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Bi-modal Macroscopic Traffic Dynamics in a Single Region

Mahendra Paipuria,∗, Ludovic Leclercqa

aUniv. Gustave Eiffel, Univ. Lyon, ENTPE, LICIT, F-69518, Lyon, France.

Abstract

Bi-modal or 3D-MFD relates the accumulation of cars, buses to total production at the net-

work level. The current work provides a detailed discussion of extended MFD-based models

namely, accumulation-based and trip-based models that accounts for bi-modal flows through 3D-

MFD. In addition, delay accumulation-based models, also known as exit-flow models in classical

traffic flow theory, are revisited. Fundamental modeling differences between different MFD-

based models are illustrated using a benchmark test case. A new FIFO-based entry flow function

is also proposed in order to address the inconsistencies of the conventional entry flow function in

the context of the 3D-MFD case. A novel weak internal FIFO discipline is proposed to circum-

navigate the violation of internal FIFO order during network unloading in the delay accumulation-

based model. MFD-based models are verified using the solutions of micro-simulations performed

on an idealized grid network. The importance of separating the 3D-MFD into partial car and bus

3D-MFDs is highlighted. Moreover, it is also shown that partial bus 3D-MFD should be further

split when dedicated bus lanes are present in the network to account for unequal mean speeds

between different bus lanes.

Keywords: 3D Macroscopic Fundamental Diagram, Bi-modal, MFD-based Modeling, FIFO,

Micro-simulation, Delay accumulation-based model
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1. Introduction

Ever since the existence of a well-defined Macroscopic Fundamental Diagram (MFD) was

established for the city of Yokohama, Japan (Geroliminis and Daganzo, 2008), there has been

a rapid development in the MFD-based models to describe the traffic dynamics at large scale

networks. MFD relates the density of vehicles to mean flow in the network. This relation was first5

introduced by Godfrey (1969) and later revisited by Mahmassani et al. (1984) based on simulation

studies. The first formulation of a urban model based on MFD was proposed by Daganzo (2007).

The main advantage of this modeling framework is its ability to predict the aggregate traffic state

dynamics with a relatively lower computational cost. These MFD-based simulators have been
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found promising in several applications like traffic state estimation (Knoop and Hoogendoorn,10

2014; Yildirimoglu and Geroliminis, 2014; Kavianipour et al., 2019), perimeter control (Keyvan-

Ekbatani et al., 2012; Haddad and Mirkin, 2017; Ampountolas et al., 2017; Mohajerpoor et al.,

2019), congestion pricing (Gu et al., 2018) and cruising for parking (Cao and Menendez, 2015;

Leclercq et al., 2017), etc.

Urban networks usually comprise multiple modes like cars, buses and bicycles, etc., sharing15

the network infrastructure. Previous works, e.g., (Boyac and Geroliminis, 2011; Chiabaut et al.,

2014; Loder et al., 2017), suggest that the buses and cars affect the network dynamics in different

ways. Most of the MFD-based simulators proposed in the literature usually restrict to single-

mode or 2D-MFD formulation, i.e., relation between the density of all vehicles and mean flow of

all vehicles in the network. Hence, a single-mode 2D-MFD considers the cars and buses to be20

alike and it cannot account for the influence of different mode shares on the network dynamics

and performance. Geroliminis et al. (2014) is first to address this issue and proposed a bi-modal

or 3D-MFD for the area of downtown San Francisco based on micro-simulations. This so-called

3D-MFD for bi-modal traffic data relates the accumulation of cars, buses to the total mean flow in

the network. Ortigosa et al. (2015) analyzed 3D-MFDs for the cities of Zurich and San Francisco25

using micro-simulations to study the effect of dedicated bus lanes on the network performance.

The first empirical study of 3D-MFD is proposed by Loder et al. (2017) for the city of Zurich.

They conclude that adding a public transport bus to the network has a more negative impact on the

mean speed of cars compared to adding a car. More recently, Loder et al. (2019) proposed a new

functional form for 3D-MFD based on the structure and topology of car and bus network. Huang30

et al. (2019) investigated the existence of 3D-MFD using the GPS data of private cars, taxis and

public buses for the city of Shenzhen in China. While there is plenty of literature around 2D-

MFD and numerous applications proposed using the network dynamics resolved by 2D-MFD,

most of the works proposed based on 3D-MFD focus on network performance and capacity char-

acterization. There has been little attention in the area of extension of a general MFD modeling35

framework to 3D-MFD settings. This work aims to fill this gap by proposing the MFD modeling

framework founded on 3D-MFDs and study the model properties.

There are primarily two different types of MFD-based models proposed in the literature

namely, accumulation-based and trip-based models. Daganzo (2007) proposed the accumulation-

based model in the framework of a single reservoir system. This framework is extended to con-40

sider multiple trip lengths in Geroliminis (2009); Yildirimoglu et al. (2015). Despite the fact that

the accumulation-based is relatively simple to resolve and computationally less demanding, it suf-

fers from a few drawbacks as highlighted in Mariotte et al. (2017). Hence, the trip-based approach

gained significant attention in the recent past as it can address few issues of the accumulation-

based model. The idea of the trip-based model was proposed by Arnott (2013) and it was revisited45

by Daganzo and Lehe (2015); Lamotte and Geroliminis (2016); Mariotte et al. (2017); Leclercq

et al. (2017). The modeling of congestion spill-backs in the context of multi-reservoir systems
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is proposed in Mariotte and Leclercq (2019). However, Leclercq and Paipuri (2019) showed that

no model is perfect and a hybrid model bridging both accumulation-based and trip-based ap-

proaches gives more consistent results both in free-flow and congestion regimes. In addition to50

traditional MFD-based models, the accumulation-based model with outflow delay is also con-

sidered in the present work. This model is proposed and studied at the link scale by Friesz et al.

(1989); Daganzo (1995); Astarita (1996). It is revisited in the current work at the network scale to

address some drawbacks of the accumulation-based model. In terms of physical interpretation, It

can be considered as the time-continuous variant of the trip-based model. Recently, Haddad and55

Zheng (2018) proposed a perimeter control model based on the delay accumulation-based model.

However, they simplified the model by assuming a constant average delay. Zhong et al. (2018)

proposed another perimeter control strategy founded on the delay accumulation-based model.

However, the authors have not investigated the stability issues that the model can pose during

network congested scenarios.60

Ampountolas et al. (2017) used the accumulation-based model using 3D-MFD in the con-

text of perimeter control. However, their work focuses on control with a fixed composition of

bi-modal traffic. Recently, Dakic et al. (2019) used the accumulation-based model for macro-

scopic modeling in the context of perimeter control using a bi-modal MFD. To the knowledge

of the authors, the current work is the first to propose the complete modeling frameworks for65

not only the accumulation-based model but also the trip-based and the delay accumulation-based

models considering a 3D-MFD. One of the aims of this work is to provide a complete review

of different model properties under transition and steady state conditions while resolving traffic

dynamics. Two different test cases are built to study the properties and limitations of the different

models. The solutions of the MFD-based simulators are compared to a reference solution that70

is computed by solving the system of linear hyperbolic equations, where the flux is defined by

3D-MFD (Leclercq et al., 2015). This approach explicitly considers the traffic state evolution

during the distance traveled in the reservoir. It guarantees that delays (wave propagation) from

one perimeter to another (for instance, inflow to outflow and vice-versa) are consistent and thus,

enable to assess whether a modeling approach provides consistent solution during transitional75

periods. This model is referred to as the continuum space-time model in the present work.

The remainder of the paper is organized as follows: Section 2 provides the details of the func-

tional form of 3D-MFD assumed in this work, a brief introduction to different MFD-based models

used. A detailed investigation of the delay accumulation-based model is also provided in this sec-

tion. Section 3 investigates the different MFD-based models with numerical examples. This sec-80

tion demonstrates the essential differences between different MFD-based modeling frameworks

along with the limitations, if any, for different models. Several novel modeling techniques are

proposed to address the limitations. Section 4 presents verification with micro-simulation results

using a grid network setting. Finally, Section 5 gives a brief overview of the conclusions made in

this work.85
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Table 1: Coefficient values used to compute the 3D-MFD.

Cars Buses

Coefficient Value Coefficient Value

βc,0 15 βb,0 15

βc,c -0.015 βc,b -0.003

βb,c -0.3 βb,b -0.06

2. Methodology: 3D-MFD and MFD-based models

2.1. Functional form of 3D-MFD

For the sake of simplicity, the functional form proposed in Loder et al. (2017) is used in the

present work. This is not restrictive as other functional forms like exponential function proposed

by Geroliminis et al. (2014), can also be used. The mean speed of the cars, vc, is expressed as a

linear function of the accumulation of cars, nc, and the accumulation of buses, nb as follows,

vc(nc,nb) = βc,0 +βc,c nc +βb,c nb. (1)

The constant of the function, βc,0, corresponds to the free-flow speed of the cars. The coefficients

βc,c and βb,c represent the marginal effect of each mode on the car mean speed, i.e., the amount

by which the free flow speed of the cars is reduced by adding a vehicle of each mode. Similarly,

the speed of buses is given as,

vb(nc,nb) = βb,0 +βc,b nc +βb,b nb, (2)

where βc,b and βb,b represent the marginal effect of each mode on bus mean speed. Now, the total

production in the network isthe sum of the production of cars, Pc, and production of buses, Pb.

As the production is defined as the product of accumulation and mean speed, the total production

can be expressed as,

P = nc vc +nb vb. (3)

From the eq. (3), P can be expressed as v(nc + nb), where v is the mean speed of all vehicles in

the network. Using the definition of total production and eq. (3), the mean vehicular speed in the

network can be written as,

v = vc
nc

nc +nb
+ vb

nb

nc +nb
. (4)

Table 1 presents the values of coefficients used in the present work and correspondingly,

Fig. 1 shows production MFD and velocity MFD surfaces obtained. Unless otherwise stated,

the remainder of the work uses coefficient values presented in Table 1 for modeling 3D-MFD.90

As shown in Fig. 1a, when nb = 0 the critical accumulation of vehicles is 500veh and maximum

production is 3750vehms−1. It can be noticed that maximum network production occurs at zero

bus accumulation and it decreases as the number of buses increases in the network. Moreover, the
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Figure 1: Production and velocity 3D-MFD surfaces.
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(b) Velocity MFD contour plot.

Figure 2: Production and velocity 3D-MFD contour plots.

critical accumulation, ncr, is no longer a constant value but depends on the partial accumulations

of buses and cars in the network. Fig. 2 presents the contour lines for both production and velocity95

3D-MFDs. The black line in the production 3D-MFD corresponds to the line of critical accumula-

tion. It means for any given bus accumulation, the critical line represents the maximum available

production in the network. Mathematically, the equation of the line of critical accumulation can

be expressed as βc,0 +2βc,c nc +(βc,b +βb,c)nb = 0.

2.2. Continuum space-time model100

This model has been first introduced by Leclercq et al. (2015) for network region with multi-

ple paths of different lengths. It is the only one among MFD-based models that can consider ex-

plicitly the internal travel distances with different traffic scenarios. While being computationally

demanding, it properly reproduces wave propagation between the region perimeter and therefore,

this solution is used as the reference in the present work.105
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The system of hyperbolic conservation equations for each mode, m, can be represented as,

∂km

∂ t
+

∂km v(K)

∂x
= 0 ∀m, (5)

where km is the density of mode m and v(K) is the velocity defined by 3D-MFD, which is the

function of all densities, i.e., K = [k1, . . . ,km]
T . In the special case of m = 1 and flux computed

by fundamental diagram, eq. (5) becomes Lighthill–Whitham–Richards (LWR) model (Lighthill

and Whitham, 1955; Richards, 1956). The model presented in eq. (5) can be interpreted as multi-

modal or multiclass traffic flow models. Different multiclass models proposed in literature are

well documented in Fan and Work (2015). Since all vehicles travel at the same speed given by ve-

locity MFD in the present model, this model is referred to as homogeneous multiclass model. The

strict hyperbolicity of the homogeneous multiclass models can be proven when m≤ 2 (Benzoni-

Gavage and Colombo, 2002; Keyfitz and Kranzer, 1980). System (5) can be re-written as,

∂K
∂ t

+A
∂K
∂x

= 0, (6)

where A is the Jacobian matrix and for the case of m = 2, it is given as follows,

A =

v+ kc
∂v
∂kc

kb
∂v
∂kc

kc
∂v
∂kb

v+ kb
∂v
∂kb

 . (7)

It can be shown that the Eigen values of the Jacobian A are real and distinct if ∂v
∂kc

< 0 and ∂v
∂kb

< 0.

