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Little attention is paid to pseudogenes from the highly polymorphic HLA genetic region.

The pseudogene HLA-H is defined as a non-functional gene because it is deleted at

different frequencies in humans and because it encodes a potentially non-functional

truncated protein. However, different studies have shown HLA-H transcriptional activity.

We formerly identified 13 novelHLA-H alleles, including theH∗02:07 allele, which reaches

19.6% in East Asian populations and encodes a full-length HLA protein. The aims of

this study were to explore the expression and possible function of the HLA-H molecule.

HLA-H may act as a transmembrane molecule and/or indirectly via its signal peptide by

mobilizing HLA-E to the cell surface. We analyzed HLA-H RNA expression in Peripheral

BloodMononuclear Cells (PBMC), Human Bronchial Epithelial Cells (HBEC), and available

RNA sequencing data from lymphoblastoid cell lines, and we looked to see whether

HLA-E was mobilized at the cell surface by the HLA-H signal peptide. Our data confirmed

that HLA-H is transcribed at similar levels to HLA-G. We characterized a hemizygous

effect in HLA-H expression, and expression differed according to HLA-H alleles; most

interestingly, the HLA-H∗02:07 allele had the highest level of mRNA expression. We

showed that HLA-H signal peptide incubation mobilized HLA-E molecules at the cell

surface of T-Lymphocytes, monocytes, B-Lymphocytes, and primary epithelial cells. Our

results suggest that HLA-H may be functional but raises many biological issues that need

to be addressed.
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INTRODUCTION

The highly polymorphic Human Leukocyte Antigen (HLA) genetic region encompasses many
pseudogenes; little attention is paid to these compared to class I and II genes involved in clinical
fields, such as immune diseases, anthropology matters, and the early migration of Homo sapiens
(1, 2). The pseudogene HLA-H is located at 55 Kbp from the telomeric side of HLA-A and, due to
their high similarity, these genes were described as sharing a recent ancestor (3–5).

HLA-H was defined as a non-functional gene because of its deletion from chromosomes carrying
HLA-A∗23/∗24 alleles (6–11), but also because its amino acid sequence predicted a potentially
non-functional truncated protein.
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In a previous study, we identified 13 novel HLA-H alleles,
which showed unexpected genetic diversity, with a total of 25
second-field alleles (10). Among these, H∗02:07 and H∗02:14
potentially encode complete transmembrane HLA proteins;
while the H∗02:14 allelic frequency was very low, H∗02:07
displayed global worldwide frequencies of 8.6% that reached
19.6% in East Asian populations (10).

Functional implications of a putative HLA-H protein,
however, remain difficult to explore as, to date, there is no
validated HLA-H antibody. Nevertheless, the transcriptional
activity of this gene has been assessed in different studies (12–14).

Like the non-classical class I molecules, HLA-G, -E, and -
F, which display immune response activation and inhibition
(15–21) HLA-H may be tolerogenic and participate in immune
homeostasis. In cases where the immune system is challenged,
the absence of HLA-H might lessen tolerogenicity; in Lung
Transplant patients (LTx), the HLA-G∗01:04 allele, in Linkage
Disequilibrium (LD) with HLA-H∗deletion, was associated with
impaired long-term survival, increased Chronic Lung Allograft
Dysfunction (CLAD) occurrence, and the production of de novo
Donor Specific Antigen (DSA) (22). The impaired outcome
associated with HLA-G∗01:04 remains unclear as the HLA-
G∗01:04 protein, which differs from G∗01:01 in its peptide
anchor profile, increased protection from Natural Killer cells
(NK) lysis compared to other alleles (in cytotoxicity assays
with K562 cells) (23). Several causes may be considered,
however, such as antigenicity elicited by HLA-G∗01:04 or
reduced HLA-G expression in HLA-G∗01:04 carriers; however,
it could also be due to the absence of HLA-H with the HLA-
G∗01:04 haplotype.

