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ABSTRACT

A novel Stochastic Smoothing Phase Retrieval (SSPR) algorithm is

studied to reconstruct an unknown signal x ∈ R
n or Cn from a set

of absolute square projections yk = |〈ak,x〉|2. This inverse prob-

lem is known in the literature as Phase Retrieval (PR). Recent works

have shown that the PR problem can be solved by optimizing a non-

convex and non-smooth cost function. Contrary to the recent trun-

cated gradient descend methods developed to solve the PR problem

(using truncation parameters to bypass the non-smoothness of the

cost function), the proposed algorithm approximates the cost func-

tion of interest by a smooth function. Optimizing this smooth func-

tion involves a single equation per iteration, which leads to a simple

scalable and fast method especially for large sample sizes. Extensive

simulations suggest that SSPR requires a reduced number of mea-

surements for recovering the signal x, when compared to recently

developed stochastic algorithms. Our experiments also demonstrate

that SSPR is robust to the presence of additive noise and has a speed

of convergence comparable with that of state-of-the-art algorithms.

Index Terms— Phase retrieval, Non-smooth problem, Smooth-

ing function.

1. INTRODUCTION

Phase retrieval is an inverse problem that consists of recovering a

signal from the squared modulus of some linear transforms, which

has proved efficient in in various applications such as, optics [1],

astronomy [2] and X-ray crystallography [3, 4, 5, 6]. Recent works

[7, 8, 9] have been proposed to solve the phase retrieval problem by

optimizing a non-convex and non-smooth objective function with a

gradient descent algorithm based on the Wirtinger derivative with an

appropriate initialization. Other stochastic or incremental methods

described in [8, 9, 10] retrieve the phase by applying non-convex

techniques, which have demonstrated to provide exact recovery from

phaseless measurements [11]. More specifically, these methods can

use the Incremental Reshaped Wirtinger Flow (IRWF)[8] or the

Stochastic Truncated Amplitude Flow (STAF)[9]. Incremental algo-

rithms also offer interesting solutions for signals with large sample

size because of their fast convergence and low computational com-

plexity. Moreover, gradient algorithms can be easily converge to a

saddle point of the objective function for a non-convex optimization

problem. In contrast, stochastic algorithms are often able to escape

from these saddle points, and lead to better convergence properties

[9, 12]. It is important to highlight that the functions optimized

by the IRWF, and STAF methods are non-smooth. In particular,

in order to address the non-smoothness of the cost function to be

optimized, the STAF introduces truncation procedures to eliminate

the errors in estimated signs with high probability. However, the

truncation procedure requires a specific parameter design to obtain a

desired performance, which drastically modifies the search direction

update, increasing the sampling complexity for phase recovery.

This paper proposes a new Stochastic Smoothing Phase Re-

trieval (SSPR) algorithm, which uses a specific smooth function to

solve the phase retrieval problem. Specifically, SSPR bypass the

difficulties resulting from the non-smooth optimization problem by

approximating the non-smooth cost function used for phase retrieval

by an appropriate smooth function. Theoretical results establish that

SSPR is able to converge linearly to the true signal up to a global

unimodular constant, because it requires a number of measurements

that exceeds in a fixed numerical constant the size of the signal to

solve the phase retrieval problem [13]. Additionally, it is interesting

to mention that the proposed method does not require any truncation

parameter. Simulation results are provided to validate the efficiency

of SSPR compared to existing stochastic phase retrieval algorithms.

In particular, the sample complexity of the proposed method is lower

in terms of number of measurements required to recover the signal.

2. PROBLEM STATEMENT

Before defining the phase retrieval problem, we need to introduce

some notations. Denote as R+ = {x ∈ R : x ≥ 0} and R++ =
{x ∈ R : x > 0} the sets of positive and strictly positive real

numbers. The conjugate and the conjugate transpose of the vector

w ∈ C
n will be denoted as w∗ ∈ C

n and wH ∈ C
n, respectively.

The distance between two complex vectors w1,w2 ∈ C
n used in

this work is

dr(w1,w2) = min
θ∈[0,2π)

‖w1e
−jθ −w2‖2 (1)

where ‖·‖2 denotes the Euclidean norm.

