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Abstract: The detection of anomalies in real fluid distribution applications is a difficult task, especially, when we seek

to accurately detect different types of anomalies and possible sensor failures. Resolving this problem is in-

creasingly important in building management and supervision applications for analysis and supervision. In

this paper we introduce CoRP ”Composition of Remarkable Points” a configurable approach based on pattern

modelling, for the simultaneous detection of multiple anomalies. CoRP evaluates a set of patterns that are

defined by users, in order to tag the remarkable points using labels, then detects among them the anomalies

by composition of labels. By comparing with literature algorithms, our approach appears more robust and

accurate to detect all types of anomalies observed in real deployments. Our experiments are based on real

world data and data from the literature.

anomaly detection, habitat monitoring, online trans-

actions and fraud detection etc ((Hodge and Austin,

2004), (Agrawal and Agrawal, 2015)). Several tech-

niques have been proposed in the literature and cat-

egorized according to the fields of application or the

types of anomalies to be detected (Chandola et al.,

2009). Nevertheless, these techniques are unable to

always detect all types of anomalies simultaneously

and thus real applications are forced to use several

methods to accurately detect all existing anomalies.

This paper is placed in the context of real applications

with anomalies specific to the business (fluid manage-

ment on the Rangueil-Toulouse campus). The prob-

lem is to find a method to detect multiple anomalies

of different types (special event, sensor malfunctions)

observed during actual deployments while maximiz-

ing the number of anomalies detected and minimizing

errors. In this context, we deal with univariate time

series.

The difficulty of having a robust technique to de-

tect all the anomalies leads us to define a new con-

figurable method named CoRP ”Composition of re-

markable points”. This method allows, firstly, to de-

tect points that appear remarkable in the time series

by evaluating patterns and, secondly, to create re-

markable point compositions used to identify multiple

anomalies.

The remainder of this paper is structured as fol-

lows. In section 2, we provide some techniques and

algorithms mentioned in the literature about anomaly

1 INTRODUCTION

Sensor networks play an important role in the super-

vision and exploration of fluid distribution networks

(energy, water, heating, . . . ) at campus or city scale.

The operation is based on the data collected by the

sensors. These data include anomalies that affect the

supervision (false alarms, billing errors,. . . ).

For instance, figure 1 i llustrate a s udden change

(represented by a cross), in sensor measurements, that

generates a permanent level shift due to a hardware

problem (damaged sensors, sensor change, . . . ). The

triangles in the figure 1 includes several peaks repre-

senting reading defects related to an unforeseen event

(breakdown, break, . . . ). Finally, the rectangle rep-

resents a constant offset in the measurements due to

a communication problem between the supervision

devices. In this case, the sensor measurements may

differ from their expected values and thus become

anomalies making the exploration task more difficult

and complex. Therefore, all these scenarios must be

considered and must be accurately detected.

In this context, anomaly detection appears to iden-

tify and to find values in data that do not conform to

expected behavior (Chandola et al., 2009). Beyond

the supervision of sensor networks, there is a wide

range of applications for which it is essential to de-

tect anomalies to facilitate data analysis including in-

trusion detection, industrial damage detection, image

processing and medical anomaly detection, textual



Figure 1: Example of defects in sensor measurements.

detection in time series. Then, in section 3, we de-

scribe our pattern-based method for anomaly detec-

tion. In section 4, we detail the experimental setup,

the case study with the real world data sets and a

benchmark data sets. In section 5 we conclude with

the perspectives and ideas for further research.

2 STATE OF THE ART

Existing Surveys on Anomaly Detection. Most of

the existing research relates to either several applica-

tion domains or a single field of application, as in the

case of these reviews ((Chandola et al., 2009), (Hodge

and Austin, 2004), (Sreevidya et al., 2014), (Agrawal

and Agrawal, 2015)). Among these applications we

can mention, intrusion detection, industrial damage

detection, image processing and medical anomaly de-

tection, textual anomaly detection, habitat monitor-

ing, online transactions and fraud detection. The au-

thors discussed several anomaly detection techniques

according to the field of application. Typical exam-

ples include approaches based on clustering, classifi-

cation, statistics, nearest neighbors, regression, spec-

tral decomposition, and information theory. These

techniques can detect three types of anomaly: point,

contextual and collective anomalies.

