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problem
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1Institut de Mathématiques de Toulouse - UMR CNRS 5219, Université Paul Sabatier, France

Abstract

The present paper is concerned with a class of penalized Signorini problems also
called normal compliance models. These nonlinear models approximate the Signorini
problem and are characterized both by a penalty parameter ε and by a “power pa-
rameter” α ≥ 1, where α = 1 corresponds to the standard penalization. We choose a
continuous conforming linear finite element approximation in space dimensions d = 2, 3
to obtain an L2-error estimate of order h2 when d = 2, α = 2, ε ≥ θh (θ large enough)
and when the solution is W 2,3-regular. A similar estimate is obtained when d = 3
under slightly more restrictive assumptions on ε.

1 Introduction

Penalty methods are classical and widespread tools for the numerical treatment of con-
strained problems, such as the unilateral contact (Signorini problem) arising in mechanics of
deformable bodies, where a nonlinear boundary condition is written as an inequality. The
main idea of penalization is to replace the inequality constraint by a penalized non linear
equality that becomes larger as the solution fails to satisfy this inequality constraint.

For the Signorini problem, the penalty method is well-known and is generally used when
approximating this problem using finite elements. The convergence analysis of the penalized
models was first considered in the 80’s, see [16, 22] and the references therein. In the last
ten years, some new results dealing with H1-error estimates have been obtained for standard
penalization in [7] and more recently in [12, 11]. To summarize the current state of the art,
the convergence of the discrete penalized solution towards both the solution to the penalized
problem and of the Signorini problem are optimal in two and three dimensions when using
standard linear finite elements provided that the penalty parameter ε behaves like h (up to a
constant), representing the mesh-size. These recent results complete the existing H1-optimal
estimates for Signorini problem using other discrete models such as the variational inequality
[13], Lagrange multiplier methods [5, 14] or Nitsche methods [4, 6, 8].

Concerning the L2-error estimates for Signorini-like problems, the analysis becomes really
more difficult. The main reason is the standard Aubin-Nitsche technique well suited for linear
problems can not be applied in its original form, neither for the Signorini problem nor for
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the penalized formulation, due to a lack of Galerkin orthogonality. Most of the efforts to
obtain L2-error estimate have been devoted to the Signorini problem written as a variational
inequality, but as far as we know there are very few results. We mention the early works
in [27] used in [10] where a complicated adjoint problem is involved and whose regularity
is not established. Using linear finite elements, we also refer to the recent works [9] where
an L4-estimate of order 2 − ε is obtained in two dimensions with additional assumptions
on the contact sets, and [30] where authors prove a 3/2 − ε error estimate in the L2-norm
when the solution is H5/2−ε-regular. Besides, the numerous numerical results dealing with
L2-error estimates (see, e.g., [9, 20, 21, 30]) indicate that the convergences behave well and
are optimal, so the main lack comes from the mathematical analysis.

In this work, we are interested in a generalized class of penalty models applied to the
Signorini problem, the so-called normal compliance model, corresponding to a power-law
regularization of the penalty methods. This model was introduced and studied in [25, 28, 23,
24], in the context of friction phenomena between a rigid body with a rough and deformable
body. Applied to the Signorini problem, the boundary contact condition on a portion ΓC of
the boundary ∂Ω is ε∂nu = −[u]α+, where [u]+ represents the positive part of the solution
u : Ω → R, ε > 0 is the penalty parameter, and α ≥ 1 is the regularization parameter.
The compliance model for the Signorini problem that we consider in this work is then: find
u : Ω→ R such that

−∆u = f in Ω, u = 0 on ΓD, ε∂nu+ [u]α+ = 0 on ΓC = ∂Ω\ΓD. (1)

When α = 1, the boundary condition on the contact boundary ΓC becomes ε∂nu = −[u]+,
corresponding to the classical penalized Signorini problem.

The main motivation of considering the normal compliance model (1) with α > 1 is that
the map qα : u 7→ [u]α+ is now differentiable. In our analysis, this property is essential to
obtain optimal L2-error estimates. As in the linear case using the Aubin-Nitsche lemma, our
L2-error analysis is based on the introduction of a companion problem, but different from
the adjoint problem. Taking inspiration from the extension of the Aubin-Nitsche trick for
semilinear problems developed in [19], the companion problem is defined by differentiating
qα in (1), so that we replace the Galerkin orthogonality argument used in the linear case by
a first order Taylor expansion of qα. Combining this approach with a fine ε-robust a priori
error analysis in energy norm, we then obtain optimal error estimate in L2-norm when the
parameters ε and h satisfy some explicit conditions.

Our work contains two major contributions concerning the error analysis using linear
finite elements, in two and three space dimension, for the compliance model of the Signorini
problem (1). The first one concerns the a priori error analysis in energy norm; for all suitable
power-law parameters α ≥ 1, we obtain optimal error estimates, robust with respect to ε
under the condition that h/ε is bounded. The second contribution is the optimal L2-error
estimate when α = 2. Assuming that the exact solution is W 2,3-regular, we prove that
||u−uh||L2 ≤ ch2 if ε ≥ θh (with θ large enough) in two space dimension or ε ≥ θ

√
h in three

space dimension. We also extend these results when α > 2.

The paper is organized as follows. Section 2 deals with the formulation of the compliance
model for the Signorini problem, its associated weak form, the existence and uniqueness
results and some a priori estimates. Section 3 uses the most common approximation with
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continuous linear finite elements, and H1-error estimates of order h are obtained when h/ε
is bounded and the solution is W 2,α+1-regular. In section 4 we prove L2-error estimates of
order 2 in two and three space dimensions when α ≥ 2. Section 5 contains some technical
lemmata used in the analysis.

