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Given a graph G = (V, E), S ⊆ V is a dominating set if every v ∈ V \ S is adjacent to an element of S. The Minimum Dominating Set problem asks for a dominating set with minimum cardinality. It is well known that its decision version is N P -complete even when G is a claw-free graph. We give a complexity dichotomy for the Minimum Dominating Set problem for the class of (claw, H)-free graphs when H has at most six vertices. In an intermediate step we show that the Minimum Dominating Set problem is N P -complete for cubic graphs.

Introduction

We will only be concerned with simple undirected graphs. The reader is referred to [START_REF] Bondy | Graphs Theory[END_REF] and [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] for, respectively, the definitions and notations on graph theory and on computational complexity. Given a graph G = (V, E), a set S ⊆ V is called a dominating set if every vertex v ∈ V is either an element of S or is adjacent to an element of S. When S is a dominating set of G we say that S dominates G. The minimum cardinality of a dominating set in G is denoted by γ(G). A dominating set S ∈ V with |S| = γ(G) is called a Minimum Dominating Set, a mds for short. Following [START_REF] Haynes | Slater Fundamentals of Domination in Graphs[END_REF] a mds is also called a γ-set. Our aim is to determine the computational complexity of the task consisting of computing a γ-set or the domination number, for some subclasses of graphs defined by a finite set of forbidden subgraphs. The decision problem associated with the Minimum Dominating Set is defined as:

Minimum Dominating Set (MDS problem) Instance: a graph G = (V, E) and an integer d, |V | ≥ d ≥ 0. Question: is γ(G) ≤ d ?

In this paper we focus on the (claw, H)-free graphs complexity. The decision problems we study are defined this way.

(claw, H)-free Minimum Dominating Set Instance: a (claw, H)-free graph G = (V, E) and an integer d, |V | ≥ d ≥ 0. Question: is γ(G) ≤ d ?

The paper is organized as follows. The two next sections give the notations, the results of the literature and some basic properties that will be used in the sequel of the paper. Then we prove that the MDS problem is N P -complete for the class of cubic graphs, a result that is strangely missing in the literature. This result and its proof will be useful for several demonstrations later on. The sections 5 to 8 are concerned with the MDS problem in the class of claw-free graphs when at least one other graph is excluded. Among our different results, in the section 7 we give a complexity dichotomy for the class of (claw, H)-free graphs for all the graphs H with no more than six vertices. We give a partial result for the (claw, H)-free MDS problem when H has at least seven vertices in the section 8. We summarize our main results and the problems left open in the conclusion.

Definitions and notations

An element ab ∈ E is called an edge, if ab ∈ E then ab is called a non-edge. For a vertex v ∈ V let us denote by N (v) its neighborhood, N [v] = N (v) ∪ {v} its closed neighborhood. The set of vertices at distance exactly k of a vertex v is denoted by

N k (v). Hence N (v) = N 1 (v) and N [v] = N 0 (v) ∪ N 1 (v). A vertex v is isolated if N (v) = ∅. A vertex v is universal if N [v] = V . Two distinct vertices u, v are twins if N (v) = N (u), are false twins if N [v] = N [u]. The graph G is the complementary graph of G, that is V (G) = V (G) and E(G) = {uv | uv ∈ E(G)}.
For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by S, which has vertex set S and edge set {uv

∈ E | u, v ∈ S}. Moreover, for a vertex v ∈ V , we write G -v = G[V \ {v}] and for a subset V ⊆ V we write G -V = G[V \ V ]. For a set {H 1 , . . . , H p } of graphs, G is (H 1 , . . . , H p )-free if G has no induced subgraph isomorphic to a graph in {H 1 , . . . , H p }; if p = 1 we may write H 1 -free instead of (H 1 )-free. For two vertex disjoint induced subgraphs G[A], G[B], G[A] is complete to G[B] if ab is an edge for any a ∈ A and b ∈ B, G[A] is anti-complete to G[B] if
ab is an non-edge for any a ∈ A and b ∈ B. We denote by G + H the disjoint union of the graphs G and H. A set S ⊆ V is called a stable set or an independent set if any pairwise distinct vertices u, v ∈ S are non adjacent. The maximum cardinality of an independent set in G is denoted by α

(G). A set S ⊆ V is called a clique if any pairwise distinct vertices u, v ∈ S are adjacent. When G[V ] is a clique then G is a complete graph.
We denote by K p , p ≥ 1, the clique or the complete graph on p vertices and k.K p is the disjoint union of k cliques (k ≥ 0).