Anomaly Detection on Time Series. Some authors

have chosen techniques that are appropriate for de-

tecting particular types of anomalies observed in real

deployments (Sharma et al., 2010). Thus, these au-

thors have explored anomaly detection techniques

that are appropriate for detecting anomaly types

(short, noise, and constant faults). They explore four

qualitatively different classes of fault detection meth-

ods namely: rule-based methods (short, noise, con-

stant rules), least-squares estimation-based method,

learning-based methods (HMM) and Time-series-

analysis-based methods (ARIMA). Although each of

these methods detects specific types of anomalies,

they still generate errors, especially in a context of

multiple anomalies. For this reason, the authors used

hybrid methods, Hybrid(U) and Hybrid(I), to improve

their results and reduce respectively the number of

false negative and false positive. Hybrid(U) declares a

point as an anomaly if at least one of the methods ex-

plored identified that point as an anomaly, while Hy-

brid(I) declares a point as an anomaly when all the

explored methods identified this point as an anomaly.

(Yao et al., 2010) propose an approach to on-

line anomaly detection in measurements collected by

sensor systems. They propose an algorithm termed

Segmented Sequence Analysis (SSA) that consists on

comparing the collected measurements against a ref-

erence time series. SSA leverages temporal and spa-

tial correlations in sensor measurements. This method

also fails to accurately detect all anomalies. Thus,

the authors proposed an hybrid approach to improve

the results. Typically, a combination of SSA with the

rule-based method (short and constant rules). Indeed,

they start by applying the rule-based method to detect

short-term anomalies, then they apply SSA to detect

the remaining anomalies.

Other methods for anomaly detection in an uni-

variate data-set are using an approximately normal

distribution of data such that generalized ESD test

(Extreme Studentized Deviate) (Rosner, 1983) and

Change Point (Basseville et al., 1993) (Aminikhang-

hahi and Cook, 2017). The limitation of ESD is that it

requires to specify an upper bound for the suspected

number of outliers. This is not possible on all ap-

plications and is impossible for online anomaly de-

tection. Change Point detects distribution changes

(e.g., mean, variance, covariances) in sensor mea-

surements. This method detects each change as an

anomaly meanwhile changes may exist in the time se-

ries that do not necessarily represent an anomaly and

vice versa.

Other methods are based on the nearest neighbor

anomaly detection technique and can be grouped into

two categories (Chandola et al., 2009): (1) techniques

that use the distance of a data instance to its kth near-

est neighbor as the anomaly score (Upadhyaya and

Singh, 2012). (2) techniques that compute the relative

density of each data instance to compute its anomaly

score for example LOF (Local Outlier Factor) algo-

rithm (Breunig et al., 2000). One of the drawbacks of

Nearest Neighbor Based Techniques is, that it fails to

label data correctly if the data has normal instances

that do not have enough close neighbors or if the

data has anomalies that have enough close neighbors

(Chandola et al., 2009).

While each of these methods has been designed

for anomaly detection, we believe that they do not

satisfy all the desirable properties described above



including the detection of all types of anomalies si-

multaneously observed in actual deployments with

the less error possible. Additionally, several methods

among the mentioned methods require pre-treatment

or post-treatment with hybrid methods to improve

their results. To evaluate the performance of these

methods, we have selected algorithms that belong to

different techniques and are close to detect the types

of anomalies we seek to detect.

We will present these algorithms in the following

paragraph and illustrate a comparison between these

methods on our case study in the section 4.

Exploration of Existing Detection Methods. In

our study, we explored five methods that belong to

four different techniques to detect the types of anoma-

lies observed in our application.

• The rule-based methods that belong to the classi-

fication technique and that can be extremely pre-

cise, but their accuracy depends essentially on

the choice of parameters; This method is based

on the exploitation of domain knowledge to de-

velop heuristics to detect and identify sensor de-

fects (Sharma et al., 2010). In our exploration, we

used two rules to detect short (abnormal change)

and constant anomalies (no variation):

Short Rule: We process the time series by com-

paring two successive observations each time. An

anomaly is detected if the difference between

them is greater than a threshold. To automatically

determine the threshold, we used the histogram-

based approach (Ramanathan et al., 2006). We

have plotted the histogram of the sensor reading

change between two successive samples for the

short rule and then select one of the histogram

modes as a threshold.