2 The compliance model for the Signorini problem

Considering f ∈ L2(Ω) and ε > 0, we are studying the existence and the uniqueness of
uε : Ω ⊂ Rd → R with d ∈ {2, 3}, such that

−∆uε = f in Ω, (2a)

uε = 0 on ΓD, (2b)

ε∂nuε + [uε]
α
+ = 0 on ΓC , (2c)

where the boundary of Ω, denoted by ∂Ω is exactly divided into ΓC and ΓD, i.e., ∂Ω = ΓD∪ΓC
and ΓD ∩ ΓC = ∅. The parameter α ≥ 1 is fixed and we denote by [t]+ = 1

2
(t+ |t|) the

positive part of any t ∈ R.
We set V = {v : v ∈ H1(Ω), v = 0 on ΓD}. The well-posedness analysis of (2) is per-

formed by considering the equivalent variational formulation:

uε ∈ V : a(uε, v) +
1

ε
b(uε, v) =

∫
Ω

fv, ∀v ∈ V, (3)

where we denote, for all v, w ∈ V ,

a(v, w) =

∫
Ω

∇v·∇w and b(v, w) =

∫
ΓC

qα(v)w, (4)

with qα : t ∈ R→ [t]α+. To lighten the notation, we do not write the dΩ and dΓ terms in the
integrals. In the rest of the paper, we will assume that

α ∈ [1,∞) if d = 2 and α ∈ [1, 3] if d = 3, (5)

so that the term b(v, w) is well-defined for all v, w ∈ V owing to the continuity of the trace
map H1(Ω)→ Lα+1(∂Ω).

2.1 Well-posedness

The main ingredient to prove the well-posedness of (3) is to prove that b is strongly monotone
on V , which is a consequence of the following proposition.

Proposition 2.1. For all v, w ∈ Lα+1(ΓC),

b(v, v − w)− b(w, v − w) ≥ c||[v]+ − [w]+||α+1
Lα+1(ΓC),

with c > 0 independent of v and w.
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Proof. For all s, t ∈ R, we have from [17] the estimate (t |t|α−1−s |s|α−1)(t−s) ≥ c |t− s|α+1

with c > 0 independent of t, s. Taking t = [v]+ and s = [w]+ yields the result.

It then follows the strong monotonicity of

T : V → V ′ : 〈T (v), w〉V ′,V = a(v, w) +
1

ε
b(v, w) ∀v, w ∈ V.

Lemma 2.2. For all v, w ∈ V ,

〈T (v), v − w〉V ′,V − 〈T (w), v − w〉V ′,V & |v − w|2H1(Ω) +
1

ε
||[v]+ − [w]+||α+1

Lα+1(ΓC).

To alleviate the notations, we denote by A . B the estimate A ≤ cB when c > 0 is some
non relevant constant, independent of the problem parameters. The notation A ∼ B means
that A . B and B . A hold simultaneously.

Lemma 2.3. For all v, w, z ∈ V ,

〈T (v), z〉V ′,V − 〈T (w), z〉V ′,V . |v − w|H1(Ω) |z|H1(Ω)

+
1

ε
||v − w||Lα+1(ΓC)||z||Lα+1(ΓC)

(
||[v]+||α−1

Lα+1(ΓC) + ||[w]+||α−1
Lα+1(ΓC)

)
.

Hence, T : V → V ′ is continuous.

Proof. From the definition of T , it suffices to prove that for all v, w, z ∈ V ,

|b(v, z)− b(w, z)| . ||v − w||Lα+1(ΓC)||z||Lα+1(ΓC)

(
||[v]+||α−1

Lα+1(ΓC) + ||[w]+||α−1
Lα+1(ΓC)

)
. (6)

Observing that
∣∣[x]α+ − [y]α+

∣∣ ≤ c |[x]+ − [y]+| ([x]+ + [y]+)α−1 for all x, y ∈ R, with c > 0
from [17], it follows by Hölder inequality∫

ΓC

∣∣([v]α+ − [w]α+)z
∣∣ . ||[v]+ − [w]+||Lα+1(ΓC)||z||Lα+1(ΓC)

(∫
ΓC

([v]+ + [w]+)(α−1)p

) 1
p

,

with 1
p

+ 2
α+1

= 1, i.e. p(α− 1) = α+ 1. Then, the estimate (6) follows using the triangular
inequality.

Strong monotonicity and continuity of T obtained in Lemmata 2.2 and 2.3, respectively,
then gives the well-posedness of (3).

Theorem 2.4. For all f ∈ L2(Ω), problem (3) admits an unique solution uε ∈ V and there
exists c > 0, independent of ε and uε, such that

|uε|2H1(Ω) +
1

ε
||[uε]+||α+1

Lα+1(ΓC) ≤ c||f ||2L2(Ω). (7)
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2.2 Convergence analysis

In this section, we recall the convergence result of uε to the Signorini solution uS when ε→ 0.
This result, obtained in [16] for α = 1, remains valid if α satisfies (5).

Lemma 2.5. Let uε ∈ V be the exact solution of (3). Then, uε → uS in V where uS ∈
K := {v ∈ V | v ≤ 0 on ΓC} is the unique solution solving

a(uS, w − uS) ≥ (f, w − uS) , ∀w ∈ K. (8)

Proof. Let uε ∈ V stand for the exact solution of (3). Owing to Theorem 2.4, uε is bounded
in V so there is u ∈ V such that uε ⇀ u in V . From (3) and since |uε|H1(Ω) ≤ c||f ||L2(Ω), it
follows using the Poincaré inequality in V , that

b(uε, uε) ≤ ε (f, uε) . ε||f ||2L2(Ω),

so that b(uε, uε) → 0 when ε → 0. Observing that v ∈ V 7→ b(v, v) is continuous from
Lemma 2.3 and convex, it follows that 0 ≤ b(u, u) ≤ lim inf b(uε, uε) = 0. Then u ∈ K. Let
us prove now that u is the unique solution of (8). Let w ∈ K and take v = w− uε in (3). It
then follows

a(uε, w − uε)− (f, w − uε) = −1

ε
b(uε, w − uε) =

1

ε
(b(w,w − uε)− b(uε, w − uε)) ,

with b(w,w − uε) = 0. Owing to the strong monotonicity of b, we then obtain a(uε, w −
uε)− (f, w − uε) ≥ 0, so that

a(uε, w)− (f, w − uε) ≥ a(uε, uε).