The phase retrieval problem can be formulated as determining

the solution x of a system of m quadratic equations of the form

yk = |〈ak,x〉|2, k = 1, · · · ,m (2)

where y := [y1, · · · , ym]T ∈ R
m is the measurement vector, ak ∈

R
n(or C

n) are the known sampling vectors and x ∈ R
n(or C

n)

is the desired unknown real or complex signal. More precisely, this

work considers the real and complex Gaussian designs, where vec-

tors ak have components distributed according to N (0, In) distribu-

tions (real design) or ak ∼ CN (0, In) are complex Gaussian vectors

with independent real and imaginary parts distributed according to

N (0, 1
2
In) distributions (complex design). We also assume that the

vectors a1, ..., am are independent and identically distributed (i.i.d.).



Adopting the least-squares criterion, the task of recovering a so-

lution from the phaseless measurements in (2) can be formulated as

minimizing the following cost function

min
z∈Cn

f(z) =
1

m

m
∑

k=1

(

|aH
k z|−qk

)2

(3)

where qk =
√
yk. One motivation for using the square-roots of the

measurements in (3) is that it leads to a better signal reconstruction

in noisy scenarios as proved in [14]. The works conducted in [9, 10,

15] have proved that (3) can be solved using a sampling complexity

of the order m = O(n). However, the memory requirements and

computational complexity make it prohibitive for problems of large

dimension, i.e., when sample size n of the signal x becomes large.

In order to overcome these limitations, (3) can be formulated as the

following stochastic optimization program

min
z∈Cn

g(z) = E

[

(

|aH
kt
z|−qkt

)2
]

(4)

where E[·] is the expected value and kt ∈ {1, 2, · · · ,m} is an index

per iteration t ≥ 0. Note that the cost function f(z) in (3) is non-

convex and non-smooth [9].

This work proposes a new algorithm based on an auxiliary

smoothing function g1(·) approximating the cost function g(·), in

order to solve the non-smooth optimization problem (4). The next

section introduces the concept of smoothing function, defines the

smoothing function g1(·) approximating the function g(·) in (4), and

introduces the assumptions required to guarantee the convergence of

the proposed method.

3. STOCHASTIC SMOOTHING PHASE RETRIEVAL

ALGORITHM

In this section, we develop a stochastic algorithm, named Stochas-

tic Smoothing Phase Retrieval (SSPR). This algorithm results from

a stochastic gradient descent method based on the Wirtinger deriva-

tive, which smoothes the stochastic (non-smooth) cost function g(·)
in (4). The concept of Wirtinger derivative and smoothing function

were introduced in [16, 17] and are recalled below

Definition 3.1. Wirtinger derivative [16]: The Wirtinger derivative

of a real-valued function h(w) : C
n → R with complex-valued

argument w ∈ C
n can be computed as

∂h(w) =∆ 2
∂h(w)

∂w∗
= 2

[

∂h(w)

∂w∗
1

, · · · , ∂h(w)

∂w∗
n

]T

(5)

where w∗
i denotes the conjugate of wi. More details related to

Wirtinger derivation can be found in [16]. Note that this derivation

has been recently used in state-of-the-art methods to solve the phase

retrieval problem [11, 15, 13].

Definition 3.2. Smoothing function: Let g : C
n → R be a lo-

cally Lipschitz continuous function. Then h : Cn × R+ → R is a

smoothing function for g(·), if h(·, µ) is smooth in C
n for any fixed

µ ∈ R++ and

lim
µ→0+

h(w, µ) = g(w) (6)

for any fixed w ∈ C
n.

According to Definition 3.2, we consider the following smooth

function ϕµ : R → R++ defined as

ϕµ(w) =
√

w2 + µ2 (7)

where µ > 0. This paper proposes to replace (4) by the following

smooth problem

min
z∈Cn

g1(z, µ) = E [ℓkt
(z, µ)] (8)

where ℓkt
=

(

ϕµ(|aH
kt
z|)− qkt

)2
. Note that setting µ = 0 in (8)

leads to the non-smooth problem in (3). Note also that recent works

such as [9, 15] have addressed the non-smoothness of g(z) in (4) by

introducing truncation parameters into the gradient step in order to

eliminate the errors in the estimated descent direction. However, this

procedure can drastically modify the search direction and increases

the sampling complexity of the phase retrieval problem. In contrast,

introducing the auxiliary function ϕµ(·) allows signal reconstruction

without any error in the estimated descent direction for two reasons.