Constant Rule: We calculate the standard devia-

tion for a set of successive observations. If this

value is equal to zero, the set is declared as an

anomaly.

• Density-based method that consists in comparing

the density around a point with respect to the den-

sity of its local neighbors. It can detect local and

global anomalies (abnormal change). (Breunig

et al., 2000) proposed the LOF algorithm. In this

method, the anomaly scores are measured using

a local outlier factor, which is the ratio of the lo-

cal density around this point to the local density

around its nearest neighbor. The data point whose

LOF value is high is declared anomaly. The effec-

tiveness of LOF is strongly depends on the choice

of the number of closest neighbors.

• Statistics-based method: First, we used ESD

method for the automatic detection of anoma-

lies and more precisely the abnormal change such

as positive or negative peaks. Secondly, we

used the point change method to detect the level

shift. AnomalyDetection is an open source R

package for detecting anomalies in the presence

of seasonality and an underlying trend. This

package is based on the SH-ESD (Seasonal Hy-

brid ESD) algorithm, developed by (Hochenbaum

et al., 2017), which first uses the STL time series

decomposition (Seasonal and Trend decomposi-

tion using Loess) developed by (Cleveland et al.,

1990) to divide the time series signal into three

parts: seasonal, trend and residue. Secondly, it ap-

plies residual anomaly detection techniques such

as ESD (Rosner, 1983) using statistical metrics.

For point change detection, this is the name given

to the problem of estimating the point at which

the statistical properties of a sequence of observa-

tions change (Aminikhanghahi and Cook, 2017).

We used the ChangePoint package, in R, which

implements various point change methods in the

(single and multiple) data to detect either mean or

variance breaks or breaks in both the average and

in the variance. ESD and point change is consid-

ered light. statistical techniques in terms of calcu-

lation.

• Method based on time series analysis: The prin-

ciple of this approach is to use temporal correla-

tions to model and predict time series values. In

this article, we used the ARIMA model (AutoRe-

gressive Intergrated Moving Average) to create a

prediction model according to the approach de-

scribed by (Chen and Liu, 1993). ARIMA is ef-

ficient in anomaly detection with seasonal data.

Thus, this method can detect different types of

anomalies such as Additive Outlier (AO), Inno-

vation Outlier (IO), Level Shift (LS), Temporary

change (TC) and Seasonal Additive Outlier (SA).

What interests us among these types are Additive

Outlier (AO) which represent in our case an ab-

normal change and Level Shift (LS) and Tempo-

rary change (TC).

There are open source implementations for algo-

rithms like LOF, ARIMA, S-H-ESD and Change

Point and we have implemented other approaches

(Short rule and Constant rule) depending on available

sources.

Table 1 represents a summary of the methods we

have explored to detect defects found in actual de-

ployments and presented in figure 1. So, we used

Short rule, ARIMA, LOF and S-H-ESD algorithms to

detect positive and negative peak. Then, we explored

Constant rule to detect constant anomalies and finally



Table 1: Positioning detection methods against anomalies to be detected.

Type of anomalies Detection methods

Positive and Negative peak Short Rule, ARIMA, LOF, S-H-ESD

Constant Constant Rule

Level Shift ARIMA, Change Point

we used ARIMA and Change Point to detect Level

Shift also known in literature by Concept Drift. In

this paper we will remain on the terminology of Level

Shift.

3 METHODOLOGY

Several anomalies have been observed by the ana-

lysts in real deployments and they occur as a result

of communication problems between supervision de-

vices, failures, stops of sensors or changes of sen-

sors. Sensor networks are monitored by the experts,

by observing the curves, in order to detect points that

seem remarkable and that illustrate unusual behaviors

in the real context. These remarkable points are un-

usual variations between successive points of a time

series and which are the markers (or indices) of pos-

sible anomalies. In this context, we have created our

configurable approach, called CoRP (”Composition

of Remarkable Points”). It is based on patterns to

detect remarkable points and on compositions of re-

markable points to identify anomalies.

3.1 Notations

Definition 1. A time series is composed of successive

observations or points collected sequentially in time

at a regular interval. These observations represent the

measures that are associated with a timestamp indi-

cating the time of its collection.