Since lim inf a(uε, uε) ≥ a(u, u), it then follows that u ∈ K is the unique solution of (8). It
now remains to prove that uε → u in V . This is readily obtained by proceeding similarly
with w = u so that a(uε, u)− (f, u− uε) ≥ a(uε, uε) and

|u|2H1(Ω) = a(u, u) ≥ lim sup |uε|2H1(Ω) .

As a result lim inf |uε|H1(Ω) ≥ |u|H1(Ω) ≥ lim sup |uε|H1(Ω), so that uε → u in V .

3 Finite element approximation

In the rest of the paper, to lighten the notation we write u instead of uε, so u is the unique
solution to the problem (3) which we now write as follows:

u ∈ V : a(u, v) +
1

ε
b(u, v) =

∫
Ω

f v, ∀v ∈ V. (9)

We consider an approximation of the solution to this problem by standard Lagrange finite
elements of first order. Consider Th an affine mesh of Ω ⊂ Rd, with d ∈ {2, 3}, regular in
the sense of Ciarlet, composed of closed triangles K ∈ Th and faces F ∈ Fh. We denote by
hK the diameter of an element K, and h = maxK∈Th represents the mesh size. Denoting
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by hF the size of a face F ∈ Fh, mesh regularity yields that hF ∼ hK where K stands for
the triangle having F on its boundary. In the forthcoming cases, when d = 2, α > 2 or
d = 3, α = 2 (but not d = 2, α = 2) we need to use inverse inequalites on ΓC so we have to
suppose that the d− 1 dimensional trace mesh on ΓC is quasi-uniform. The space V is now
approximated by the P1 Lagrange finite element space defined by

Vh := {vh ∈ V | ∀K ∈ Th, vh|K ∈ P1(K)}.

The discrete problem issued from (9) is then

uh ∈ Vh : a(uh, vh) +
1

ε
b(uh, vh) =

∫
Ω

f vh, ∀vh ∈ Vh. (10)

This approximation being conformed, we immediately obtain from Theorem 2.4 the well-
posedness of (10), and the discrete solution uh satisfies as well the a priori bound (7). We
now examine the convergence of the solution uh to u.

Lemma 3.1 (A priori error estimate). Let α satisfy (5). Let u ∈ V and uh ∈ Vh be the
exact solutions of (9) and (10), respectively. Assume that u ∈ W 2,α+1(Ω). Then,

|u− uh|2H1(Ω) +
1

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) . h2 |u|2H2(Ω) + h2

(
h

ε

) 1
α

|u|
α+1
α

W 2,α+1(Ω) ||f ||
2(α−1)/α

L2(Ω) .

Proof. Let u ∈ V and uh ∈ Vh stand for the solutions of (9) and (10), respectively, and
consider πh : W 2,p(Ω) → Vh the Lagrange interpolation operator in Vh, with p > d/2. By
definition, we have

|u− uh|2H1(Ω) = a(u− uh, u− πhu) + a(u− uh, πhu− uh).

Applying Cauchy-Schwarz and Young inequalities, we obtain

1

2
|u− uh|2H1(Ω) ≤

1

2
|πhu− u|2H1(Ω) + a(u− uh, πhu− uh).

By definition, we have

a(u− uh, πhu− uh) =
1

ε
(b(uh, πhu− uh)− b(u, πhu− uh))

= −1

ε

∫
ΓC

([u]α+ − [uh]
α
+)(πhu− uh)

so that

a(u− uh, πhu− uh) = −1

ε

∫
ΓC

([u]α+ − [uh]
α
+)(πhu− u)− 1

ε

∫
ΓC

([u]α+ − [uh]
α
+)(u− uh).

Applying Proposition 2.1, it then follows

a(u− uh, πhu− uh) ≤ −
1

ε

∫
ΓC

([u]α+ − [uh]
α
+)(πhu− u)− c

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC),
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and then,

1

2
|u− uh|2H1(Ω) +

c

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) ≤
1

2
|πhu− u|2H1(Ω) −

1

ε

∫
ΓC

([u]α+ − [uh]
α
+)(πhu− u).

Finally, the last term is bounded using (6), to obtain

|u− uh|2H1(Ω) +
1

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) . |πhu− u|
2
H1(Ω)

+
1

ε
||[u]+ − [uh]+||Lα+1(ΓC)||πhu− u||Lα+1(ΓC)

(
||[u]+||α−1

Lα+1(ΓC) + ||[uh]+||α−1
Lα+1(ΓC)

)
.

Since u and uh solve (9) and (10), respectively, the a priori bound (7) gives

ε−
α−1
α+1

(
||[u]+||α−1

Lα+1(ΓC) + ||[uh]+||α−1
Lα+1(ΓC)

)
. ||f ||2(α−1)/(α+1)

L2(Ω) ,

so that
1

ε

(
||[u]+||α−1

Lα+1(ΓC) + ||[uh]+||α−1
Lα+1(ΓC)

)
.