HLA-H may act like HLA-G, -E, and -F, both directly
as a transmembrane molecule and/or indirectly via its
signal peptide by mobilizing HLA-E to the cell surface.
HLA-E, which regulates NK and cytotoxic T-lymphocyte
cells via the inhibitory receptor CD94/NKG2 (16, 18, 19),
is transcribed in most tissues (24) but is mobilized to
the cell surface by signal peptides from HLA Ia, HLA-
G, and peptide ligands from stress proteins and viruses
(25, 26).

The aims of the present study were to explore the
expression and possible function of the HLA-H molecule.
Lacking a validated tool to analyze the putative HLA-
H transmembrane protein, we analyzed HLA-H RNA
expression in Peripheral Blood Mononuclear Cells
(PBMC), Human Bronchial Epithelial Cells (HBEC), and
available RNA sequencing data from lymphoblastoid cell
lines, and we looked to see whether HLA-E molecules
were mobilized at the cell surface by the HLA-H
signal sequence.

Abbreviations: HLA, Human Leukocyte Antigen; LTx, Lung Transplant

patients; LD, Linkage Disequilibrium; CLAD, Chronic LungAllograft Dysfunction;

DSA, Donor Specific Antigen; NK, Natural Killer cells; PBMC, Peripheral

Blood Mononuclear Cells; HBEC, Human Bronchial Epithelial Cell; EDTA,

Ethylene Diamine Tetra Acetate-anticoagulated; ALI, Air-Liquid Interface; CMV,

Cytomegalovirus; Mean Fluorescence Intensity; DMSO, Dimethylsulfoxyde.

MATERIALS AND METHODS

Primary Cells
Peripheral Blood Mononuclear Cells (PBMC) were obtained
from Ethylene Diamine Tetra Acetate-anticoagulated (EDTA)
peripheral blood samples from healthy donors. The donations
were collected in accordance with the French blood donation
regulations and ethics and with the French Public Health Code
(article L.1221-1).

Human Bronchial Epithelial Cells (HBEC) were obtained
from human transplant donor lungs deemed unsuitable for
transplantation and donated to medical research. The ethics
committees of the institutions involved approved this study
(CERC-SFCTCV-2018-5-6-9-8-32-DjXa). Primary human
bronchial epithelial cells were isolated by protease digestion
of human airways, and cells were cultivated under Air-Liquid
Interface (ALI) conditions, as previously described (27). HBEC
were maintained in culture for 21 days to obtain a differentiated
cell population with a mucociliary phenotype.

K562 (ACC86) cell lines, used as the negative control for
HLA expression, were obtained from the German Collection
of Microorganisms and Cell Cultures (Leibniz Institute
DSMZ, Germany).

HLA-H Transcriptional Expression
HLA-H Transcriptional Expression in PBMC and

Bronchial Epithelial Cells
HLA-H transcriptional expression was investigated in PBMC and
HBEC from healthy donors (N = 5 and N = 8, respectively).
K562 cells (ACC86) were used as the negative control. Total
RNA was isolated using the RNeasy kit (Qiagen, France).
cDNA was reverse transcribed using Superscript III Reverse
Transcriptase (Invitrogen), and Real-time PCR analyses were
performed using TaqMan technology (Life Technologies) as
previously described (28). The primers/probes were designed
using the Primer 3 v.0.4.0 program (http://bioinfo.ut.ee/primer3-
0.4.0/primer3/) to specifically target HLA-H as checked with
the Human Genome Browser (http://genome.ucsc.edu/) (29) and
IPD-IMGT/HLA database 3.37.0 (30) (Supplementary Table 1).
HLA-G and HLA-E were investigated as previously described
(28), and ACTB (actinβ) was used as an endogenous control
(ACTB Hs99999903_m1, Invitrogen).

Each experiment was carried out in duplicate, and average Ct
was calculated with StepOne 2.1 software (Invitrogen), but Ct
duplicates with a standard deviation above 0.5 were excluded.

HLA-H Transcriptional Expression in Cell Line From

the 1000 Genomes Project
HLA-H expression was also investigated in RNA-sequencing data
from 464 lymphoblastoid cell lines from the 1000 Genomes
Project (31).