First, the resultant cost function is smooth. Second, the search di-

rection induced by the smooth function is unaltered with respect to

the initial cost function. Moreover, by designing an appropriate up-

date rule to iteratively decrease the parameter µ, we can ensure that

the proposed method provides perfect signal recovery (up to a global

unimodular constant).

In order to solve (8), SSPR has two fundamental steps as sum-

marized in Algorithm 1. First, SSPR uses an appropriate initializa-

tion for the unknown vector z, in this case the weighted maximal

correlation initialization proposed in [9] (see Line 2 of Algorithm

1). Second, SSPR applies stochastic gradient iterations based on the

Wirtinger derivative introduced in Definition 3.1 to refine the initial

estimate. Specifically, the proposed gradient update iterations are

defined by

zt+1 = zt − α



a
H
kt
zt − qkt

aH
kt
zt

√

|aH
kt
zt|2 + µ2

t



akt
(9)

where α ∈ (0, 1) is a constant (calculated in Line 4 of Algo-

rithm 1). Following Algorithm 1, at iteration t, if the condition

‖∂g1 (zt+1, µt)‖2 ≥ γµt is not satisfied (Line 5 of Algorithm 1),

the smoothing parameter µ is updated according to Line 8 of Al-

gorithm 1. Using this update rule for the smoothing parameter µ,

we can ensure that the generated sequence µt tends to zero, which

is required to guarantee that SSPR leads to a perfect signal recon-

struction. Moreover, the convergence guarantees for Algorithm 1

are established in Section 3.2.

Algorithm 1 SSPR: Stochastic Smoothing Phase Retrieval algo-

rithm

1: Input: Data {(ak; qk)}mk=1 and constants α = 1.6/n, γ1 =
0.9, µ0 = 6 × 104/m, γ = 0.01 and maximum number of

iterations: T = 500m.

2: Initial point z0 =

√

∑

m

k=1
q2
k

m
z̃0, where z̃0 is the leading eigen-

vector of Y0 := 1
|I0|

∑

k∈I0

√
qk

aka
H

k

‖ak‖
2
2

.

3: for t = 0 : T − 1 do

Choose kt uniformly at random from {1, 2, · · · ,m}
4: zt+1 = zt − α

(

aH
kt
zt − qkt

a
H

kt
zt

√

|aH

kt
zt|2+µ2

t

)

akt

5: if ‖∂g1 (zt+1, µt)‖2 ≥ γµt then

6: µt+1 = µt

7: else

8: µt+1 = γ1µt

9: end if

10: end for

11: return: zT



3.1. Initialization

This work uses the weighted maximal orrelation initialization pro-

posed in [9]. This initialization consists in calculating the vec-

tor z0, which is the leading eigenvector z̃0 of the matrix Y0 :=

1
|I0|

∑

k∈I0

√
qk

aka
H

k

‖ak‖
2
2

scaled by the quantity λ0 :=

√

∑

m

k=1
q2
k

m
,

i.e, z0 = λ0z̃0. In [9] it was established that the distance between

the initial guess z0 and the true signal x is given by

dr(z0,x) ≤ 1

10
‖x‖2 (10)

with probability exceeding 1 − c3e
−c4m, providing that m ≥

c1|I0| ≥ c2n for some constants c1, c2, c3, c4 > 0 and sufficiently

large n.

3.2. Convergence Conditions

This section provides theoretical guarantees to prove that the pro-

posed method SSPR can reconstruct the true signal (up to global

unimodular constant). To do that, we need first to establish how to

calculate the Wirtinger derivative of g1(x, µ), which is a useful re-

sult to prove the global convergence of the SSPR algorithm in The-

orem 3.3.

Lemma 3.1. The Wirtinger derivative of g1(x, µ) is given by

∂g1(x, µ) = E [∂ℓkt
(x, µ)] . (11)

Proof. The proof of this lemma is deferred to Appendix A.

In order to guarantee the convergence of Algorithm 1, we need

to ensure two conditions need to be satisfied: the local error con-

traction detailed in Theorem 3.2 and the generated sequence µt has

to converge to zero when t increases. These two conditions are dis-

cussed below.