1

ε
2

α+1

||f ||2(α−1)/(α+1)

L2(Ω) ,

and we obtain

|u− uh|2H1(Ω) +
1

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) . |πhu− u|
2
H1(Ω)

+ ε−
2

α+1 ||[u]+ − [uh]+||Lα+1(ΓC)||πhu− u||Lα+1(ΓC)||f ||2(α−1)/(α+1)

L2(Ω) .

Now, using the generalized Young inequality ab ≤ ap + bq/(qp
q
p ) for all a, b ≥ 0 and p−1 +

q−1 = 1, it follows with p = α + 1, αq = α + 1, a = ε−
1

α+1 ||[u]+ − [uh]+||Lα+1(ΓC), b =

ε−
1

α+1 ||πhu− u||Lα+1(ΓC)||f ||2(α−1)/(α+1)

L2(Ω) , that

|u− uh|2H1(Ω) +
1

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) . |πhu− u|
2
H1(Ω) + ε−

1
α ||πhu− u||

α+1
α

Lα+1(ΓC)||f ||
2(α−1)/α

L2(Ω) .

Finally, owing to Proposition 5.1 and using the regularity of u, we obtain

|u− uh|2H1(Ω) +
1

ε
||[u]+ − [uh]+||α+1

Lα+1(ΓC) . h2 |u|2H2(Ω) + h2+ 1
α ε−

1
α |u|

α+1
α

W 2,α+1(Ω) ||f ||
2(α−1)/α

L2(Ω) .

We immediately obtain the following corollary.

Corollary 3.2. Let α satisfy (5). Let u ∈ V and uh ∈ Vh be the exact solutions of (9)
and (10), respectively. Assume that u ∈ W 2,α+1(Ω).

i) If ε & h, then

|u− uh|H1(Ω) . h
(
|u|2H2(Ω) + |u|

α+1
α

W 2,α+1(Ω) ||f ||
2(α−1)/α

L2(Ω)

) 1
2

.
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ii) If ε ∼ h, then

|u− uh|H1(Ω) + h−
1
2 ||[u]+ − [uh]+||(α+1)/2

Lα+1(ΓC) . h
(
|u|2H2(Ω) + |u|

α+1
α

W 2,α+1(Ω) ||f ||
2(α−1)/α

L2(Ω)

) 1
2

.

Remark 3.3. When α = 1 and d ∈ {2, 3}, the term ||f ||L2(Ω) disppears in the corollary,
and we retrieve the estimates already obtained in [7] and more recently in [11] under the
assumption ε ∼ h. When α > 1, these estimates are new. In particular, the optimal
H1-convergence rate is obtained independently of α under the condition ε ∼ h.

Remark 3.4. Let us briefly discuss on the regularity of problem (2). To our knowledge there
does not exist any regularity results for problem (2). In order to have an idea concerning
its regularity we consider a slightly different problem in which ΓD = ∅ to avoid additional
singularities at the interface between ΓD and ΓC . Consider the problem of finding uε s.t.

−∆uε + uε = f in Ω,

ε∂nuε + [uε]
α
+ = 0 on ∂Ω,

which admits a unique weak solution in H1(Ω) so uε ∈ H1/2(∂Ω). Suppose that α = 1, so
∂nuε = −1

ε
[uε]+ ∈ H1/2(∂Ω) since ‖[uε]+‖H1/2(∂Ω) ≤ ‖uε‖H1/2(∂Ω) and finally uε ∈ W 2,2(Ω).

When α > 1, e.g. suppose α = 2 and d = 2, assume that there is a small θ > 0 s.t.
uε ∈ H1+θ(Ω). As before [uε]+ ∈ H1/2+θ(∂Ω) and the latter space being a multiplicative
algebra, we deduce that [uε]

2
+ ∈ H1/2+θ(∂Ω) so ∂nuε ∈ H1/2+θ(∂Ω), and then uε ∈ W 2+θ,2(Ω).

Then, a bootstrap argument yields uε ∈ H3/2+θ(∂Ω), so that ∀η > 0, [uε]+ ∈ H3/2−η(∂Ω)
(see [29]), and if f is regular enough and η small enough, uε ∈ W 3−η,2(Ω) ↪→ W 2,3(Ω) by
imbedding.

Remark 3.5. When u is less regular than W 2,α+1(Ω), say u ∈ W s,α+1(Ω), 1 < s < 2 we can

obtain a bound of h2(s−1) |u|2Hs(Ω) + h2(s−1)
(
h
ε

) 1
α |u|

α+1
α

W s,α+1(Ω) ||f ||
2(α−1)/α

L2(Ω) in Lemma 3.1 and a

bound of Chs−1 in Corollary 3.2 i) and ii). This is straightforward when u is continuous
which is always the case when d = 2 or d = 3, s(α + 1) > 3. In the remaining cases, the
Lagrange operator fails and interpolation operators adapted to nonsmooth functions should
be considered.

4 A priori error analysis in weak norm

4.1 The companion problem

Let u ∈ V and uh ∈ Vh be the exact and the approximated solutions of (9) and (10),
respectively. Denote by ζ = u−uh ∈ V the error, and assume that α satisfies (5) and α 6= 1.
Following the idea of [19] in a slightly different context, we introduce the companion problem

φ ∈ V : a(φ, v) +
1

ε

∫
ΓC

q′α(u)φv =

∫
Ω

ζv, ∀v ∈ V, (12)

where a is the bilinear map defined in (4), qα(u) = [u]α+, so q′α(u) = α[u]α−1
+ .
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As a linear problem with mixed Dirichlet-Robin boundary condition, problem (12) is
well-posed and the solution φ ∈ V satisfies |φ|H1(Ω) . ||ζ||L2(Ω) uniformly in ε. Under some
assumptions on Ω and the interface between ΓC and ΓD (see [26]), we know that the solution
indeed belongs to H2(Ω). In some particular cases (see [18, Theorem 4.3.1.4]), the solution
φ ∈ V also satisifes the regularity estimate

||φ||H2(Ω) ≤ c(ε−1q′α(u))||ζ||L2(Ω),

with c(ε−1q′α(u)) a constant that depends on its argument. In the following, we will assume
that the following assumption holds.