Let Yi = {y1,y2,y3....} be a time series represent-

ing the sequence of collected sensor measurements yi

∈ R for each observation i ∈ N.

Definition 2. A point is a measure composed of a

value and a time stamp. In this paper, we note a mea-

sure y j = (t j,v j) such as t j is the timestamp of y j

(called t(y j)) and v j is the value of y j (called v(y j)).

3.2 Description of CoRP Method

Based on the experience of experts (detection of re-

markable points and identification of anomalies), the

CoRP algorithm is built in two phases. The first one

is dedicated to detect the points considered as remark-

able in the time series. The second phase is dedi-

cated to identify anomalies by using compositions of

remarkable points.

3.2.1 Detection of Remarkable Points

The detection of remarkable points is made from the

detection patterns.

Definition 3. A pattern is defined by a triple (l, σa,

σb) where l is a label that characterizes the pattern.

σa and σb are two thresholds used to decide if a point

is remarkable (or not). A pattern is applied to three

successive points of a time series. We denote three

successive points y j−1,y j,y j+1 of a time series Y as

yminus, y, yplus. σa is the difference between v(yminus)
and v(y) whereas σb is the difference between v(y)
and v(yplus) as shown in the figure 2 . When a pattern

is checked on yminus, y, yplus, the label l of the pattern

is used to label the point y.

Figure 2: Example of pattern.

Definition 4. A labeled time series is a time series of

points on which the labels detected by the patterns are

added.

Definition 5. A point yi of a labeled time series is

defined by a triple (ti, vi, Li) where ti is the timestamp,

vi is the value and Li = {l1, l2, ...} is a list of labels that

characterizes the point as a remarkable point.

So, the patterns are independently used to detect

remarkable points and add them their corresponding

label. Thus, the list of labels of a point consists of all

the labels of all the different patterns that are triggered

on this point. The figure 3 illustrates an extract from a

labeled time series of index data that tends to grow. It

presents four examples of patterns (Normal, Ptpicpos,

Ptpicneg, Changniv). Let us notice the point number

4 which includes two labels (Ptpicneg, Changniv).



Figure 3: Labellization of a remarkable point ”y” by a pat-
tern.

Example. Let us give some examples of patterns de-

fined with the help of the experts and used to label the

curve of the figure 3 :

• remarkable ”Positive Peak Point” (Ptpicpos, 100,

100) where Ptpicpos represents the descriptive la-

bel of the pattern, σa = 100 and σb = 100;

• remarkable ”Negative Peak Point” (Ptpicneg, -

100, -100);

• remarkable ”Level Shift” (Changniv, -1000, -

100).

The Algorithm 1, called EvaluatePattern, allows

to evaluate the patterns using rules. This function

takes as input three successive points denoted yminus,

y and yplus and the pattern to be evaluated, and returns

the result of the evaluation: the pattern is triggered

or not. Different verification rules are applied by the

algorithm according to the signs of σa and σb. The

rules to compare yminus and y according to σa are:

• If σa > 0, the rule is v(y) >= v(yminus) + σa;

• If σa < 0, the rule is v(y) <= v(yminus) + σa;

• If σa = 0, the rule is v(y) = v(yminus);

Figure 4: Labelization of a series by remarkable points.

Algorithm 1: Pattern evaluation.

function BOOLEAN EVALUATEPAT-

TERN(yminus,y,yplus, p)

Input yminus,y,yplus: point, p=(Lp, σa, σb): pattern

Output Boolean

if p.σa > 0 then

left←(v(y)≥ v(yminus)+ p.σa? true:false)

else if p.σa < 0 then

left←(v(y)≤ v(yminus)+ p.σa? true:false)

else if p.σa = 0 then

left←(v(y) = v(yminus)? true:false)

end if

if p.σb > 0 then

right←(v(y)≥ v(yplus)+ p.σb?true:false)

else if p.σb < 0 then

right←(v(y)≤ v(yplus)+ p.σb? true:false)

else if p.σb = 0 then

left←( v(y) = v(yplus)? true:false)

end if

return (left and right)

end function

3.2.2 Composition of Patterns

Experts can find anomalies by searching for spe-

cific combinations of remarkable points and by com-

paring their corresponding values. So, the goal is

to model these particular successions of remarkable

points. From a subset of points of a labeled time se-

ries, we can construct a composition of labels by con-

catenation of the Li labels of these remarkable points.