For n ≥ 1, the graph

P n = u 1 -u 2 -• • • -u n denotes the cordless path on n vertices, that is, V (P n ) = {u 1 , . . . , u n } and E(P n ) = {u i u i+1 | 1 ≤ i ≤ n - 1}.
For n ≥ 3, the graph C n denotes the cordless cycle on n vertices, that is,

V (C n ) = {u 1 , . . . , u n } and E(C n ) = {u i u i+1 | 1 ≤ i ≤ n -1} ∪ {u n u 1 }. For n ≥ 4, C n is called a hole. The graph C 3 = K 3 is also called the triangle.
The claw K 1,3 is the 4-vertex star, that is, the graph with vertices u, v 1 , v 2 , v 3 and edges uv 1 , uv 2 , uv 3 . The diamond is the 4-vertex complete graph K 4 minus an edge. The net is the graph with six vertices

u 1 , u 2 , u 3 , v 1 , v 2 , v 3 and edges u 1 u 2 , u 2 u 3 , u 1 u 3 , u 1 v 1 , u 2 v 2 , u 3 v 3 . The bull is the graph with five vertices u 1 , u 2 , u 3 , v 1 , v 2 and edges u 1 u 2 , u 2 u 3 , u 1 u 3 , u 1 v 1 , u 2 v 2 .
The paw is the graph with four vertices u 1 , u 2 , u 3 , v 1 and edges

u 1 u 2 , u 2 u 3 , u 1 u 3 , u 1 v 1 .
The butterfly is the graph with five vertices

u 1 , u 2 , v, v 1 , v 2 and edges u 1 u 2 , u 1 v, u 2 v, v 1 v 2 , v 1 v, v 2 v.
The house is the graph with five vertices u 1 , u 2 , u 3 , u 4 , v and edges

u 1 u 2 , u 2 u 3 , u 3 u 4 , u 4 u 1 , u 1 v, u 2 v.
The gem is the graph with five vertices u 1 , u 2 , u 3 , u 4 , v and edges

u 1 u 2 , u 2 u 3 , u 3 u 4 , u 1 v, u 2 v, u 3 v, u 4 v.
The Figure 2 below exposed all these graphs.

Figure 1: The claw, the diamond, the paw, the bull, the net.

Figure 2: The butterfly, the house, the gem.

The (k 1 , k 2 , k 3 )-triangle consists of a triangle T = {v 1 , v 2 , v 3 } and three vertex disjoint paths P k i connected to v i , 1 ≤ i ≤ 3. Hence the net is the (1, 1, 1)-triangle, the bull is the (1, 1, 0)-triangle, the paw is the (1, 0, 0)-triangle. The k-double-triangle consists of two vertex disjoint triangles

T 1 = {v 1 , v 2 , v 3 }, T 2 = {v 4 , v 5 , v 6 } and P k between v 1 and v 4 .
For simplicity the 0-double-triangle is called the double-triangle (see Figure 3). We denote V + ⊆ V the subset of vertices v of G such that γ(G -v) > γ(G). A mds which is also an independent set is an independent dominating set and the minimum cardinality of an independent dominating set is denoted by i(G). Clearly γ(G) ≤ i(G) ≤ α(G). Note also that a minimum independent dominating set is a minimum maximal independent set.