Assumption 4.1. The unique solution φ ∈ V of (12) satisfies the stability estimate |φ|H2(Ω) ≤
c||ζ||L2(Ω) with c > 0 independent of ε and u.

In what follows, we denote by φh = πhφ the Lagrange interpolation in Vh of φ. Usin
assumption 4.1 and the inverse inequality, we obtain

||φ− φh||L2(ΓC) + h
1
2 |φ− φh|H1(Ω) . h

3
2 |φ|H2(Ω) . h

3
2 ||ζ||L2(Ω). (13)

Using the continuous embedding H2(Ω) ↪→ H3/2(ΓC), we also have for d ∈ {2, 3}:

||φh||L∞(ΓC) ≤ ||φ||L∞(ΓC) . ||φ||H3/2(ΓC) . ||φ||H2(Ω) . ||ζ||L2(Ω). (14)

4.2 L2(Ω)-norm estimate for d = α = 2

Lemma 4.2. Let d = 2 and α = 2. Let u ∈ V be the unique solution of (9) and uh ∈ Vh
the unique solution of (10), respectively. Assume that u ∈ W 2,3(Ω) and that ε ≥ θh with θ
large enough. Then

||u− uh||L2(Ω) . c(|u|W 2,3(Ω) , ||f ||L2(Ω))h
2,

where c(|u|W 2,3(Ω) , ||f ||L2(Ω)) denotes a constant that depends on its arguments.

Proof. Proceeding as for linear problems, we choose v = ζ in (12) to obtain

||ζ||2L2(Ω) = a(φ, ζ) +
1

ε

∫
ΓC

q′α(u)φζ.

Denoting φh = πhφ, using the definition of u and uh and the Galerkin orthogonality, we infer
from (9) and (10) that

0 = a(u, φh)− a(uh, φh) +
1

ε

∫
ΓC

(qα(u)− qα(uh))φh = a(ζ, φh) +
1

ε

∫
ΓC

(qα(u)− qα(uh))φh.

Subtracting the two previous equalities yields

||ζ||2L2(Ω) = a(ζ, φ− φh)−
1

ε

∫
ΓC

(qα(u)− qα(uh))φh +
1

ε

∫
ΓC

q′α(u)ζφ,

9



or equivalently,

||ζ||2L2(Ω) = a(ζ, φ− φh)−
1

ε

∫
ΓC

(qα(u)− qα(uh)− q′α(u)ζ)φh +
1

ε

∫
ΓC

q′α(u)ζ(φ− φh).

We then write ||ζ||2L2(Ω) = T1 + T2 + T3 with

T1 = a(ζ, φ− φh),

T2 = −1

ε

∫
ΓC

(qα(u)− qα(uh)− q′α(u)ζ)φh,

T3 =
1

ε

∫
ΓC

q′α(u)ζ(φ− φh).

To obtain an estimate of ||ζ||L2(Ω), we consider separately each term T1, T2 and T3. For
T1, we apply Cauchy-Schwarz inequality with (13) and Corollary 3.2 to obtain

|T1| ≤ |u− uh|H1(Ω) |φ− φh|H1(Ω) . c(u, f)
1
2h2||ζ||L2(Ω), (15)

with c(u, f) =
(
|u|2H2(Ω) + |u|3/2W 2,3(Ω) ||f ||L2(Ω)

)
. Considering now the second term T2, we

observe that

qα(u)− qα(uh)− q′α(u)ζ = ζ

∫ 1

0

(q′α(u− tζ)− q′α(u)) dt,

so that T2 can be written as

T2 = −1

ε

∫
ΓC

ζφh

(∫ 1

0

(q′α(u− tζ)− q′α(u)) dt

)
.

To estimate the integral over t, we note that t ∈ R 7→ [t]+ is 1-Lipschitz, so that in particular∫ 1

0

|q′α(u− tζ)− q′α(u)| dt . |ζ| .

Then, the simple estimate follows:

|T2| .
1

ε

∫
ΓC

|ζ|2 |φh|.

Applying Holder’s inequality combined with the trace inequality ||ζ||L2(ΓC) ≤ ||ζ||1/2L2(Ω) |ζ|
1/2

H1(Ω),

estimate (14) and Corollary 3.2, we obtain

|T2| .
1

ε
||ζ||2L2(ΓC)||φh||L∞(ΓC) .

1

ε
||ζ||2L2(Ω) |ζ|H1(Ω) . c(u, f)

1
2
h

ε
||ζ||2L2(Ω). (16)

For the last term T3, we have

T3 =
2

ε

∫
ΓC

[u]+ζ(φ− φh).

10



Then, applying Holder’s inequality with 1
3

+ 1
2

+ 1
6

= 1 provides

|T3| .
1

ε
||[u]+||L3(ΓC)||ζ||L2(ΓC)||φ− φh||L6(ΓC).

From (7), we know that ||[u]+||L3(ΓC) . ε
1
3 ||f ||2/3L2(Ω). Then, using the trace inequality ||ζ||L2(ΓC) ≤

||ζ||1/2L2(Ω) |ζ|
1/2

H1(Ω), we deduce from Corollary 3.2 that

|T3| . ||f ||2/3L2(Ω)

1

ε2/3
||ζ||1/2L2(Ω)h

1/2c(u, f)1/4||φ− φh||L6(ΓC).

