
HAL Id: hal-02493875
https://hal.science/hal-02493875

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Semi-Empirical Model for Saturated Vapor
Density of Pure Compounds

Alexander Kud, Christophe Coquelet, Stefan Maixner

To cite this version:
Alexander Kud, Christophe Coquelet, Stefan Maixner. A New Semi-Empirical Model for Saturated
Vapor Density of Pure Compounds. Journal of Chemical and Engineering Data, 2020, 65 (2), pp.577-
590. �10.1021/acs.jced.9b00787�. �hal-02493875�

https://hal.science/hal-02493875
https://hal.archives-ouvertes.fr


 

 1 

A New Semi-Empirical Model for Saturated Vapor Density of Pure Compounds 

 
Alexander Kud*, Department of Research, BASF SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany 

 

Christophe Coquelet, Mines ParisTech, PSL University, CTP – Centre Thermodynamics of Processes, 35 

rue Saint Honoré, Fontainebleau Cedex 77305, France 

 

Stefan Maixner**, Department of Research, BASF SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany 

 
 

ABSTRACT 

Many empirical models exist to describe the saturated vapor density. The majority of these models 

are detached from a physics basis, which often makes it difficult to select the most appropriate 

model for further thermodynamic modeling. Such empirical models are still used today because 

many equations of state that do not describe vapor density well enough.  

The model presented here is based on a physical and a heuristic equation. It offers many advantages 

because it includes both the vapor pressure and the compressibility factor information for the 

saturated vapor line. In this manner, it is possible to describe the vapor density with one equation 

and only three parameters. The new model is independent of the compounds structure because it 

is based on vapor density measurements. It was tested in comparison to six frequently used models 

in terms of accuracy and thermodynamic consistency. The new model received the best rating and 

provides useful tool for thermodynamic modeling and process design. The assessment of the 

models was based on Monte Carlo simulations and strict statistical methods for validating models. 

The new model can also be used in a cubic equation of state for the vapor pressure and vapor 

density correction. 

____________________ 

* retired 2018.  ** retired 2019.  
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1 INTRODUCTION 

 

In the past, many working groups have developed correlations to describe the vapor density of 

pure substances at saturation. These models are not Equations of State (EoS) and are known as 

heuristic and empirical correlations; they only describe the relationship between the vapor 

density, the measured variable and the temperature. Similar equations have also been developed 

for the vapor pressures of pure substances. These equations are based on the principle that 

𝑙𝑛(𝑝) = 𝑓 (
1

𝑇
).  These correlations have the great advantage that they do not require any 

equations of state to be solved, nor do they require a specific algorithm or a phase stability 

analysis. In many cases, they are easily parameterized. For some equations, parameter values can 

be found in Table collections, software database or publications. The new model proposed for 

vapor density calculation also belongs to this group of heuristic models, such as the vapor 

pressure equations. Our model is a semi-empirical approach and is compared to the state of the 

art. 

In order to assess the models or models fairly, statistical and physical evaluation quantities 

were selected with which a so-called H0 Hypothesis for the model acceptance can be formulated. 

If this H0 Hypothesis is not fulfilled, the model is rejected. With these evaluation quantities the 

models were tested for 

- Goodness of Fit and the predictive capability, 

- Goodness of estimated model parameter, 

- Physical consistency and their predictive capability 

  based on a matching H0 hypothesis. 
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Since the assessment quantities fluctuate in a statistical sense, Monte Carlo simulations are 

applied to strengthen the significance of the assessment results obtained. Since the test methods 

are very extensive and many results are obtained from the investigated models for the individual 

compounds, the reader should be given a brief overview of the topics reported on:   

1. Introduction: Presentation of the state of the art in vapor density description 

2. Data base: Measurement data of the compounds 

3. Computational Methods  

   - Development of the new model 

   - Overview of the six test methods 

   - Definition of the parameter estimation problem 

4. Results and discussion 

   - Model assessment based on every test method 

   - Summary of the rating  

5. Conclusion 

Table 1 gives an overview of the models or models for vapor density description discussed in 

this paper. Models 1 to 7, 11 and 12 represent the state of the art. The new model is represented 

by model numbers 8 to 10.  Table 1 does not claim to be complete because its only purpose is to 

demonstrate the equation structures. 

The state of the art will be presented. To describe the vapor density 𝜌𝑣 at saturation, Model 1 

requires the corresponding liquid density 𝜌𝑙 of the liquid at saturation. It is only applicable for 

conditions close to the critical point, and therefore, its applicability is extremely limited. This 

model is excluded from the evaluation because it does not exhibit any explicit dependence on the 

absolute temperature 𝑇 either which is a prerequisite in this work. All other models show a 
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temperature dependency and are presented as a function of the reduced temperature 𝜏 = 𝑇/𝑇𝑐, 

where the subscript 𝑐 denotes critical state.   Models 2 to 5 in Table 1 are highly similar to each 

other and applicable across a wide temperature range mostly from the triple point temperature 𝑇𝑇𝑝 

to the critical temperature. Additional models exist; however, they are similar to those listed in 

Table 1. Models 2 to 5 and similar models have the following aspects in common:  

- They are polynomial models with at least 6 parameters Θ1…Θ6 to be estimated. 

- For each compound, the appropriate model for estimating the parameters must be 

determined. This search can be time consuming. 

- They calculate the vapor density extremely accurately within the experimental uncertainty. 

Model 6 is based on the description of the liquid and vapor phases. An asymptotic behavior law1 

for the density expansion in the vicinity of the critical point is used and coupled with a rectilinear 

equation for the coexistence curve1. Promising results have been achieved with this model2. Only 

two parameters have to be adjusted. The parametrization of this correlation requires both 

experimental vapor and liquid densities at saturation. In this study, we have tested the performance 

of Model 6 in a range of temperatures from the triple point to the critical temperature and we used 

the eq 5 for vapor density in reference 2 only. If eq 5 in reference 2 is used for the vapor density 

description alone, the range of values of the estimated parameters and the working range of 

temperature are increased. To further improve the calculation, we suggest in this work to add one 

additional parameter, as defined in Model 7. This results in a more flexible correlation than the 

model considered in Model 6. 
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Table 1. Overview of the different vapor density models used in this work. 
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In Model 9:    3/1=cZ  for SRKb  EoS36   

In Model 10:  307.0=cZ  for PRc EoS37 
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3 Kud et al.8 triple point to 

critical point 

 

aAbbreviations  𝜌: vapor density, 𝑇: absolute temperature,  𝜏: reduced temperature, 𝑍:  

compressibility factor for saturated vapor, Θ: vector of model parameter, ...),(),,(  cc ZBZA are 

functions,  ℛ: universal gas constant, ℳ: molar mass, subscripts 𝑣: vapor,  𝑐: critical state, r: 

reduced.       bSRK = Soave Redlich Kwong. cPR=Peng Robinson, EoS: Equation of State. 

dParameters already estimated.  

 

 

Model 11 in Table 1 is Barile’s correlation7, which is based on modeling the compressibility 

factor on the saturated vapor line. The 14 estimated parameters are obtained for 23 compounds 

with different polarity values. The vapor density is calculated from the reduced pure component 

vapor pressure )( , the reduced temperature   and the reduced compressibility factor 𝑍𝑟 for the 

saturated state. The only independent variables in this model are the reduced temperature and 

critical compressibility factor cZ . This means that no further parameter estimation is necessary 

when using this model. 

Model 12 is also based on modeling the compressibility factor at saturation (dew point lines). 

Concerning the parameters that have to be estimated, some of them have to be determined 
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arbitrarily. For example in model 12, one of them, is an exponent with a value equal to 200. This 

kind of determination depends on the chemical compound. Model 12 suffers from the fact that 

most of the correlations are based on polynomial expressions. This leads to the fact that the vapor 

densities are poorly estimated within the vicinity of the triple and critical points. This was one of 

thes reasons which motivate the development of a new semi-empirical equation for describing the 

vapor density of compounds. This correlation has the same advantages of the original one8 (Model 

12) and permits more accurate calculations in the vicinity of the triple and critical points. 

The models (n° 8 to 10) are edited on the same base with the same equation. Different values 

of compressibility factors can be used in the models n° 8 to 10. They can depend on the equation 

of state selected (SRK or PR EoS). Details are described in Section 3. 

Briefly summarized:  

- Models 2 to 11 are compared in respect of performance. 

- Models 2 to 10 have compound specific parameters that are estimated based on 

measurements. 

- Model 11 no parameters have to be estimated.  

Vapor density data at saturation are required to fit the model parameters which is now described.  