The functional form of 3D-MFD proposed earlier fulfills this condition.

A single reservoir system with two different trips, one for cars and one for buses, is considered

in this work. The numerical resolution of the system (5) using MFD as flux function is discussed

in-detail in Leclercq et al. (2015). A similar approach is used here, albeit, 3D-MFD is used to110

define the flux function and hence, numerical scheme details are omitted. A constant CFL number

of 0.5 is used along with an adaptive time stepping scheme in all computations. The trip length

is discretized into 200 cells and a ghost cell is used on either end of the trip length to enforce

boundary conditions.

2.3. Accumulation-based model115

Essentially, the accumulation-based model is the simplification of the continuum space-time

model, where the space derivative of the flux is neglected. The resulting conservation equa-

tion (Daganzo, 2007) to resolve the reservoir dynamics is given as,

dnm

dt
= qm,in(t)−qm,out(t) ∀m, (8)

where nm is the space-averaged accumulation in the reservoir for mode m, qm,in(t) is the total

effective inflow and qm,out(t) is the total effective outflow. The main advantage of this model (8)

compared to the continuum space-time (5) is that this system is well-defined for any number

of modes, m. As the system (8) comprises of only Ordinary Differential Equations (ODE), the
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numerical resolution is straightforward and simple. On the other hand, the accumulation-based120

model accounts for the traveled distance incorrectly inside the reservoir, which may lead to inac-

curacies in network dynamics during transition periods (Mariotte et al., 2017).

The theory of single reservoir and multi-reservoir accumulation-based model is discussed in-

detail in Mariotte et al. (2017); Mariotte and Leclercq (2019). The following equations are the

direct extension of the stated previous works to a bi-modal or 3D-MFD. Hence, at the reservoir

entry, the effective inflow is defined as,

qm,in(t) = min(λm(t), Im(nm,n)) , (9)

where λm(t) is the demand for mode m and Im(nm,n) is the entry supply function, which depends

on the reservoir state. The entry supply function is defined as per the following relation,

Im(nm,n) =


nm

n
Pcr(nm,n)

Lm
if n≤ ncr(nm,n)

nm

n
P(nm,n)

Lm
otherwise.

(10)

In eq. (10), n is the total vehicular accumulation, i.e., n = ∑m nm, (ncr, Pcr) are the critical ac-

cumulation and production, respectively and Lm is the trip length of mode m. Following the

definition of entry supply function (10), it can be shown that ∑m Im =
Ps(nm,n)

L
, which is the flow

constraint, i.e., sum of flows on all routes cannot exceed reservoir capacity. Here, Ps(nm,n) and

L are entry supply production and average trip length (Geroliminis, 2009), respectively and they

are defined as follows,

Ps(nm,n) =

 Pcr(nm,n) if n≤ ncr(nm,n)

P(nm,n) otherwise
; L =

n
∑m

nm
Lm

. (11)

The inflow supply function can be expressed in terms of entry supply production as Im(nm,n) =
nm

n
Ps(nm,n)

Lm
. In addition to flow, another constraint can be defined based on production, i.e.,

∑m Lm Im = Ps, which states that the sum of entering production of each route should not exceed

reservoir total production capacity. The entry supply function definition (10) is valid, when all

routes (or modes) are in congestion. However, when only fraction of the routes are in congestion,

say car route is congested in reservoir and buses operate in free flow, reservoir capacity maybe

under-utilized by using (10). Hence, in this case, to ensure that the reservoir capacity is used

fully, the following constraint on production is defined,

Lm qm,in =

 Lm λm if Lm λm < Lm Im(nm,n)

max
(

∑n 6=m(Ps(nm,n)−Ln λn),
nn

n
Ps(nm,n)

)
otherwise.

(12)

By definition (12), the sum of entering production is equal to the total available production in the

reservoir, i.e., ∑m Lm qm,in = Ps(nm,n).

Similarly, the effective outflow is given as,

qm,out(t) = min(µm(t),Om(nm,n)) , (13)

7



where µm(t) is the supply restriction, if exists, and Om(nm,n) is the outflow demand function and

it can be defined as,

Om(nm,n) =


nm

n
P(nm,n)

Lm
if n≤ ncr(nm,n)

nm

n
Pcr(nm,n)

Lm
otherwise.

(14)

The details of the formulation of entry supply and outflow demand functions are provided in Mari-

otte and Leclercq (2019) and the references within and hence, not discussed here. In the definition

of the outflow demand function, the outflow share for each mode is computed based on the ratio

of partial accumulation of each mode to the total accumulation. However, for accurate prediction

of dynamics, the ratio of vehicles of each mode to the total number of vehicles of all modes that

are close to exit of the reservoir must be considered. Since this information is unavailable in the

accumulation-based framework (due to absence of space dimension), the ratio of vehicles in the

whole reservoir is used to compute partial outflow demand. This assumption has implications

on the resulting dynamics, but this is the closest approximation that can be made in the context.

The important point worth making here is that the critical accumulation and critical production

in eqs. (10) and (14) are not constant values as in the case of 2D-MFD, but decreasing functions

depending on the accumulation of each mode, nm. This has an important implication in the mod-

eling, which will be demonstrated in numerical examples. Analogous to entry supply production

in inflow computations, a new variable called exit demand production, Pd(nm,n), can be defined

as,

Pd(nm,n) =

 P(nm,n) if n≤ ncr(nm,n)

Pcr(nm,n) otherwise,
(15)

and similarly, outflow demand functions can be expressed in terms of exit demand production as125

Om(nm,n) =
nm

n
Pd(nm,n)

Lm
.

The entry supply and exit demand functions discussed till now are a conventional way of

treating the entry and the exit flows in the MFD-based framework. They are developed and

studied in the context of conventional 2D-MFD. However, it will be demonstrated in numerical

examples that this type of treatment, especially at the entry of the reservoir, has limitations when130

3D-MFD is considered. Hence, to address this issue, a new entry flow function based on First-

In-First-Out (FIFO) discipline is proposed in this work. This type of entry flow has not been

explored in the context of MFD-based modeling. Note that other formulations of entry flow

functions that consider higher flow constraint than the MFD maximum capacity and/or higher

critical accumulation have been proposed in the literature. They are not discussed here however,135

it is worth noting that FIFO discipline at the entry can be extended to any of these functional

forms and address the limitations of the 3D-MFD modeling framework. This will be discussed

in the subsequent sections after demonstrating the shortcomings of the conventional entry flow

function.

Figure 3 shows the entry supply and exit demand functions graphically on contour plots.140
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Figure 3: Contour plots of entry supply and exit demand production functions.

Note that these are analogous to entry and exit functions of a cell in the Cell Transmission Model

(CTM) (Daganzo, 1994). A first-order forward Euler scheme with a time step, ∆t, of 1 sec is used

in the present work to numerically resolve the accumulation-based model.

2.4. Trip-based model

Now considering the trip-based formulation, mathematically it can be expressed as,

Lm =
∫ t

t−τm(t)
v(n(s))ds ∀m. (16)

Consider τm(t) is the travel time of a user of mode m, who entered the reservoir at time t. The145

speed at each time instant depends on the total accumulation, n, in the reservoir, which is given by

velocity 3D-MFD. Hence, the area under the speed-time curve between the times, t− τm(t) and

t gives the total travel distance, which is trip length Lm. The significant modeling difference in

the trip-based model compared to the accumulation-based model is that the former considers the

traveled distance explicitly. This results in the resolution of more accurate traffic dynamics during150

the transition compared to the accumulation-based model. This is crucial for bi-modal flows as

buses and cars have different travel distances in the same region. This will be evident in the

numerical results presented subsequently, where the trip-based results are closer to the reference

solution. Event-based resolution proposed in Mariotte et al. (2017); Leclercq et al. (2017) is used

in the present work. The trip starting times of all vehicles are created based on the demand for155

each mode. Based on the current accumulation and trip length of each mode, the time at which

the leading vehicle in the queue leaves the reservoir is computed. Similarly, the time at which the

next vehicle enters the reservoir is known a priori from the demand. Depending on which event,

entry or exit, happens first, the next event and time instance are updated. The entry supply, exit

demand are applied to the first vehicle in the waiting list to enter the reservoir and the leading160

vehicle in the queue to exit the reservoir, respectively.

9



Congestion propagation in the trip-based model is modeled by using the same principles as

in the accumulation-based framework. For instance, for a mode m the entry supply time for a

vehicle N is imposed by changing the time at which the vehicle can enter the reservoir. This can

be expressed as follows,

tN
m,entry supply = tN−1

m,entry +
1

Im(nm,n)
∀m, (17)

where tN−1
m,entry is the entry time of previous vehicle N−1 for mode m and tN

m,entry supply is the time

at which, vehicle N can enter the reservoir. As stated in the context of the accumulation-based

model, the FIFO-based entry flow function is proposed in the framework of the trip-based model

as well. As will be seen in the discussion, implementing FIFO-based entry in the trip-based165

framework is more straightforward compared to the accumulation-based model.

2.5. Delay accumulation-based model

The principal hypothesis of the delay accumulation-based model is that the outflow is delayed

in the reservoir by the order of travel time at any time instance, t. This model was first introduced

by Ran et al. (1993); Friesz et al. (1989) in the context of link level traffic dynamics and later

used by Haddad and Zheng (2018); Zhong et al. (2018) in the context of MFD-based modeling.

Consider vehicles that enter the reservoir at time t, at an inflow of qm,in(t) for mode m. They leave

the reservoir at time t + τm(t), where τm(t) is the travel time inside the reservoir for the mode m.

Under the assumptions of vehicle conservation and FIFO rule, vehicles of mode m that enter at

time t must be equal to vehicles that leave the reservoir at time t + τm(t). Mathematically, it can

be expressed as, ∫ t

−∞

qm,in(s)ds =
∫ t+τm(t)

−∞

qm,out(s)ds. (18)

Differentiating the eq. (18) with respect to t and rearranging yields,

qm,out(t + τm(t)) =
qm,in(t)

1+
dτm(t)

dt

. (19)

Since,
dτm(t)

dt
is not known a priori, it can be computed using chain rule as follows,

dτm(t)
dt

= ∑
i={c,b}

∂τm

∂ni

dni(t)
dt
≡ ∑

i={c,b}

∂τm

∂ni
(qi,in(t)−qi,out(t)). (20)

The travel time function can be obtained from the velocity MFD, i.e., τm(nm,n) =
Lm

v(nm,n)
. As

the trip length of each mode, Lm, is constant and v(nm,n) is a well-defined analytical function,

a non-linear travel time function is obtained. Moreover, this obtained travel time function is170

well-defined and continuous with respect to accumulation. It is evident that as the accumulation

reaches jam accumulation and travel time tends to infinity. This poses stability problems for cases

with severe supply restrictions. The entry and exit flow functions in this framework are treated

in the same way as in the case of the accumulation-based model and hence, details are omitted.
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Notice that the conventional accumulation-based model uses production MFD as the input to the175

model, whereas in the delay accumulation-based model velocity MFD is embedded in the travel

time function.