It now remains to estimate ||φ − φh||L6(ΓC). Observing that the embedding W 2,2(Ω) →
W

4
3
,6(Ω) is continuous (see [1]), we infer from Proposition 5.1 that

||φ− φh||L6(ΓC) . h
4
3
− 1

6 |φ|
W

4
3 ,6(Ω)

. h
7
6 |φ|H2(Ω) . h

7
6 ||ζ||L2(Ω).

Hence, for T3 it follows

|T3| .
(
h

ε

)2/3

h||ζ||3/2L2(Ω)||f ||
2/3

L2(Ω)c(u, f)1/4.

Collecting the estimates on T1, T2 and T3, and absorbing the constants in the . symbol, it
then follows

||ζ||2L2(Ω) .

(
h2 +

h

ε
||ζ||L2(Ω)

)
||ζ||L2(Ω) +

(
h

ε

)2/3

h||ζ||3/2L2(Ω). (17)

We then use the hypothesis ε ≥ θh to infer

||ζ||L2(Ω) . h2 + θ−1||ζ||L2(Ω) + θ−2/3h||ζ||1/2L2(Ω).

Since θ is assumed large enough, the expected result follows from the previous bound using
Young’s inequality.

Remark 4.3. When u is less regular than W 2,3(Ω), say u ∈ W s,3(Ω), 1 < s < 2 we can
check that the limiting term is T2 which requires that ε = θhs−1; we then obtain an L2-error
bound of hs in Lemma 4.2.

4.3 L2(Ω)-norm estimate for d = 3 and α = 2

In this section, we extend the previous analysis to a three dimensional domain Ω.

Lemma 4.4. Let d = 3 and α = 2. Let u ∈ V be the unique solution of (9) and uh ∈ Vh
the unique solution of (10), respectively. Assume that u ∈ W 2,3(Ω) and that ε ≥ θh with θ
large enough. Then

||u− uh||L2(Ω) . c(|u|W 2,3(Ω) , ||f ||L2(Ω))h
8
5 . (18)

If in addition ε ≥ θ
√
h,

||u− uh||L2(Ω) . c(|u|W 2,3(Ω) , ||f ||L2(Ω))h
2. (19)
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Proof. Proceeding as in the proof for d = 2, we observe that (15) and (16) also hold for
d = 3. For the third term T3 we apply Holder’s inequality with 1

3
+ 1

2
+ 1

6
= 1. Note that we

choose L6 for ζ and L2 for φ− φh which is the contrary of the choice for d = 2. That choice
gives the best estimates we are able to obtain in our analysis (we skip over the discussion on
the choice which is technical). Hence, we obtain

T3 =
2

ε

∫
ΓC

[u]+ζ(φ− φh) ≤
2

ε
||[u]+||L3(ΓC)||ζ||L6(ΓC)||φ− φh||L2(ΓC).

Using estimate (7), it then follows

T3 .
2

ε2/3
||f ||2/3L2(Ω)||ζ||L6(ΓC)||φ− φh||L2(ΓC)

and using (13), we have ||φ− φh||L2(ΓC) . h
3
2 ||ζ||L2(Ω). As a partial result, we obtain

T3 .
h

3
2

ε
2
3

||f ||2/3L2(Ω)||ζ||L6(ΓC)||ζ||L2(Ω).

Now, we combine the interpolation inequality ||ζ||L6(ΓC) . ||ζ||1/3L2(ΓC)||ζ||
2/3

H1(ΓC) valid in two

space dimension (see [3]), with the trace inequality ||ζ||L2(ΓC) ≤ ||ζ||1/2L2(Ω) |ζ|
1/2

H1(Ω) to obtain

||ζ||L6(ΓC) . ||ζ||1/6L2(Ω) |ζ|
1/6

H1(Ω) ||ζ||
2/3

H1(ΓC).

We now estimate ||ζ||H1(ΓC) as follows:

||ζ||H1(ΓC) ≤ ||u− πhu||H1(ΓC) + ||πhu− uh||H1(ΓC)

. h1/2||u||H3/2(ΓC) + h−1/2||πhu− uh||H1/2(ΓC)

. h1/2||u||H2(Ω) + h−1/2||u− uh||H1/2(ΓC) + h−1/2||u− πhu||H1/2(ΓC)

. h1/2||u||H2(Ω) + h−1/2 |ζ|H1(Ω) ,

where we have used triangular, interpolation, continuous and inverse inequalities, combined
with the a priori estimate from Corollary 3.2. Then, we obtain

||ζ||L6(ΓC) . ||ζ||1/6L2(Ω) |ζ|
1/6

H1(Ω)

(
h1/3||u||2/3H2(Ω) + h−1/3 |ζ|2/3H1(Ω)

)
.

From Corollary 3.2, it follows that |ζ|H1(Ω) ≤ c(u, f)h if ε ≥ θh, so that

||ζ||L6(ΓC) . c(u, f)h1/2||ζ||1/6L2(Ω),

where c(u, f) is some constant depending on |u|W 2,3(Ω), ||u||H2(Ω) and ||f ||L2(Ω). Hence, for T3

we obtain the estimate

T3 .

(
h

ε

)2/3

h4/3||ζ||7/6L2(Ω) (20)
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which gives T3 . θ−2/3h4/3||ζ||7/6L2(Ω) with ε ≥ θh bounded. Hence, applying generalized
Young’s inequality yields

T3 . θ−8/7||ζ||2L2(Ω) + h16/5,

and since θ is large enough we get (18). If we consider again (20) with the additional
constraint ε ≥ θh1/2, then

T3 .