 

 

2 DATABASE DESCRIPTION 

Seventeen compounds of interest for industrial applications were selected, with polarity values 

for the dipole moment μ ranging from 0 to 9.7 x 10-30 Cm and are reported in Table 2. In addition, 

care was taken to ensure that the compounds varied considerably with regard to their chemical 

structures and chemical functionalities (e.g., acids, aromatics, alkanes, ketone, alcohols).  
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Pure component critical properties, vapor pressures and vapor densities were obtained from the 

literature10. Additional pure component vapor pressure and vapor density values published in 

Thermolit39 and other references listed in Table 2 were also used. A simple thermodynamic 

consistency test was applied to use the best a priori data. The compressibility factor for vapor was 

calculated from the known pure component vapor pressure eq 1 and the vapor density data from 

the literature. The compressibility factor value was required to be between the critical 

compressibility factor and 1. Moreover, the calculated compressibility factors must decrease 

monotonically with increasing temperature. All vapor density data at saturation that did not fulfill 

these conditions were not considered for the data treatment. At this point we would like to mention 

that the test was more difficult for hydrogen chloride. The compressibility factor, calculated from 

the vapor density, showed a maximum function of temperature. Consequently, experimental data 

with very low vapor density values were excluded from the evaluation, because the compressibility 

factor is lower than the maximum. Vapor density data at very low pressures are experimentally 

very difficult to evaluate for compounds presenting very high tendency of adsorption on the wall 

of the measuring vessel. Probably, this is the reason why the vapor density data of hydrogen 

chloride have very different values, see the references in Table 2.  

At this point the term “measurement data” used in this work has to be defined. In this paper, 

measurement data are: either really measured vapor density (experimental data) or vapor density 

calculated from an EoS. Such calculated measurement data could also be called "model based on 

directly measured vapor density data". However, the EoS used for this must also be parameterized 

directly on measured vapor density data. Fundamental equations of state are often used for this 

purpose. However, in most of cases EoS are parameterized using pure compound vapor pressure 

data by adjustment of alpha function parameters (e.g. according to Soave, Mathias and Copeman, 



 

 9 

Twu, Coquelet et.al.30). Such calculated vapor densities by EoS were not used here. In effect in 

many case great deviations exist between calculated and measured vapor density8. It concerns also 

vapor densities calculated using equations of state that require acentric factor as an additional 

parameter in alpha function. If the parameterization of the EoS was based not only on vapor 

pressures but also include vapor densities, we would have more references concerning 

experimental vapor densities data as presented in Table 2. 

Table 2 shows that the same number of saturated vapor density data points do not exist for each 

component. The data for each compound were used for parameterization using Models 2–10 and 

to test their predictive capabilities. Additional details and the predictive capability of each model 

are presented in Section 4.  

 

 

Table 2. Property data of the pure components and sources of the experimental data used in this 

work.  
 

n° Compound 
CAS 

registry 
number 

Tc
a / K 

pc
b/ Pa  

x10-5 
ρc / kg/m3 TTp

d / K pTp
 e / Pa 

µg / Cm 

x1030 
Referencesg 

n° of vapor 
density 

data 

1 Ammonia 7664-41-7 405.55 112.8 234.7 195.50 6060 5.0 10,11,12,13,39,42,44 41 

2 Hydrogen chloride  7647-01-0 324.6 83.09 450 158.9000 13800 3.7 10,14,15,16,44 10 

3 Sulfur dioxide   7446-09-5 430.8 78.834 521.77 197.69 1670 5.3 17,39,44 20 

4 n-Hexane 110-54-3 507.5 30.12 232.9 177.83 1.188 0.0 16,40,44,47 8 

5 Cyclohexane 110-82-7 553.64 40.75 273.0 279.7 5388 1.0 10,18,39,44 8 

6 Ethylene 74-85-1 282.34 50.401 214.16 104 120 0.0 18,39,40 7 

7 Chloro(difluoro)methane 75-45-6 369.3 49.89 496.277 115.76 0.3794 4.7 10,19,44 9 

8 Benzene 71-43-2 562.05 48.95 305.0 278.68 4784 0.0 10,41,43 7 

9 Toluene 108-88-3 591.75 41.26 292.0 178.18 0.03939 1.3 10,39,44 9 

10 Chlorobenzene 108-90-7 632.35 45.2 365.4 227.95 8.446 5.3 20,21,22,23,24,25,39,44 29 

11 Acetone 67-64-1 508.1 47 273 178.45 2.785 9.7 10,18, 39,44 9 

12 Ethyl acetate 141-78-6 523.25 38.32 307.7 189.3 1.432 6.3 10,18,39,44,45 15 

13 Diethyl ether 60-29-7 467 36.1 265 156.8 0.3954 4.3 10,18,39,44 8 

14 Methanol 67-56-1 512.6 81.035 275.6 175.5 0.1863 5.7 10,18,39,44 7 

15 Ethanol 64-17-5 513.9 61.48 276 159  7.190·10-4 5.7 10,44,46 9 

16 Water 7732-18-5 647.10 220.64 322 273.16 611.7 6.2 10,20,43 45 

17 Ethylene oxide 75-21-8 469 71.94 315 160.65 7.8 6.3 10,14,39,43,49 9 
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acritical temperature bcritical pressure cvapor density  dtriple point temperature  etriple point pressure  fdipol moment  gthe references show 

 the critical properties, the vapor density data and their measurement methods. The references with critical properties are underlined.  

 

 

Concerning the pure component vapor density data at saturation, the assumed error was based 

on information available in the literature for vapor density measurements if no information is 

specified in the data source. Depending on the quality of the database, the relative uncertainty31 

 𝑢𝑟,𝜌 or the so-called coefficient of variation32,33 is between ~ 0.01 – 0.05. The greater uncertainty 

is assumed for small densities. These assumptions are based on the fact that apparatus is less 

accurate for measurement of vapor densities for a complete range of measurement (from the triple 

to critical points). The vapor densities have been omitted near the critical point due to the higher 

uncertainty of these values.  Moreover, the new model will be tested for its suitability with cubic 

EoS. In effect, it is well known that cubic EoS show large deviations in the vicinity of the critical 

temperature. This is also the reason why we neglected these values. The uncertainty for the vapor 

density is calculated according to the equation31  𝑢𝜌 = 𝑢𝑟,𝜌 ∙ 𝜌𝑚  where 𝜌𝑚 is the measured vapor 

density. 

A vapor pressure function with the corresponding parameter values is required for the new model 

8 to 10. The pure component vapor pressure correlation must be available between the triple and 

critical points. The well-known Antoine equation48 is not suitable because it can only calculate 

vapor pressure in a limited temperature range. The DIPPR 101 equation (DIPPR denotes the 

Design Institute for Physical Properties) was selected from an overview39 to calculate the vapor 

pressure of the 17 substances. This equation was rearranged in such a way (see eq 1) that the 

critical temperature 𝑇𝑐 and pressure 𝑝𝑐, as the known values, contribute to the calculation of the 

vapor pressure, p . 
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𝜋 =
𝑝

𝑝𝑐
= 𝑒𝑥𝑝 [

𝛩𝑝1

𝑇𝑐
(1 −

1

𝜏
) + 𝛩𝑝2 ⋅ 𝑙𝑛( 𝜏) + 𝛩𝑝3 ⋅ 𝑇𝑐

𝛩𝑝4 (𝜏
𝛩𝑝4 − 1)] = 𝑓(𝜏, 𝛩𝑝)         (1) 

The parameters (𝛩𝑝1 to 𝛩𝑝4) must be fitted. The data base for parameter estimation is listed in the 

references in Table 2.  For more details concerning the method of parameterization the reader is 

invited to read Appendix 1. 

Furthermore, we assumed that the measurement uncertainty for the vapor pressure and vapor 

density follow a Gaussian distribution under constant measurement conditions. This means that at 

a constant temperature, the measured value is a random variable with a Gaussian distribution. This 

trend is often observed in this kind of practice.  