For the case of linear travel time function with only one mode, i.e., τ = α +γ n, where α is the

free-flow travel time and constant inflow rate of qin, it is proven in Carey and McCartney (2002),

the delay outflow at any time tn can be expressed as,

q̄out = qin
∑

n−1
i=0 (qin γ)i

∑
n
i=0(qin γ)i , (21)

where q̄out is the delayed outflow at time t + τm(t). Expanding the expression (21) for each time

step results in the series of discontinuous jumps with outflow remaining constant within each

segment. Hence, if the inflow demand is constant, delayed outflow reaches the steady state by180

finite jump discontinuities. If the travel time function is non-linear, the outflow profile is more

complex within the discontinuous jumps. This phenomenon has implications during congestion

spill-backs, i.e., when the entry flow is limited by the reservoir capacity, these finite jumps can

become unbounded and consequently, diverging the numerical solution.

From eq. (19), it is evident that outflow at time t+τm(t) is non-negative if and only if
dτm(t)

dt
>185

−1. Physically, this restriction translates to strict FIFO behavior inside the reservoir. However, it

is already shown in Carey and McCartney (2002) that certain inflow profiles, mainly decreasing

demand functions, may result in
dτm(t)

dt
≤−1 and hence, violation of internal FIFO. By observing

eq. (20), it is clear that
∂τm

∂ni
is always positive as travel time function is always increasing. Hence,

dτm(t)
dt

is negative if and only if (qi,in(t)−qi,out(t)) < 0, i.e., during unloading. Daganzo (1995)190

proved that internal FIFO is preserved in this model if and only if travel time function is a linear.

In a simplified case of 2D-MFD, if travel time function is assumed to be linear, the corresponding

production MFD can be expressed as
Ln

α + γ n
, where L is trip length. Evidently, this type of

production MFD cannot be used in practical applications, where real traffic data tends to follow

piece-wise parabolic or piece-wise linear relationship between mean flow and accumulation. On195

the other hand, using a non-linear (for example parabolic) MFD results in non-linear travel time

function, which can violate the internal FIFO discipline during unloading. This can be regarded

as a strong limitation in this modeling framework. However, this work addresses this restriction

by proposing a new concept: weak internal FIFO discipline. This is achieved by re-constructing

the outflow cumulative curve locally whenever there is a violation in the internal FIFO discipline.200

The principle of weak internal FIFO discipline is discussed in-detail in the numerical examples

of the following section.

All the above stated MFD-based models assume a well-defined MFD for the network under

consideration. However, the link heterogeneity in the urban networks introduces a considerable

amount of scatter in the MFD (Ramezani et al., 2015). The heterogeneity in the link density can205

cause hysteresis loops, which are typically characterized by network performance during loading

and unloading phases. It is shown that considering the hysteresis phenomenon is important for
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accurate resolution of traffic dynamics in Paipuri et al. (2019) in the context of 2D-MFD using

micro-simulation study of a real network. The stated work can be extended to the case of 3D-

MFD by appropriately calibrating the MFD surfaces by taking the hysteresis loops into account.210

3. Bi-modal MFD model solutions and extensions

3.1. Test cases description

Test cases in the present work assume a reservoir with two modes namely, cars and buses.

Production and velocity 3D-MFDs computed based on the coefficients presented in Table 1 are

used in all examples, unless otherwise stated. The trip lengths of cars and buses, Lc and Lb,215

are assumed to be 1000 m and 2000 m, respectively. A total simulation time of 10000 sec is

considered and the first 1000 sec is warm-up period.

This work aims to study the MFD-based models during transitional regimes for different

scenarios. MFD-based models are known to behave well when the inflow varies slowly in time

as this complies with the steady state approximation upon which the definition of MFD is based220

in a reservoir. As steep varying inflows are common in the network loadings, it is necessary to

consider such conditions to see how the traffic dynamics are resolved in the transitional phase.

The current work is restricted to the limit case of step demand function with sudden increase and

later, sudden decrease of inflow. This magnifies the potential shortcomings during transitional

regimes, which in turn enables them to address. Two demand scenarios are considered: a low225

demand case, where traffic states are confined to the free-flow side of 3D-MFD. The fundamental

differences between modeling approaches during the transition regime are demonstrated using

this example. The second case consists of higher demand, where congestion spill-back reaches

the entry of the reservoir. The limitations of each model are studied under this scenario and

appropriate solutions are discussed.230

3.2. Low demand free-flow scenario

Firstly, a free-flow scenario is considered to demonstrate the essential differences between

different MFD-based models. A step demand case is assumed for the inflow profile according to

the following definition,

[λc, λb]
T =

 [0.1, 0.01]T if 0 < t ≤ 1000 or 6000 < t ≤ 10000

[1.3, 0.06]T otherwise,
(22)

where λc and λb are demands for cars and buses in vehs−1, respectively. These flow values are

chosen in such a way that the accumulations of cars and buses stay on the left hand side, i.e., in

the free-flow regime, of the critical accumulation line on the MFD surface shown in Fig. 2a.

Figure 4 presents the evolution of accumulation, outflow and mode share ratio with time for235

cars and buses. In this case, no spill-backs are observed in the reservoir and inflow follows the

demand profile. Therefore, plots of inflow evolution with time are omitted in this case. Figs. 4a

12
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Top plot is at demand surge and bottom one is at demand drop.

Figure 4: Low demand free-flow scenario: Evolution of accumulation, outflow and mode share with time for cars and

buses for all MFD-based models considered. 13



Table 2: Low demand free-flow scenario: Relative errors in L2 norm for accumulation and outflow for MFD-based

models with respect to continuum space-time model.

Model
Accumulation Outflow

Cars Buses Cars Buses

Accumulation-based 0.0688 0.0927 0.0729 0.1552

Delay accumulation-based 0.0293 0.0434 0.0238 0.1360

Trip-based 0.0162 0.0219 0.0638 0.1447

and 4b show the evolution of accumulation with time for cars and buses, respectively. According

to the assumed demand profile (22), there is a sharp increase in the demand at t = 1000sec

and correspondingly, a sharp decrease at t = 6000sec. Although all the models presented in240

the plots reach the same equilibrium, it is interesting to observe the transition region to study

the fundamental differences between models. Consider the demand surge at time t = 1000sec

highlighted in Figs. 4a and 4b. Since the continuum space-time model is the reference solution,

it is evident from the plot that the trip-based model follows the reference solution more closely

followed by the delay accumulation-based model and finally, the classical accumulation-based245

model is most diffusive or least accurate. Since there is no explicit space variation term in the

accumulation-based model, only space averaged solution is obtained at each time step, which

results in a more diffused solution. On the other hand, the trip-based model accounts for the wave

propagation inside the reservoir to a reasonable accuracy, which can be observed from the plot.

These results simply confirm existing observations with the uni-modal formulation of these two250

MFD-based models (Mariotte et al., 2017; Mariotte, 2018).

Delay accumulation-based is in between these two models, i.e., this model cannot account for

wave propagation like trip-based, however, the delay in the outflow introduces an average effect

of the wave propagation. The essential difference between trip-based and delay accumulation-

based is that the former can account for the variation of travel time during a trip, whereas the255

latter cannot account for this variation within a trip. The delay (or travel time) is computed at

the instance vehicle enters the reservoir and it does not change during the trip. The same applies

during the demand drop, i.e., at t = 6000sec, albeit, the transition to the equilibrium is rather fast

and hence, the differences in models are less obvious. However, the trend can be observed clearly

in the case of buses in Fig. 4b, where the trip-based is more accurate and the accumulation-based260

is less accurate. This shows that an accurate representation of delays between perimeters is even

more crucial for bi-modal flows as buses and cars have usually different trip lengths inside the

reservoir.

Table 2 presents the relative errors in L2 norm for the MFD-based models with respect to

the reference solution, i.e., continuum space-time model. The solution of each MFD model is265

computed at different time steps and so, in order to estimate the errors, all the solutions are
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projected on to a reference equidistant time intervals. The projection operation, in this case, is

done by a simple linear interpolation and hence, additional errors introduced are of the same order.

It is clear from the relative error values that the trip-based gives most accurate while the classical

accumulation-based model is least accurate when the evolution of accumulation is considered.270

Error in the accumulation for the delay accumulation-based is in-between the trip-based and the

accumulation-based, rather closer to the trip-based model.

Figures 4c and 4d present the evolution of outflow with time for different MFD-based models

considered for cars and buses, respectively. The inflow demand is shown in dotted lines in the

plot, where demand surge and drop can be observed. At t = 1000sec, it is clear from the plots275

that the outflow in the accumulation-based model reacts immediately to an increase in inflow.

On the contrary, both trip-based model and delay accumulation-based model produce a sharp

increase in the outflow around t = 1100sec, where the difference in time instants i.e., is the time

at which inflow is increased and actual time where outflow increase is noticed, is travel time inside

the reservoir. Again, this confirms the observations with classical MFD-based models about the280

important differences between different approaches.

In the delay accumulation-based, a step wise increase in the outflow is observed and this phe-

nomenon is in accordance with eq. (21) and discussed in-detail in Carey and McCartney (2002).

The reason for non-constant steps in the increase of outflow in the delay accumulation-based

model is due to the non-linearity in travel time function. Similarly, during the demand drop at285

t = 6000sec, the outflow in the accumulation-based model starts to decrease gradually, whereas

the trip-based and the delay accumulation-based produce a sharp decrease after accounting for

the travel time inside the reservoir. An increase in the outflow in the trip-based model can be

observed just before the demand drop. This is due to the causality effect that is discussed in-

detail in Leclercq and Paipuri (2019). In brief, the causality effect is noticed when demand drop290

occurs, which results in a decrease of accumulation inside the reservoir and an increase in the

mean speed of all vehicles. Thus, the mean speed of vehicles close to exit also increases, which

results in an increase of outflow before equilibrium is reached. A small increase in the outflow in

the buses is noticed at the end of the demand peak period. This is due to the fact that cars finish

their trip faster than buses owing to the smaller trip lengths. Hence, demand drop occurs in cars295

sooner than buses, which makes more outflow capacity available for buses and hence, an increase

in outflow for buses is noticed. Now considering the relative error values in outflow, it can be

noticed that the trip-based model has a larger error than the delay accumulation-based model.

This is again due to the causality effect before the end of the demand peak period. Since the delay

accumulation-based model cannot account for the variation of travel time or mean speed during300

the trip, the new vehicles entering the reservoir have no effect on existing downstream vehicles in

the reservoir. Hence, the causality effect is less observed in the delay accumulation-based model

and produces a more accurate solution with respect to the reference solution.

Finally, differences between models during the transition period can be clearly noticed by
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monitoring the mode share ratio, i.e., the ratio of outflow of cars to buses, which is an important305

factor for multi-modal simulations. Fig. 4e presents the mode share ratio evolution with time.

The equilibrium values of ratio of outflows computed from inflow (22) during demand surge and

warm-up periods are 21.67 and 10, respectively. During demand surge, the ratio increases sharply

to a value higher than 100 in all models except the accumulation-based, stays at that value for a

certain time and then converges to the equilibrium state. This sharp increase is due to the fact that310

the outflow of cars increases prior to the buses (owing to the shorter trip length of cars) and there-

fore, the ratio of outflows during this period should be 130 from the inflow profile (22). Fig. 4f

shows that the continuum space-time model estimates this mode share ratio of 130, while the

trip-based and the delay accumulation-based models over-predicts and under-predicts, respec-

tively. The inaccuracies in the trip-based model are due to the rounding-off and interpolation315

errors. In the trip-based model, the outflow is re-constructed from the exit times of each vehicle

and this re-construction procedure introduces some rounding-off errors. On the other hand, the

outflow in the delay accumulation-based model increases through finite discontinuous jumps and

tends to equilibrium through these series of jumps. Hence, a small under-prediction is observed

owing to inaccuracies introduced by these jumps. Once the outflow of buses reacts to the inflow320

surge, the ratio tends to the equilibrium ratio of 21.67. The exact opposite behavior is observed

during the demand drop, where the outflow of cars decreases first, followed by buses. However,

the accumulation-based model is unable to predict this phenomenon and it is evident from Fig. 4f

that during both demand drop and demand surge phases, the ratio of outflows gradually converges

to equilibrium ratio in the accumulation-based model. The accumulation-based formulation not325

only fails to predict the dynamic evolution of mode share but also takes a long time to converge

to the equilibrium ratio. This is a significant drawback for bi-modal traffic simulations. This can

be noticed during the demand drop period, where at the end of 6400sec, the accumulation-based

model still has not reached the equilibrium ratio.