(
h1/2

ε

)2/3

h1/3h4/3||ζ||7/6L2(Ω) . θ−2/3h5/3||ζ||7/6L2(Ω),

which implies T3 . θ−8/7||ζ||2L2(Ω) + h4 and (19).

4.4 Estimate in L2(Ω)-norm for d = 2, α > 2

Lemma 4.5. Let d = 2 and α > 2. Let u ∈ V be the unique solution of (9) and uh ∈ Vh
the unique solution of (10). Assume that u ∈ W 2,α+1(Ω), h . ε and h small enough. Then

||u− uh||L2(Ω) ≤ c(α, |u|W 2,α+1(Ω) , ||f ||L2(Ω))h
2(− ln(h)),

where c(α, |u|W 2,α+1(Ω) , ||f ||L2(Ω)) is a constant that depends on its arguments.

Proof. As in the case α = 2 we consider separately each term T1, T2 and T3 and we absorb
the constants in the . symbol. For T1, we obtain as before

|T1| ≤ |u− uh|H1(Ω) |φ− φh|H1(Ω) . h2c(u, f)1/2||ζ||L2(Ω) . h2||ζ||L2(Ω).

Considering now the second term T2, we still have

T2 = −1

ε

∫
ΓC

ζφh

(∫ 1

0

(q′α(u− tζ)− q′α(u)) dt

)
= −α

ε

∫
ΓC

ζφh

(∫ 1

0

([u− tζ]α−1
+ − [u]α−1

+ ) dt

)
.

The estimate on the integral over t is now different, and we use the bounds of Lemma 2.3:∫ 1

0

([u− tζ]α−1
+ − [u]α−1

+ ) dt .
∫ 1

0

([u− tζ]+ − [u]+)([u− tζ]α−2
+ + [u]α−2

+ ) dt. (21)

Since [u− tζ]+ ≤ [u]+ + [uh]+, we obtain [u− tζ]α−2
+ + [u]α−2

+ ≤ C([u]α−2
+ + [uh]

α−2
+ ) and then∫ 1

0

([u− tζ]α−1
+ − [u]α−1

+ ) dt . |ζ| ([u]α−2
+ + [uh]

α−2
+ ). (22)

It follows the estimate

|T2| .
α

ε

∫
ΓC

ζ2|φh|([u]α−2
+ + [uh]

α−2
+ )

.
α

ε
||ζ2||

L
α+1
3 (ΓC)

||φh||L∞(ΓC)(||[u]+||α−2
Lα+1(ΓC) + ||[uh]+||α−2

Lα+1(ΓC)),
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where Holder’s inequality is used with 3
α+1

+ α−2
α+1

= 1. Using the a priori bound (7) for u
and uh, it implies

|T2| .
α

ε
||ζ2||

L
α+1
3 (ΓC)

||φh||L∞(ΓC)ε
α−2
α+1 ||f ||2(α−2)/(α+1)

L2(Ω)

. α||ζ||2
L

2(α+1)
3 (ΓC)

||ζ||L2(Ω)ε
−3
α+1 ||f ||2(α−2)/(α+1)

L2(Ω) ,

where we have used (14) to infer that ||φh||L∞(ΓC) . ||ζ||L2(Ω). It now remains to estimate

||ζ||2
L

2(α+1)
3 (ΓC)

. Using the interpolation inequality ||ζ||
L

2(α+1)
3 (ΓC)

≤ ||ζ||
3

α+1

L2(ΓC)||ζ||
α−2
α+1

L∞(ΓC) com-

bined with the trace inequality ||ζ||L2(ΓC) . ||ζ||1/2L2(Ω) |ζ|
1/2

H1(Ω), we obtain

||ζ||
L

2(α+1)
3 (ΓC)

. ||ζ||
3

2(α+1)

L2(Ω) |ζ|
3

2(α+1)

H1(Ω) ||ζ||
α−2
α+1

L∞(ΓC). (23)

Then, using Corollary 3.2, it implies that

|T2| . α

(
h

ε

) 3
α+1

||ζ||
3

α+1
+1

L2(Ω) ||ζ||
2(α−2)
α+1

L∞(ΓC),

Finally, we estimate ||ζ||L∞(ΓC) using Proposition 5.2 and Corollary 3.2 as ||ζ||L∞(ΓC) .
h
√
− ln(h) yielding

|T2| . α

(
h

ε

) 3
α+1

h
2(α−2)
α+1

(√
− ln(h)

) 2(α−2)
α+1 ||ζ||

3
α+1

+1

L2(Ω) .

Let us now consider the last term

T3 =
α

ε

∫
ΓC

[u]α−1
+ ζ(φ− φh),

and apply Holder’s inequality with α−1
α+1

+ 3
2(α+1)

+ 1
2(α+1)

= 1 to obtain

|T3| ≤
α

ε
||[u]+||α−1

Lα+1(ΓC)||ζ||L 2(α+1)
3 (ΓC)

||φ− φh||L2(α+1)(ΓC).

Proceeding as above, we use the estimate ||[u]+||Lα+1(ΓC) . ε
1

α+1 ||f ||2/(α+1)

L2(Ω) and the esti-

mate (23) on ||ζ||
L

2(α+1)
3 (ΓC)

to obtain

|T3| .
α

ε
2

α+1

||ζ||
3

2(α+1)

L2(Ω) |ζ|
3

2(α+1)

H1(Ω) ||ζ||
α−2
α+1

L∞(ΓC)||φ− φh||L2(α+1)(ΓC).