RNA sequencing data were analyzed using PolyPheMe
software specially designed for HLA NGS data analysis (Xegen,
France) for which accuracy was assessed at 99.3% (10, 32, 33).
This software is based on a specific strategy to avoid bias raised
by the use of a unique genome as a reference for HLA NGS
data mapping (34–36). First, RNAseq reads were selected for
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their specificity for HLA class I alleles. Then, all reads assigned
to HLA class I were filtered out for their specificity for HLA Ia
(A, B, C), Ib (E, F, G), and pseudogenes that showed the highest
homology with HLA-H. Lastly, remaining reads were selected
for their specificity for HLA-H using all exon sequences. The
analysis was based on the 25 HLA-H alleles described in the
IPD-IMGT/HLA database 3.37.0 (30), including the new alleles
described in (10).

HLA-E Mobilization by HLA-H Signal
Peptide
HLA-E mobilization by a HLA-H signal peptide was investigated
in PBMC and HBEC using flow cytometry analysis.

Lyophilized signal peptides from HLA-H and from
positive controls [HLA-G, HLA-B15, and cytomegalovirus
(CMV) (37)] were purchased from Invitrogen with 95%
purity. Dimethylsulfoxyde (DMSO) and Neuromedin peptide
(Sigma Aldrich) were used as reference and negative controls,
respectively. All peptides were solubilized in DMSO at 50mM.
Peptide sequences are presented in Supplementary Table 2.

Cells were incubated as described in (37) with each peptide
at a final concentration of 500µM. Cells were incubated with
the equivalent volume of peptide solvent (DMSO) as reference.
PBMC with known HLA-E genotype were incubated at 37◦C for
1, 2, 4, and 6 h. For HBEC, incubation at both interfaces (air and
liquid) was performed at 37◦C for 16 h. Each experiment was
carried out in duplicate.

HLA-E expression at the cell surface was assessed by
flow cytometry using a Mouse IgG1 antibody clone 3D12-PE
(Invitrogen). The isotype control was a Mouse IgG1 antibody
clone 679.1Mc7-PE (Beckman Coulter). Data were acquired on
a FACSCalibur machine (BD Biosciences) and analyzed with BD
FACSDiva software 6.1.2.

PBMC subtypes for HLA-E expression and overexpression
after incubation with HLA-H were characterized with an
antibody panel that included CD3-vioBlue (Miltenyi), CD19-
AF700 (Biolegend), CD14-FITC (Biolegend), and viability Dye
(eFluor506) (eBioscience) with or without a 3D12 antibody. Data
were acquired on a Cytoflex machine (Beckman Coulter).

Statistical Analyses
All association and correlation tests were performed with
GRAPH PAD Prism 5 software (California USA). Differences
between two modalities were tested using a Mann–Whitney U
test. A Kruskal–Wallis one-way ANOVA followed by a Dunn
post-hoc test was used to test more than two modalities. Q-PCR
results were expressed as dCt (delta of cycle threshold, expression
normalized by ACTB endogenous gene) with median and range
[min, max]. RNA seq data from 464 lymphoblastoid cell lines
from the 1000 Genomes Project were presented as the number
of reads. HLA-E protein expression without peptide incubation
was estimated as a percentage of expressing cells (cells gated in
R2 and defined according to isotype control staining). The HLA-
E mobilization at the cell surface upon peptide incubation was
estimated and compared to incubation with a solvent (DMSO).
Mobilization was assessed by the number of cells expressing
HLA-E compared with DMSO (% gated in M2: cells with higher

FIGURE 1 | HLA-H expression in PBMC and HBEC (dCt: delta of cycle

threshold, expression quantified by Q-PCR normalized by ACTB endogenous

gene).

fluorescence than those incubated with DMSO), and by the ratio
M2 Mean Fluorescence Intensity (MFI) median (cells incubated
with peptide with gated cells in M2 >1%)/M1 MFI median (cells
incubated with DMSO).