Preliminary results

We know from [START_REF] Allan | On domination and independent domination numbers of a graph[END_REF] that if the graph G is claw-free then γ(G) = i(G). From [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF] the MDS problem is N P -complete for the clas of claw-free graphs. The minimum edge dominating set problem consists of finding F ⊆ E a minimum set of edges such that for each edge e ∈ F , e is incident to an edge f, f ∈ F . Taking L(G), the line graph of G, a minimum edge dominating set in G is a minimum dominating set in L(G). In [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF] Yannakakis et al. showed that the minimum edge dominating set problem is N P -complete for bipartite subcubic graphs. Moreover, one can check that the graphs built in the transformation (from a variant of the 3-SAT problem) are C 4 -free. Also, line graphs of bipartite graphs are perfect, so they have no odd holes. Thus, for any of these graphs, the corresponding line graphs are (claw, diamond, K 4 , C 4 )-free and perfect (i.e. (odd hole, odd antihole)free). It follows that the minimum dominating set problem is N P -complete for (claw, diamond, K 4 , C 4 )-free perfect graphs. The minimum dominating set problem is polynomial for paw-free graphs. The class of (claw, claw)-free graphs has bounded clique-width [START_REF] Brandstädt | Maximum weight stable set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time[END_REF], so from [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] a γ-set can be computed in linear time. It is also polynomial for (claw, net)-free graphs [START_REF] Brandstädt | On linear and circular structure of (claw, net)-free graph[END_REF]. A minimum dominating set can be computed in polynomial time for 2K 2 -free graphs so for (claw, 2K 2 )-free graphs [START_REF] Boliak | Independent domination in finitely defined classes of graphs[END_REF]. In [START_REF] Bouquet | The Minimum Dominating Set problem is polynomial for (claw, P 8 )-free graphs[END_REF], it is shown that computing a minimum dominating set is polynomial for the class of (claw, P 8 )-free graphs. Since K 2 +2K 1 ⊆ i P 8 and 4K 1 ⊆ i P 8 computing a mds is polynomial for the classes of (claw, K 2 + 2K 1 )free and (claw, 4K 1 )-free graphs.

Note that (claw, H)-free graphs is equivalent to claw-free graphs when H contains a claw. Hence, the remaining H's we consider are claw-free.

We give some preliminary easy properties that will be useful for many proofs given later.

Property 3.1 Let H, H two fixed graphs with H ⊆ i H. If H -free Minimum Dominating Set is N P -complete then H-free Minimum Dominating Set is N P -complete. Property 3.2 Let H, H two fixed graphs with H ⊆ i H . If H -free Minimum Dominating Set is polynomial then H-free Minimum Dominating Set is polynomial. Property 3.3 Let k > 0 be a fixed positive integer and G = (V, E) a graph. If there exists T ⊆ i G of size |T | ≤ k such that V = N [T ]
then computing a minimum dominating set for G is polynomial.

Proof: Since |T | ≤ k and V = N [T ],
we have that γ(G) ≤ k. So a minimum dominating set can be computed in O(n k ) which is polynomial.

Property 3.4 Let k > 0 be any fixed positive integer. If a graph G is (claw, k.K 1 )free then computing a minimum dominating set for G is polynomial.

Proof: Since G is k.K 1 -free we have α(G) < k. Since G is claw-free γ(G) = i(G) ≤ α(G)
. Now k is fixed, so enumerating all the independent sets of size less than k can be done in polynomial time. It follows that for any fixed k ≥ 1, (claw, k.K 1 )-free Minimum Dominating Set is polynomial.

Property 3.5 Let G = (V, E) be a connected claw-free graph with uv ∈ E such that u is a leaf. The Minimum Dominating Set problem is polynomial for G = G -N [v] if and only if it is polynomial for G. Proof: Since G is claw-free K = N (v) -u is a clique. Let s ∈ K, we show that s ∈ V + .
For contradiction we assume that s ∈ V + . As shown in [START_REF] Bauer | Domination alteration sets in graphs[END_REF], s is in every

γ-set of G. Let Γ be a γ-set with v ∈ Γ. Let W = N (s) \ N (v). If W = ∅ then Γ -s is a dominating set, a contradiction. It follows W = ∅ and since G is claw-free, W is a clique. Let w ∈ W . Γ = (Γ -{s}) ∪ {w} is another γ-set, a contradiction. Hence γ(G -K) ≤ γ(G). Since G -K consists of G and the component uv, we have that γ(G -K) = γ(G ) + 1. Then from Γ a γ-set of G we obtain Γ ∪ {v} a γ-set of G in polynomial time. Reciprocally, let Γ be a γ-set of G.
Since u is a leaf we assume that v ∈ Γ. Then Γ -{v} is a γ-set for G . Trivially it can be done in polynomial time from Γ.

4 Cubic and k-regular graphs for k ≥ 3 when k is odd

In [START_REF] Demange | Hardness and approximation of minimum maximal matchings[END_REF] Demange et al. it is proved that, for any fixed k ≥ 3, the Minimum Edge Dominating Set problem is N P -complete for bipartite k-regular graphs. Transferring this result into the line graph we have that the Minimum Dominating Set problem is N P -complete for 2(k -1)-regular graphs, k ≥ 3, that is regular graphs with even degree at least four. The graphs built in the proof above are (butterf ly, house, gem)-free, so we have the following. Given a cubic graph G = (V, E), we construct a graph G = (V , E ) as follows.

