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Abstract

This paper considers the modeling and the analysis of the performance of lock-free concurrent

search data structures. Our analysis considers such lock-free data structures that are utilized

through a sequence of operations which are generated with a memoryless and stationary access

pattern. Our main contribution is a new way of analyzing lock-free concurrent search data

structures: our execution model matches with the behavior that we observe in practice and

achieves good throughput predictions.

Search data structures are formed of basic blocks, usually referred to as nodes, which can be

accessed by two kinds of events, characterized by their latencies; (i) CAS events originated as a

result of modifications of the search data structure (ii) Read events that occur during traversals.

An operation triggers a set of events, and the running time of an operation is computed as the

sum of the latencies of these events. We identify the factors that impact the latency of such

events on a multi-core shared memory system. The main challenge (though not the only one) is

that the latency of each event mainly depends on the state of the caches at the time when it is

triggered, and the state of caches is changing due to events that are triggered by the operations

of any thread in the system. Accordingly, the latency of an event is determined by the ordering

of the events on the timeline.

Search data structures are usually designed to accommodate a large number of nodes, which

makes the occurrence of an event on a given node rare at any given time. In this context, we

model the events on each node as Poisson processes from which we can extract the frequency and

probabilistic ordering of events that are used to estimate the expected latency of an operation,

and in turn the throughput. We have validated our analysis on several fundamental lock-free

search data structures such as linked lists, hash tables, skip lists and binary trees.
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1 Introduction

A search data structure is a collection of 〈key, value〉 pairs which are stored in an organized

way to allow efficient search, delete and insert operations. Linked lists, hash tables, binary

trees are some widely known examples. Lock-free implementations of such concurrent data
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structures are known to be strongly competitive at tackling scalability by allowing processors

to operate asynchronously on the data structure.

Performance (here throughput, i.e. number of operations per unit of time) is ruled by

the number of events in a search data structure operation (e.g. O(log N ) for the expected

number of steps in a skip list or a binary tree). The practical performance estimation requires

an additional layer as the cost (latency) of these events need to be mapped onto the hardware

platform; typical values of latency varies from 4 cycles for an access to the first level of cache,

to 350 cycles for the last level of remote cache. To estimate the latency of events, one needs

to consider the misses, which are sensitive to the interleaving of these events on the timeline.

On the one hand, a capacity miss in data or TLB (Translation Lookaside Buffer) caches with

LRU (Least Recently Used) policy arise when the interleaving of memory accesses evicted

a cacheline. On the other hand, the coherence cache misses arise due to the modifications,

that are often realized with Compare-and-Swap (CAS) instructions, in the lock-free search

data structure. The interleaving of events that originate from different threads, determine

the frequency and severity of these misses, hence the latencies of the events.

In the literature, there exist many asymptotic analyses on the time complexity of sequential

search data structures and amortized analyses for the concurrent lock-free variants that

involve the interaction between multiple threads. But they only consider the number of

events, ignoring the latency. On the other side, there are performance analyses that aim

to estimate the coherence and capacity misses for the programs on a given platform, with

no view on data structures. We go through them in the related work. However, there is a

lack of results that merge these approaches in the context of lock-free data structures to

analytically predict their practical performance.

An analytical performance prediction framework could be useful in many ways: (i) to

facilitate design decisions by providing an extensive understanding; (ii) to compare different

designs in various execution contexts; (iii) to help the tuning process. On this last point,

lock-free data structures come with specific parameters, e.g. padding, back-off and memory

management related parameters, and become competitive only after picking their hopefully

optimal values.

In this paper, we aim to compute the average throughput (T ) of search data structures

for a sequence of operations, generated by a memoryless and stationary access pattern.

Throughput is directly linked to the latency of operations. As the traversal of a search data

structure is light in computation, the latency of an operation is dominated by the memory

access costs to the nodes that belong to the path from the entry of the data structure to the

targeted node.

Therefore, part of this paper is dedicated to the discovery of the route(s) followed by

a thread on its way to reach any node in the data structure. In other words, what is the

sequence of nodes that are accessed when a given key is targeted by an operation.