3.3. High demand congested-flow scenario330

This scenario is chosen in such a way that congestion appears inside the reservoir because of

high demand and spill-back reaches the entry of the reservoir limiting the inflow. This is achieved

by increasing the inflow demand of buses relative to the demand of cars. A similar step demand

case as in the previous example is considered as follows,

[λc, λb]
T =

 [0.1, 0.01]T if 0 < t ≤ 1000 or 6000 < t ≤ 10000

[1.3, 0.13]T otherwise.
(23)

In this case, the inflow demand of buses is increased to 0.13 vehs−1 from 0.06 vehs−1 in the

free-flow scenario. As the number of buses increase in the reservoir, the capacity of the network

reduces according to the assumed 3D-MFD and therefore, congestion spill-backs appear in the

reservoir.
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Figure 5 shows the evolution of accumulation, inflow and outflow for the different MFD-335

based models along with the reference solution. It is clearly evident that all models are not only

different during transition regimes, but also, importantly, they reach different steady states on

the 3D-MFD plane. This example illustrates the essential differences in the modeling framework

between a conventional 2D-MFD and a bi-modal 3D-MFD.

Firstly, consider the solution of the continuum space-time model. The inflow reaches the given340

demand of 1.3 vehs−1 and almost immediately drops to an equilibrium value of 1.15 vehs−1.

In the continuum space-time model, the space dimension is discretized into a finite number of

cells and the inflow dynamics are evolved based on the solution in the first cell of the left hand

boundary. As soon as the inflow of cars and buses increases after t = 1000sec, the density of

cars and buses in the first cell reaches the maximum allowable value based on the 3D-MFD and345

the inflow adapts accordingly to sustain at this equilibrium value. On the contrary, in the case of

other MFD-based models, the inflow adapts based on the average density of the whole reservoir.

Hence, the inflow demand of 1.3 vehs−1 sustains for a longer period of time before congestion

spill-back reaches the entry. In other words, the entry flow function works based on the density

value of the first cell in the continuum space-time model, whereas it works based on the average350

density value in the whole reservoir in the MFD-based models. It can be concluded that it is

not possible to compare the continuum space-time model with MFD-based results in the case of

congestion spill-backs. Therefore, the results of the continuum space-time model are omitted in

the rest of the discussion for the present scenario.

Now consider the other MFD-based models. As explained in Section 2, all three modeling355

frameworks use the same entry flow function defined in eq. (10) along with constraint (12). How-

ever, as stated earlier the critical production in the case of 3D-MFD is not a constant value and

it depends on the partial accumulation of cars and buses. On the contrary, the total maximum

production in the case of 2D-MFD is always the same irrespective of the partial accumulations

on each route. From the previous test case, it is concluded that different MFD-based models360

have different behaviors during transition periods. Consequently, the ratio of accumulation of

cars to buses evolves differently during demand surge. Fig. 6a presents the ratio of buses to to-

tal accumulation at the demand surge period. The oscillations in the trip-based model are due

to the discreteness of the numerical scheme. It is clear that the ratio evolves differently for dif-

ferent models owing to their conceptual frameworks. As this ratio is directly used in the entry365

flow function (10), the inflow assumes different values and hence, this difference in the partial

accumulations results in different equilibria on the 3D-MFD plane for different models. This phe-

nomenon is absent when a conventional 2D-MFD is used as the critical accumulation is always

the same irrespective of the partial accumulations. Observe Fig. 6, which presents the evolution

of accumulations of cars and buses on the MFD contour surface. The black line indicates the370

critical production, i.e., the peak of any parabolic 2D-MFD for a given bus accumulation. The

three MFD-based models reach different equilibria states on the surface.
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Figure 5: High demand congested-flow scenario: Evolution of accumulation, inflow and outflow with time for cars and

buses for all MFD-based models considered.
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Figure 6: High demand congested-flow scenario: Evolution of bus share and evolution of partial accumulations on MFD

plane for all MFD-based models considered.

Another inference worth making in this scenario is the evolution of traffic dynamics during

the period of demand drop. It can be noticed from Figs. 5c and 5d that the steady state inflow

values sustain for a longer period even after demand drop, i.e., t = 6000sec. This is due to the375

queue discharging phenomenon that happens during congestion. The entry flow function keeps

two queues for each mode at the entry of the reservoir and the rate at which the queues can be dis-

charged depends on the partial accumulations (10). According to the present entry flow function,

the queue of the buses takes longer to discharge than that of cars. Hence, when the queue of the

cars disappears, the entry flow function, due to the constraint on total available production (12),380

allocates the maximum available production (or capacity) to buses. This is evident from a huge

increase in the inflow of the buses for MFD-based models before the end of the queue discharge.

It can be observed in the MFD plane as well, where the accumulations tend to go in an upward

direction, i.e., going in the direction of increasing bus accumulation and decreasing car accumu-

lation. This is possible only if there are different entry points for cars and buses in the network385

(separate networks), but not if all routes are mixed, which is often the case in reality. In the case

of mixed routes, it is highly unlikely that one mode of the vehicles will have a priority over the

other while discharging queues in a congested scenario. When spill-backs reach the entry, the

vehicles start to queue in the order of their arrival at the perimeter and enter the reservoir in the

same order. Hence, this type of entry flow function violates the FIFO rule at the entry of the390

reservoir due to inconsistent queue discharge of each mode.

To summarize the discussion above, the entry flow function presented in eq. (10) has implicit

dependence of maximum capacity on the mode share ratio. The differences in the evolution

of mode share ratio between different models result in different capacities and consequently,
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different equilibria. This can be addressed by introducing FIFO discipline at the entry, which395

guarantees that the current share of inflows between modes matches the demand and it is no

longer depends on the internal mode share in the reservoir. This assumption goes well with

physical rationale. When vehicles start to queue at the entry of a homogeneous border, which is

always the case in the MFD framework, there is no reason for one mode (in absence of dedicated

lanes) to be more competitive than the other, i.e., bypass the queue faster. Therefore, when buses400

and cars are mixed in a congested inflow, they should experience the same delay to reach the

reservoir entry, which FIFO discipline enforces in the proposed entry flow function.

FIFO-based entry flow function

The principal idea behind the FIFO-based entry supply function is to build a global queue

instead of a local queue per trip at the entry of the reservoir. For example, in the present case

of having two modes (or trip lengths) inside the reservoir, the FIFO-based entry flow function

uses only one global queue rather than two for each mode. In the case of the trip-based model,

implementing the FIFO-based entry flow function is straight-forward. Based on the departure

times of the cars and buses, if the congestion spill-back reaches the entry of the reservoir, the

vehicles queue at the entry in the order of their departure times, irrespective of the mode. Then,

the entry supply time for the leading vehicle in each queue can be defined as follows,

tN
entry supply = tN−1

entry +
1

IF(nm,n)
∀N, (24)

where IF is the FIFO-based entry supply function. The capacity available for entry flow should not

exceed the reservoir’s and therefore, the entry supply function, IF , can be computed as follows,

IF(nm,n) =
Ps(nm,n)

L
, (25)

where Ps and L are defined in eq (11). FIFO-based entry flow ensures that maximum capacity is

always utilized at the entry by forming a global queue. However, implementing this FIFO-based405

entry flow function in the framework of the accumulation-based models is not trivial.

The present work proposes the design of FIFO-based entry for the accumulation-based mod-

els based on the partial cumulative curves, which is based on the work of Chevallier and Leclercq

(2008). Fig. 7 shows graphical representation of FIFO-based entry system. In the plot, Ni
c and

Ni
b are inflow cumulative curves for cars and buses and likewise, Nd

c and Nd
b are demand cumula-

tive curves for cars and buses, respectively. The total demand and inflow cumulative curves are

denoted by Nd and Nc, respectively. Consider the evolution of the system is known until time tn,

for the next time step, tn+1, the inflow for each mode is computed based on eqs. (9) and (10). Let

the inflow values “predicted” at time tn+1 be qn+1,p
c,in and qn+1,p

b,in for cars and buses, respectively.

Assuming ∆t to be constant time step, the predicted partial cumulative curves at time tn+1 can be
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Figure 7: FIFO-based entry supply function: Graphical representation of implementation of FIFO-based entry supply

function. N is the cumulative curve, subscripts c, b denote cars and buses, respectively and superscripts d, i correspond to

demand and inflow, respectively. The superscripts p and c on the incremental cumulative vehicles denote predicted and

corrected values, respectively. Finally, superscript a on time denotes the arrival (or creation) time of the vehicle.

expressed as,

Ni,n+1,p
c = Ni,n

c +δNn+1,p
c = Ni,n

c +qn+1,p
c,in ∆t, (26a)

Ni,n+1,p
b = Ni,n

b +δNn+1,p
b = Ni,n

b +qn+1,p
b,in ∆t. (26b)

It is evident from the graph that the actual inflow is lower than the demand, which results in

the formation of a queue at the entry of the reservoir. Hence, the predicted number of vehicles

{Ni,n+1,p
c ,Ni,n+1,p

b } at time tn+1 had been created at time {tn+1− tn+1,a
c , tn+1− tn+1,a

b }, respec-

tively. In other words, cars and buses have a delay (or waiting time) of {tn+1− tn+1,a
c , tn+1−410

tn+1,a
b }, respectively. If the FIFO rule were to hold true, the ratio of the number of vehicles at

time tn+1 should be the same as the time of the creation of each mode, i.e., vehicles for each

mode created at the same time should experience the same delay before entering the reservoir.

The mode that experiences maximum delay is chosen and flow values are “corrected” to obey

FIFO discipline in the queue. In the graph, it is clear that the buses have more delays accord-415

ing to the predicted inflow values. It is possible to obtain the cumulative number of cars at time

tn+1,a
b and the corrected inflow is

δNn+1,c
c

∆t
. Now, it can be verified graphically that the ratio of

the number of vehicles at time tn+1 and time of arrival tn+1,a
b is the same. Similarly, the total

inflow can also be corrected by setting the total number of vehicles at time tn+1 to be equal to

total vehicle count at time tn+1,a
b . In a nutshell, the proposed FIFO-based entry supply can be420

briefed as follows,

• Compute the predicted inflow values based on the entry supply function (10).

• Calculate the delay for each mode by estimating at which time instance the demand cumu-
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lative curve has the same number of vehicles as inflow cumulative curve at time tn+1 for

each mode.425

• The corrected inflow values correspond to the mode which experiences a maximum delay.

Estimate the value of the cumulative number of vehicles at the time of the maximum delay

for two modes.