Each vertex v, v ∈ V , is connected to (k-3) 2 components K k+1 -e (the complete graph with k + 1 vertices minus an edge). For each component K k+1 -e, let e = st. The vertex v is connected to s and t. Figure 7 shows the transformation for k = 7.

For each component, one vertex w, w = s, t is necessary in a minimum dominating set. Since v is not dominated by w, the sequel of the proof is easy. Proof: The arguments are similar of those given in the proof of Theorem 4.1. We give a polynomial reduction from the Minimum Dominating Set problem which is N P -complete for 4-regular graphs. To each 4-vertex v is associated the gadget depicted in Figure 8. In this gadget each dashed box corresponds to an induced path of 3p vertices, p ≥ 0. We have the following: γ(H v ) = 8 + 4p and there exists a minimum dominating set that contains the four corners. For each corner, says a, H v -a has a unique minimum dominating set of size γ(H v -a) = 7 + 4p. None of the three other corners The graph we obtain has no claw. Its maximum degree is three. The smallest cycle that is not a triangle has length more than 12p. As p can be chosen arbitrary large taking k = 12p we obtain the result.

(claw, k -double -triangle)-free graphs

Using the Theorem 4.1, we show the N P -completeness of the MDS problem for the class of (claw, k -double -triangle)-free subcubic graphs. In a first step we prove the following lemma.

Lemma 6.1 The (claw, butterf ly, diamond, C 4 , C 5 , K 4 )-free Minimum Dominating Set problem is N P -complete for cubic perfect graphs.

Proof: We give a polynomial reduction from the Minimum Dominating Set problem for cubic graphs which is proved N P -complete in Theorem 4.1.

Let G be a cubic graph and d be an instance of Minimum Dominating Set. We build G and d another instance of Minimum Dominating Set where G is (claw, butterf ly, diamond, C 4 , C 5 , K 4 )-free and perfect. Let n be the number of vertices in G, we take d = 2n + d. Each 3-vertex v of G is replaced with the gadget shown in Figure 9.

We denote by H v the gadget associated with v.

The gadget H v has three corners -the vertices a, b, c in Figure 9 -each of them corresponding to an edge incident to v in G. To the edge a = uv in G corresponds an edge connecting the two corners a of H v and H u . Hence G is (claw, butterf ly, diamond, C 4 , C 5 , K 4 )-free. Moreover G has no odd hole. Since C 5 is isomorphic to C 5 we have C 5 ⊆ i G . One can remark that for any k, k ≥ 6, we have C 4 ⊆ i C k . Thus G being C 4 -free, G has no odd anti-hole. Then from the perfect graph theorem [START_REF] Chudnovsky | The strong perfect graph theorem[END_REF] G is perfect.

For each H v , the subgraph of G induced by the nine vertices of H v , satisfies the following properties. By symmetry the three corners play the same role. Clearly γ(H v ) = 3 and there exists a minimum dominating set that contains the three corners, see Figure 10. For each corner, says a, H v -a has a unique minimum dominating set of size γ(H v -a) = 2, see Figure 10. None of the two other corners b, c are in this minimum dominating set. With one vertex it is not possible to dominate H v -{a, b, c}. So we can prove the following theorem.

Theorem 6.2 For any fixed integer k, k ≥ 0, the Minimum Dominating Set problem is N P -complete for (claw, k -double -triangle)-free subcubic graphs.

Proof: The arguments are similar of those given in the proof of Lemma 6.1. We give a polynomial reduction from the Minimum Dominating Set problem which is N P -complete for cubic graphs. Let G = (V, E) be a cubic graph. To each 3-vertex v, v ∈ V, is associated the gadget depicted by Figure 11. In this gadget each dashed box corresponds to an induced path of 3p vertices (we depicted the case p = 1). To each edge uv ∈ E is associated a P 3p (the same dashed box in the picture). We take The graph we obtain is (claw, (3p -1) -double -triangle)-free and its maximum degree is three. As shown by Figure 12 the remaining arguments are the same as in the proof of Lemma 6.1.

d = d + (2 + 3p)|V | + p|E|.
As p is a positive integer that can be chosen arbitrary large we obtain the result.