As the latency of an operation is the sum of the latency of each memory access to the

nodes that are on the path, we obviously need to estimate the individual latency of each

accessed node. Even if, in the end, we are interested in the average throughput, this part of

the analysis cannot be satisfied with a high-level approach, where we would ignore which

thread accesses which node across time. For instance, the cache, whose misses are expected

to greatly impact throughput, should be taken carefully into account. This can only be

done in a framework from which the interleaving of memory accesses among threads can be

extracted. That is why we model the distribution of the memory accesses for every thread.

More precisely, a memory access can be either the read or the modification of a node, and

two point distributions per node represent the triggering instant of either a Read or a CAS .
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These point distributions are modeled as Poisson processes, since they can be approximated

by Bernoulli processes, in the context of rare events. Knowing the probabilistic ordering of

these events gives a decisive information that is used in the estimate of the access latency

associated with the triggered event. Once this information is grabbed, we roll back to the

expectation of the access of a node, then to the expectation of the latency of an operation.

We validate our approach through a large set of experiments on several lock-free search

data structures that are based on various algorithmic designs, namely linked lists, hash tables,

skip lists and binary trees. We feed our experiments with different key distributions, and

show that our framework is able to predict and explain the observed phenomena.

The rest of the paper is organized as follows. We discuss related work in Section 2, then

the problem is formulated in Section 3. We present our framework in Section 4 and analysis

of throughput in Section 5. In Section 6, we show how to initiate our model by considering

the particularity of different search data structures. Finally, we describe the experimental

results in Sections 7.

2 Related Work

When it comes to estimating the performance of concurrent lock-free data structures, the

focus of the previous work has been on studying the contention overhead that occurs due

to the existence of concurrent operations which overlap in time and access the same shared

memory locations. In such cases, the contention manifests in the form of stall times [13] due

to hardware conflicts and extended operation execution times due to logical conflicts in the

algorithmic level (e.g. re-execution of the retry loop iteration).

For the time complexity of lock-free search data structure operations, previous work

considered asymptotic amortized analysis [16] since it is not possible to bound the execution

time of a single operation, by definition. The analysis is parameterized with a measure of

contention (e.g. point contention [5]) that bounds the extra cost of failed attempts that are

billed to a successful operation. Also, it is common to model a concurrent execution as an

adversary that schedules the steps of concurrent processes in order to analyze the impact of

contention [8, 13]. These studies target theoretical worst-case execution times. Closer to the

practical domain, the expected system and individual operation latencies are analyzed for a

general class of lock-free algorithms under a uniform stochastic scheduler in [1].

In our previous work [2, 3], we aim at estimating the average throughput performance

of some lock-free data structures, that is observed in practice. We consider a universal

construction [20] of lock-free data structures in its practical use. Data structures that have

inherent sequential bottlenecks (e.g. stacks, counters and queues) are targeted; the universal

construction can not be exploited in practice for the efficient designs of search data structures

since it inhibits the potential disjoint access parallelism.

Conversely, in this work, we study the performance of the efficient designs of lock-free

search data structures. These designs employ fine-grained synchronization, in which the

modifications are spread to many different shared memory locations. As a result of this

characteristic, hardware (stall time) and logical conflicts between threads, that were playing

a central role in our previous work, occurs very rarely for search data structures and the

performance is driven by different impacting factors. The performance of concurrent lock-free

search data structures is studied and investigated through empirical studies in [18, 11]. To the

best of our knowledge, we attempt for the first time to model and analyze the performance

of lock-free search data structures and obtain estimates that are close to what is observed in

practice on top of actual hardware platforms.

OPODIS 2018
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Procedure AbstractAlgorithm

1 while ! done do

2 key ← SelectKey(keyPMF);
3 operation ← SelectOperation(operationPMF);
4 result ← SearchDataStructure(key, operation);

Figure 1 Generic framework.

On the other hand, various performance metrics for search data structures have been

studied for the sequential setting. The search path length of skip lists is analyzed in [21].