RESULTS

HLA-H mRNA Is Expressed in PBMC and
HBEC
HLA-H transcriptional expression was measured using Real
Time PCR. HLA-H primer/probe efficiency, estimated by 10-
fold dilution of HBEC mRNA assays, was 2.05; no signal was
observed with the gDNA assay or in K562 cells. All PBMC and
HBEC samples expressedHLA-H [5.334 (4.291–6.758) and 5.322
(4.268–8.410), respectively] (Figure 1).

In HBEC, HLA-H transcriptional expression was similar to
that of HLA-G, both were lower than that of HLA-E (p < 0.0001)
(Supplementary Figure 1).

HLA-H mRNA Expression Is Lower in
Hemizygous HLA-H Samples
HLA-H expression investigated in RNA-sequencing data from
the 1000 Genomes Project (31) showedHLA-H-specific reads for
464 samples. As HLA-H is deleted from chromosomes bearing
HLA-A∗23/∗24 alleles, two samples bearing HLA-A∗24:02/24:02
and HLA-A∗23:01/24:02 showed 22 and 203 HLA-H reads,
respectively, representing background noise. No attempt was
made to correct this mismapping bias that is inherent to HLA
NGS data mapping (34–36).

HLA-H expression in samples displaying one HLA-A∗23 or
∗24 allele had statistically significant lower HLA-H reads [N =

96, 192.6 (22–1,049)] than samples with no HLA-A∗23 or ∗24
allele [N = 365, 334.8 (39–2,135) the outer value at 7,924 was
excluded from analysis; p < 0.0001] (Supplementary Figure 2).
This hemizygous effect was confirmed independently from
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FIGURE 2 | HLA-H reads according to HLA-H alleles in hemizygous samples

for HLA-H in RNA-sequencing data from the 1000 Genomes Project.

allelic effect in genetically homogeneous samples with sufficient
overall size: H∗01:01/HLA-A∗23 or ∗24 samples that displayed
statistically significant lower HLA-H reads than H∗01:01/01:01
samples [N = 29, 126.2 (46–227) vs. N = 37, 222.5 (78–623); p
= 0.0002] (Supplementary Figure 3).

HLA-H mRNA Expression Varies According
to HLA-H Alleles
Expression of HLA-H mRNA differed according to HLA-H
alleles in RNA-sequencing data from the 1000 Genomes Project;
hemizygous samples (bearing HLA-A∗23 or ∗24 alleles) showed
low-expression alleles {HLA-H∗02:02 [N = 4, 89.50 (72–129)],
H∗01:03 [N = 5, 164.8 (99–229)], H∗01:01 [N = 29, 126.2
(46–227)], H∗02:04 [N = 17, 174.6 (38–493)], H∗02:01 [N =

13, 175.2 (72–267)], medium-expression alleles {H∗02:10 [N
= 3, 284.3 (171–428)], H∗02:05 [N = 8, 255.1 (161–376)],
H∗02:08 [N = 3, 441 (347–572)]}, and a high-expression allele
{H∗02:07 [N = 3, 812.3 (383–1049)]}; p< 0.0001 (Figure 2). This
difference was confirmed in homozygous samples of sufficient
overall size: low-expression alleles {H∗01:01/∗01:01 [N = 37,
222.5 (78–623)], H∗02:04/∗02:04 [N = 18, 211.3 (39–537)],
H∗02:01/∗02:01 [N = 6, 181.8 (53–283)]} and a medium-
expression allele {H∗02:05/∗02:05 [N = 6, 487.5 (314–718)]};
p = 0.0051 (Supplementary Figure 4). H∗02:070 of a higher
expression was confirmed in samples bearing H∗01:01 and
H∗01:01/∗02:07 [N = 20, 886.8 (353–1,455)] vs. H∗01:01/∗01:01
[N = 37, 222.5 (78–623)]; p< 0.0001 (Supplementary Figure 5).