Such compositions of labels are used to detect anoma-

lies. Finally, an anomaly is recognized by a compo-

sition of labels on successive points and the verifica-

tion of conditions on the values of the corresponding

points.

Definition 6. An anomaly can be find starting from a

remarkable point from which are checked i) a compo-

sition of labels in the following points and ii) a condi-

tion expressed on the values of the points involved in

The rules to compare y and yplus according to σb are

similar (see Algorithm 1).

Algorithm 2 uses the EvaluatePattern function to

process a time series. It takes as input the initial time

series and the list of patterns and returns a new labeled

time series. The processing consists in browsing the

time series and, for each pattern, add the label pattern

to the point when the pattern is triggered.

The result of Algorithm 2 is a labeled time se-

ries (points tagged with labels). The figure 4 presents

an example of labeled time series produced by Algo-

rithm 2. Just notice that a point can be labeled with

one or more labels.



Algorithm 2: Remarkable point detection.

Input Y = {y1,y2,y3....}: time series,

P = {p1, p2, p3....}: list of patterns

Output YL a labeled time series

for i in range(2..|Y |-1) do

for k in range(1..|P|) do

if EvaluatePattern(yi−1,yi,yi+1,pk) then

Li <−Li + pk.L // Add pk.L to yi labels

end if

end for

end for

return YL

the composition. The anomaly is finally identified on

one or more points of this composition.

Figure 5: Grammar for the definition of a composition of
labels.

To define a composition of labeled points, we pro-

pose a grammar, illustrated in the figure 5, which de-

fines the elements of a composition of labels. The

grammar is expected to define the possible labels (one

or more) on successive points that allow to recognize

a composition of labels. The grammar starts from la-

bels placed on the points (<label>). Labels can be

combined on a single point with logical expressions

AND, OR and NOT . For example, ”l1 AND NOT l2

AND l3” designates a point labeled with l1, labeled

with l3 and not labeled with l2. Each label compo-

sition on a single point can be repeated on successive

points by quantifiers: ?, + and * (<label-enum>). For

example, ”(l1)+” then means one or more successive

points labeled with l1. The final label composition

is defined by successive combinations of different la-

bels on single or multiple points by using ”.” opera-

tor (<composition>). For example, ”l1.(l2)*.l1 OR

l3” means a point labeled with l1 followed by zero or

more points all labeled with l2 followed by a point

labelled with l1 or with l3.

Definition 7. Composition of labels Thus, a compo-

sition of labels to recognize an anomaly is composed

of three parts:

• composition: the composition of the labels on

successive points. It is defined according to the

grammar presented in the figure 5;

• condition: a condition between the values of the

recognized points corresponding to the sequence

of the labels of the composition. Indeed, the same

label composition on successive points can cor-

respond to different anomalies and the condition

allows to identify only one anomaly. This con-

dition on values is a classical condition created

using the operators (<, <=, ...) to compare val-

ues and logical operators (and/or/not) to combine

comparisons. To avoid the use of v(y) notation,

we denote by vi the value of the ith point recog-

nized by the composition, v1 the first one and vn

the last one; note that the number of points in-

volved in the composition can be variable;

• conclusion: the identified anomaly for which are

indicated its type (name of the anomaly) and the

list of points where the anomaly is.

We can thus define label compositions to identify

anomalies. For example, we give hereafter three ex-

amples of anomalies to be detected as presented in

the introduction: i) anomaly of constant values, ii)

anomaly of values in negative peak, iii) anomaly of

values in positive peak; the latter is possibly recog-

nized from 2 label compositions.

Some composition of labels to recognize the

above anomalies are given hereafter:

Label-composition 1

composition: Begincstpos . Cst* . Endcstneg;

condition: v1 == v2 and vn−1== vn;

conclusion: constant −> all;

Label-composition 2

composition: Normal . Ptpicpos . Ptpicneg . Normal;

condition: v2 < v4 and v3 < v1;

conclusion: negative peak −> v3;

Label-composition 3

composition : Normal . Ptpicpos . Ptpicneg . Normal;

condition: v2 > v4 and v3 > v1;

conclusion: positive peak −> v2;

Label-composition 4

composition: Normal . Ptpicpos . Ptpicneg AND

Changnivneg . Normal;

condition: v2 > vn and vn−1 > v1;

conclusion : positive peak −> v2;

Let us consider the compositions presented in the

figure 4 in red. The indices ranging from 2 to 5 give

the following series of labels: ( Normal . Ptpicpos .