 

3 COMPUTATIONAL METHODS 

3.1 The new model 

As already described by Kud et al.8, the derivation of the new model starts with the 

compressibility factor Z  for the vapor state (eq 2): 

𝑍𝜈 =
𝑝𝜐

ℛ𝑇
,                (2) 

where  𝜐 is the molar vapor volume and ℛ is the universal gas constant. In eq 2 for the molar vapor 

volume,  , the relationship 𝜐 = ℳ/𝜌𝜈 with molar mass ℳ and vapor density   is inserted with 

the reduced state variables  and  𝜋. Then eq 3 is obtained for the vapor density 

𝜌𝜈 =
ℳ𝑝𝑐

ℛ𝑇𝑐
⋅
𝜋

𝜏𝑍𝜈
.                (3) 

In eq 3 for the reduced vapor pressure   the empirical pure component vapor pressure described 

by eq 1 was used. Eq 4 is used as the new empirical model for the compressibility factor Z  as a 

function 𝑔(𝜏, 𝑞, 𝑤, 𝑐) of the reduced temperature and the parameters  𝑞,𝑤, 𝑐  
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𝑍𝜈 = 𝑔(𝜏, 𝑞, 𝑤, 𝑐) = 𝑍𝑐 + (1 − 𝑍𝑐  ) ∙

{
 
 

 
 [1 − (

𝜏−𝑐𝜏𝑇𝑝

1−𝑐𝜏𝑇𝑝
)
𝑞

]
𝑤

                      𝑖𝑓  𝑁𝑧 = 1, 𝜏𝑇𝑝 ≤ 𝜏 ≤ 1

∑ 𝑎𝑖 [1 − (
𝜏−𝑐𝜏𝑇𝑝

1−𝑐𝜏𝑇𝑝
)
𝑞𝑖
]
𝑤𝑖

𝑁𝑧
𝑖=1       𝑖𝑓  𝑁𝑧 > 1, 𝜏𝑇𝑝 ≤ 𝜏 ≤ 1

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                           𝑖𝑓  𝜏 > 1

         (4) 

where  𝑤𝑖 ∈ [0.1, 0.95] ⊆ ℜ, 𝑞𝑖 ∈ [1.1, 100] ⊆ ℜ,  𝑎𝑖 ∈ ℜ, 𝑐 ∈ [0.3, 0.998[ ⊆ ℜ,  𝜏𝑇𝑝 =
𝑇𝑇𝑝

𝑇𝑐
⁄  

is the reduced triple point temperature, 𝑇𝑇𝑝 is the triple point temperature and ZN   is the number 

of terms in eq 4 and ℜ denotes real numbers. For the all the compounds investigated here, a single 

term was sufficient, i.e., 1=ZN . The model with two terms presented by eq 4 was only used for 

compound 2 describing the vapor density. 

Parameters 𝑞,𝑤 describe the curvature of the compressibility factor function, and the 

compressibility factor at the triple point is correctly estimated using parameter 𝑐. Furthermore, if

1=c , the vapor phase at the triple point has the properties of an ideal gas. Thus, a parameter value 

of c<1 should be applied to accurately describe the vapor density. This was achieved by limiting 

the parameter estimation problem with regard to the parameters. 

The vapor density (eq 5) can be summarized by combining eqs 1, 3 and 4. 

𝜌𝜈 =
ℳ𝑝𝑐

ℛ𝑇𝑐
⋅

𝑓(𝜏,𝛩𝑝)

𝜏𝑔(𝜏,𝑞,𝑤,𝑐)
                (5) 

Eq 5 can be called semi-empirical because according to eq 2, it includes the state variable pressure 

( )
p,f  and compressibility factor 𝑔(𝜏, 𝑞, 𝑤, 𝑐) at the dew point line. Eq 5 requires a well-known 

and reliable prediction of the pure component vapor pressure function ( )
p,f  which is also 

parameterized considering the reduced triple point temperature 𝜏𝑇𝑝 (see eq A1 in Appendix 1). This 

ensures more consistency with eq 4. In this way, the vapor pressure function, eq 1, and the 
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compressibility factor, eq 4, are linked. See Appendix 1 for more details. We denote eq 4 in 

conjunction with eq 2 as the "new model", or Model 8. 

   Some properties of the compressibility factor function (eq 4) and their comparisons with real 

behavior are discussed below. Eq 4 fulfils the necessary conditions for the compressibility factor 

at the dew point line: 

𝑙𝑖𝑚
𝜏→𝜏𝑇𝑝

+
𝑔(𝜏,𝑞,𝑤,𝑐)≅1                      𝑙𝑖𝑚

𝜏→𝜏𝑇𝑝
+

𝑑

𝑑𝜏
𝑔(𝜏,𝑞,𝑤,𝑐)≅0

𝑙𝑖𝑚
𝜏→ 1−

𝑔(𝜏,𝑞,𝑤,𝑐)=𝑍𝑐                  𝑙𝑖𝑚
𝜏→ 1−

𝑑

𝑑𝜏
𝑔(𝜏,𝑞,𝑤,𝑐)=−∞

              (6) 

At the vicinity of the triple point temperature the one-sided limit from the right part of the function 

( )cwqg ,,,  goes to value close to 1. This means that the ideal gas state is reached. The 

corresponding 1st derivative to the reduced temperature goes to zero value. At the vicinity of the 

critical temperature the one-sided limit from the left of the function ( )cwqg ,,,   goes to the 

expected critical compressibility factor 𝑍𝑐 and the corresponding 1st derivative to the reduced 

temperature goes to infinite value. 

At this point of the model discussion, the parameters  𝑞,𝑤, 𝑐  of eq 4 are important. For this 

reason, we would like to present the estimated parameter values in this Section. These values of  

𝑞,𝑤, 𝑐 are listed in Table 3. One can observe that for hydrogen chloride and n-hexane the values 

of c are lower than the other parameter’s values. All other compounds show a value of close to 1. 

A very small value means that an important correction of the triple point temperature have to be 

considered. This may be an indication that the vapor density data should be checked more strictly. 

For hydrogen chloride this point was already mentioned in Section 2. For n-hexane, the database 

used for parameter fitting have also be checked.  
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Table 3. Parameterization results for the parameter 𝑞,𝑤, 𝑐 in eq 4 based on Monte-Carlo 

simulationsa. 

n° Compound q u(q)b w u(w) c u(c) 

1 Ammonia 1.838695 0.021 0.532258 0.002 0.994401 0.007 

2 Hydrogen chloride  2.529029 0.095 0.515845 0.012 0.300000 0.247 

3 Sulfur dioxide 2.163975 0.015 0.537213 0.003 0.997772 0.002 

4 n-Hexane 3.993721 0.065 0.537728 0.007 0.300000 0.385 

5 Cyclohexane 1.907121 0.031 0.592908 0.002 0.988224 0.010 

6 Ethylene 2.334183 0.021 0.543092 0.004 0.998000 0.845 

7 Difluoro chloromethane 2.774430 0.027 0.548105 0.004 0.998000 1.098 

8 Benzene 1.776046 0.012 0.498876 0.003 0.998000 0.074 

9 Toluene 3.237345 0.023 0.606932 0.004 0.998000 1.324 

10 Chlorobenzene 3.188483 0.029 0.597500 0.007 0.998000 0.182 

11 Acetone 2.357968 0.010 0.544333 0.002 0.998000 0.848 

12 Ethyl acetate 3.041948 0.047 0.553303 0.007 0.998000 0.789 

13 Diethyl ether 2.140655 0.041 0.477395 0.006 0.998000 1.163 

14 Methanol 2.850944 0.036 0.563624 0.004 0.995684 0.014 

15 Ethanol 4.419733 0.120 0.529832 0.005 0.989826 0.044 

16 Water 2.461485 0.008 0.551213 0.002 0.998000 0.026 

17 Ethylene oxide 3.086286 0.064 0.592708 0.012 0.998000 2.641 

a  q, w, c are mean values. Exact simulations require more decimal places than the   

   calculated uncertainty indicates.  b u: uncertainty    
 

 

  This model can also be used for the parameterization of a cubic EoS, as described in ref 8. Instead 

of using the specific critical compressibility factor, cZ , for a compound, the critical 

compressibility factor of the cubic EoS is used. Appendix 2A show the parameters  𝑞,𝑤, 𝑐  

obtained using the compressibility function according to eq 4 in the   SRK (Soave Redlich 

Kwong) and   PR (Peng Robinson) equations of state. The   function corrects the vapor pressure 

and vapor density (see Kud, Körkel, Maixner8 for more details). Thus, the gaseous density and 

vapor density can be calculated as a function of T and p with an error less than 1 %.    
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3.2 Presentation of the evaluation criteria 

In this Section, we will test the quality of the new model 8 for determining the vapor density. 

First, the test methods and the results of evaluation are described. Since there are 17 compounds 

with 8 different test methods, there exist a lot of intermediate results. The intermediate results for 

each chemical compound are discussed in the Appendix. Models 2 to 7 and 11 presented in 

Table 1 are compared with the new model 8.  