(claw, H) -f ree graphs

For any fixed graph H with no more than six vertices we determine the complexity of the MDS problem for the class of (claw, H)-free graphs. Trivially the graphs G we consider are assumed to be connected. When H has no more than two vertices the MDS problem is trivially polynomial, so we prove the results for all the graphs H with three vertices up to six vertices.

Property 7.1 For any fixed graph H with three vertices computing a minimum dominating set for G a connected (claw, H)-free graph is polynomial.

Proof: Since a connected (claw, C 3 )-free graph is either a path or a cycle, the MDS problem is polynomial when G is (claw, H)-free with H = C 3 . When H = C 3 we have H ⊆ i P 8 . From [START_REF] Bouquet | The Minimum Dominating Set problem is polynomial for (claw, P 8 )-free graphs[END_REF] we know that computing a mds is polynomial for (claw, P 8 )-free graphs. Then the result holds from Property 3.2.

The next three sections deal with the case where H contains four, five, six vertices.

(claw, H) -f ree graphs when H has four vertices

When H has exactly four vertices the state of the art is the following. In [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF], the minimum edge dominating set problem is shown to be N P -complete for bipartite subcubic graphs. Moreover, one can check that the graphs G built in the transformation (from a variant of the 3-SAT problem) are C 4 -free. Also, line graphs of bipartite graphs are perfect, so they have no odd holes. Thus, L(G) the line graph of such a G is (claw, diamond, K 4 , C 4 )-free and perfect (i.e., (odd hole, odd antihole)free). It follows that the minimum dominating set problem is N P -complete for (claw, diamond, K 4 , C 4 )-free perfect graphs. From [START_REF] Bouquet | The Minimum Dominating Set problem is polynomial for (claw, P 8 )-free graphs[END_REF] computing a mds is polynomial for (claw, P k )-free graphs when k ≤ 8. It is also polynomial when H ∈ {P 4 , P 3 + K 1 , 2K 2 , K 2 + 2K 1 , 4K 1 } since H ⊆ i P 8 . The class of (claw, claw)-free graphs has bounded clique-width [START_REF] Brandstädt | Maximum weight stable set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time[END_REF], so from [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] a γ-set can be computed in linear time (remark that claw ≡ K 3 + K 1 ).

Taking these results together we obtain the following dichotomy. 

(claw, H) -f ree graphs when H has five vertices

In this section, we focus on H with exactly five vertices. From [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF], we know that the MDS problem is N P -complete when G is claw-free and perfect, hence for (claw, C 5 )-free graphs. Also, from Lemmas 3.1 and 6. Proof: When G is a (claw, K 3 )-free graph computing a mds is polynomial. Now we suppose that

K 3 ⊆ i G. Let G[{v 1 , v 2 , v 3 }] = K 3 . From Property 3.3 we can assume that N [K 3 ] = V . Let W = V -N [T ] = ∅. If W is not complete then there are u, v ∈ W such that uv ∈ E, but K 3 ∪ {u, v} = H ⊆ i G.
Thus W is complete and γ(G) ≤ 4 (taking {v 1 , v 2 , v 3 } and w ∈ W ). Hence a mds can be computed in time O(n 4 ).

Property 7.4 Let G = (V, E) be a connected (claw, H)-free graph. If H ∈ {K 3 + K 2 , {2, 0, 0} -triangle, paw + K 1 } then computing a minimum dominating set for G is polynomial.
Proof: When G is a (claw, P 8 )-free graph computing a mds is polynomial (see [START_REF] Bouquet | The Minimum Dominating Set problem is polynomial for (claw, P 8 )-free graphs[END_REF]). Now we suppose that

P 8 ⊆ i G. Let v 1 -v 2 -v 3 -v 4 -v 5 -v 6 -v 6 -v 7 -v 8 = P . From Property 3.3 we can assume that N [P ] = V . Let W = V \N [P ].
Since G is connected and claw-free, there are w ∈ W, v ∈ N (P ) such that v is a neighbor of w and v has exactly two neighbors v i , v i+1 in P . By symmetry we can assume that i

≤ 4. Clearly G[{v, v i , v i+1 , v i+3 }] = paw + K 1 , G[{v, v i , v i+1 , v i+2 , v i+3 }] = {2, 0, 0} -triangle and G[{v, v i , v i+1 , v i+3 , v i+4 }] = K 3 + K 2 .
Taking the results together we obtain the following dichotomy. 