Then, using Proposition 5.2 and Corollary 3.2, it follows

|T3| .
α

ε
2

α+1

||ζ||
3

2(α+1)

L2(Ω) h
2α−1
2(α+1)

(√
− ln(h)

)α−2
α+1 ||φ− φh||L2(α+1)(ΓC).
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Now, we use Proposition 5.1 with the continuous embedding W 2,2(Ω) ↪→ W
α+2
α+1

,2(α+1)(Ω) to
obtain

||φ− φh||L2(α+1)(ΓC) . h
α+2
α+1
− 1

2(α+1) |φ|
W

α+2
α+1 ,2(α+1)

(Ω)
. h

2α+3
2(α+1) |φ|W 2,2(Ω) . h

2α+3
2(α+1) ||ζ||L2(Ω).

Hence, we obtain

|T3| . α

(
h

ε

) 2
α+1

h
4α−2
2(α+1)

(√
− ln(h)

)α−2
α+1 ||ζ||

3
2(α+1)

+1

L2(Ω) .

Now, collecting the three estimates of T1, T2, T3, it follows

||ζ||L2(Ω) . h2 +

(
h

ε

) 3
α+1

h
2(α−2)
α+1 ||ζ||

3
α+1

L2(Ω)

(√
− ln(h)

) 2(α−2)
α+1

+(
h

ε

) 2
α+1

h
2α−1
α+1 ||ζ||

3
2(α+1)

L2(Ω)

(√
− ln(h)

)α−2
α+1

, (24)

so that we conclude applying Young’s inequality with the assumption h . ε.

Remark 4.6. Note that the estimate (17) obtained for α = 2 is consistent with the general
estimate (24) valid for all α > 2. In addition, observe that the assumption ε ≥ θh with θ
large enough is not needed if α > 2, since we have 3

α+1
< 1. Nevertheless a | ln(h)| term

appears when α > 2.

5 Technical results

Let πh be the linear Lagrange interpolation operator which to any function v ∈ W s,p(Ω)
with sp > d and vanishing on ΓD associates its interpolant πhv ∈ Vh. We recall the following
properties.

Proposition 5.1. For all v ∈ W 2,p(Ω) with 2p > d,

||πhv − v||Lp(Ω) + h |πhv − v|W 1,p(Ω) . h2 |v|W 2,p(Ω) ,

||πhv − v||Lp(ΓC) . h2− 1
p |v|W 2,p(Ω) .

More generally, if v ∈ W s,p(Ω) with sp > d and 1 < s ≤ 2,

||πhv − v||Lp(ΓC) . hs−
1
p |v|W s,p(Ω) .

Proof. For all K ∈ Th, the local interpolation theory gives us

||πhv − v||Lp(K) + hK |πhv − v|W 1,p(K) . h2
K |v|W 2,p(K) . (25)

Considering a boundary face F touching the cell K ∈ Ωh, we have from the multiplicative
trace inequality in Lp(F ):

||πhv − v||Lp(F ) . ||πhv − v||
p−1
p

Lp(K)

(
h
− 1
p

K ||πhv − v||
1
p

Lp(K) + ||∇(πhv − v)||
1
p

Lp(K)

)
.
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Hence, combining these two estimates, it follows

||πhv − v||Lp(F ) . h
2− 1

p

K |v|W 2,p(K) ,

and we obtain, summing over F ⊂ ΓC ,

||πhv − v||pLp(ΓC) ≤
∑
F⊂ΓC

h2p−1
KF
|v|pW 2,p(KF ) . h2p−1 |v|pW 2,p(Ω) .

The generalization to 1 < s ≤ 2 follows the same lines as previously starting with a similar
estimate as (25) for 1 < s ≤ 2.

The next lemma is needed in the two dimensional case when α > 2.

Proposition 5.2. Let Ω ⊂ R2 and ΓC ⊂ ∂Ω. Consider v ∈ V ∩H2(Ω) and vh ∈ Vh. Assume
that h is small enough. Then

||v − vh||L∞(ΓC) . h
√
− ln(h) |v|H2(Ω) +

√
− ln(h)||v − vh||H1(Ω).

Proof. We start with the triangular inequality ||v − vh||L∞(ΓC) ≤ ||v − πhv||L∞(ΓC) + ||πhv −
vh||L∞(ΓC) where πh is the Lagrange interpolator mapping into Vh and we consider separately
||v − πhv||L∞(ΓC) and ||πhv − vh||L∞(ΓC).

From the Gagliardo-Nirenberg interpolation inequality in one dimension (see [3]), stan-
dard error estimates (e.g., issued from Proposition 5.1) and the trace theorem, we get

||v − πhv||L∞(ΓC) . ||v − πhv||1/2L2(ΓC)||v − πhv||
1/2

H1(ΓC)

.
(
h3/2 |v|H3/2(ΓC) h

1/2 |v|H3/2(ΓC)

)1/2

. h |v|H2(Ω) .

Consider now the discrete term ||πhv − vh||L∞(ΓC). Apply the one dimensional global
inverse inequality on ΓC with p ∈ [1,∞] ([15]), and obtain

||πhv − vh||L∞(ΓC) . h−1/p||πhv − vh||Lp(ΓC).

Then, using the embedding inequality ||v||Lp(ΓC) .
√
p||v||

H
1
2 (ΓC)

for all v ∈ H1/2(ΓC) and

p ∈ [1,∞) (see [2]), it follows

||πhv − vh||L∞(ΓC) .
√
ph−1/p||πhv − vh||H1/2(ΓC).

Choosing p = − ln(h) yields

||πhv − vh||L∞(ΓC) .
√
− ln(h)||πhv − vh||H1(Ω).

Finally, using a triangular inequality and Proposition 5.1, we obtain

||πhv − vh||L∞(ΓC) . h
√
− ln(h) |v|H2(Ω) +

√
− ln(h)||v − vh||H1(Ω).

The result then follows by collecting these estimates and observing that h . h
√
− ln(h) for

h small enough.
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