The examination of the new model is based on statistical methods which are divided into three 

groups: 

(A)  the Goodness of Fit 

(B)  the Goodness of the parameter and  

(C) the consistency tests. 

In group A the Goodness of Fit of a model is examined using two test methods. The first test is 

based on the chi-square (²) distribution. In the context of examination of different models with 

different numbers of parameters, the condition of application of AIC criterion of Akaike26 is 

evaluated. This criterion represents to the goodness of fit. A necessary condition for this test is that 

the random error follows a standard distribution with a homogeneous (constant) variance, and 

therefore, the residual sum of squares is used as an objective function for the AIC criterion. In our 

case, the random error do not belong to the same standard distribution with a constant variance 

value. In this case, the sum of standardized squared residuals (we call it the sum of weighted 

squared residuals, SWS) with inhomogeneous variances was chosen. Consequently, the AIC 

criterion could not be used in this work.  

The second test in group A deals with the predictive capability of the model. This checks the 

capability of a model to predict existing experimental data that have not been included in the set 
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of measurements for parameters estimation. Thus, a parameter estimate is calculated with only a 

part of the experimental data. The other experimental data, i.e. vapor density data are used for 

validation. 

In group B, the quality of the estimated parameters is evaluated by testing the capability of the 

model (and its parameters) to predict vapor density data outside the range of temperature of 

experimental data used for the fitting. Concerning this test, the rank of the covariance matrix of 

the parameters and an analysis of its variance are realized. At this point it should be mentioned 

that a non-zero full-rank value is a prerequisite for an analysis of parameter variance. For this 

reason, the rank test is the only one for which no H0 hypothesis with confidence region can be 

postulated.  

In group C the thermodynamic consistency within the Domain of Definition (DoD) and outside 

the DoD will be checked. It is important to pass test B before evaluation of Test C. A consistency 

test must be performed; this is important for saturated vapor density interpolation within the DoD 

range and if extrapolation outside the DoD range.  The predictive capabilities of the properties for 

the consistency test can be calculated only if the lower temperature limit of the database is above 

the triple point temperature and if the reduced temperature range for prediction is greater than 0.05. 

This is not possible for compounds 1, 3, and 16 (ammonia, sulfur dioxide and water). In this case 

a mark of zero point is awarded for every model. Table 4 shows the point allocation system.  

 

 

Table 4. Evaluation criteria and point allocation for Models 2 to11.  

Test method number and test statistic  H0 hypothesis  

and scores 
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accepted  refused 

A  Goodness of Fit   

     1  Test of the 𝜒2 distribution 1 0 

     2  Predictive Capability  1 0 

B  Goodness of the Parameter   

     3  Full-rank of the covariance matrix of the  

         Parametersa 

1 0  

     4  Parameter variance based on confidence regiona,b 1 0 

C  Consistency Tests   

5 Within the Domain of Definition (DoD) 

5.1 Range test for Z. The compressibility factor Z for saturated  

      vapor must fulfill the condition: Zc
c ≤ Z < 1. 

           5.2 1st derivative test for Z. The 1st temperature derivative  

                  must fulfill the condition:  dZ/dT < 0.     

 

1 

 

1 

 

0 

 

0 

6 Outside the DoD – The Predictive Capability 

6.1 Range test for Z. The compressibility factor Z for saturated  

      vapor must fulfill the condition: Zc ≤ Z < 1. 

           6.2 1st derivative test for Z. The 1st temperature derivative  

                  must fulfill the condition:  dZ/dT < 0.         

 

1 

 

1 

 

0 

 

0 

aThis test is not possible for the Barile-based model 11 in Table 1.  

bIf hypothesis H0 based on confidence region is fulfilled for every parameter of the model. 

cCompressibility factor at critical state. 

 

 

 For all test methods, without the rank test number 3, a H0 hypothesis is formulated on the base 

on a distribution function or boundaries of physical variables. In the case of the rank test, there are 
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only two options. Either full rank exists or not. A confidence interval of 99 % is selected 

concerning for the statistical test quantity (for more information see Appendix 2B). One point is 

given for each individual test number and for each run from test 1 to test 6. If the test criteria are 

fulfilled, they have a positive score; otherwise, zero points will be awarded. For statistical test 

quantities we prefer to add the different score and not the calculated probabilities. The reason is 

explained in Appendix 2C. 

To evaluate trustworthiness of the scores (see Table 4), a small part of the topic "Parameter 

Estimation" of the following Section must be explained. The details are, of course, discussed in 

following Section 3.3. Calculation of all statistical quantities presented in Table 4 are obtained 

from vapor density measurement data 𝜌𝑚 with their corresponding uncertainties 𝑢𝜌 (see Section 

2). Thus, the uncertainty (standard deviation) of the experimental data influences the test 

evaluation. If only a single calculation of the points is performed with only one standard deviation 

𝑢𝜌 according to the equation  𝑢𝜌 = 𝑢𝑟,𝜌 ∙ 𝜌𝑚, then only a single result is obtained for each test. 

Also, the standard deviation is a random variable with a ² distribution, this means that if the 

measurement is repeated, another standard deviation is obtained. So, if the calculation of the H0 

hypothesis evaluations is carried out with this other standard deviation, then other results can be 

obtained. Since the given relative uncertainty 𝑢𝑟,𝜌 do not contain any information about the 

statistical distribution, a distribution of the standard deviation 𝑢𝜌 can be calculated using Monte 

Carlo (MC) simulations. For this purpose, a standard deviation is simulated for each experimental 

data in a measurement data set for each compound. The result is a data set of simulated standard 

deviations for each compound which is considered constant for a so defined MC run. The statistical 

quantities for test n° 1 to 6 are then calculated in a MC run with the experimental data and their 

corresponding simulated standard deviations. The assumed and rejected H0 hypotheses are counted 
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for each MC run. One point is awarded for a compound and a model only if the H0 hypothesis is 

fulfilled in at least 95 % of all the MC runs. The number of MC runs depends on the maximum 

accepted deviation of the total number of points for a model. This maximum deviation must be 

lower than 1 point for a model. Simulation experience reveals for this kind of calculations at least 

500 MC runs are necessary to reach this desired uncertainty. 

In the context of the described stochastic simulations it should be mentioned that for the 

prediction test n° 2 within a MC run a further random process has to be executed. In effect it is 

known that the order of the measurement data within a measurement data set for the parameter 

estimation is invariant on the result of the parameter estimation. However, in the case of test n° 2, 

the total measurement data set must be partitioned as previously described. Before the total data 

set of a compound must be randomized, since the measurement data from the literature are often 

sorted in ascending temperature order. For the multiple parameter estimates required in test n° 2, 

the currently simulated standard deviation data set is used. This data set has already been simulated 

for the MC run.  More details are presented in Section 4. 

 

 

3.3 Parameter estimation 

First, the quality criterion for the model acceptance must be defined. The residual values are 

required for this calculation. The sum of the unweighted squared faults or the mean relative 

absolute percentage deviation (MRD, also known as AAD%) according to eq A14 in Appendix 14 

is often used to evaluate the residual values. If the data exhibit a so-called double exponential 

distribution (Laplace’s distribution) or display a large number of outliers, a robust estimate of the 

parameters based on the L1 standard,27 i.e., the MRD is recommended27. However, one difficulty 
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remains using MRD. There is no statistical test method to formulate an H0 hypothesis based on a 

distribution function. If the measurements follow the standard distribution, which is often the case 

in this field of application, then parameterization based on the so-called L2 standard (Euclidean 

norm), i.e., the likelihood estimator, should be used28. Maximizing the likelihood estimator is 

equivalent to minimizing the least square function28. So we used the least square function because 

the measured data followed a standard distribution. To this end, the sum of standardized squared 

residuals or we call it the sum of the weighted squares jMSWS , was calculated for each compound 

j and every model M using eq 7 

𝑆𝑊𝑆𝑀,𝑗 = ∑ (
�̅�𝑚,𝑗𝑖−𝜌𝑀,𝑗(𝜏𝑖,𝛩𝑀,𝑗)

�̃�𝑗𝑖
)
2

𝑁𝑚,𝑗
𝑖=1

,              (7) 

where mN  denotes the number of measurement points. The function ),( ,, jMijM   is the vapor 

density calculated according to the model equation (Models 2 to 11 in Table 1) and compounds 

j=1...17. jM ,  represents the model parameters for compound 𝑗, �̅�𝑚,𝑗𝑖 is the mean of measured 

vapor density and �̃�𝑗𝑖 is the associated standard error of the mean �̅�𝑚,𝑗𝑖 at measurement point 𝑖. If 

the sum of the weighted squares follows a  𝜒2 distribution with  𝑁𝑚 − 𝑁Θ  degree of freedom, the 

model is good. The proof of 𝜒2 distribution can be used to calculate a statistical probability to 

formulate a H0 hypothesis for the Goodness of Fit. Note: In many textbooks of statistics, so-called 