Theorem 3.2. (Local error contraction): Consider the noiseless

measurements qk = |〈ak,x〉| for an arbitrary signal x ∈ C
n, and

i.i.d vectors {ak ∼ CN (0, In)}mk=1. If α ∈ (0, α0/n] and m ≥ c0n

then, with probability at least 1 − 2e−ǫ2m/2, the SSPR algorithm

detailed in Algorithm 1 satisfies the following inequality

Ekt

[

d2r(zt+1,x)
]

≤ ρ (1− υ)t+1 ‖x‖22 (12)

for a fixed µt > 0, ρ = 1/10 and some numerical constant υ ∈
(0, 1), where the expectation is taken over the random variable kt,
and c0 is a universal constant.

Proof. See http://diffraction.uis.edu.co/pdfs/

auxiliarCSSPR.pdf.

Theorem 3.2 shows that the sequence {zt}t≥1 generated by Al-

gorithm 1 is a monotonically decreasing sequence {g(zt, µ)}t≥1,

for a fixed value of µ. To prove that the proposed method solves

the original optimization problem (2), we have to show that {µt}t≥1

tends to zero, i.e., µt → 0, which is summarized in Theorem 3.3.

Theorem 3.3. In the setup of Theorem 3.2 we can prove the follow-

ing result

• The sequences {µt} and {zt} generated by Algorithm 1 sat-

isfy lim
t→∞

µt = 0, and lim
t→∞

‖∂g1(zt, µt−1)‖2 = 0.

Proof. See http://diffraction.uis.edu.co/pdfs/

auxiliarCSSPR.pdf.

Note that, since Theorem 3.2 guarantees the local error contrac-

tion for any fixed µt (adjusted in Line 4 of Algorithm 1), and The-

orem 3.3 establishes that µt → 0, the proposed SSPR algorithm

ensures an asymptotic perfect reconstruction of the unknown signal,

up to a global unimodular constant. Moreover, the SSPR algorithm

achieves a linear convergence, since the number of equations m and

the number of unknowns exceed a fixed numerical constant [13].

4. SIMULATIONS AND NUMERICAL RESULTS

This section compares the performance of the proposed algorithm

with respect to IRWF [8] and STAF [8]. Also, we compare SSPR

with some recent non-stochastic phase retrieval methods such as

Truncated Amplitude Flow (TAF) [15], and Truncated Wirtinger

Flow (TWF) [18]. Note that all the parameters used for the im-

plementation of IRWF and STAF were adjusted as recommended

in the related references. The signal considered in this paper was

generated as x ∼ N (0, In) with n = 1, 000. In the real case, we

generated independent vectors ak ∼ N (0, In) for k = 1, ...,m.

In the complex Gaussian case, x ∼ N (0, In) + jN (0, In) (with

j2 = −1) and the vectors ak were generated independently as

ak ∼ N (0, 1
2
In) + jN (0, 1

2
In) for k = 1, ...,m.

The performance metric is the relative error defined as
dr(z,x)
‖x‖2

,

where dr(·, ·) has been defined in (1). We also evaluated the perfor-

mance using the empirical success rate for 100 Monte Carlo runs.

For each run, 1, 000 iterations were used for each algorithm. Note

that for stochastic methods, one iteration corresponds to m gradient

evaluations of the component functions ℓkt
. All simulations were

implemented in Matlab 2017a on an Intel Core i7 3.41Ghz CPU

with 32 GB RAM. For reproducibility, the Matlab code of our SSPR

algorithm is publicly available at http://diffraction.uis.

edu.co/codes.html.

4.1. Test 1: Sampling Complexity

Numerical results were conducted to evaluate the algorithm com-

plexities for the for real and complex cases by varying the number of

measurements m/n (with a stepsize of 0.1). A trial was declared as

successful when the returned estimate attains a relative error smaller

than 10−5. Our results are summarized in Fig. 1. In the real case

displayed in Fig. 1(a), SSPR achieves a success rate larger than 93%
for m/n = 1.8 and guarantees perfect recovery from about 1.9n
measurements. In the complex case, Fig. 1(b) shows that the SSPR

achieves perfect recovery from about 2.7n measurements. Note that

SSPR requires a reduced number of measurements (for both real

and complex cases) to achieve a given performance, when compared

with STAF, TAF, TWF, and IRWF. These numerical results confirm

the effectiveness of the proposed smoothing scheme.

4.2. Test 2: Noise Robustness

Additional experiments were conducted to demonstrate the robust-

ness of SSPR to additive noise corruption. These experiments were

conducted for the real and complex Gaussian models defined by

ŷk = |aH
k x|2 + ηk with ηk ∼ N (0, σ2In). The noisy data was gen-

erated as qk =
√
ŷk and we used σ2 = 0.12‖x‖22 with m/n = 8.