• Finally, compute the corrected inflow values from the cumulative curve value at time tn and

the new corrected cumulative number of vehicles at time tn+1.430

This prediction-correction strategy can be applied to both conventional accumulation-based model

and delay accumulation-based models. Consider a case of the constant demand of λc, λb for cars

and buses, respectively. As assumed earlier, let the predicted cumulative number of vehicles for

each mode be {Ni,n+1,p
c ,Ni,n+1,p

b }. The arrival time for each mode can be computed as,

tn+1,a
c =

Ni,n+1,p
c

λc
, (27a)

tn+1,a
b =

Ni,n+1,p
b
λb

, (27b)

owing to a simple constant demand. Depending on the arrival times of each mode, the inflow

based on FIFO discipline at time tn+1 can be expressed as follows,

qn+1
in =



Ni,n+1,p
c −Ni,n

c

∆t
,

Ni,n+1,p
c

λb

λc
−Ni,n

c

∆t


T

if tn+1,a
c = min(tn+1,a

c , tn+1,a
b ),

Ni,n+1,p
b

λc

λb
−Ni,n

c

∆t
,

Ni,n+1,p
b −Ni,n

c

∆t


T

if tn+1,a
b = min(tn+1,a

c , tn+1,a
b ).

(28)

Note that the solution presented in eq. (28) is possible because of the simplicity assumed in the

demand profile. A simple linear interpolation is used to compute arrival times for each mode

in (27) in the case of constant demand, which yields an exact solution. Whereas in the case of

non-constant demand, a higher order interpolation is desired to minimize the errors. However,

the underlying time integration scheme introduces errors of its own to the numerical solution.435

In the current work, the first-order forward Euler scheme (second-order accurate within each

time step) is used to discretize the ODEs. A linear interpolation introduces errors of order 2

as well. Since the errors introduced by both time integration and FIFO-entry rule are of the

same order, the convergence of the entire method is unchanged. If higher order time integration

schemes like Backward Differentiation Formulae (BDF), Runge–Kutta (RK) are used, higher440

order interpolation schemes must be used in the FIFO-based entry supply functions. Therefore, it

is concluded from this work that linear interpolation is sufficient and gives satisfactory results.

The proposed FIFO-based entry supply function uses eq. (10) to predict the inflow values

before correcting them using the FIFO rule. Hence, an accurate and realistic entry flow func-

tion is necessary for accurate modeling of congestion spill-backs. The entry supply function445
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defined in eq. (10) is a straightforward extension from 2D-MFD, which is in turn based on CTM

model. Mariotte and Leclercq (2019) discussed in-detail the calibration of the entry flow func-

tion in the context of 2D-MFD. The stated work concluded that the shape of the entry supply

function is characterized by higher critical capacity and critical accumulation compared to the

underlying MFD. This conclusion is verified using micro-simulations on a rectangular grid net-450

work in Mariotte et al. (2019). This study can be extended to the case of 3D-MFD as well, where

the entry supply function can be calibrated based on the total capacity of links that are entering

the assumed reservoir. The proposed FIFO-based entry rule can be applied to any generic en-

try flow function, irrespective of its shape. Another important aspect is to consider a reservoir

with a perimeter separated in several borders (collection of entry points), which can arise in the455

multi-reservoir MFD-based simulations. In this case, each border capacity can be estimated using

pro rata demand merge coefficient (Mariotte and Leclercq, 2019). Then, the FIFO-based entry

flow function can be applied to every border and each mode. Even though the predicted inflows

at different entry points for different models are different, the inflow at each entry is driven by

the FIFO discipline, which results in unique inflow evolution for all models. As the bi-modal460

share for all separate borders evolves the same way in all the models, the steady state is unique

irrespective of the model. Hence, the extension of this framework to multi-reservoir simulations

is also straight-forward.

Figure 8 presents the evolution of accumulation, inflow and outflow with FIFO-based en-

try flow for MFD-based models. The first remark to be made here is that all models reach, as465

expected, the same steady state irrespective of their differences in evolution during transition pe-

riods. Observing the evolution of accumulation in Figs. 8a and 8b for cars and buses, respectively,

it is clear that the steady-state value is approximately the same for all three models. The trip-based

model has slight oscillations that come from smoothening of the solution. Both accumulation-

based and delay accumulation-based models behave very similarly in the transition and the differ-470

ences are less obvious compared to the free-flow case. This is due to averaging the outflow in the

delay accumulation-based model to avoid unstable oscillations. This phenomenon is discussed

in-detail in the following part of the section. Inflow evolution shown in Figs. 8c and 8d conclude

that the inflow drop occurs in the trip-based model first followed by the delay accumulation-based

and the accumulation-based models. This is due to the fact that the shock wave propagation is475

estimated more accurately in the trip-based model. Also, it can be observed that the drop in in-

flow is sharper in the trip-based and diffused in the accumulation-based models. This is also an

expected conclusion based on theoretical frameworks of the models. Figs. 8e and 8f present the

evolution of outflow and an important point worth making here is the peak outflow reached by

the trip-based model. It is evident from the plot that both accumulation-based models experience480

a higher outflow than trip-based model during demand surge. This is the result of two different

phenomena that are inherent to trip-based namely, faster propagation of information to the entry

and causality effect. Even though the trip-based model allows the maximum inflow, i.e., demand
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Figure 8: High demand congested-flow scenario: Evolution of accumulation, inflow and outflow with time for cars and

buses with FIFO discipline at the entry for all MFD-based models considered.
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Figure 9: High demand congested-flow scenario: Evolution of accumulation on MFD surface and mode share in outflow.

for a short period of time before dropping, the mean speed of these vehicles is reduced by the time

they reach the exit of the reservoir due to the reverse causality effect. Finally, Fig. 9a shows the485

evolution of traffic dynamics on the MFD surface. Unlike in the case of conventional entry flow

presented in Fig. 6b, it is clear that all MFD-based models follow the same trend on the MFD

surface. All MFD models reach the same equilibrium point on the surface and the differences

between the models are noticed in the transition period. Similarly, the mode share in the outflow

is presented in Fig. 9a and as concluded in the case of free-flow, the accumulation-based model490

is unable to capture transition dynamics accurately. On the other hand, delay accumulation-based

model and trip-based give satisfactory results.

Weak internal FIFO discipline and outflow stabilization

There are few important remarks to be made in the case of the delay accumulation-based

model. As presented earlier, this model is consistent and stable in the free-flow regime. However,495

it suffers from stability issues and internal FIFO violation in the case of congested scenarios. The

stability in this context refers to numerical stability, where the underlying numerical scheme tends

to diverge. The results presented in Figs. 8 and 9 correspond to the stabilized delay accumulation-

based model. In the following, the stability issues are explained along with the stabilization

techniques proposed in the present work.500

Notice from eq. (19), outflow at time t + τm(t) is proportional to inflow at time t and propor-

tionality constant is
(

1+
dτm

dt

)−1

. As outflow cannot be negative, one of the conditions for a

stable numerical scheme is
dτm

dt
>−1 as discussed earlier. In the present case of two modes, this
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condition can be expressed as,

dτc

dt
=

∂τc

∂nc
(qc,in(t)−qc,out(t))+

∂τc

∂nb
(qb,in(t)−qb,out(t))>−1 for cars, (29a)

dτb

dt
=

∂τb

∂nc
(qc,in(t)−qc,out(t))+

∂τb

∂nb
(qb,in(t)−qb,out(t))>−1 for buses, (29b)

where subscripts c and b denote cars and buses, respectively. It is evident that both τc and τb are

increasing functions with respect to nc and nb and hence, their derivatives are always positive.

In the case of increasing inflow demand, the conditions (29) are always satisfied as (qc,in(t)−

qc,out(t))≥ 0. However, if (qc,in(t)−qc,out(t))< 0 or (qb,in(t)−qb,out(t))< 0, the resulting delay

outflow might be negative, thereby yielding physically inadmissible solutions. There can be two505

situations, where the conditions (qc,in(t)− qc,out(t)) < 0 or (qb,in(t)− qb,out(t)) < 0 hold true.

The first case being the unloading of the network, where there is a significant drop in the inflow

demand with respect to the outflow and the second case arises in the event of congestion spill-

backs reaching the entry, which limits the inflow. In the first case, the conditions (29) are violated,

which in-turn violates the internal FIFO discipline. Whereas in the second case, the value
dτm

dt
510

tend to be very close to −1, which sets the outflow into unbounded oscillations.

Now consider the second case, where the congestion reaches the entry of the reservoir thereby

limiting the inflow. As already discussed, outflow tends to the steady state value in a series of

discontinuous jumps in the delay accumulation-based model. As the inflow demand increases

suddenly, the travel times of the vehicles inside the reservoir increases rapidly resulting in a sharp515

gradient in the time derivative of the travel time function,
dτm

dt
. As the outflow asymptotically

reaches the inflow, the gradient
dτm

dt
decays slowly towards 0 in series of jumps as well. During

this period, if inflow drops due to the congestion spill-backs before outflow reaching the steady

state, the jumps in
dτm

dt
amplify slowly, instead of decaying. If neither inflow nor outflow reaches

steady state quick enough, the value of
dτm

dt
tend to −1, which leads to unbounded oscillations in520

the outflow. This phenomenon can be observed in the case, where congestion spill-backs reduce

the inflow at the entry. Using the previous example of high demand congested-flow scenario, this

stability issue can be demonstrated.

Figures 10a and 10b present the inflow and outflow for cars and buses, respectively. The

spill-backs reach the entry of the reservoir around 1300sec and inflow starts to decrease. The525

presence of oscillations in the outflow with the decrease of the inflow can be noticed in the plots.

Notice that the jumps in outflow prior to 1300sec are the result of the delay accumulation-based

model framework, where outflow reaches the steady state in finite discontinuous jumps. This

phenomenon is inherent to the delay accumulation-based model and it is stable in the absence of

spill-backs. Since the spill-backs reduce the inflow, before the outflow reaches the steady-state,530

these discontinuous jumps amplify proportional to the reduction in the inflow. This is evident

from Figs. 10c and 10d, which present the time derivative of travel time functions of cars and

buses, respectively. After t = 1300sec, the oscillations become unbounded and eventually violate
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Figure 10: High demand congested-flow scenario: Instabilities in inflow and outflow for the delay accumulation-based

model.
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Figure 11: Stabilization techniques for the delay accumulation-based model.

the stability condition around 3000sec. Previous works that used this model either simplified the

model using a constant travel time (Haddad and Zheng, 2018) or illustrated the model using test535

scenarios (mostly in the free-flow regime) that do not pose stability issues (Zhong et al., 2018).

So, no stability problems were reported for the delay accumulation-based model in the context

of the MFD-based framework. Hence, it is important to consider the possibility of occurrence of

these spurious oscillations under spill-back conditions and stabilize the model.

In this work, oscillations in the outflow are decayed in order to stabilize the delay accumulation-540

based solution. As discussed earlier, one of the reasons for the amplification of oscillations is that

the inflow starts to decrease before the outflow reaches a steady state. This results in a cascading

effect in the oscillations that become unbounded. So, the idea behind the stabilization technique

is to smoothen the outflow in order to damp the unbounded oscillations. Fig. 11a illustrates the

stabilization idea. Consider there is a demand surge at time t1−T , where T is the travel time.545

As the delay accumulation-based model reacts to changes in inflow as finite discontinuous steps,

it can be represented as shown in the plot as a solid line. In this technique, the outflow is av-

eraged for a certain time period and the outflow value is replaced by the mean outflow in that

time period. For example, in Fig. 11a the actual outflow between times t1 and t2 is replaced by

its mean value (represented in dashed lines). The same is done between times t2 and t3 and so550

on. These time periods can be either fixed or variable based on the evolution of dynamics. For

very small periods, the oscillations are not well damped and the model can become unstable. On

the contrary, for very large time periods, errors arising from smoothening the solution might af-

fect the traffic dynamics. Using this method, the outflow is in a pseudo steady state within each

period and after sufficient time, the actual outflow converges to the smoothened outflow for the555

case of constant inflow demand. It can be regarded that this stabilization technique is based on

a low-pass filter, where high frequency oscillations are filtered out. This can be clearly noticed

in Figs. 8e and 8f, where piecewise constant outflows are present in both cars and buses. As all
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the stabilization schemes in the numerical methods, this scheme also introduces a few errors of

its own to the solution. A brief error analysis is presented in Appendix A. However, the proposed560

stabilization method is requisite in the present context, without which it is impossible to obtain

a converged solution. It is also worth noting that this stabilization technique is only used when

there are spurious oscillations in the outflow. In the absence of unbounded oscillations, the model

reduces to the original delay accumulation-based model.