In [12, 24], various performance shapers for the randomized trees are studied, such as the

time complexity of operations, the expectation, and distribution of the depth of the nodes

based on their keys. However, these studies are not concerned with the interaction between

the algorithms and the hardware. The following approaches rely on the independent reference

model (IRM) for memory references and derive theoretical results or performance analysis.

In [15], the exact cache miss ratio is derived analytically (computationally expensive) for

LRU caches under IRM. As an outcome of this approach, the cache miss ratio of a static

binary tree is estimated by assigning independent reference probabilities to the nodes in [14].

3 Problem Statement

We describe in this section the structure of the algorithm and the system that is covered by

our model. We target a multicore platform where the communication between threads takes

place through shared memory accesses. The threads are pinned to separate cores and call

AbstractAlgorithm (see Figure 1) when they are spawned.

A concurrent search data structure is a shared collection of data elements, each associated

with a key, that support three basic operations holding a key as a parameter. Search (resp.

Insert, Delete) operation returns (resp. inserts, deletes) the element if the associated key

is present (resp. absent, present) in the search data structure, otherwise returns null.

The applications that use a search data structure can be seen as a sequence of operations

on the structure, interleaved by application-specific code containing at least the key and

operation selection, as reflected in AbstractAlgorithm.

The access pattern (i.e. the output of the key and operation selections) should be

considered with care since it plays a decisive role in the throughput value. An application

that always looks for the first element of a linked list will obviously lead to very high

throughput rates. In this study, we consider a memoryless and stationary key and operation

selection process i.e. such that for any operation in the sequence the probability of selecting

a key (resp. an operation type) is a constant.

A search data structure is modeled as a set of basic blocks called nodes, which either

contain a value (valued nodes) or routes towards nodes (router nodes). W.l.o.g. the key set

can be reduced to [1..R], where R is the number of possible keys. We denote by (Ni)i∈[1..N ]

the set of N potential nodes, and by Ki the key associated with Ni. Until further notice ,

we assume that we have exactly one node per cacheline.

An operation can trigger two types of events in a node. We distinguish these events

as Read and CAS events. The latency of an event is based on the state of the hardware

platform at the time that the event occurs, e.g. for a Read request, the level of the cache

that a node belongs to. We summarize the parameters of our model as follows:
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Algorithm parameters: Expected latency of the application specific-code (interleaves

data structure operations) tapp, local computational cost while accessing a node tcmp (a

constant cost of a few cycles for the key comparisons, local updates for pointer chasing),

probability mass functions for the key and operation selection.

Platform parameters: Cache hit latencies (resp. capacity) from level ℓ: tdat
ℓ (resp. Cdat

ℓ )

for the data caches and ttlb
ℓ (resp. Ctlb

ℓ ) for TLB caches; other memory instruction

latencies (that depends on P ): tcas for a CAS execution and trec to recover from an

invalid state (Read at an invalid cacheline, that is in Modified state in another thread’s

local cache); number of threads P .

4 Framework

4.1 Event Distributions

We consider first a single thread running AbstractAlgorithm on a data structure where only

search operations happen, and we observe the distribution of the Read triggering events on a

given node Ni. The execution is composed of a sequence of search operations, where each

operation is associated with a set of accessed nodes, which potentially includes Ni. If we

slice the time into consecutive intervals, where an interval begins with a call to an operation,

we can model the Read events as a Bernoulli process (a successful Bernoulli trial implies that

a Read event on Ni occurs in the respective operation), where the probability of having a

Read event during an interval depends on the parameters of the associated operation (recall

that the process that generates the operation parameters is stationary and memoryless).

Search data structures have been designed as a way to store large data sets while still

being able to reach any node within a short time: the set of accessed nodes is then expected

to be small compared to the total number of nodes. This implies that, given an operation,

the probability that Ni belongs to the set of accessed nodes is small. Therefore we can map

the Bernoulli process on the timeline with constant-sized interval of length T −1 instead of

mapping it with the actual operation intervals: as the probability of having a Read event

within an operation is small, the duration between two events is big, and this duration is

close to the number of initial intervals within this duration, multiplied by T −1 (with high

probability, because of the Central Limit Theorem).