HLA-E Molecule Is Mobilized at PBMC and
HBEC Surface by HLA-H Signal Peptide
The expression of the HLA-E protein at the cell surface
was studied using flow cytometry. All PBMC and HBEC
expressed HLA-E without peptide incubation [3D12 (anti-HLA-
E) staining compared to isotype control]. In PBMC, HLA-
E∗01:03 homozygous individuals expressed more HLA-E than
heterozygous individuals and E∗01:01 homozygous individuals

FIGURE 3 | Percentage of PBMC overexpressing HLA-E compared with

DMSO (defining M2) after 1, 2, 4, and 6 h of peptide incubation.

FIGURE 4 | PBMC HLA-E overexpression after 1, 2, 4, and 6 h of peptide

incubation (gated cells in M2 >1%) compared with DMSO.

[74.88 (59.39–85.68); 59.79 (51.34–65.30); 39.55 (35.76–44.90),
respectively, p= 0.0015] (Supplementary Figure 6).

Incubation with CMV, HLA-B15, HLA-G, and HLA-H
peptides significantly increased the number of cells expressing
HLA-E after 4 and 6 h of incubation (p < 0.01), whereas
incubation with the negative control Neuromedin showed no
effect (Figure 3). In Neuromedin or DMSO assays, M2-gated
cells never reached 1%.

Intensity of HLA-E mobilization at the cell surface was
equivalent after incubation with an HLA-H peptide and with
positive control peptides: no difference was observed between
CMV, HLA-B15, HLA-G, and HLA-H (p = 0.469). Incubation
duration significantly increased expression (p = 0.0014); the
highest expression was reached after 4 h of incubation (Figure 4).

PBMC cell subtype analysis showed that LT, monocytes,
and LB overexpressed HLA-E after 4 h of HLA-H peptide
incubation (Supplementary Figure 7).

In HBEC that were tested with one peptide control because
of HBEC availability, HLA-E mobilization with HLA-H, and
CMV peptides showed no statistical difference and were effective
after 16 h of peptide incubation (p = 0.0273) compared to
DMSO (Supplementary Figure 8).
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DISCUSSION

HLA pseudogenes have scarcely been studied and are poorly
investigated, but some of them may still be functional. HLA-H
was shown to be transcribed (12–14), and we formerly described
unexpected worldwide genetic diversity (10). In different clinical
studies, the HLA-G∗01:04 haplotype, in which HLA-H was
deleted, was associated with an impaired outcome (22, 38,
39). The full-length HLA-H protein showed similar domains
to non-classical class I molecules (10), HLA-G, -E, and -F,
molecules, which displayed immune response activation and
inhibition (15–21). Furthermore, the HLA-H signal peptide
(MVLMAPRTLLLLLSGALALTQTWA) was almost identical to
that of HLA-A (MAVMAPRTLLLLLSGALALTQTWA), except
that there was a Valine in the second position as in HLA-G
(MVVMAPRTLFLLLSGALTLTETWA), and there was a specific
amino acid (Val>Leu) in the third position, compared to other
HLA class I proteins (40).

We thus hypothesized that HLA-H may have tolerogenic
activity either as a transmembrane molecule and/or via its signal
peptide by mobilizing HLA-E to the cell surface.

In this study, as there is still no validated anti-HLA-H
antibody, we aimed to confirm HLA-H RNA expression in
different primary cells and also to see whether the HLA-H signal
peptide could mobilize HLA-E to the cell surface in a similar way
to other HLA peptides.

We analyzed HLA-H RNA expression in Peripheral Blood
Mononuclear Cells (PBMC), Human Bronchial Epithelial Cells
(HBEC), and in RNA-sequencing data from 464 lymphoblastoid
cell lines from the 1000 Genomes Project (31).

Our data support that HLA-H is transcribed in blood
mononuclear cells and in primary epithelial cells (12–14).
In HBEC, its expression is similar to that of HLA-G. RNA-
sequencing data from lymphoblastoid cell lines from the 1000
Genomes Project allowed us to show a hemizygous effect in
the expression of HLA-H and to characterize different levels
of expression according to HLA-H alleles; most interestingly,
the HLA-H∗02:07 allele, which potentially encodes a full-length
protein, presents the highest level of mRNA expression. HLA-
H expression results from RNA-sequencing data, but this
should, however, be taken with precaution and needs further
confirmation; a part of the reported expression level, notably in
the low-expression alleles, may be due to mismapped reads, as
observed in the HLA-A∗23 and/or ∗24 samples and as reported
in different studies dealing with HLA NGS mapping (34–36).