"single event" measurements 𝜌𝑚,𝑗𝑖 are given in the objective function (eq 7). The variance 𝑠𝑗𝑖 

belongs to these measured values. If, however, a mean value �̅�𝑚,𝑗𝑖 is given for the measurement, 

this includes the so-called standard error of mean �̃�𝑗𝑖 =
𝑠𝑗𝑖

√𝑛𝑖
⁄  where 𝑛𝑖 is the sample size. (see 

also textbook by Larsen and Marx29 on page 321). Eq 7 is also a Maximum-Likelihood Estimator 

(MLE). The proof is described in Appendix 2E.  
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In the next step we have to solve the problem concerning the standard deviation s𝑗𝑖 or 

uncertainty of experimental data for the eq 7. This kind of standard deviation is a random variable 

which is unknown for most cases of literature data set. As described in the previous Section, the 

calculated standard deviation 𝑠𝑐𝑎𝑙𝑐,𝑗𝑖 = 𝑢𝑟,𝑗𝑖  �̅�𝑚,𝑗𝑖 from the coefficient of variation 𝑢𝑟,𝑗𝑖 for the 

vapor density �̅�𝑚,𝑗𝑖 presented in Section 2 isn’t a random variable because the coefficient of 

variation 𝑢𝑟,𝑗𝑖 is often a mean value from several measurement series.  On the basis of Monte Carlo 

simulation a stochastic standard deviation 𝑠𝑗𝑖 can be simulated from the calculated standard 

deviation 𝑠𝑐𝑎𝑙𝑐,𝑗𝑖. This is described in detail in Appendix 2D. Such MC simulations generates 

optimally 𝜒2 distributed variances which can be used. If the vapor densities given in the literature 

are trustworthy, the model description is insufficient if the H0 hypothesis based on a 𝜒2 distribution 

test is rejected.  

The parameter estimation problem [PE 1] is based on the likelihood probability with 

standardized residuals and the resulting optimization problem can generally be formulated for the 

models 2 to 10 as follows: 

                                      min
Θ𝑀,𝜌𝑀

(�̅�𝑚 − 𝜌𝑀(𝜏, Θ𝑀))
𝒯
Ω−1 (�̅�𝑚 − 𝜌𝑀(𝜏, Θ𝑀))                     [PE 1] 

       𝑠. 𝑡.  𝜌𝑀(𝜏𝑖, Θ𝑀) > 0    (𝑖 = 1,2… 𝑁𝑚, 𝑀 = 2 − 10 ) 

                          1.1 ≤ Θ𝑀,1 ≤ 100, 0.1 ≤ Θ𝑀,2 ≤ 0.95 (𝑀 = 8 − 10) 

0.3 ≤ Θ𝑀,3 < 0.999  (𝑀 = 8 − 10)    

where  Ω = 𝑑𝑖𝑎𝑔(�̃�1
2, �̃�2

2… �̃�𝑁𝑚
2 ) = 𝑑𝑖𝑎𝑔 (

𝑠1
2

𝑛1
⁄ ,

𝑠2
2

𝑛2
⁄ …

𝑠𝑁𝑚
2

𝑛𝑁𝑚
⁄ )   is the diagonal matrix of 

the simulated standard variances of mean and 𝒯 means the transpose of a vector or a matrix. 

(𝜌𝑚 − 𝜌𝑀(𝜏, Θ𝑀)) is the vector of residuals. The formulated inequalities must also be fulfilled. 
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Note that for this kind of measurements, variance inhomogeneity exists because the measurement 

range of density extends over several orders of magnitude. 

All calculations in this work were done using PTC Mathcad 15 software. 

 

 

4  RESULTS AND DISCUSSION  

The outline of this Section refers to Table 4. 

A)  Goodness of Fit 

Test 1: Test of the 𝜒2 distribution 

The parameters 𝛩𝑀,𝑗 were calculated for Models 2 to 10 and for each compound. For Model 

11, only the temperature and critical compressibility factor, 𝑍𝑐, were required. The defined test 

quantity is the probability  𝑃𝛼
(𝜒)

 (eq 8), which is based on the 𝜒2 distribution.  

𝑃𝛼
(𝜒)

= 1 − 𝑃(𝑋 < 𝑆𝑊𝑆, 𝑓) = 𝑃(𝑋 ≥ 𝑆𝑊𝑆, 𝑓).           (8) 

𝑃𝛼
(𝜒)

 is the probability of finding a random 𝜒2 variable, X , from the statistical population that is 

greater than or equal to the test quantile, SWS. X is a random 𝜒2 variable, and f  is the degree 

of freedom, −= NNf m , where N  is the number of parameters to be adjusted.  

 

The formulation of the H0 hypothesis based on eq 8 refers to the so-called single-sided test and 

serves for better understanding only. In the present case the statistic recommends a partitioning of 

the significance level into two areas of the  𝜒2 probability density function29. The two-sided test is 

the result and the associated H0 hypothesis can be formulated as follows: 

H0:  
𝛼0

2
≤ 𝑃(χ) (𝜒𝛼0

2
,𝑁m−𝑁Θ

2 ≤ 𝑆𝑊𝑆 ≤ 𝜒
1−

𝛼0
2
,𝑁m−𝑁Θ

2  ) ≤ 1 −
𝛼0

2
 .    [H01] 
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The big advantage for this two-sided test is that the lower limit of probability 𝑃α/2
(χ)

 gives 

information about the so-called overfitting. If this limit is fallen below  
𝛼0

2
 , then overfitting is 

present and the model is rejected. If the upper probability limit 𝑃1−𝛼/2
(χ)

  is exceeded 1 −
𝛼0

2
, the 

model description is inadequate and the model is rejected, too. This way of testing is very strict 

but we get information about the true model suitability. 

The individual results for each component with their interpretations can be found in the 

Appendix. The summarizing results regarding the models will be discussed in the main part. This 

applies generally in the following. The results concerning the 𝜒2 distribution (test n° 1) of fit for 

every compound and every model are listed in Table S3.1 in Appendix A3. Table 5 presents the 

results of test n° 1 of the rating for each model tested and evaluated.  

 

 

Table 5. Model assessment for models defined in Table 1: Goodness of Fit. 

  
  Model number 

n° Test 2 3 4 5 6 7 8 9 10 11 

1 Chi Square distribution based on [H01] 9 7 7 9 1 3 13 14 13 5 

2 Predictive capabilitya  based on [H02] 3 5 7 3 0 2 5 6 6 ndb 

  Goodness of Fit (sum of scores)c 12 12 14 12 1 5 18 20 19 nd 

awithin the Domain of Definition.  bnot defined.  cmaximum sum of scores for every model: 34   
 

 

As shown in Table 5 for test n° 1, Models 6 and 7 with the lowest scores were developed to 

represent both the vapor and liquid densities at saturation. The reference point is the critical point. 

Consequently, the models failed to represent the vapor density at low temperatures. It should be 

mentioned, that for some compounds negative values for vapor densities can be calculated between 
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two measurement points at lower reduced temperature, 𝜏 < 0.67.  The reason for this is that for 

some compounds a pole may occur. Models 6 and 7 were rejected for most compounds within 

their domain of definition. The Barile model (eq 11) is rejected for most compounds because it 

isn’t sufficient rated according to our method of scoring. 

   Of the polynomial models only models 2 and 5 give satisfactory results. The other models 3 and 

4 give unsatisfactory results. The reason for this not so good rating of the polynomial models is 

the so-called overfitting and therefore H0 hypotheses [H01] are rejected for many compounds. 

Characteristic for overfitting is a very small value for the objective function (SWS) which are 

listed in Table S3.2 in Appendix 3. Table 6 exemplifies the overfitting on compound 9 and the 

results for the other models are for comparison.   
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Table 6. Overfitting of the models 2 to 5 for the compound 9 (toluene) in test n° 1. Assessment 

based on SWS and the H0 hypothesis [H01]. The other models are listed for comparison. 