When we increase the scope of the operations to insertion and deletion, the structure is no

longer static and the probability for a node to appear in an interval is no longer uniform, since

it can move inside the data structure. There exists a long line of research in approximating

Bernoulli processes by Poisson point processes [7], in which not only the number events but

also their respective locations on the timeline are approximated. In particular, [9] has dealt

with non-uniform Bernoulli processes, in which the success probabilities of trials are not

necessarily same. Their error bounds, which are proportional to the success probabilities,

strengthen the use of Poisson processes in our context: the events on Ni are rare, thus the

probabilities in Bernoulli trials are small and the approximation is well-conditioned.

Once Read and CAS triggering events are modeled as Poisson processes for a single thread,

the merge (superposition) of several Poisson processes models the multi-thread execution.

Lastly, we specify a point on the dynamicity: since we have insertions and deletions,

nodes can enter and leave the data structure. This is modeled by the masking random

variable Pi which expresses the presence of Ni in the structure. At a random time, we denote

by D the set of nodes that are inside the data structure, and Pi is set to 1 iff Ni ∈ D. We

denote by pi its probability of success (pi = P [Pi = 1]). Its evaluation will often rely on the

probability that the last update operation on key k was an Insert; we denote it by qk, and

OPODIS 2018
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qk = P
[

Op = opins
k

]

/(P
[

Op = opins
k

]

+P
[

Op = opdel
k

]

). Note that the search data structures

contain generally several sentinel nodes which define the boundaries of the structure and are

never removed from the structure: their presence probability is 1.

For a given node Ni, we denote by λacc
i (resp. λread

i , λcas
i ) the rate of the events triggering

an access (resp. Read, CAS) of Ni due to one thread, when Ni ∈ D. opdel
k (resp. opins

k ,

opsrc
k ) stands for a Delete (resp. Insert, Search) on node key k. The probability for the

application to select opo
k, where o ∈ {ins, del, src} is denoted by P [Op = opo

k]. opo
k  cas(Ni)

(resp. read (Ni)) means that during the execution of opo
k, a CAS (resp. a Read) occurs on

Ni. Putting all together, we derive the rate of the triggering events:

∀e ∈ {cas, read} : λe
i =

T

P
×

∑

o∈{ins,del,src}

R
∑

k=1

P [Op = opo
k]×P [opo

k  e(Ni) | Ni ∈ D] (1)

Recall for later that Poisson processes have useful properties, e.g. merging two Poisson

processes produces another Poisson process whose rate is the sum of the two initial rates.

This implies especially that the access triggering events follows a Poisson process with rate

λacc
i = λread

i + λcas
i , and that the read triggering events that originates from P ′ different

threads and occurs at Ni follow a Poisson process with rate P ′ × λread
i .

To quantify the error in Poisson process approximations, we experimentally extract the

cumulative distribution function of the inter-arrival latency of events that occur on a given

node. Then, we apply the Kolmogorov-Smirnov test to compare it against exponential

distributions (recall that the time between events in a Poisson process is exponentially

distributed). Please see [4] for this comprehensive set of comparisons.

4.2 Impacting Factors

We have identified five factors that dominate the access latency of a node, distributed into

two sets. On the one hand, the first set of factors only emerges in the concurrent executions

as a result of the coherence issues on the search data structures. Atomic primitives, such as

a CAS , are used to modify the shared search data structures asynchronously. To execute a

CAS in multi-core architectures, the cache coherency protocol enforces exclusive ownership of

the target cacheline by a thread (pinned to a core) through the invalidation of all the other

copies of the cacheline in the system, if needed. One can guess the performance implications

of this process that triggers back and forth communication among the cores. As the first

factor, CAS instruction has a significant latency. The thread that executes the CAS pays this

latency cost. Secondly, any other thread has to stall until the end of the CAS execution if it

attempts to access (read or modify) the node while the CAS is getting executed. Last and

most importantly, any thread pays a cost to bring a cacheline to a valid state if it attempts

to access a node that resides in this cacheline and that has been modified by another thread

after its previous access to this node.

