-SURF [12], MODS [13], Optimal Affine-
RootSIFT [14], Affine-AC-W [15]. From them, Optimal Affine-
RootSIFT was proven to be the best choice in terms of performance.
The downside of simulation-based methods is the added computa-
tions.

The recent advances in deep-learning have also contributed to
the development of local descriptors. Mimicking the classic process
of image matching, they learn a similarity measure between image
patches [17, 18]. In particular, affine invariance is currently being
learned from data [19, 16]. The SIFT-AID method [19] combines
SIFT keypoints with a CNN-based patch descriptor trained to cap-
ture affine invariance up to 75◦. The Affnet method [16], conceived
to predict normalizing ellipse shapes for single patches based on a
3-variable parametrization, was used with HardNet [20] (a CNN-
based SIIM method) to create affine invariant descriptions; its au-
thors called this method HesAffNet. The information provided by
Affnet [16] can be obtained quickly but comes with a cost in preci-



Fig. 2: Geometric interpretation of equation (1).

sion, see [21] for more details. Still, this information concentrates in
the Space of Tilts even if Affnet [16] was not trained for this task.
Figure 1 shows kernel density estimations in the Space of Tilts (for-
mally introduced in [10]) for query and target images in the ‘cat’
pair from the EVD [13] dataset. Notice the concentration around or-
thogonal directions in the Space of Tilts of affine maps provided by
Affnet [16] from query and target images. Just by looking at those
densities one can already infer that the common object to both im-
ages was seen from camera positions that differ by 90◦.

As usual in matching methods involving normalization, each
patch in HessAffnet [16] is normalized to a single and possibly un-
precise and/or even erroneous representation. Instead, in this paper
we propose not to rely on the precision nor on the existence of a
single affine normalizing map. We prefer to compute a finite set of
possible normalizing representations for each patch based on all the
affine information extracted by Affnet [16]. In practice, Affnet [16]
predictions will be used to select convenient affine transformations
to be tested in IMAS methods. This leads to a substantial boost in
IMAS speed without sacrificing performance.

The rest of this paper is organized as follows. Section 2 summa-
rizes a formal methodology for handling local viewpoint changes in-
duced by real cameras. Two adaptive coverings based on Affnet [16]
are introduced in Section 3. They will make way for adaptive IMAS
methods. The performance of the proposed methods is illustrated
with experiments in Section 4. Finally, Section 5 presents our con-
cluding remarks.

2. AFFINE MAPS AND THE SPACE OF TILTS

Affine Maps. As stated in [9, 10], a digital image u obtained by
any camera at infinity is modeled as u = S1G1Au, where S1 is the
image sampling operator (on a unitary grid), Gδ denotes the convo-
lution by a Gaussian kernel broad enough to ensure no aliasing by
δ-sampling, A is an affine map and u is a continuous image. This
model takes into account the blur incurred when tilting or zooming
a view. Notice that G1 and A generally do not commute.

LetA denote the set of affine maps and define Au(x) = u(Ax)
for A ∈ A, where x is a 2D vector and Ax denotes function eval-
uation, A (x). We define the set of invertible orientation preserving
affinities A+ = {L + v ∈ A| det(L) > 0} where L is a linear
map and v a translation vector. We call S the set of similarity trans-
formations, which are any combination of translations, rotations and
zooms. Finally, we define the set A+

∗ = A+ \ S, where we exclude
pure similarities. As it was pointed out in [9], every A ∈ A+

∗ is
uniquely decomposed as

A = λR1(ψ)TτR2(φ), (1)

where R1, R2 are rotations and Tτ =

[
τ 0
0 1

]
with τ > 1, λ > 0,

φ ∈ [0, π) and ψ ∈ [0, 2π). Furthermore, the above decomposi-
tion comes with a geometric interpretation (see Figure 2) where the

longitude φ and latitude θ = arccos 1
τ

characterize the camera’s
viewpoint angles (or tilt), ψ parameterizes the camera spin and λ
corresponds to the camera zoom.

The so-called optical affine maps involving a tilt τ in the φ-
direction and zoom λ are formally simulated by:

u 7→ S1AGφ√
τ2−1

G√
λ2−1

Iu, (2)

where I is the Shannon-Whittaker interpolator and the superscript φ
indicates that the convolution operator is 1D and has its tilt applied
in the φ-direction. We denote by

A := S1AGφ√
τ2−1

G√
λ2−1

I . (3)

If λ > 1 or τ > 1, the operator A is not invertible and therefore
incurs in information loss. This means that it is not be possible to re-
cover the frontal image from a slanted view. Instead, IMAS methods
try to simulate common slanted views where descriptors can match.