(claw, H) -f ree graphs when H has six vertices

We consider H with exactly six vertices. From Theorems 5.1, 6.2, the MDS problem is N P -complete when G is (claw, C 4 , • • • , C k )-free (for any fixed k ≥ 4) and when G is (claw, k-double-triangle)-free (for any fixed k ≥ 0). Hence, the MDS problem is N P -complete for (claw, C 6 )-free graphs and for (claw, double-triangle)-free graphs.

• 2K 3 : when 2 ≤ i ≤ 4 then u 8 v ∈ E else G contains a claw. Thus G[{v, v i , v i+1 , v k-1 , v k , u k }] = H (the case i ∈ {5, 6} is symmetric); • H = P 3 + 3K 1 : G[{v 1 , v 2 , v 3 , v 5 , v 7 , w}] = H; • H = 2K 2 + 2K 1 : G[{v 1 , v 2 , v 4 , v 5 , v 7 , w}] = H; • H = paw + 2K 1 : when i ∈ {2, 3} then G[{v, v i , v i+1 , w, v 6 , v 8 }] = H (the case i ∈ {5, 6} is symmetric). When i = 4 then G[{v, v i , v i+1 , v i-1 , v 1 , v 8 }] = H; • H = bull + K 1 : when 2 ≤ i ≤ 4 then G[{v, v i , v i+1 , v i-1 , w, v 8 }] = H (the case i ∈ {5, 6}) is symmetric); • H = K 3 + K 2 + K 1 : G[{u 1 , v 1 , v 2 , v 5 , v 6 , w}] = H; • H = paw + K 2 : when 2 ≤ i ≤ 4 then G[{v, v i , v i+1 , w, v 8 }] = H (the case i ∈ {5, 6} is symmetric); • H = {2, 1, 0}-triangle: when 2 ≤ i ≤ 4 then G[{v, v i-1 , v i , v i+1 , v i+2 , v i+3
, w}] = H (the case i ∈ {5, 6} is symmetric);

• H = K 2 + 4K 1 : G[{v 1 , v 2 , v 4 , v 6 , v 8 , w}] = H; • H = K 3 + 3K 1 : G[{u 1 , v 1 , v 2 , v 4 , v 6
, w}] = H.

7.4

The dichotomy for the H's with no more than six vertices

Taking together all the results proved in this section we can conclude with the following result. 

Conclusion

We gave some complexity results for the Minimum Dominating Set problem for the class of claw-free graphs when another fixed graph H is forbidden as an induced subgraph. Especially we gave a complexity dichotomy for the class of (claw, H)-free graphs when H has less than seven vertices. When H has at least seven vertices, we gave a partial result for the cases where H contains a connected component with two triangles. For the other H's we left the complexity problem open.

To reach our goal, as an intermediary step, we proved the N P -completeness of the Minimum Dominating Set problem for the class of cubic graphs, which was unknown.
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  Property 7.2 Let H be a fixed graph with four vertices. Computing a minimum dominating set for G a connected (claw, H)-free graph is N P -complete when H ∈ {diamond, K 4 , C 4 }, otherwise it is polynomial. In[START_REF] Lin | On the complexity of the minimum domination problem restricted by forbidden induced subgraphs of small size[END_REF] Lin et al. remark that the minimum dominating set problem is N P -complete for (claw, diamond, K 4 , C 4 )-free graphs, here we restrict this result for the class of perfect graphs.

	Remark 7.1

  [START_REF] Allan | On domination and independent domination numbers of a graph[END_REF], we know that the MDS problem is N P -complete for (claw, H)-free graphs when H contains a C 4 , a K 4 , a diamond, or a butterf ly. Using Property 3.1 the MDS problem is NP-complete when H ∈ {K 5 , K 5 -e,P 3 + 2K 1 , W 4 , claw + K 1 , P 2 + P 3 , gem, K 3 + 2K 1 , K 4 + K 1 , C 4 + K 1 , dart, house, diamond + K 1 }. From Property 3.2,it is polynomial for (claw, H)-free graphs when H ⊆ i net or H ⊆ i P 7 , and from Property 3.4 it is polynomial for (claw, k.K 1 )-free graphs. Hence, the MDS problem is polynomial for H ∈ {bull, P 5 , P3 + 2K 1 , 2K 2 + K 1 , K 2 + 3K 1 , K 2 + P 3 , P 4 + K 1 , 5K 1 }.It remains to treat the cases where H ∈ {paw+K 1 , {2, 0, 0}-triangle,K 3 +2K 1 , K 3 + K 2 }. Property 7.3 Let G = (V, E) be a connected (claw, H)-free graph. If H = K 3 +2K 1then computing a minimum dominating set for G is polynomial.