On the other hand, the capacity misses in the data and TLB caches are other performance

impacting factors for the node accesses. Consider a cache of size C, assume a node is accessed

by a thread at time t and the next access (same thread and node) occurs at time t′. The

thread would experience a capacity miss for the access at time t′ if it has accessed at least C

distinct nodes in the interval (t, t′). The same applies for TLB caches where the references

to the distinct pages are counted instead of the nodes.

At a given instant, we denote by Accessi the latency of accessing node Ni, either due

to a Read event or a CAS event, for a given thread. This latency is the sum of random

variables that correspond to the previous respective five impacting factors and the constant
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local computation cost (≈ 4 cycles):

Accessi = tcmp + CASexe
i + CASstall

i + CASreco
i +

∑

ℓ

Hitcacheℓ

i +
∑

ℓ

Hittlbℓ

i , (2)

where, at a random time, CASexe
i is the latency of a CAS , CASstall

i the stall time implied

by other threads executing a CAS on Ni, CASreco
i the time needed to fetch the data from

another modifying thread, Hitcacheℓ

i the latency resulting from a hit on the data cache in

level ℓ, and Hittlbℓ

i the latency coming from a hit on the TLB cache in level ℓ.

4.3 Solving Process

The solving decomposes into three main steps. Firstly, we can notice that Equation 1 exposes

2R+1 unknowns (the 2R access rates and throughput) against 2R equations. To end up with

a unique solution, a last equation is necessary. The first two steps provide a last sufficient

equation thanks to Little’s law (see Section 5.2), which links throughput with the expectation

of the access latency of a node, computed in Sections 5.1. We show in this section that the

each component of the access latency can be expressed according to the access rates λread
i

and λcas
i . The last step focuses on the values of the probabilities in Equation 1, which are

strongly related with the particular data structure under consideration; they are instantiated

in Section 6.1 (resp. 6.2, 6.3, 6.4) for linked lists (resp. hash tables, skip lists, binary trees).

5 Throughput Estimation

5.1 Access Latency

Applying expectation to Equation 2 leads to E [Accessi] = tcmp +E [CASexe
i ]+E

[

CASstall
i

]

+

E [CASreco
i ] +E

[

∑

ℓ Hitcacheℓ

i

]

+E

[

∑

ℓ Hittlbℓ

i

]

. We express here each term according to the

rates at every node λcas
⋆ and λread

⋆ .

CAS Execution

Naturally, among all access events, only the events originating from a CAS event contribute,

with the latency tcas of a CAS : E [CASexe
i ] = tcas · λcas

i /(λread
i + λcas

i ).

Stall Time

A thread experiences stall time while accessing Ni when a thread, among the (P − 1)

remaining threads, is currently executing a CAS on the same node. As a first approximation,

supported by the rareness of the events, we assume that at most one thread will wait for the

access to the node.

Firstly, we obtain the rate of CAS events generated by (P − 1) threads through the merge

of their Poisson processes. Consider an access of Ni at a random time; (i) the probability of

being stalled is the ratio of time when Ni is occupied by a CAS of (P − 1) threads, given by:

λcas
i (P − 1)tcas; (ii) the stall time that the thread would experience is distributed uniformly

in the interval [0, tcas]. Then, we obtain: E

[

CASstall
i

]

= λcas
i (P − 1)tcas(tcas/2).

OPODIS 2018
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Invalidation Recovery

Given a thread, a coherence cache miss occurs if Ni is modified by any other thread in

between two consecutive accesses of Ni. The events that are concerned are: (i) the CAS

events from any thread; (ii) the Read events from the given thread. When Ni is accessed, we

look back at these events, and if among them, the last event was a CAS from another thread,

a coherence miss occur: P [Coherence Miss on Ni] =
λcas

i (P −1)

λcas
i

P +λread
i

. We derive the expected

latency of this factor during an access at Ni by multiplying this with the latency penalty of

a coherence cache miss: E [CASreco
i ] = P [Coherence Miss on Ni] × trec.