We then analyzed HLA-E mobilization at the cell surface

by peptides from the HLA-H signal sequence. Physiologically,

HLA-E is expressed at the surface of endothelial cells, T and B

lymphocytes, monocytes, and macrophages (41). However, HLA-
E, transcribed in most tissues (24), can be mobilized to the cell
surface by different peptides, such as stress protein peptides and
peptides derived from different pathogens (16, 18). We thus
performed assays in PBMC, as described in (37), as well as in
primary epithelial cells.

Our data showed that incubation with an HLA-H signal
peptide mobilized HLA-E at the cell surface of T-Lymphocytes,
monocytes, B-Lymphocytes, and primary epithelial cells. The

incubation time required for a significant effect was compatible
with cell properties, as peak expression was reached after 4 h in
antigen-presenting cells and after 16 h in primary epithelial cells.

We confirmed that, physiologically, PBMC from HLA-
E∗01:03 homozygous individuals had higher HLA-E cell
surface expression than PBMC from HLA-E∗01:01 homozygous
individuals. Functional differences between the two isoforms,
HLA-E∗01:01 and HLA-E∗01:03, which display similar
frequencies (50%) in different populations (42), involve
relative peptide affinity, cell surface expression, and potential
lytic activity on NK cells (43).

Whether HLA-E isoforms associated with the HLA-H signal
peptide display different tolerogenic activity remains to be
explored. The higher affinity of the HLA-G-derived non-amer-
HLA-E complex with a CD94/NKG2C receptor complex was
reported and explained by the 10th amino acid (Phe) in the HLA-
G signal peptide (44). In HLA-H, this amino acid was identical to
HLA-A (Leu) and different from HLA-G.

The fact that HLA-H ∗02:07 is so widespread and that
mRNA expression is high in cells suggests that this HLA
pseudogene deserves further investigation. Our results
suggest that HLA-H may be functional. Many questions,
however, need to be addressed: different expressions according
to HLA-H alleles must be confirmed in primary tissues,
particularly concerning the HLA-H∗02:07 allele; HLA-H
mRNA translation has to be explored, as our experiments
were performed with a synthetic HLA-H signal peptide;
and potential immune protection by HLA-E associated with
an HLA-H signal peptide also has to be studied. Finally,
supplementary studies will also be needed to investigate
the existence and functional activity of a full-length
HLA-H protein.
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RNA-sequencing data from the 1000 Genomes Project analyzed with the

PolyPheMe software. Samples homozygous or heterozygous for HLA-H (all but

A∗23/24) are compared to samples hemizygous for HLA-H (A∗23/24).

Supplementary Figure 3 | HLA-H reads according to HLA-H deletion in

HLA∗01:01 samples in RNA-sequencing data from the 1000 Genomes Project.

Supplementary Figure 4 | HLA-H reads according to HLA-H alleles in

homozygous samples for HLA-H in RNA-sequencing data from the 1000

Genomes Project.

Supplementary Figure 5 | HLA-H reads according to HLA-H alleles in samples

bearing H∗02:01/H∗02:01 vs. H∗02:01/H∗02:07 in RNA-sequencing data from the

1000 Genomes Project.

Supplementary Figure 6 | PBMC stained by HLA-E antibody compared with

isotype control according to HLA-E genotype.

Supplementary Figure 7 | HLA-E (3D12) expression in PBMC subtypes

T-Lymphocytes (CD3), monocytes (CD14), and B-Lymphocytes (CD19) after 4 h of

peptide incubation.

Supplementary Figure 8 | HLA-E expression in HBEC after 16 h of

peptide incubation.

Supplementary Table 1 | Primer/probe designed for HLA-H Q-PCR assay.

Supplementary Table 2 | Peptide sequences used in HLA-E expression assay.
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