Ptpicneg and Changnivneg . Normal) detected by the

composition of labels 4 of the examples above. This

composition makes it possible to detect the positive

peak anomaly in 3 when considering the condition.



The index points from 8 to 11 (”Normal . Ptpic-

pos . Ptpicneg . Normal”) , triggers the label compo-

sitions 3 and 2:

• Label composition 3: the condition leads to v9 >

v11 and v10 > v8 which is false so the composition

is not valid;

• Label composition 2: the condition leads to v9 <

v11 and v10 < v8 which is true therefore the com-

position is valid and the Negative Pic anomaly is

recognized in point 10 (v10);

abnormal change such as positive or negative peaks,

nearly 380. And finally, there is eight level shift due

to sensor change. In order to detect the remarkable

points, we created 14 patterns and 12 label compo-

sitions of these patterns to detect the anomalies de-

scribed above.

4.2 Experimentation on Real Case Time

Series

In this part, we explore the different anomaly detec-

tion methods described in Table 1. Our motivation

to consider these methods is to broaden the scope

of analysis to test their effectiveness in detecting the

anomalies considered in this paper and to compare the

results against our approach. As noted above, these

techniques have proven effective in detecting anoma-

lies in the sensor data. On the other hand, as we

will see through the results of the experiments, none

of these methods is perfect to detect all the types of

anomalies that we observed in the real deployments.

Thus, we present an evaluation of the following meth-

ods: Short rule, Constant rule, LOF, ARIMA, S-H-

ESD and the change of point. We applied these meth-

ods by category of anomalies as indicated in the Ta-

ble 1. In order to evaluate the performance of these

methods we use the number of true positives (true

detected anomalies ), the number of false positives

(false detected anomalies ) and the number of false

negatives (true undetected anomalies) as evaluation

metrics. The results are presented in the figure 6 as

follows: the method based on the Short rule and the

method based on the Constant rule are noted SR and

CR respectively while the Change Point is noted LS.

For each method we also report the Precision, Re-

call, F-measure metrics to compare and evaluate the

results of anomaly detection. As shown in Figure 6A

and B, we applied methods that are able to detect the

abrupt change between two successive samples that

could be a positive or negative peak or a small vari-

ation. We presented LOF results in a separate chart

Table 2: Evaluation of anomaly detection methods for index
data sets.

Evaluation Precision Recall F-

measure

SR 0.52 0.17 0.32

CR 1 0.80 0.88

LOF 0.022 0.12 0.022

S-H-ESD 0.34 0.40 0.36

ARIMA 0.30 0.07 0.11

LS 0.29 0.87 0.43

CoRP 1 1 1

4 EXPERIMENTAL SETUP

In this section, we will first introduce our case study.

Then we analyze the results of the algorithm of the

literature as well as our algorithm on our data sets.

Then, we evaluate more these algorithms with bench-

marks data and finally, we present the computational

performances of the algorithms explored.

4.1 Description of the Case Study

The field o f a pplication t reated i n t his p aper, i s the

sensor network of the Management and Exploitation

Service (SGE) of Rangueil campus attached to the

Rectorate of Toulouse. This service exploits and

maintains the distribution network from the data re-

lated to the different installations. More than 600 sen-

sors of different types of fluids (calorie, water, com-

pressed air, electricity and gas), which are scattered in

several buildings, are managed by the SGE supervi-

sion systems. For this paper, we focus on calorie data

and we processed 25 sensors. Thus, we analyze calo-

rie measurements collected every day for more than

three years collected from the 25 sensors deployed

in different buildings: 1453 data per sensor which is

36325 data points in total. The measurements of these

sensors are reassembled at a regular frequency and

represent the indexes (readings of sensors) which are

used to measure the quantities of energy consumed

(by successive value differences, consumption). We

were able to identify the types of anomalies that ex-

ist in the calorie data through the knowledge gained

from the SGE experts by visually inspecting the data

sets. The examples of faults presented in the figure

1 are taken from these same data sets. The predomi-

nant anomaly in these readings is the constant values,

nearly 8578 observations on all the data and this is

following the stopping of the sensors. We also found

among these values, several constants with an offset.