All results are summarized in Figure 2 for the real and complex

cases. Fig. 2 shows that SSPR has a faster convergence speed when

compared to the other methods (for both real and complex cases),

since it requires a smaller number of iterations to solve the phase

retrieval problem. Thus, the proposed SSPR algorithm seems to be



Fig. 1: Empirical success rate versus number of measurements with n =

1, 000 for the noiseless Gaussian model (a) real case (b) complex case.

more robust than state-of-the-art methods to the presence of additive

noise.

b

Fig. 2: Relative error versus iteration with n = 1, 000 and m/n = 8 for a
noisy Gaussian model. (a) Real case (b) Complex case.

4.3. Test 3: Speed of Convergence

Finally, simulations were conducted to compare the convergence

speed and sample complexity of all algorithms for complex data in

absence of noise. Figs. 3 shows the convergence speed of the differ-

ent methods in term of number of iterations. More precisely, Figs.

3 shows how the relative error decreases versus the number of itera-

tions for all the algorithms until to achieve a relative error of 10−14.

From Fig. 3 it can be observed that SSPR can solve the phase re-

trieval with less iterations than TAF and TWF, and with a similar

number of stochastic iterations with respect to IRWF, and STAF (for

both real and complex cases).

0 0

8

Fig. 3: Relative error versus iteration with n = 1, 000 , m/n = 8 for a
noiseless Gaussian model. (a) Real case (b) Complex case.

Table 1 reports the number of iterations and time cost for all

the algorithms to achieve the relative error of 10−14 averaged over

10 trials. The proposed SSPR method has a larger computational

complexity compared to the other methods (STAF, IRWF, TWF, and

TAF). However, it is important to note that SSPR requires a smaller

number of measurements, and that it exhibits a higher performance

against the noise to solve the phase retrieval problem.

Table 1: Comparison of iteration count and time cost among algo-

rithms

Algorithms Real Case Complex Case

Iterations Time (s) Iterations Time (s)

IRWF 13 1.01 25 10.32

STAF 12 2.37 28 25.24

SSPR 12 3.11 26 28.75

TWF 125 1.00 343 9.31

TAF 105 2.17 372 13.61

5. CONCLUSION

This paper presented a new algorithm to solve the phase retrieval

problem based on a specific smoothing function. The proposed

method involves a single equation per iteration, allowing us to solve

this problem using a similar number of iterations with respect to

state-of-the-art stochastic algorithms. The performance of the pro-

posed strategy was shown to be competitive with respect to existing

methods, in term of computational complexity, speed of convergence

and number of measurements required to obtain a given reconstruc-

tion error. Future work includes the development of a heuristic rule

to update the smoothing parameter µ in order to reduce the compu-

tational complexity of the proposed method. The variable kt used in

the gradient update step was chosen from a uniform distribution. It

would also be interesting to study how the distribution of kt impacts

the convergence of the proposed method.

A. PROOF OF LEMMA 3.1

Proof. From Eq. (8) we have that

g1(x, µ) = E

[

(

ϕµ(|aH
kt
x|)− qkt

)2
]

= E

[

ϕ2
µ(|aH

kt
x|)

]

− 2E
[

qkt
ϕµ(|aH

kt
x|)

]

+ E[q2kt
].

(13)

Since kt is sampled uniformly at random from {1, 2, · · · ,m} then

we have that

g1(x, µ) =
1

m

m
∑

k=1

(

ϕµ(|aH
k x|)− qk

)2

=
1

m

m
∑

k=1

ℓk(x, µ) (14)

where ℓk(x, µ) =
(

ϕµ(|aH
k x|)− qk

)2
. From Eq. (14) it can be

obtained that

∂g1(x, µ) =
2

m

m
∑

k=1

(ϕµ(|aH
k x|)− qk)∂ϕµ(|aH

k x|). (15)

On the other hand, note that

E [∂ℓkt
(x, µ)] = E

[

2(ϕµ(|aH
kt
x|)− qkt

)∂ϕµ(|aH
kt
x|)

]

=
2

m

m
∑

k=1

(ϕµ(|aH
k x|)− qk)∂ϕµ(|aH

k x|). (16)

Combining Eqs. (15) and (16) yields

∂g1(x, µ) = E [∂ℓkt
(x, µ)] . (17)

which concludes the proof.
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