Model number 
  SWS [H01]a Assessment 

2 0.0383 0 overfitting 

3 0.0018 0 overfitting 

4 0.0030 0 overfitting 

5 0.0003 0 overfitting 

6 2393 0 inadequate 

7 1699 0 inadequate 

8 3.5 1 good fit 

9 2.7 1 good fit 

10 3.4 1 good fit 

11 31.9 0 inadequate 

aH0 hypothesis: 1 model accepted, 0 rejected 

 

 

The models 2 to 5 show very small values for SWS and dissemble a very good fit as also reported 

in Table S3.2 in Appendix 3. However, they do not belong to the required 𝜒2 distribution. That's 

why the H0 hypothesis [H01] is rejected. Compound 9 in Table 6 is no exception. There are still 

compounds 5 and 11 which show the same results as 9. Summary for SWS:  

“A very small SWS value is no guarantee for a very good fit assessment.” 

However, if the SWS is greater than the allowable quantile of the 𝜒2 distribution (it can be 

calculated by considering the degree of freedom, dof = (𝑁m − 𝑁Θ) ), then it is the characteristic of 

the weakness of a model which is the case for models 6, 7 and 11. Therefore, the H0 hypothesis is 

rejected for these models, too. If the sum of weighted squares is in the required range of the quantile 

for the 𝜒2 distribution, then the model is accepted. This is the case for models 8 to 10. 

    For the sake of completeness, reference is made here to statistical test variables used by many 

scientists who evaluate parameter estimates. These test quantities can’t be considered in this work 

because no H0 hypothesis can be formulated. These are the mean relative absolute percentage 
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deviation (MRDs) as described in eq A14-1 (Appendix 14) and the reduced root mean square error 

(RMSE) as described in eq A15-1 in Appendix 15 were also calculated for comparison. All values 

are calculated with the estimated parameter according to the definition [PE1] in Section 3.3 and 

are presented in Appendix 14 and 15. Concerning the reduced RMSE, Andrae35 warns using this 

statistical quantity for model assessment. In this context, reference is made to a test variable for 

the calculation of the model bias, which is also frequently used (see table S16 in Appendix 16). 

For this test quantity no H0 hypothesis can be formulated, too. But it should be noted that this test 

quantity is very sensitive to model bias.   

Since MRD is a very frequently used evaluation quantity, a comparison with the hypothesis 

test [H01] should be made here using the example of overfitting presented in Table 6. 

Compounds 5, 9 and 11 with models 2 to 5 show overfitting status. Considering the hypothesis 

test [H01] (see Table S3.1 in Appendix 3) these compounds are strictly rejected as a statistical 

point of view. However, the MRDs show very small values and even suggest the best model 

evaluation (Table S14 in Appendix 14). Consequently, the overall result of the model evaluation 

in the last row of Table S14 is also influenced. Also, the models 2 to 5 show the best 

performance but it is totally contrary to the results presented in Table 5 for test n° 1. The results 

of MRD testing can be summarized as:  

“A very small MRD value is no guarantee for a very good fit assessment.” 

The part of overfitting in relation to the overall rating in the last row of Table S14 is about 17 

% (Out of 17 compounds show 3 compounds overfitting, that's 3/17~17 %) for almost each of 

the polynomial models 2 to 5, i.e. about 17 % (see Table S14 in Appendix 14).  The failure not to 

recognize such a model weakness, e.g. overfitting, is one of the reasons why the Chi-square test 
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[H01] for assessment should be preferred. 17 % of test failure is non-negligible and this is 

probably the reason why the polynomial model performs better than the new model.  

 

Test 2: Predictive capabilities  

Next, we use the so-called k-fold cross validation test, a rigorous test for evaluating the models 

concerning the predictive capabilities. This test was applied within the domain of definition and 

was calculated during a Monte Carlo run with the current simulated measurement variances 𝑠𝑖
2 

calculated. The measurement data are divided into two different classes. Class one of the data is 

used for parameter estimation. This estimated parameter vector is used to predict the remaining 

class to calculate the predicted sum of weighted squared residuals (PRE SWS). In this work, 10 to 

14 % of the vapor density data points were to be predicted. This means that a so-called 10 fold 

cross validation test is aimed for the calculations in this work. Readers are referred to Appendix 4 

for further details of the parameter estimation procedure. The PRE SWS is the quantile of the 𝜒2 

distribution and is calculated according to 

𝑃𝑅𝐸 𝑆𝑊𝑆𝑀,𝑗 = ∑ (
(�̅�𝑚,𝑗𝑘−𝜌𝑀,𝑗(𝜏𝑘,𝛩𝑀,𝑗))

�̃�𝑗𝑘
)
2

,
𝑁𝑘
𝑘=1             (9) 

where k is the index corresponds to the data of the jth compound used. The testing philosophy is 

the same as described previously. In this case, the following question must be answered: does the 

predicted test variable PRE SWS belong to the 𝜒2 distribution with (𝑁k − 𝑁Θ) degrees of 

freedom?  The hypothesis H0 for the test of the 𝜒2 distribution is 

H0:  
𝛼0

2
≤ 𝑃𝑃𝑅𝐸

(χ)
(𝜒𝛼0

2
,𝑁k−𝑁Θ

2 ≤ 𝑃𝑅𝐸 𝑆𝑊𝑆 ≤ 𝜒
1−

𝛼0
2
,𝑁k−𝑁Θ

2  ) ≤ 1 −
𝛼0

2
 .   [H02] 

If Hypothesis [H02] is valid, then the model has a high predictive capability. Thus, the prediction 

is a real forecast because it can be compared directly to the measured data. It should be noted that 
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this predictive capability test is a very rigorous test and it is very difficult to achieve a maximum 

score.  

In the event that the degree of freedom is zero, the parameters are calculated and not estimated. 

This was the case for the compounds with seven experimental data points and six parameters to be 

estimated. Then, the seventh experimental data point is calculated. This was the case for 

compounds 6, 8, and 14 and Models 2 to 5. The Table S5 in Appendix 5 shows for test n° 2 the 

scores for every compound and every model. The results concerning the predictive capability for 

the models only are listed in Table 5 (test n° 2). As expected, models 6 and 7 have no predictive 

capability. All models do not show a satisfactory rating. The overall rating of the "goodness of fit" 

test from Table 5 shows that the new model performs the best of all models. 

 

B) Goodness of the parameter  

This Section examines the properties of the model parameters.  A model consists of an 

equation and its parameters. The quality of the model has already been tested. Now the quality of 

the parameters should be checked. It indicates the variance of the estimated parameters. This is 

important for interpolations and extrapolations because the error of a calculated vapor density 

depends on the error of the parameters. First, the necessary condition is to be examined as to 

whether or not an error propagation can be expected at all. Then the errors of the parameters 

should be checked. 

The covariance matrix calculation of the parameters is often based on the Jacobian matrix  

𝐽(Θ) = − 
𝜕𝜌𝑀(𝜏,Θ)

𝜕Θ𝒯
 . As the parameter estimation problem [PE 1] is constrained, higher terms have 

to be considered in the Taylor development of the covariance matrix. For this reason, the Hessian 

matrix is used in this work27. It also applies, of course, to the unlimited case in [PE 1]. 
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𝐻(Θ) =  
𝜕𝑆𝑊𝑆(Θ)

𝜕Θ 𝜕Θ𝒯
            (10) 

𝑐𝑜𝑣(Θ) = 2𝐻(Θ)−1             (11) 

However, in the case of MC simulations, the mean value and the variance of the parameters 

can be calculated directly from the estimated parameter values obtained from MC runs. This 

possibility was used for the new model proposed in this work. If the derivative-based parameter 

estimation [PE1] is close to one of the constraints related to a parameter, then there is no 

possibility of variation of this parameter. This means that no variance can be calculated for this 

parameter from the MC runs. In these cases a calculation can be made from the derivative 

function (e.g. Hessian matrix). This is a rough approximation, since only 2 terms of the Taylor 

development are considered for the Hessian matrix. It means that the given uncertainties of the 

estimated parameters are also rough approximations. The difficulties in the error propagation 

calculation are due to the formulation of the constrained parameter estimation problem [PE1] for 

parameter c in eq 4, which is correction at the triple point temperature. This is a weakness of the 

constrained parameter estimation if the optimization algorithm is too close to one of the 

constraints. The results of the estimated parameters and their uncertainties for model 8 are given 

in Table 3. For models 9 and 10, the results are listed in Appendix 2A. Also, for the evaluation of 

a single MC run the Hessian matrix is used.  