Che’s Approximation

Che’s Approximation [10] is a technique to estimate the hit ratio of an LRU cache of size C,

where the object (here, node) accesses follow IRM (Independent Reference Model). IRM

is based on the assumption that the object references occur in an infinite sequence from a

fixed catalog of N objects. The popularity of object i (denoted by si, where i ∈ [1..N ]) is a

constant that does not depend on the reference history and does not vary over time.

Starting from t = 0, let the time of reference to object i be denoted by Oi, then the time

for C unique references is given by: tc = inf{t > 0 : X(t) = C}, where X(t) =
∑N

j=1 10<Oj≤t.

Che’s approximation estimates the hit ratio of object i with Hiti ≈ 1 − e−siT , where the

so-called characteristic time (denoted by T that approximates tc) is the unique solution of the

following equation: C =
∑N

j=1(1 − e−sjT ) = E [X(T )]. The accuracy of the approximation is

rooted at the random variable X(t) that is approximately Gaussian since it is defined as the

sum of many independent random variables (Central Limit Theorem). We provide a more

detailed discussion on this approximation in [4] based on the analysis in [17].

Cache Misses

We consider a data cache at level ℓ of size Cdat
ℓ and compute the hit ratio of Ni on this cache.

On a given data structure, we have compared two related scenarios: a search only scenario,

leading to a given expected size of the data structure, against a scenario with updates, that

leads to the same expected size. We have observed that the capacity cache miss ratio were

similar in both cases. Therefore, we consider that with or without updates, N⋆ is either

present in the search data structure or not, during the characteristic time of the cache.

We can employ the access rates as popularities, i.e. sx = λacc
x for x ∈ [1..N ], and modify

Che’s approximation to distinguish whether, at a random time, Nx is inside the data structure

or not.

We integrate the masking variable Px into Che’s approximation. We have: Xcache(t) =
∑N

x=1 Px10<Ox≤t, where Ox denotes the reference time of Nx. We can still assume Xcache(t)

is Gaussian, as a sum of many independent random variables. We estimate the characteristic

time as follows with the linearity of expectation and the independence of the random

variables: E
[

Xcache(t)
]

=
∑N

x=1 E [Px10<Ox≤t] =
∑N

x=1 E [Px]E [10<Ox≤t] =
∑N

x=1 px(1 −

e−λacc
x t). Lastly, we solve the equation for the characteristic time T dat

ℓ of level ℓ cache:
∑N

x=1 px(1 − e−λacc
x T dat

ℓ ) = Cdat
ℓ thanks to a fixed-point approach. After computing T dat

ℓ , we

estimate the cache hit ratio (on level ℓ) of Ni: 1 − e−λacc
i T dat

ℓ .

Page Misses

In this paragraph, we aim at computing the page hit ratio of Ni for the TLB cache at level ℓ

of size Ctlb
ℓ . The total number M of pages that are used by the search data structure can be

regulated by a parameter of the memory management scheme (frequency of recycling attempts
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for the deleted nodes), as the total number of nodes is a function of R. Different from the

cachelines (corresponding to the nodes), we can safely assume that a page accommodates at

least a single node that is present in the structure at any time.

We cannot apply straightforwardly Che’s approximation since the page reference probab-

ilities are unknown. However, we are given the cacheline reference probabilities sx = λacc
x

for x ∈ [1..N ] and we assume that N cachelines are mapped uniformly to M pages,

[1..N ] → [1..M], N > M. Under these assumptions, we know that the resulting page

references would follow IRM because aggregated Poisson processes form again a Poisson

process.

We follow the same line of reasoning as in the cache miss estimation. First, we consider

a set of Bernoulli random variables (Y j
x ), leading to a success if Nx is mapped into page j,

with probability px/M (hence Y j
x does not depend on j). Under IRM, we can then express

the page references as point processes with rate rj =
∑N

x=1 Y j
x sx, for all j ∈ [1..M].