Now coming back to the first case, where there is a drop in the inflow demand. Depending

on the magnitude of demand drop, from eqs. (29),
dτm

dt
can be less than −1. As stated earlier,

dτm

dt
< −1 implies the violation of internal FIFO discipline. From eq. (21) the outflow becomes

negative and exit times do not follow FIFO rule. As illustrated in Fig. 11b, the internal FIFO

rule is violated when the demand decreases from q1
in to q2

in. As the inflow decreases, the number

of vehicles inside the reservoir decrease and hence, the speed of the new vehicles that enter

the reservoir is higher than the ones that are already inside the reservoir. If the rate at which the

vehicles decrease, which depends on the differential between two demand values at the unloading,

is above a certain threshold, the newly entered vehicles can overtake the existing ones and leave

the reservoir before. Hence, unrealistic flow values are observed for a short period during the

unloading phase. However, this is more of a local phenomenon and globally the system will

reach a steady state that corresponds to the new demand. This can be illustrated using outflow

cumulative curve of reservoir. Fig. 11b shows a case where internal FIFO discipline is violated

during the demand drop period using inflow and outflow cumulative curves. It is obvious from

the inflow curve that there is a demand drop, i.e., q2
in < q1

in. Consider that the inflow demand

drops at time tn and the vehicles that enter the reservoir at that time, exit the reservoir at time

tn
exit. Since the internal FIFO discipline is violated, vehicles that enter after time tn, say tn+1,

leave the reservoir before tn
exit. This is evident from the plot that tn

exit > tn+1
exit . As stated earlier, this

phenomenon happens only in transition period and eventually, the system reaches the steady state.

After time tn+p
exit , it is clear from the plot that the outflow is in equilibrium with new inflow demand.

The period of internal FIFO violation is between tn
exit and tn+p

exit . The outflow cumulative curve is

re-constructed between in time period, i.e.,
[
tn
exit, t

n+p
exit

]
in order to obtain admissible solutions. As

times tn
exit and tn+p

exit and corresponding Nn
out and Nn+p

out are known a priori, the outflow is computed

based on the mean outflow between tn
exit and tn+p

exit . The re-constructed outflow, qrecon
out , can be

expressed as,

qrecon
out =

Nn+p
out −Nn

out

tn+p
exit − tn

exit

. (30)

As the delay accumulation-based model projects the solution at time t onto time t +T , where T565

is travel time, this reconstruction process does not effect the solution at the current time t. Phys-

ically, this method can be interpreted as holding up the vehicles in the reservoir and discharging

them in the order of internal FIFO discipline. Hence, it is clear that this method conserves the

total number of vehicles during the simulation duration.
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To conclude the present test case scenario, a non-constant time varying demand is also con-570

sidered. It is noticed that the proposed FIFO-based entry flow function for all the MFD-based

models, weak internal FIFO discipline and outflow stabilization in the delay accumulation-based

model are working as expected. It is inferred that there are neither new insights nor new limita-

tions with a non-constant demand. Therefore, to avoid redundancy, the results with non-constant

demand are omitted. Moreover, the MFD framework is well suited to the slow-varying demand575

as the MFD is based on the steady state approximation.

3.4. Segregated 3D-MFDs

Until now, assumed 3D-MFD is the function of total production in the network with respect

to the accumulation of cars and buses. This is the classical approach for 3D-MFD in the literature.

For example, Loder et al. (2017) collected the data of mean speeds of cars and buses and approx-580

imated the mean speed of each mode as the linear combination of two modes. These mean speed

fits are aggregated to obtain the 3D-MFD in total production in the network, which is the sum

of car and bus partial productions. This kind of 3D-MFD in total production is resourceful for

practitioners to understand the impact of each mode in the network. Moreover, for the modeling

purpose, it is more appealing to keep the data of production per mode and segregate the 3D-MFD585

into two 3D-MFDs in partial productions. Perhaps using a single 3D-MFD for determining net-

work performance is a viable solution, averaging the speed of all vehicles even though when the

mean speed per mode is readily available, may lead to a significant approximation for dynamic

simulations. Furthermore, dedicated bus lanes form a specific network with few interactions with

other vehicles. Thus, it may be interesting to distinguish the MFD for these specific lanes and590

have a different equation for the dedicated networks.

The purpose of this study is to compare the different levels of aggregation for 3D-MFD dy-

namic models: a single 3D-MFD vs. two segregated partial 3D-MFDs per mode. This case

compares the results between two approaches and attempts to explain the differences if there are

any.595

Figure 12 presents the segregated 3D-MFDs for the coefficients presented in Table 1. It is

evident that both modes have a peak production when the other mode is absent in the network and

the productivity of the network decreases gradually as the accumulation of other mode increases.

The fundamental difference between using a single 3D-MFD and segregated 3D-MFDs is that the

computation of partial outflow in the accumulation-based model or mean speed in the trip-based600

framework. Consider the partial outflow in the accumulation-based model given in eq. (14), when

n≤ ncr, which can be expressed as
nm

Lm
v. When a single 3D-MFD is used, v is the mean speed of

all modes, i.e.,
nc vc +nb vb

nc +nb
. On the other hand, when segregated 3D-MFDs are used, v becomes

the mean speed of each mode, i.e., vc =
Pc

nc
and vb =

Pb

nb
. Since, the mean speed of cars is generally

higher than the mean speed of buses, it is easy to verify that
nc vc +nb vb

nc +nb
< vc. Consequently,605

30



200
400

600
800

0

20

40

0

2000

4000

(500,0,3750)

nc (veh)nb (veh)

P c
(v

eh
m

s−
1 )

0 500 1000 1500 2000 2500 3000 3500

(a) Car production MFD surface.

200
400

600
800 1000

20

40

0

500

nc (veh)
nb (veh)

P b
(v

eh
m

s−
1 )

100 200 300 400 500

(b) Bus production MFD surface.

Figure 12: Segregated car and bus 3D-MFD surfaces.

the outflow of cars using segregated 3D-MFDs is higher than in the case of single 3D-MFD. On

the contrary, the outflow of buses is higher using a single 3D-MFD, as the mean speed with both

modes combined is higher than the mean speed of buses. Hence, the differences in the network

dynamics using a single 3D-MFD or segregated 3D-MFDs depend on the demands of each mode

and the 3D-MFD per se.610

In order to compare the results from a single 3D-MFD and two segregated 3D-MFDs, a high

demand test case scenario (eq. (23)) is considered. Fig. 13 shows the evolution of accumula-

tion, outflow with time for cars and buses using segregated 3D-MFDs. It is clear from Figs. 13c

and 13d, that the reservoir is in the free-flow regime, where the outflow matches the inflow de-

mand. This is a major difference between two approaches of using 3D-MFD using the same615

demand profile. Using a single 3D-MFD, congestion spill-backs appear that reach the entry in a

very short time. Whereas in the second approach of using two segregated 3D-MFDs, the reservoir

is in the free-flow regime. This is due to the relative magnitudes of peak demands of cars and

buses. Since, the demand for cars is higher than buses (usual case in realistic networks), using the

segregated 3D-MFD approach improves the outflow of cars in the accumulation-based models620

(mean speed of cars in the trip-based). At the same time, the outflow (or mean speed) of buses

is reduced compared to the single 3D-MFD approach. However, the increase in the outflow of

cars outweighs the decrease in the outflow of buses, which results in the increased productivity

of the network. The peak accumulations of cars and buses in the present case are 158veh and

15veh, respectively are comparatively lower than the peak accumulations obtained with the sin-625

gle 3D-MFD approach, which are 200veh and 30veh, respectively. Figs. 13e and 13f show the

evolution of accumulations on car and bus 3D-MFD surfaces, respectively. It can be noticed that

the accumulations stay in the free-flow branch of the MFD surfaces.

Hence, it is important to investigate which approach is more realistic for practical applica-

tions. Theoretically, two segregated 3D-MFDs are more accurate than one aggregated 3D-MFD630
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Figure 13: High demand congested-flow scenario: Evolution of accumulation, outflow with time for cars and buses using

segregated 3D-MFDs.
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Figure 14: Idealized grid network used in micro-simulations for verification of MFD-based models. It is a 6× 6 square

grid network, where each block is 1000m. The links represented in green are dedicated bus lanes from west to east, north

to south and vice-versa. Similarly, links that are in blue correspond to bus route shared with cars. Bus stops are located at

the end of each block.

as aggregation introduces additional errors. Considering the mean speed of each vehicle cate-

gory significantly changes the traffic dynamics and hence, should not be omitted in practice. In

the following section, micro-simulation results of a simple grid network are used to compare the

two approaches of using 3D-MFDs and to provide insights about which one to consider for the

practical applications.635

4. Comparison of MFD-based models solutions with bi-modal micro-simulation

4.1. Description of network and micro-simulation settings

An idealized 6× 6 grid network is considered to verify the MFD-based models with micro-

simulation results. All links are uni-directional with two lanes and have a length of 1000m.

Fig. 14 presents the schematic of the network, where there are 12 entries and 12 exits in the640

whole network. All the intersections are controlled by traffic signals with the same green and red

times of 120sec. There is no offset in the signal timings. Origins and destinations are denoted

by O and D, respectively. There are two different types of bus routes considered in this network

namely, routes with dedicated bus lanes and routes that share the lane with cars. The dedicated

bus lanes are marked in green and shared bus lanes are marked in blue in the network schematic.645

The markings also denote the proposed bus routes, i.e., the sequence of links colored in green

represents a bus route between Owe,2 and Dwe,2 in the direction of west to east having a dedicated

bus lane. Similarly, the sequence of links marked in blue shows a route between Owe,3 and Dwe,3

in the direction of west to east as well, but sharing the road with cars. Therefore, it is clear that

there are a total of 8 bus routes of which 4 have dedicated bus lanes and the rest share the lanes650
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Table 3: Normalized OD matrix for the grid network considered. Oew corresponds to collection of origins on west side of

network, i.e., {Oew,1,Oew,2,Oew,3} and this notation is applicable to all origins and destinations.

Dew Dns Dwe Dsn

Oew 0.90 0.05 0.00 0.05

Ons 0.05 0.90 0.05 0.00

Owe 0.00 0.05 0.90 0.05

Osn 0.05 0.00 0.05 0.90

with cars. The bus stops are located at the end of each block. The duration of stop is assumed to

be a constant of 30sec for all bus stops.

For the sake of simplicity, only transfer trips are considered in this example. Table 3 presents

the normalized OD matrix used in the test study. The OD matrix is chosen in a way that the

network will have relatively homogeneous traffic conditions. The normalized OD matrix is time-655

invariant and taking the product of each row with respective time-dependent demand value gives

time varying OD flow matrix. Only two classes of vehicles namely, cars and buses are considered

in the simulation. Inflow demand with a demand surge and demand drop, as presented in earlier

test cases, is considered for a total simulation period of 6h. The bus schedules are also chosen

based on the peak hour demand profile. The bus routes having the dedicated bus lanes have higher660

frequency during peak hour than the ones sharing the road with cars. The details of the demand

profile and bus frequencies are provided while presenting the results.

Triangular fundamental diagram (FD) is assumed for both classes of vehicles. The parameters

for cars are: free-flow speed, uc = 15ms−1, wave speed, wc = −5.88ms−1 and jam density,

κc = 0.17vehm−1. In the case of buses, parameters of FD are: free-flow speed, ub = 12ms−1,665

wave speed, wc =−5ms−1 and jam density, κc = 0.1vehm−1. Micro-simulations are performed

using Symuvia that is being developed within the LICIT laboratory. The simulator is based on car-

following model of (Newell, 2002) and further extensions for node merge models based on the

work of Leclercq et al. (2007). A Dynamic Traffic Assignment (DTA) component determine User

Equilibrium (UE) conditions in the simulations. The routing assignment is performed for every670

1h. The optimization problem is solved iteratively using the Method of Successive Averages

(MSA) (Lu et al., 2009; Ameli et al., 2017).