 

 

Test 3: Full rank of the covariance matrix of the parameters 

If measurements have no impact on a parameter, then the variance of this parameter is infinite 

and the rank of the covariance matrix is reduced. In this situation, at least one parameter cannot be 

determined by the measurements used for the data treatment. Rank reduction can also be due to 
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important experimental uncertainties during the measurement, in which case the measurement has 

no influence on the parameter. Another reason for rank reduction is highly correlated model 

parameters, which could arise due to a bad equation formulation could thus be an inherent problem 

in the model. In this case, one or more parameters must be set to a realistic constant. A deeper 

model analysis can identify the precise reason for rank reduction. In the event of a matrix rank 

reduction in any of the cases, the solution is not unique. It should be mentioned, as previously 

described, that the parameter covariance matrix is calculated from the estimated parameters for the 

current MC run. Table S6 in Appendix 6 shows the scores for every compound and model and 

Table 7 shows the results for the model assessment concerning the rank test (test n° 3). These 

Tables show the results of all MC runs. 

 

 

Table 7. Model assessment for models defined in Table 1: Goodness of the parameters.  

  
  Model number 

n° Test 2 3 4 5 6 7 8 9 10 11 

3 Rank of cov matrixa 15 8 17 17 17 17 17 16 17 nd 

4 Parameter variance based on [H03]b 2 0 0 1 17 17 15 11 10 nd 

  Goodness of parameterc 17 8 17 18 34 34 32 27 27 nd 

a of the parameters. b and based on χ2 test. cmaximum sum of scores for every model:34    
 

 

All models except Model 3 show very good results and thus the necessary prerequisite for 

calculating an error propagation on the parameters is fulfilled. 

 

Test 4: Parameter variance based on confidence region 
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The aim was to test whether the calculated parameter variance 𝑐𝑜𝑣(𝛩)𝑖𝑖 for the parameter i  

was significantly different from a set value of variance 2

,0 is . This variance is a given reference 

known from measurements or experience29.  The test quantity 𝜒𝑡
2 was calculated according to  

𝜒𝑡
2 = ∑ (

(𝑟𝑎𝑛𝑘−1 )⋅𝑐𝑜𝑣(𝛩)𝑖𝑖

𝑠0,𝑖
2 )

𝑟𝑎𝑛𝑘(𝑐𝑜𝑣Θ)
𝑖=1  ,             (12) 

where  𝑟𝑎𝑛𝑘 − 1  is the degree of freedom and the covariance matrix must have full-rank. The 

standard deviation (𝑠0) was calculated using the parameter value and its relative error 0  is defined 

to the following equation 

0,0 iis = .                                 (13) 

The calculated standard deviation of the parameter is considerably much larger than the standard 

deviation of the measurement, which is very often observed in practice. Therefore, the relative 

error 0  should not be excessively small. We recommend accepting a relative error of 0.5 in 

practice which should be at least one magnitude greater than the relative error of the measurements 

𝜀0 = 0.5 .                                   (14) 

The test quantity 𝜒𝑡
2 is 𝜒2 distributed. Therefore, the 𝜒2 test was used for the assessment. The 

probability 𝑃Θ
(𝜒)

of all parameters of a model was calculated based on 𝜒𝑡
2. The Hypothesis H0 for 

this test is as follows 

𝐻0:  𝑃Θ
(𝜒)
(𝜒𝑡

2 ≤ 𝜒1−𝛼0,𝑟𝑎𝑛𝑘−1
2 ) ≤ 1 − 𝛼0 .       [H03] 

The accepted significance level 0  was also set to 0.01 as previously described. Now to the 

assessment. The results of the parameter variance in Table 7 test n° 4 show that the polynomial 

model 2 to 5 do not have satisfactory performance. The models 6 and 7 with two or three 

parameters show a very good rating. The new model 8 to 10 shows a satisfactory to good rating. 

For more details concerning the assessment of the compounds see Appendix 7. 
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   The overall rating "goodness of parameter" indicates the necessary but not sufficient criteria for 

the ability to extrapolate the vapor density calculation into a non-measured temperature range. In 

the overall rating model 3 is not sufficient. Models 2, 4 and 5 are satisfactory. The new model 

shows a good to very good performance and the models 6 and 7 show the best performance. How 

can the result for models 6 and 7 be interpreted for a prediction of vapor density? The best way to 

do this prediction is to consider the Goodness of Fit rating. Models 6 and 7 show in this test (Table 

5) no good performance at all. Consequently, prediction outside the domain of definition is 

probably incorrect, as we will also see in the following part related to consistency test. 

 

 

C) Consistency Test  

Test 5: Consistency within the Domain of Definition (DoD) 

This test depends on the model that is to be validated. This test assesses whether the correlation 

is violating fundamental laws. In one case, the thermodynamic consistency of the compressibility 

factor is tested, and in the other case, its derivative properties are checked. Test n° 5 assesses 

whether the calculated saturated vapor density is consistent with the corresponding vapor pressure 

by calculating the compressibility factor of the saturated vapor phase. This model is taken because 

the temperature values of the pure compounds are known. A prerequisite for the test, as noted 

above, is that the estimated pure component vapor pressures must be accurately calculated. In this 

manner, the calculated saturated vapor densities from the model at the support points and the 

interpolation between the two support points can be checked for consistency with the derivative 

property. 
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The compressibility factor of a saturated vapor phase decreases monotonically with the 

temperature. Hence, we were able to formulate two test conditions for the compressibility factor 

)(, jMZ  of the vapor phase (eqs 15 and 16). 

1)(,  jMc ZZ           (15) 

0
,


d

Zd jM
.           (16) 

The test criterion was defined as the compressibility factor, jMZ , , for Models 2 to 11 and 

compound j for the saturated vapor phase: 

( )

jMjc

jc

jM

f

T

p
Z

,,

,

,

,



 jp,
=

R

M j
,         (17) 

where 𝜌𝑀,𝑗 is the vapor density model in Table 1. Of course, in the case of the new model, eq 4 is 

used directly as the test quantity. The Domain of Definition, jD , was chosen to be equal to the 

temperature range in which the vapor density data are available: 𝐷𝑗 ∈ [𝜏𝑚𝑖𝑛,𝑗 , 𝜏𝑚𝑎𝑥,𝑗]. For the model 

acceptance with regard to the compressibility factor, Hypothesis H0 is 

Test 5.1  jjjMcj ifZZH max,min,,,0 1)(:   .     [H04] 

For the model acceptance with regard to the 1st reduced temperature derivative of the 

compressibility factor, Hypothesis H0 is 

Test 5.2  jj

jM

j if
d

Zd
H max,min,

,

,0 0
)(

: 












.     [H05] 

Table 8 shows the sum of the results for both H0 hypotheses concerning the model assessment. 

The Tables S8 and S9 in the Appendix 8 and 9 show the individual results for each compound and 

Table S10 show the summarized scores. 
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Table 8. Model assessment for models defined in Table 1: Consistency test within the Domain of 

Definition (DoD)  

  
  Model number 

n° Test within the DoD 2 3 4 5 6 7 8 9 10 11 

5.1 Range test for Za based on [H04] 13 16 16 16 6 7 17 17 17 17 

5.2 
1st derivative test for Z based on 
[H05] 9 13 13 10 4 1 17 17 17 17 

  Consistency test (SoSb) 22 29 29 26 10 8 34 34 34 34 

a compressibility factor at saturated vapor.  b maximum Sum of Scores for every model:34      
 

 

Both tests 5.1 and 5.2 are discussed together. As expected, Models 6 and 7 had difficulty 

describing the compressibility factor for the saturated vapor phase within the domain of 

temperature previously defined. The reason for this is that for some compounds a pole may occur 

(e.g. for the compound 14), which leads to singularity and thus to thermodynamic inconsistency 

and an insufficient rating. Model 2 is satisfactory. Models 3 to 5 show a good rating. The reason 

for the score deduction is the polynomial character of this model class, which causes oscillatory 

behavior. The results concerning the compressibility factor calculations will be shown as an 

example for the two models 2 and 5 in Figure S1, S2 in Appendix 8, 9. Figure S2 illustrate 

impressively the oscillating behavior of the polynomial model of model 5. It is of course ensured 

that the oscillating behavior is not due to the vapor pressure function ( )
p,f  in the eq 5 because 

it is monotonically increasing.  Both examples in Figure S1, S2 are accepted in the test 1 of the 

goodness of fit. Table 9 presents all the examples that have been accepted in test 1 (goodness of 

fit) for the H0 hypothesis [H01] and that have been rejected in test 5 for thermodynamic 

consistency.  
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Table 9.  Model assessment: Rejected thermodynamic consistency but accepted according to 

Goodness of Fit. 

  Compound n°a     

Model n°b 1 3 6 7 14 15 17 

2 oc o o o o o   

3 o o   o   

4 o o   o   

5 o o o  o   

6       o 

7             o 

a compound name is listed in Table 2.    
b model number is listed in Table 1.    

c o  means:  [H01] accepted and [H04], [H05] refused.  
 