  Theorem 7.1 Let H be a fixed graph with five vertices. Computing a minimum dominating set for G a connected (claw, H)-free graph is N P -complete whenH ∈ {C 5 , K 5 , K 5 -e, P 3 + 2K 1 , W 4 , claw + K 1 , P 2 + P 3 , gem, K 3 + 2K 1 , K 4 + K 1 , C 4 + K 1 , dart, house, diamond + K 1 ,butterf ly} and polynomial otherwise.

  Theorem 7.2 Let G be a connected (claw, H)-free graph such that H has at most six vertices. When H ⊆ i H with H ∈ {C 4 , C 5 , C 6 , K 4 , diamond, butterf ly, double -triangle}, computing a minimum dominating set for G is N P -complete, otherwise it is polynomial.8 More results for (claw, H) -f ree graphsIn the previous section we give a complexity dichotomy when H has no more than six vertices. Here we give a partial result for the H's with more than six vertices. Theorem 8.1 Let k > 0 be a fixed integer and H be a fixed graph with k vertices such that H has a connected component that contains two distinct triangles. The Minimum Dominating Set problem is N P -complete for (claw, H)-free graphs.Proof: Let T 1 ⊆ i H, T 2 ⊆ i H be two distinct triangles in a same component of H. When T 1 and T 2 are not vertex disjoint then C 4 ⊆ i H or diamond ⊆ i H or butterf ly ⊆ i H. Now let T 1 and T 2 be vertex disjoint. When there is an edge fromT 1 to T 2 then double -triangle ⊆ i H or C 4 ⊆ i H or K 4 ⊆ i H or diamond ⊆ i H.If there is no edge between T 1 and T 2 then there exists k < k such that k -double -triangle ⊆ i H. From our previous results we know that when H ∈ {C 4 , K 4 , diamond, butterf ly, k -double -triangle} the MDS problem is N P -complete for (claw, H)-free graphs. Thus the result follows from Property 3.1.
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Furthermore, the MDS problem is N P -complete for (claw, H)-free graphs when H contains at least one of the following graphs: diamond, butterf ly, claw, K 4 . Also from lemma 3.2, the MDS problem is polynomial for (claw, H)-free graphs when H ⊆ i H and the MDS problem is polynomial for (claw, H )-free graphs. Hence, if H is a net or is an induced subgraph of P 8 , then the MDS problem is polynomial for (claw, H)-free graphs. So, we focus on (claw, H)-free graphs where the complexity of the MDS problem cannot be deduced from the previous arguments.

Since computing a minimum dominating set is polynomial for (claw, P 8 )-free graphs [START_REF] Bouquet | The Minimum Dominating Set problem is polynomial for (claw, P 8 )-free graphs[END_REF], we can assume that k ≥ 8. Since G is claw-free, any vertex s ∈ N (P ) is such that |N P (s)| ≤ 4. Also, from Property 3.3, we can assume that

From Property 3.5 we can assume that both v 1 and v k are not leaves. Let u 1 , u k ∈ V \ P be two neighbors of v 1 and v k respectively. We show how the vertices u 1 and u k are connected to P . First, we deal with u 1 = u k . From above u 1 has no neighbor in W .

Hence, up to symmetry, in any case G[{v 1 , v 2 , u 1 }] is a triangle, and, u 1 and u k have no neighbor in W In the following we take k = 8, the arguments being the same for k > 8. Thus

We demonstrate that H ⊆ i G when P is of length 8 thus for k = 8. In the following, i is the indice of the first neighbor of the vertex v in P .

H (the case 5 ≤ i ≤ 6 is symmetric);

• H = {2, 0, 0}-triangle+K 1 : when i ∈ {2, 3} then G[{v, v i , v i+1 , v i+2 , v i+3 , v 8 }] = H (i ∈ {5, 6} is symmetric). When i = 4 then G[{v, v i , v i+1 , v i+2 , v i+3 , v 1 }] = H;