Similar to the previous section, we denote the time of a reference to page j with Oj and

we define the random variable Xpage(t) =
∑M

j=1 10<Oj≤t and compute its expectation:

E [Xpage(t)] =
M
∑

j=1

E
[

10<Oj≤t

]

=
M
∑

j=1

E
[

1 − e−rjt
]

=
M
∑

j=1

E

[

1 − e−
∑

N

x=1
Y j

x λacc
x t

]

=

M
∑

j=1

(

1 −
N
∏

x=1

E

[

e−Y j
x λacc

x t
]

)

=

M
∑

j=1

(

1 −
N
∏

x=1

(

M − px

M
+

pxe−λacc
x t

M

)

)

E [Xpage(t)] = M

(

1 −
N
∏

x=1

(

M − px

M
+

pxe−λacc
x t

M

)

)

,

Assuming Xpage(t) is Gaussian as it is sum of many independent random variables, we

solve the following equation for the constant T tlb
ℓ (characteristic time of a TLB cache of size

C): E
[

Xpage(T tlb
ℓ )

]

= Ctlb
ℓ .

Lastly, we obtain the TLB hit rate for Ni by relying on the average Read rate of the page

that Ni belongs to; we should add to the contributions of Ni, the references to the nodes

that belong to the same page as Ni. Then follows the TLB hit ratio: 1 − e−ziT tlb
ℓ , where

zi = λacc
i + E

[

∑N
x=1,x Ó=i Y j

x λacc
x

]

= λacc
i +

∑N
x=1,x Ó=i pxλacc

x /M.

Interactions

To be complete, we mention the interaction between impacting factors and the possibility

of latency overlaps in the pipeline. Firstly, the access latency of different nodes can not be

overlapped due to the semantic dependency for the linked nodes. For a single node access,

the latency for CAS execution and stall time can not be overlapped with any other factor.

Based on the cache coherency protocol behavior, we do not charge invalidation recovery cost

for CAS events. We consider inclusive data and TLB caches. It is not possible to have a

cache hit on level l, if the cache on level l − 1 is hit, and we do not consider any cost for

the data cache hit if invalidation recovery or CAS execution (coherence) cost is induced (i.e.

E

[

Hitcacheℓ

i

]

= (1 − P [coherence cost])(P [hit cachel] − P [hit cachel−1])tdat
ℓ ).

5.2 Latency vs. Throughput

In the previous sections, we have shown how to compute the expected access latency for a

given node. There remains to combine these access latencies in order to obtain the throughput

of the search data structure. Given Ni ∈ D, the average arrival rate of threads to Ni is
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λacc
i = λread

i + λcas
i . Thus the average arrival rate of threads to Ni is: piλ

acc
i . It can then

be passed to Little’s Law [22], which states that the expected number of threads (denoted

by ti) accessing Ni obeys to ti = piλ
acc
i E [Accessi]. The equation holds for any node in the

search data structure, and for the application call occurring in between search data structure

operations. Its expected latency is a parameter (E [Access0] = tapp) and its average arrival rate

is equal to the throughput (λacc
0 = T ). Then, we have:

∑N
i=0 ti =

∑N
i=0(piλ

acc
i E [Accessi]),

where λacc
i and E [Accessi] are linear functions of T . We also know

∑N
i=0 ti = P as the

threads should be executing some component of the program. We define constants with

ai, bi, ci for i ∈ [0..N ]. And, we represent λacc
i = aiT and E [Accessi] = biT + ci and we

obtain the following second order equation:
∑N

i=0(piaibi)T
2 +

∑N
i=0(piaici)T − P = 0. This

second order equation has a unique positive solution that provides the throughput, T .

6 Instantiating the Throughput Model

In this section, we show how to instantiate our model with widely known lock-free search

data structures, that have different operation time complexities. In order to obtain a

throughput estimate for a structure, we need to compute the rates λread
⋆ and λcas

⋆ , and

P [opo
k  e(Ni) |Ni ∈ D], i.e. the probability that, at a random time, an operation of type

o on key k leads to a memory instruction of type e on node Ni, knowing that Ni is in the

data structure. For the ease of notation, nodes will sometimes be doubly or triply indexed,

and when the context is clear, we will omit |Ni ∈ D in the probabilities. As a remark, the

properties of the access pattern (memoryless and stationary) are critical here because they

allow us to extract the probability of the state that the data structure could be in (based on

the presence of nodes) at a random time, which is then used to find P [opo
k  e(Ni) |Ni ∈ D].