Typically, a constant with a level shift that begins with

a positive or negative peak. Then, there is a lot of



Figure 6: Evaluation of anomaly detection methods on index data.

for more visibility. These methods are not fully auto-

mated and therefore we need to select the parameters

such as the threshold for the short rule, the neighbor

number for LOF or the model type for ARIMA etc.

The LOF method, which is based on the nearest K

neighbors, produces an index, called the score func-

tion, which represents the degree of anomaly assumed

for the observations. It is then sufficient to define a

threshold to qualify the ”normal” and ”abnormal” re-

sults. In our experiments we have varied the choice

of K in a range of 30 to 10 in order to evaluate the

influence of this parameter on the detection result and

we have judged a threshold = 1.5 corresponding to an

observation in the standard of distribution scores. For

the Short rule, we need to set a threshold to compare

it with the variation between successive observations.

To this end, we used the histogram-based method de-

scribed in Section 5.2. And finally, for the Constant

rule, we have varied the choice of size of sliding win-

dow in a range of 30 to 10.

Based on the results presented in the Figure 6, we

make the following observations: LOF is the method

Table 3: Evaluation of anomaly detection methods in con-
sumption data sets.

Evaluation Precision Recall F-

measure

SR 0.66 0.63 0.64

CR 1 0.72 0.83

LOF 0.39 0.78 0.52

S-H-ESD 0.41 0.80 0.54

ARIMA 0.66 0.25 0.36

CoRP 1 0.98 0.98

that generates the most false positives while ARIMA

generated the most false negatives. The S-H-ESD

method is the method that can detect the most True

positive among them, but on the other hand it causes

a lot of false positives and false negatives. Then the

method based on the Short rule detects fewer anoma-

lies by comparing with S-H-ESD. However, it causes

fewer false positives than the other methods.

Based on Table 2 and figure 6 we observe that: i)

the efficiency of the Constant rule or the LOF method

strongly depends on the choice of the sliding window

or the number of neighbors. ii) The Change Point

method works well when there is actually a true level

shift in the time series but however, in the absence

of anomaly it has a low accuracy. iii) Between the

Short rule, ARIMA and S-H-ESD, the Short rule is

the most accurate and ARIMA is the least efficient for

detecting abnormal change. By comparing with these

methods, our CoRP algorithm can detect all types of

anomalies with better accuracy and recall. In effect,

CoRP works very well on the index data and typically

on our real case study.

To further evaluate our algorithm and to demon-

strate the effectiveness of the anomaly detection

methods, we used SGE consumption data. So, we

took the measurements that come from 25 sensors.

Consumption data are seasonal data and their daily

evolution, unlike index data, are somewhat variable.

We have manually inspected these data to understand

how these data work and to create patterns of anoma-

lies that may exist. The anomalies we have seen in

the data are: positive and negative peaks, constant

anomalies, constants that start and end with a big

peak. Since the data is not stationary, we did not ap-



Table 4: Evaluation of anomaly detection methods in Benchmark data sets.

Datasets HIPC IPI

Algorithm

Evaluation
Precision Recall Precision Recall

CoRP 1 0.80 0.75 0.75

ARIMA 1 1 1 1

LOF 0.11 0.20 0 0

S-H-ESD 0.20 0.20 0.33 0.25

RC 0 0 0 0

LS 0 0 0 0

ply the Change Point algorithm because there is no

level shift in this data to be detected. Thus we have

created 9 patterns to detect remarkable points and 5

label compositions to detect anomalies.

According to the results presented in figure 6, we

can say that the number of neighbors equal to 20 is the

most appropriate choice to detect the most anomalies

in LOF algorithm. However, for the Constant rule,

it is important to use a window size small enough to

handle data sets containing a large number of con-

stant values. It can be seen from Table 3 that the

literature algorithms are much more efficient on the

consumption data by comparing with the index data.

Even with this type of data, our approach has obtained

the best result of F-measure by comparing with other

algorithms. Actually, he detected the most anomalies

with the least possible errors with a precision equal to

1 and a recall equal to 0.98. Then, the result of the

rule-based method (SR, CR) and the ARIMA method

was close to the best and obtained the best accuracy

with respect to LOF and SH-ESD. On the other hand,

SH-ESD is the method that was closest to the best

result in terms of recall with a value equal to 0.80.