The Space of Tilts. The Space of Tilts, denoted by Ω and formally
introduced in [10], is a quotient space where each class represents
a set of affine maps with equal tilt and tilt direction (parameters τ
and φ from Equation 1) and includes all possible camera spins and
zooms (parameters ψ and λ from Equation 1). This space focuses on
the last part TτR2 of the decomposition (1) because it is the one that
is imperfectly dealt with by most SIIM methods. Image descriptors
like those proposed in the SIFT method are invariant to similarities
(translations, rotations and zooms), which in terms of the camera
position interpretation (see Figure 2) correspond to a fronto-parallel
motion of the camera, a spin of the camera and to an optical zoom.

We say that two classes [A] and [B] in the Space of Tilts are
equal if and only if Tτ(A)Rφ(A) = Tτ(B)Rφ(B), where each side in
this equation represents the last part of the decomposition of Equa-
tion 1 for A and B. Clearly, the Space of Tilts can be parametrized
by picking representative affine maps (of the form TτRφ) from each
class as

Ω = [Id]
⋃  ⋃

(τ,φ)∈]1,∞[×[0,π[

[TτRφ]

 .

As demonstrated in [10], the function

d :

{
Ω × Ω → R+

([A] , [B]) 7→ log
(
τ
(
BA−1

) ) , (4)

is a metric acting on the Space of Tilts that measures the affine
distortion from a fixed affine viewpoint to surrounding affine view-
points. These distortions affect the performance of all SIIM meth-
ods [10, 22] but most of them are able to successfully identify affine
viewpoint distortions under log 1.7 for image sizes around 700 ×
550.

In the context of image matching by affine simulation (IMAS),
one crucial question to answer is: What is the best set of affine trans-
forms to apply to each image to gain full practical affine invariance?
For example, green points in Figure 4-(a) represent the affine maps
to be simulated on query and target images in the case of Optimal
Affine-RootSIFT. Disks represent the set of affine maps that are dis-
torted by no more than log 1.7 (in terms of the distance in Equa-
tion 4) from the center. Notice in Figure 4-(a) that a whole zone
of classes with distortions up to log 4

√
2 is covered by the union of

disks. This means that any distortion in that zone is reduced to less
than log 1.7 from at least one of the centers. This idea of reduction
is the key to the success in IMAS methods, as it ensures that any
strong deformation between images can be reasonably reverted so as
the matching method in question is able to cope with it.



Fig. 3: Sketch of an ideal normalization procedure. f, g two nor-
malizing affine maps.

(a) Optimal Affine-RootSIFT [14]. Execution time 10.14s?.
Corresponding to 25 affine simulations each.

(b) Adaptive-ARootSIFT. Execution time 2.49s?.
Corresponding to 5 and 4 affine simulations.

(c) Greedy-ARootSIFT. Execution time 1.28s?.
Corresponding to 2 and 2 affine simulations.

Fig. 4: Proposed affine simulations for the ‘cat’ image pair from
the EVD [13] dataset. ? OpenMP parallelization was deactivated to
truly measure complexity.

3. ADAPTIVE COVERINGS

The Affnet method [16] is trained to predict affine-covariant region
representations, where a patch is normalized before description, see
Figure 3. The advantage of this approach is that the normalization
can be obtained quickly, but at the expense of precision [21]. On the
other hand, methods like ASIFT [11] optically simulate affine dis-
tortions to both query and target images in order to match them. The
set of simulations presented in Optimal Affine-RootSIFT [14] cor-
respond to an optimal log 1.7-covering (denoted by S1.7) appearing
in Figure 4-(a). When Optimal Affine-RootSIFT is applied, it has
been observed that most matches come from a small subset of all
the affine simulations. This motivates the use of Affnet [16] in order
to determine an appropriate set of affine simulations to be used by
IMAS methods. We call this general procedure the Adaptive IMAS
method. As in the case of IMAS methods [10], to mathematically
ensure that Adaptive IMAS works one needs to:

1. Dilate query and target density estimations in the Space of

Tilts by a factor of
√
r, where r is the radius corresponding

to the maximal viewpoint tolerance of the SIIM method (we
assume r = 1.7 for RootSIFT);

2. Find two sets of affine maps covering both dilated regions in
step 1. We assume that the dilation in step 1 is already taking
place thanks to the already jittered information provided by
Affnet [16].