In order to calibrate the MFD for the chosen network, micro-simulations with various network

configurations are performed. Simulations with different levels of bus demand, including the case

of no bus demand are used to compute the 3D-MFD. The mean speeds of cars and buses are675

approximated based on the hypothesis of Loder et al. (2017).

Two different network configurations, with and without dedicated bus lanes, are considered in

this study. The aim is to demonstrate the importance of segregating the dedicated bus lane network

from 3D-MFD for modeling applications. In the first case, no dedicated lanes are considered,

where all the bus lines share the network with cars. The calibrated coefficients for the mean
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Table 4: Coefficient values for mean speed fits for cars and buses for the case with no dedicated bus lanes.

Cars Buses

Coefficient Value Coefficient Value

βc,0 10.045 βb,0 7.231

βc,c −4.07× 10−4 βc,b −2.07 × 10−4

βb,c −0.014 βb,b −0.0072

speed fits for cars and buses, in this case, are presented in Table 4. All the bus lanes use identical

bus schedule and total demand for the network is given as follows:

[λc, λb]
T =

 [1.2, 0.0089]T if 0 < t ≤ 3600 or 14400 < t ≤ 21600

[6.6, 0.0267]T otherwise.
(31)

Following the demand profile (31), it is clear that there is a demand surge at t = 3600sec and

demand drop at t = 14400sec. The trip lengths from micro-simulations are averaged per mode,

which yields Lc = 7129m and Lb = 6991m. The results of micro-simulation are aggregated

for a period of 150sec to compare with the MFD-based ones. Production and accumulation680

are computed using Total Traveled Distance (TTD) and Total Traveled Time (TTT) within each

aggregation period. Inflow and outflow values are constructed based on entry and exit times of

each vehicle, respectively and instantaneous flow values are again aggregated within each period

to damp the oscillations.

4.2. Test case with no dedicated bus lanes685

Figure 15 presents the evolution of accumulation and outflow for cars and buses using a single

aggregated 3D-MFD. The demand corresponds to the free-flow regime of the MFD, where inflow

follows the demand profile. Hence, plots of inflow evolution are omitted in this case. Firstly, it

is clear from the plots that the steady state values of accumulations obtained from MFD-based

models are different from micro-simulation. On the other hand, the outflow evolution of MFD-690

based models for both cars and buses follows the micro-simulation reaching the same steady state

values. Since steady state inflow and outflow values for MFD-based models and micro-simulation

are similar, the differences in steady state values for accumulation can be due to discrepancies in

either trip lengths or 3D-MFD fit. The OD matrix is chosen in such a way that the variance

in trip lengths is small, at the same time having sufficient interactions between different OD695

pairs. The trip length of buses is exact as the bus lines have a pre-determined route defined a

priori. In the case of cars, the Coefficient of Variation (CV) of the trip length is estimated at

0.15, which means that the standard deviation is 15% of the mean trip length. Therefore, the

reason for reaching a different steady state in the MFD-based modeling framework is due to the

estimated 3D-MFD fit. The partial productions of cars and buses from the micro-simulations are700

aggregated to defined a single 3D-MFD. As discussed earlier, this total production is split into
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Figure 15: Verification with micro-simulations: Evolution of accumulation, outflow with time for cars and buses using

single 3D-MFD.
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partial productions based on the partial accumulation values in the MFD-based modeling. In the

present case, the demand for buses is very small compared to cars, which results in a smaller

accumulation of buses compared to cars and hence, smaller partial production. This can drive

the solution into a different equilibrium state on the 3D-MFD plane. Now, the same scenario is705

considered with two segregated 3D-MFDs instead of a single aggregated 3D-MFD in order to

verify if separating the 3D-MFD can result in accurate solutions.

Figure 16 presents the evolution of accumulation, outflow and mode share for the same sce-

nario considered before, but using two segregated 3D-MFDs. The notable observation compared

to previous results is that all MFD-based models reach the same steady state as micro-simulation.710

It is clear from the evolution of accumulation plots in Figs. 16a and 16b. Analyzing the transi-

tion period in the accumulation evolution plots, it is clear that the conclusions made in previous

test cases hold true. Similarly, the outflow evolutions of MFD-based models follow the micro-

simulation ones. The delay in the outflow increase (or decrease) to the increase (or decrease) in

demand can be clearly noticed in the delay accumulation-based and the trip-based models, where715

the results of stated MFD-based models are in very good agreement with the micro-simulation.

The outflow decrease for cars during demand drop in the micro-simulation is little diffusive owing

to the aggregation process. Finally, Figs. 16e and 16f present the mode share ratio evolution with

time for MFD-based models and micro-simulation. As elaborated in earlier test cases, during de-

mand surge period, the increase in mode share and then decreasing to the equilibrium value can720

be noticed in micro-simulation. However, the maximum ratio of mode share in micro-simulation

is considerably low compared to MFD-based results. This is due to the aggregation of outflow for

each aggregate interval, which adds diffusion to the solution. This is evident from top Fig. 16f,

where the increase in mode share ratio of MFD-based models is sharp. On the other hand, the rise

in the mode share ratio of micro simulation is more gradual and diffusive. The same argument725

holds during the demand drop period, where the mode share ratio of micro-simulation is diffusive

compared to MFD-based ones. Hence, conclusions made from earlier test cases are verified using

micro-simulation in this study.

Another important conclusion to be made in this context is that using partial 3D-MFDs yields

more accurate results compared to single 3D-MFD. In order to reinforce this conclusion, the rel-730

ative errors in the accumulation and outflow are compared for the cases of using single 3D-MFD

and two segregated 3D-MFDs. Since the results of the micro-simulations have oscillations, L2

norm over the simulation duration might not give a representative error for the MFD-based mod-

els. On the other hand, smoothening the micro-simulation results using techniques like moving

average adds diffusion to the transition periods. Hence, the solutions of accumulation and outflow735

are averaged during the steady state period and the relative errors are computed using the time

averaged mean values. The solutions are averaged from t = 6000s to t = 14400s. Table 5 shows

the errors in the accumulation and outflow using two approaches of 3D-MFD. Firstly, it can be

inferred from the direct comparison of the errors between the single and segregated 3D-MFDs

37



0 0.5 1 1.5 2

·104

0

0.5

1

1.5

·104

t (sec)

n c
(v

eh
)

Acc-based Delay acc-based
Trip-based Micro-simulation

4000 5000 6000 7000
0

2000

4000

6000

8000

1.44 1.48 1.52 1.56 1.6 1.64
·104

0

2000

4000

6000

8000

(a) Accumulation vs. time for cars.

0 0.5 1 1.5 2

·104

0

20

40

60

80

t (sec)

n b
(v

eh
)

Acc-based Delay acc-based
Trip-based Micro-simulation

4000 5000 6000 7000
0

10

20

30

40

1.44 1.48 1.52 1.56 1.6 1.64
·104

0

10

20

30

40

(b) Accumulation vs. time for buses.

0 0.5 1 1.5 2

·104

0

5

10

15

t (sec)

O
c

(v
eh

s−
1 )

Acc-based Delay acc-based
Trip-based Micro-simulation
Inflow

4000 5000 6000 7000
0

2

4

6

8

1.44 1.48 1.52 1.56 1.6 1.64
·104

0

2

4

6

8

10

(c) Outflow vs. time for cars.

0 0.5 1 1.5 2

·104

0

2

4

6

8
·10−2

t (sec)

O
b

(v
eh

s−
1 )

Acc-based Delay acc-based
Trip-based Micro-simulation
Inflow

4000 5000 6000 7000
0

1

2

3
·10−2

1.44 1.48 1.52 1.56 1.6 1.64
·104

0

1

2

3

4
·10−2

(d) Outflow vs. time for buses.

0 0.5 1 1.5 2

·104

0

200

400

600

800

t (sec)

O
c/

O
b

Acc-based Delay acc-based
Trip-based Micro-simulation

(e) Evolution of accumulations on car MFD surface.

1.45 1.5 1.55 1.6 1.65

·104

0

100

200

300

t (sec)

O
c/

O
b

Acc-based Delay acc-based
Trip-based Micro-simulation

4000 5000 6000 7000
0

200

400

600

800

t (sec)

O
c/

O
b

(f) Evolution of accumulations on bus MFD surface.

Figure 16: Verification with micro-simulations: Evolution of accumulation, outflow and mode share ratio with time for

cars and buses using two segregated 3D-MFDs.
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Table 5: Relative errors for time averaged accumulation and outflow using single and segregated 3D-MFDs with respect

to the solution of micro-simulation.

Model
Error in nc Error in Oc

Single 3D-MFD Two 3D-MFDs Single 3D-MFD Two 3D-MFDs

Acc-based 0.0390 0.0198 0.0016 0.0017

Delay acc-based 0.0338 0.0124 0.0022 0.0020

Trip-based 0.0324 0.0110 0.0029 0.0029

Model
Error in nb Error in Ob

Single 3D-MFD Two 3D-MFDs Single 3D-MFD Two 3D-MFDs

Acc-based 0.2103 0.0204 0.0058 0.0047

Delay acc-based 0.2063 0.0141 0.0088 0.0086

Trip-based 0.2048 0.0130 0.0094 0.0094

that using two 3D-MFDs indeed improves the accuracy of all the MFD-based models. The differ-740

ence in the errors is more pronounced in the accumulation values as evident from Fig. 15, as the

discrepancy in the accumulation, is visible. As concluded previously, a similar trend in the MFD-

based models, i.e., the trip-based model being most accurate and the accumulation-based model

being least accurate, is observed in the present case too. It is clear from Figs. 16a and 16b that

at time t = 6000s, the differences in the transition periods are still significant between different745

MFD-based models. Since the solutions are averaged starting from t = 6000s, this difference in

the transition periods is quantified in the relative errors. There is no clear trend observed in the

error values of the outflow, as they are comparatively quite low. This can be verified by comparing

the errors in the outflow in Table 2, where the errors in the present case are one order less in the

magnitude.750

4.3. Test case with dedicated bus lanes included

Now, dedicated bus lanes are included in the scenario as shown in Fig. 14 to study the effect of

aggregation of dedicated bus lanes with shared bus lanes in a network. In this case, the frequency

of buses in dedicated bus lanes is chosen to be higher than that of shared bus lanes. The demand

profile chosen for this scenario is as follows,

[λc, λb, λdb]
T =

 [1.2, 0.0044, 0.0044]T if 0 < t ≤ 3600 or 14400 < t ≤ 21600

[5.54, 0.0067, 0.067]T otherwise,
(32)

where λdb corresponds to the demand of buses in the dedicated bus lane. The trip lengths for

cars and buses are estimated to be 7121m and 6990m, respectively. As the previous test case

concluded that using partial 3D-MFDs results in a more accurate resolution of traffic dynamics,

only partial 3D-MFDs are used in the present case. Firstly, all the buses, irrespective of using755

shared or dedicated bus lanes, are aggregated together to compute 3D-MFD fits. Table 6 presents
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Table 6: Coefficient values for mean speed fits for cars and buses for the case with dedicated bus lanes. Both shared and

dedicated bus lanes are aggregated together to fit 3D-MFDs in this case.