 

This means that it is not only important to use statistical quantities for a model evaluation, but 

also fundamental physical quantities. In the case of testing kinetic models, it is the mass 

conservation law, and in the case of a thermodynamic model, it may be for example the 

compressibility factor. This test is highly sensitive to small inconsistencies and in all cases the new 

model shows thermodynamic consistency and therefore it shows a very good performance. 

 

Test 6: Outside the Domain of Definition – The Predictive Capability 

Here, we investigated whether the model is suitable for extrapolation beyond the domain of 

definition (DoD). The test range or definition range of prediction, jDP , is between the triple point 

temperature and the smallest temperature value of the range of the definition  𝐷𝑃𝑗 ∈  [𝜏𝑇𝑝,𝑗 , 𝜏𝑚𝑖𝑛,𝑗[ 

. The temperatures must be in the following range to ensure that the extrapolation range is still 
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physically meaningful: 05.0,min, − jTpj  . With these conditions, all compounds were suitable 

with the exception of ammonia, sulfur dioxide and water. Hypothesis H0 is 

Test 6.1  jjTpjMcj ifZZH min,,,,0 1)(:   .     [H06] 

For model acceptance with regard to the 1st temperature derivative of the compressibility factor, 

Hypothesis H0 is 

Test 6.2  jjTp

jM

j if
d

Zd
H min,,

,

,0 0
)(

: 












.     [H07] 

Appendix 11, 12 show the individual results and its summarized scores are in Table S13. Table 

10 shows the sum of the results for both H0 hypotheses concerning test 6.1 and test 6.2.  

 

 

Table 10. Model assessment for models defined in Table 1: Consistency test outside the Domain 

of Definition (DoD) – The predictive capability.  
 

    Model number 

n° Thermodynamic tests  2 3 4 5 6 7 8 9 10 11 

6.1 Range test for Za based on [H06] 1 3 4 2 0 0 14 14 14 14 

6.2 1st derivative test for Z  based on [H07] 3 6 5 3 0 0 14 14 14 14 

  Consistency test outside DoDb 4 9 9 5 0 0 28 28 28 28 

a compressibility factor at saturated vapor.           
b maximum sum of scores for every model: 28           

 

 

The results are discussed together for the tests 6.1 and 6.2. Models 6 and 7 show no predictive 

capability. All polynomial models 2 to 5 show inadequate rating. One of the reasons for this is 

the typical oscillating behavior of a polynomial model as shown in Figure S1 and S2 in 

Appendix 8, 9. The new model 8 to 10 and Barile’s model shows its best predictive capability in 
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thermodynamic consistency and a very good rating for all compounds in the case of an 

extrapolation outside the domain of definition. 

 

 

Summary of the rating 

A summary of the rating based on Monte Carlo simulations as presented in Sections 2 and 3 was 

created by adding all scores of the six various test methods described in this Section and is shown 

in Table 11. The standard deviations of the total scores for Group 2 was calculated from Monte 

Carlo simulations and are listed in the last row of Table 11.  

 

 

Table 11. Summary of the model rating based on Monte Carlo simulations.  

  

Model numbera 

Test Method and test number 2 3 4 5 6 7 8 9 10 11 

A  Goodness of the Fit                     

    1  Test of χ2 distribution 9 7 7 9 1 3 13 14 13 5 

    2  Predictve capability:  Cross validation test 3 5 7 3 0 2 5 6 6 nd 

                      

B  Goodness of the Parameter                     

    3  Full rank of the covariance matrix of the parameter 15 8 17 17 17 17 17 16 17 nd 

    4  Parameter variance based on the χ2 Test 2 0 0 1 17 17 15 11 10 nd 

            
C  Consistency Test           
    5  Consistency within the domain of definition 22 29 29 26 10 8 34 34 34 34 

    6  Predictive capability outside of the domain of definition 4 9 9 5 0 0 28 28 28 28 

                      

Group 1:  Sum of scores from the test methods 1, 5, 6 b 35 45 45 40 11 11 75 76 75 67 

Group 2:  Sum of the scores of all the test methods.c 55 58 69 61 45 47 112 109 108 n.d. 

              Standard deviation for the scores in group 2 1.6 1.9 1.3 1.6 0.7 0.6 1.4 1.5 1.4 n.d. 

athe corresponding model see table 1.  bMaximum sum of scores for every model: 79.   cMaximum sum of scores for every model: 130   

 

 

Because many tests could not be calculated with the Barile model (Model 11), two groups for 

different model rankings were assigned as presented in Table 11.  
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Group 1: tests for minimization of the objective function (goodness of fit) and thermodynamic 

consistency (with Barile’s model) exhibits the following model ranking: very good, good, 

satisfactory and unsatisfactory where the Symbol  “>”  denotes “better than”    

 

      Models 8 to 10  >  Model 11  >  Models 3, 4, and 5  >  Models 2, 6 and 7 

 

Group 2: like group 1 plus the tests for predictive capability and for "goodness of the parameter" 

(without Barile’s model) exhibits the ranking: good, satisfactory and unsatisfactory 

 

      Models 8 to 10  >  Models 4  >  Models 2, 3, 5, 6 and 7 

 

In both groups models 6 and 7 have an unsatisfactory ranking. The polynomial models 2 to 5 show 

a satisfactory to an unsatisfactory rating. The reason for this is explained in the Section before. 

Barile’s model is good in group 1. If no vapor density data are available and only the test 

requirements for group 1 need be met, then this model can be recommended. However, due to the 

inadequate rating of the goodness of fit test, a larger deviation from the true value has to be 

accepted for the vapor density calculation.  

   If reliable vapor density measurements and a vapor pressure function for pure compounds are 

available then the new model 8 to 10 shows the best assessment in both groups. Therefore, this 

semi-empirical three-parameter equation for accurately predicting vapor densities is 

recommended.   
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The mean relative absolute percentage deviation (MRD, also known as AAD%) for a model 

was also calculated for comparison and analyzed for suitability as an assessment quantity. It has 

been shown that MRD exhibits, as expected, very small values for a very good fit. However, in 

about 17% of the cases, no overfitting is indicated for the evaluation of the polynomial models 

which have very small MRD values, in contrast to the strictly statistical evaluation. For this 

reason, this assessment was not considered. The H0 Hypothesis test based on a Chi-square 

distribution reveals an overfitting without any problems in contrast to the MRD value. Therefore, 

for the model evaluation "Goodness of Fit", we recommend the formulation of an H0 hypothesis 

based on the Chi-square distribution, if normally distributed measurement data are given. Of 

course, it is often the case for measurements in the field of research.  

 

 

5 CONCLUSIONS 

A new model has been developed to describe the vapor density of a pure compound. It is based 

on the modeling of the dew point line. It includes information about the vapor pressure and a 

function to describe the compressibility factor for the saturated vapor line. This function is 

parameterized with vapor density data and it needs only three parameters for the regression. This 

result is based on the stated relative uncertainty (coefficient of variation) of about 0.01 to 0.05 for 

the used data base. If a higher measurement precision is required, another term can be used in the 

new model. Then three additional parameters need to be estimated. 

The quality of the new model has been tested in comparison to seven known models which 

represent the “state of the art”. The validity of the model was tested and confirmed on nine 

different classes of compounds with very different polarity, e.g. aliphatic and cyclic 

hydrocarbons, ester, ether, ketone, alcohol and inorganic compounds. For the validation of the 



 

 40 

model, only chemical compounds with trustworthy measurement error information were 

selected.   

The examination of the model and the comparison with the “state of the art” is based on 

strictly statistical methods. For the test, random standard deviations of the vapor density data are 

simulated to avoid that the overall result of the evaluation does not depend only on a random 

event, Monte Carlo simulations were realized. The model evaluation was complemented by a 

thermodynamic consistency test based on the same statistical evaluation method. The scientist 

thus has the opportunity to select the equation according to the desired focus of the application. 

The statistical analysis shows the typical oscillating behavior of a polynomial model, e.g. the 

Wagner equation. The new model shows the best performance for the description of vapor 

density with respect to the goodness of fit and the thermodynamic consistency.  

Another advantage of the model is that it can also be used in the Soave Redlich Kwong36 and 

Peng Robinson37 equations of state. This makes it possible to correct not only the vapor pressure 

with e.g. the 𝛼-function according to Soave but also the vapor density in a cubic equation of 

state. The parameters for this correction are provided for both cubic equations of state. 
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