However, density estimations like those in Figure 1-(b) are time
consuming and would dramatically slow down the matching process.
Instead, we propose to quickly analyze the affine information and
then determine two reasonable sets of affine maps (for query and
target) to be simulated by an IMAS method. We now present two
methodologies for building meaningful small sets of optical affine
simulations for IMAS methods.

Fixed tilts selection. Here we want to determine a small (if not
the smallest) subset of S1.7 whose elements will be used to generate
the simulations for the adaptive IMAS methods. This set should be
such that the performance of the resulting adaptive IMAS methods is
comparable to simulating the entire set S1.7. Algorithm 1 receives as
input the information extracted by Affnet [16] from a set of patches.
Then, indirectly, each of these patches will vote for a transform in
S1.7 and return the set of affine maps to be simulated by an IMAS
method. We call Adaptive-ARootSIFT the adaptive IMAS method
whose simulations are selected by Algorithm 1 and RootSIFT is used
to describe patches.

Algorithm 1: Fixed Tilts Selection
input:
A - Set of normalizing affine maps provided by Affnet [16]

from all patches of an image.
parameters:
r - Tilt radius (default to 1.7).
Sr - Set of optimal affine simulations (default to S1.7).
α - Cover threshold (default to 0.01).
start:
SFT = ∅. // initialization
foreach S ∈ Sr do

p =

∑
A∈A 1d([A],[S])≤log r

|A| . (5)

if p ≥ α then
SFT = SFT

⋃
{S}.

return SFT

Greedy selection. We can also determine the set of simulations in
a greedy iterative way until some criterion is satisfied. Algorithm 2
presents the formal procedure. Notice that S in Equation 6 is the cur-
rent affine map in Ã with more close neighbors than any other. We
call Greedy-ARootSIFT the adaptive IMAS method whose simula-
tions are selected by Algorithm 2 and RootSIFT is used to describe
patches.

Figure 4-(b)(c) illustrates the selected simulations by Adaptive-
ARootSIFT and Greedy-ARootSIFT for the cat image pair in the
EVD [13] dataset. Notice that, when no OpenMP parallelization is
used, both proposed methods run respectively 4 and 7 times faster
than the Optimal Affine-RootSIFT [14] method. As it will be seen
in our experiments, Optimal Affine-RootSIFT is still the state of the
art in viewpoint performance.



SIFT-AID dataset [19] EVD dataset [13] OxAff dataset [23]
Matching method S 5 inl. Nq Nt ET S 15 inl. Nq Nt ET S 40 inl. Nq Nt ET
SIFT-AID [19] ? 500 5 476 1.0 1.0 4.48 100 1 159 1.0 1.0 4.32 3794 38 1539 1.0 1.0 7.96

RootSIFT [5] 400 4 243 1.0 1.0 1.27 - - - - - - 3900 39 1119 1.0 1.0 1.56
HesAffNet [16] ? 491 5 241 1.0 1.0 1.05 228 4 50 1.0 1.0 1.45 4000 40 576 1.0 1.0 1.20

ASIFT [11] 400 4 551 41.0 41.0 33.04 751 9 129 41.0 41.0 25.54 4000 40 5697 41.0 41.0 48.68
Optimal Affine-RootSIFT [14] 500 5 685 25.0 25.0 5.66 768 9 186 25.0 25.0 4.96 4000 40 2794 25.0 25.0 8.12

Adaptive-ARootSIFT ? 500 5 382 5.8 5.6 2.07 664 8 115 6.5 6.3 2.66 4000 40 1711 5.4 5.0 2.67
Greedy-ARootSIFT ? 438 5 315 2.6 2.4 1.82 419 5 117 3.1 3.1 2.36 4000 40 1099 2.5 2.1 2.28

Table 1: Image matching performances on three viewpoint datasets. After matching each image pair, RANSAC-USAC [24] is run 100 times
to measure its probability of success in retrieving corresponding ground truth homographies. Legend: S - the number of successes (bounded
by 100× number ); the number of correctly matched image pairs; inl. - the average number of correct inliers; The numbers of image pairs
in a dataset are boxed; Nq, Nt - the average number of simulated affine maps on query and target; ET - the average elapsed time in seconds.
Hardware settings: (CPU) Intel i7-6700HQ 2.60GHz; (GPU) NVidia Quadro M5000M. OpenMP parallelization with 8 threads. ? Uses GPU.