But it should be noted, that these algorithms that we

evaluated cannot detect all the types of anomalies ob-

served in the data which means that each algorithm

is efficient in a specific type. The particularity of our

method is that we can set the patterns and the compo-

sition of labels according to our needs to detect, with a

great precision and efficiency, all the types of anoma-

lies observed in the real deployments.

4.3 Experimentation on Benchmark

Data Set

Euro area. Also, we explored the data of IPI (Indus-

trial Production Indices ). It represents the industrial

production indices in the manufacturing sector of Eu-

ropean Monetary Union countries(López-de Lacalle,

2016). Each of these data sets contains several time

series which present monthly data from 1995 to 2013.

We tested two time series of these two data sets. Each

of them contains 229 measurements with 5 anoma-

lies in HIPC and 4 anomalies in IPI. These anomalies

are a mix of AO (Additive Outlier), TC (Temporary

Change) or LS (Level Shift).

Thus, we analyzed the characteristics of these data

and the curve that represents the time series to be able

to specify the patterns. So, we first created a different

patterns to detect the remarkable points in the time

series. Then we made a composition of these patterns

to detect anomalies.

Table 4 is a comparison between the literature al-

gorithms and our algorithm, on the data used in the

ARIMA package. We did not test the constant rule in

the HIPC and IPI datasets because the anomalies ob-

served in these data do not contain a constant anoma-

lies. Therefore, we applied CoRP, ARIMA, LOF with

a number of neighbors equal to 20, S-H-ESD, Change

Point and the Short rule on these data. The algorithm

based on the Short rule and Change Point are the

worst among these algorithms, while our algorithm

is the best among them and can detect the majority of

anomalies observed with few errors.

4.4 Complexity

In this part, we focus on the computing time required

by the different methods of literature and our algo-

rithm. The experiments are performed on machine

running windows 10 professional and optimized by an

Intel (R) Core (TM) i5 processor and 16GB of RAM.

We used the Python 3.7 Anaconda open source dis-

tribution to turn our algorithm and R 3.5 to turn the

algorithms of the literature. We calculated the execu-

tion time of index data for each algorithm we evalu-

ated to compare it with the execution time of our algo-

In order to evaluate the algorithm in another con-

text, different to our case study, we used the data sets

used in the package developed in R and implements

ARIMA method (López-de Lacalle, 2016). Among

this data, we explored the data of HIPC (Harmonised

Indices of Consumer Prices). This data sets repre-

sent Harmonised indices of consumer prices in the



rithm. The algorithms according to their run-time per-

formance are as follows: The rule-based method and

the S-H-ESD method are the fastest with an execution

time of 0.5s. Then, the LOF method with an execu-

tion time equal to 2.5s. Subsequently our algorithm

with 5.40s of execution time and finally ARIMA with

7.60s.

5 CONCLUSION

Anomaly detection in supervisory applications is very

important especially in the field of sensor networks.

This paper represents the CoRP approach based on

patterns applied to the univariate time series of sen-

sor data. This method is very effective at simultane-

ously detecting different types of anomalies observed

during actual deployments. Our algorithm is com-

posed of two steps: it marks (labels) all the remark-

able points present in the time series on the basis of

patterns of detection. Then, he precisely identifies

the multiple anomalies present by label compositions.

This approach requires application domain expertise

to be able to efficiently define patterns. Our case

study is based on a real context: sensor data from the

SGE (Rangueil campus management and operation

service in Toulouse). The evaluation of this method

is illustrated by first using the index and consumption

data of calorie sensors operated by the SGE and, sec-

ondly, by using datasets from the scientific literature.

We compare our algorithm to five methods belong-

ing to different anomaly detection techniques. Based

on the precision, recall, f-measure, evaluation crite-

ria, we show that our algorithm is the most efficient

at detecting different types of anomalies by minimiz-

ing false detections. There are several extensions of

this research, among them: i) Use learning methods to

automate the algorithm, model the patterns automati-

cally and improve its performance in terms of calcu-

lation ii) Apply our algorithm on data streams, which

are generated continuously, to trace alarms as early

as possible and detect anomalies even before storing

them in the databases.
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