Cars Buses

Coefficient Value Coefficient Value

βc,0 10.172 βb,0 7.872

βc,c −5.134× 10−4 βc,b −9.958 × 10−6

βb,c −0.0062 βb,b −1.076× 10−4

the values of coefficients for the speed MFD fits for cars and buses. It is evident that the coeffi-

cient, which characterizes the marginal effect of buses on car speeds (βb,c) is at least two times

lower in magnitude than the previous case presented in Table 4. Since the same network is used

to compute MFD fits in both cases, albeit the difference of having dedicated bus lanes, this result760

is misleading. The demand for buses in dedicated bus lanes is ten times higher than the shared

bus lanes during peak demand and hence, at any instance, there are more buses in dedicated lanes

than shared ones. However, the buses in dedicated lanes do not have any marginal effect on the

mean speed of cars as per the design of the network in this case. Hence, lower βb,c is due to the

aggregation of all buses in the network, where a large fraction of buses have no marginal effect765

on the mean speed of cars. The result is an inaccurate 3D-MFD calibration, which can affect the

resolution of traffic dynamics.

Figure 17 presents the evolution of accumulation and outflow for cars and buses using the

segregated 3D-MFDs from coefficients presented in Table 6. It is clear from the accumulation plot

of cars, that the MFD-based models reach a different steady state compared to micro-simulation.770

The steady state accumulation of the micro-simulation is around 5600veh, while MFD-based

models reach up to 6000veh. The same is true for steady state accumulation of buses, where

MFD-based models predict higher accumulation than the micro-simulation counterpart. As stated

in an earlier case, this is due to inaccurate 3D-MFD fit calibrated from the micro-simulation data.

In cases where dedicated bus lanes make up the majority of the bus network, it is clear from the775

present example, aggregating dedicated and shared bus lanes do not provide accurate 3D-MFD.

Even though in the present case, both shared and dedicated bus lanes have an equal share of the

total bus network, the demand in the dedicated bus network is chosen to be considerably higher

than its counterpart to emulate the case of having a bigger dedicated bus network.

To address this shortcoming, this work proposes to segregate, yet again, the dedicated bus780

network from the shared one. Since buses in dedicated lanes have little or no marginal effect on

other vehicles in the network, a third 2D-MFD can be proposed for let alone buses in the dedi-

cated bus lanes. In the present case, this third 2D-MFD is estimated to be the free-flow speed of

buses in dedicated bus lanes, i.e., vbd(nbd ,n) = 8.32, where vbd and nbd are the mean speed and

accumulation of buses in dedicated bus lanes, respectively. Thus, new 3D-MFDs are calibrated785
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Figure 17: Verification with micro-simulations: Evolution of accumulation, outflow with time for cars and buses using

segregated 3D-MFDs computed by treating shared and dedicated bus lanes alike.
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Table 7: Coefficient values for mean speed fits for cars and buses for the case with dedicated bus lanes included. In this

case, only buses that share lanes with cars are included in estimation of coefficients.

Cars Buses

Coefficient Value Coefficient Value

βc,0 10.172 βb,0 7.481

βc,c −5.134× 10−4 βc,b −2.987 × 10−4

βb,c −0.0209 βb,b −0.011

Table 8: Relative errors for time averaged accumulation and outflow using with and without segregating dedicated bus

lanes with respect to the solution of micro-simulation.

Model
Error in nc Error in Oc

All bus lanes alike Ded. lanes sep. All bus lanes alike Ded. lanes sep.

Acc-based 0.0494 0.0102 0.0053 0.0034

Delay acc-based 0.0578 0.0053 0.0013 0.0007

Trip-based 0.0596 0.0046 0.0008 0.0002

Model
Error in nb and ndb Error in Ob and Odb

All bus lanes alike Ded. lanes sep. All bus lanes alike Ded. lanes sep.

Acc-based 0.0303 0.0056 0.0058 0.0060

Delay acc-based 0.0306 0.0062 0.0057 0.0057

Trip-based 0.0306 0.0060 0.0056 0.0056

considering the buses only in shared bus lanes and coefficients are tabulated in Table 7. The ab-

solute value of coefficient βb,c in this case is higher than the previous case (Table 6) and in the

same order as the case with no dedicated lanes (Table 4). This infers that the average interactions

of bus sharing the lanes with other cars are constant for a given network and proposed bus routes.

Fig. 18 presents the evolution of accumulation and outflow for cars, buses and buses in dedicated790

bus lanes, respectively. As there are three classes of vehicles, there are three different trip lengths

in the MFD-based simulation, where the trip length of dedicated bus lane is Ldb = 6989m. It

is obvious from the plots that the MFD-based models and the micro-simulation reach the same

steady state accumulation for cars and buses. Figs. 18e and 18f show the accumulation and out-

flow for buses in the dedicated bus lanes and it is clear that the MFD-based models reproduce the795

micro-simulation results with very good accuracy. Table 8 presents the errors in the accumulation

and outflow for the cases of with and without dedicated bus lanes segregation. A similar proce-

dure briefed for estimating the errors in Table 5 is used here too. As concluded from the plots, the

error values show that separating the dedicated bus lanes attributes to the improved accuracy of

the MFD-based models. As in the previous case, the errors in the outflow are comparatively small800

to observe a trend. In addition, all the conclusions made earlier about the transition regime and
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Figure 18: Verification with micro-simulations: Evolution of accumulation, outflow and mode share ratio with time for

cars and buses using two segregated 3D-MFDs by treating shared and dedicated bus lanes different.43



delay in outflow are well captured in the present case as well for the delay accumulation-based

and the trip-based models. Therefore, it is evident from the present results that segregating dedi-

cated bus lanes improves the accuracy of MFD-based models. In a nutshell, it is advisable to use

three MFDs, a 3D-MFD for cars, a 3D-MFD for buses using shared bus lanes and a 2D-MFD for805

buses using dedicated bus lanes for a multi-modal MFD simulation. Note that the two 3D-MFDs

considered depend on the same variables nc and nb, whereas the 2D-MFD depends on only buses

in dedicated bus lanes (ndb).

5. Conclusions

The primary objective of this work is to analyze the different MFD-based models during810

the transition and steady state conditions using a 3D-MFD. To this extent, accumulation-based,

delay accumulation-based and trip-based models are considered. In order to be able to compare

the accuracy of different MFD-based models, a reference continuum space-time model based on

the linear hyperbolic conservation equation is also presented and two benchmark examples are

proposed. Following this, an idealized grid network is considered to verify the proposed MFD-815

based models’ results with micro-simulations.

Firstly, the entry flow and exit demand functions are extended to the case of 3D-MFD and

the importance of non-constant critical accumulation is discussed. This work provides deeper

investigation and presents the limitations of the delay accumulation-based model with a non-

linear travel time MFD without stabilizations. The first test case corresponds to a demand profile820

with the demand surge and drops in the free-flow regime of assumed 3D-MFD. It is concluded

that the trip-based model resolves the traffic dynamics most accurately followed by the delay

accumulation-based model. It also highlights several limitations of the classical accumulation-

based model and they are demonstrated using the reference continuum space-time model. These

insights are already discussed in Mariotte et al. (2017); Mariotte and Leclercq (2019), however825

in the present work, the relative error norms reveal that the delay accumulation-based model has

the best features of both accumulation-based and trip-based models. The second test case uses

the same demand profile as the first one, except that the peak demand is high enough to create

congestion internally inside the reservoir. This test case is designed to show the limitation of using

only the conventional entry flow functions in the 3D-MFD framework. The differences in the830

evolution of mode share ratio for different models result in different inflow rates and consequently,

different steady states. This phenomenon occurs only in the case of 3D-MFD and is absent in 2D-

MFD. This is addressed by proposing a new FIFO-based entry function, where the internal FIFO

discipline at the entry of queued vehicles guarantees that the share of inflows matches the share of

demand. It is noticed that the FIFO-based entry function is essential for the MFD-based models835

founded on 3D-MFD to reach the same steady state. Using the same test case, the limitations

of the delay accumulation-based model are also demonstrated. It is already well established

in the literature in the context of link flow dynamics that the delay accumulation-based models
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reach the steady state in finite discontinuous jumps. It is showed that these jumps will grow in

amplitude for time varying inflow demand close to network saturation state and eventually results840

in a diverging solution. This can be addressed by smoothening the solution, which damps the

oscillations in time and gives a stabilized solution. Another limitation in this framework arises

during the demand drop, where the internal FIFO discipline can be locally violated depending on

the magnitude of demand drop. A novel concept called weak internal FIFO discipline is proposed

to circumvent this limitation by reconstruction of outflow cumulative curve, which conserves the845

total number of vehicles. Following this, the same test case is solved using a single 3D-MFD and

two segregated 3D-MFDs, where cars and buses assume different mean speeds. It is concluded

that two cases result in different solutions for the same scenario and a verification test case with

micro-simulation is proposed in order to demonstrate the relative accuracy of both approaches.

An idealized grid network comprising of cars, buses in shared bus lanes and buses in dedicated850

bus lanes is considered. As a first step, no dedicated bus lanes are considered in order to simplify

the case further and coefficients of 3D-MFD are calibrated using several static simulations. Us-

ing the calibrated coefficients, MFD-based simulations with a single 3D-MFD and segregated

3D-MFDs are performed and it is concluded that traffic dynamics are resolved more accurately

when segregated 3D-MFDs are used. In the second step, dedicated bus lanes are included in855

the network and coefficients of 3D-MFD are re-calibrated. This study reveals that separating the

buses in dedicated bus lanes and representing them with a third 2D-MFD is necessary for MFD-

based modeling. The buses in dedicated bus lanes have very few interactions with the rest of the

vehicles in the network and thus, separating them from other buses resolve the dynamics more

accurately in MFD-based modeling. In other words, the MFD is segregated based on vehicle860

categories that have different mean speeds at the same time in a given network. This results in

three different MFDs namely, two partial 3D-MFDs that provide mean speed per mode for mixed

network depending on partial accumulations, nc and nb and a 2D-MFD gives the mean speed of

buses in the dedicated bus lane network.
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Appendix A. Error analysis for the outflow stabilization in the delay accumulation-based

model870

It is already stated that the stabilization of the outflow in the presence of spurious oscillations

introduces some errors. This is due to replacing the actual outflow with the time averaged outflow

for certain time horizon, which adds artificial diffusion to the solution. The error introduced by the
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Figure A.19: Low demand free-flow scenario: Comparison of evolution of accumulation and outflow with and without

outflow stabilization for delay accumulation-based model.

Table A.9: Low demand free-flow scenario: Relative errors in L2 norm for accumulation and outflow for delay

accumulation-based model with outflow stabilization using the solution of original model as the reference.

Cars Buses

Accumulation 0.0044 0.0041

Outflow 0.0066 0.0073

outflow averaging is estimated using the free-flow case scenario (22). It is not possible to compute

the error for the congested case scenario due to the unavailability of neither an analytical solution875

nor a converged numerical solution. Hence, the low demand free-flow scenario is considered to

quantify the error. Note that this scenario is stable without stabilizing the outflow, as the inflow

is constant and the peak demand corresponds to the free-flow regime. Fig. A.19 presents the

evolution of accumulation and outflow during the loading phase for the models with and without

outflow stabilization. As shown in Fig. A.19b, the series of jumps are replaced by the mean880

outflow for certain time horizon as illustrated in the stabilization technique in Fig. 11a. Hence, two

converged solutions are obtained with and without outflow stabilization for the present scenario.

Even though the evolution of accumulation for both models seems to be close, there is a

visual discrepancy between the results. This is already stated as averaging the outflow introduces

certain errors in the solution. The relative L2 norm of errors are computed for the stabilized885

outflow solution using the unstabilized/actual solution as the reference. Table A.9 presents the

relative errors for the accumulation and the outflow for cars and buses. It is clear that the errors

are one order less than the errors presented in Table 2, which shows the errors of each MFD-

based model with respect to the continuum space-time model in the manuscript. Hence, it can be

concluded that the errors introduced by the outflow stabilization technique does not influence the890

global error convergence of the delay accumulation-based model.
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