Algorithm 2: Greedy Selection
input:
A - Set of normalizing affine maps provided by Affnet [16]

from all patches of an image.
parameters:
r - Tilt radius (default to 1.7).
α - Cover threshold (default to 0.05).
start:
Ã = A, SG = ∅. // initialization
while |Ã| ≥ α|A| do

S = arg max
S∈Ã

∑
A∈Ã

1d([A],[S])≤log r. (6)

SG = SG
⋃
{S}.

Ã = Ã \ { [A] ∈ Ω | d ([A], [S]) ≤ log r }.
return SG

4. EXPERIMENTS

We now focus on the evaluation of the adaptive IMAS methods. Ta-
ble 1 shows performances on three known datasets for homography
estimation in the presence of viewpoint changes. All datasets in-
clude groundtruth homographies that were used to verify accuracy.
First, correspondences from a matching method are obtained, then
RANSAC-USAC [24] is applied and we declared a success if at
least 80% of inliers (in consensus with the estimated homography)
were in consensus with the groundtruth homography. RANSAC-
USAC [24] was run 100 times to measure the probability of success
in retrieving the corresponding ground truth homographies. Six met-
rics are reported: the number of successes; the number of correctly
matched image pairs; the average number of correct inliers; the av-
erage number of affine simulations for query and target; and the av-
erage elapsed time in seconds. A perfect method would achieve the
maximum number of successes in retrieving the groundtruth homog-
raphy while being as fast as possible; where this maximum number
of successes equals the number of images in the dataset times a hun-
dred. A large number of matches is not an indicator of a method’s
good performance but can be used as tiebreaker measure if two meth-
ods are equally good in identifying geometric models.

As was been pointed out in [19], IMAS methods benefit from
lots of keypoints that come exclusively from simulated versions
of the input images. Indeed, SIIM detectors themselves are not

affine invariant. Therefore, the more affine simulations in an IMAS
method, the larger amount of matches it will possibly recognize.
Notice in Table 1, for the OxAff dataset [23], that Optimal Affine-
RootSIFT [14] has far fewer matches on average than ASIFT [11].
However, as previously stated, the number of matches might be
misleading about the method’s true performance. Table 1 points out
that Optimal Affine-RootSIFT [14] performs better than ASIFT [11]
in two datasets; indeed, the former method has more successes in
retrieving groundtruth homographies (i.e. larger probability of suc-
cess) with even one more identified pairs of images in the SIFT-AID
dataset [19]. With this in mind, we can declare Optimal Affine-
RootSIFT [14] to be state of the art in viewpoint invariant image
matching. On the other hand, execution times of Optimal Affine-
RootSIFT [14] are higher than non-simulating methods but still
considerably faster than ASIFT [11].

Table 1 shows that adaptive IMAS methods provide a good com-
promise between performance and speed. Adaptive-ARootSIFT at-
tains the same level of performance of Optimal Affine-RootSIFT [14]
(best in all three datasets) in successfully identifying groundtruth ho-
mographies while reducing by half the average computing time with
best case scenario reduced by four. Even if not as fast as Affnet [16],
Adaptive-ARootSIFT provides a remarkable boost in successes and
identified image pairs with respect to the former method, highlighted
in the EVD [13] dataset. HessAffnet [16] was forced to detect 2000
keypoints and, as in [16], incorporates the HardNet [20] descrip-
tor. The average number of simulations in Greedy-ARootSIFT has
halved with respect to Adaptive-ARootSIFT. This last fact is not
quite perceived in execution times of Table 1 due to parallelism but
is best appreciated in Figure 4 where parallelism was deactivated.

5. CONCLUSION

In this paper we show that Image matching by affine simulation
(IMAS) methods are still the state of the art in matching images
involving strong viewpoint differences. We observe that the infor-
mation provided by AffNet [16] is valuable in determining conve-
nient simulations to be used in IMAS methods. The resulting adap-
tive IMAS methods yield a substantial acceleration with respect to
classic IMAS methods without sacrificing performance. Also, Equa-
tion 5 provides a natural order to simulations appearing in Optimal
Affine-RootSIFT which will be used in future work to create IMAS
methods that gradually incorporate simulations on demand and stop
as soon as a significant geometric model has been identified.
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