We first estimate the throughput of linked lists and hash tables, on which we can directly

apply our method, then we move on more involved search data structure, namely skip lists

and binary trees, that need a particular attention.

6.1 Linked List

We start with the lock-free linked list implementation of Harris [19]. All operations in the

linked list start with the search phase in which the linked list is traversed until a key. At

this point all operations terminate except the successful update operations that proceed by

modifying a subset of nodes in the structure with CAS instructions. The structure contains

only valued node and two sentinel nodes N0 and NR+1, so that N = R + 2 and for all

i ∈ [1..R], Ni holds key i, i.e. Ki = i.

First, we need to compute the probabilities of triggering a Read event and CAS event

on a node, given that the node is in the search data structure, for all operations of type

t ∈ {Insert, Delete, Search} targeted to key k.

At a random time, Nk, for k ∈ [1..R], is in the linked list iff the last update operation on key

k is an insert: pk = qk, by definition of qk. Moreover, when Nk is in the structure (condition

that we omit in the notation), opt
k′ reads Nk, either if Nk is before Nk′ , or if it is just after

Nk′ . Formally, P [opo
k′  read(Nk)] = 1 if k ≤ k′ and P [opo

k′  read(Nk)] =
∏k−1

i=k′(1 − pi) if

k > k′.

CAS events can only be triggered by successful Insert and Delete operations. A

successful Insert operation, targeted to Nk′ , is realized with a CAS that is executed on Nk,

where k = sup{ℓ < k′ : Nℓ ∈ D}. The probability of success, which conditions the CAS ’s,

follows from the presence probabilities:
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P

[

op
ins
k′  cas(Nk)

]

=











0, if k ≥ k′

k′

∏

i=k+1

(1 − pi), if k < k′
;

P

[

op
del
k′  cas(Nk)

]

=



















1, if k = k′

0, if k > k′

pk′

k′
−1

∏

i=k+1

(1 − pi), if k < k′

6.2 Hash Table

We analyze here a chaining based hash table where elements are hashed to B buckets

implemented with the lock-free linked list of Harris [19]. The structure is parametrized with

a load factor lf which determines B through B = R/lf . The hash function h : k Ô→ ⌈k/lf ⌉

maps the keys sequentially to the buckets, so that, after including the sentinel nodes (2 per

bucket), we can doubly index the nodes: Nb,k is the node in bucket b with key k, where

b ∈ [1..B] and k ∈ [1..lf ] (the last bucket may contain less elements).

P
[

opo
b′,k′  read

(

Nb,k

)]

=



















0, if b′ Ó= b

1, if b′ = b and k′ ≥ k
k−1
∏

j=k′

(1 − pb,j), if b′ = b and k′ < k

P

[

op
ins
b′,k′  cas

(

Nb,k

)]

=










0, if b′ Ó= b or k′ ≤ k
k′

∏

j=k+1

(1 − pb,j), if b′ = b and k′ > k

P

[

op
del
b′,k′  cas

(

Nb,k

)]

=


















0, if b′ Ó= b or k′ < k

1, if b′ = b and k′ = k

pb,k′

k′
−1

∏

j=k+1

(1 − pb,j), if b′ = b and k′ > k

In the previous two data structures, we do observe differences in the access rate from

node to node, but the node associated with a given key does not show significant variation in

its access rate during the course of the execution: inside the structure, the number of nodes

preceding (and following) this node is indeed rather stable. In the next two data structures,

node access rates can change dramatically according to node characteristics, that may include

its position in the structure. In a skip list, a node Ni containing key Ki with maximum

height will be accessed by any operation targeting a node with a higher key. However, Ni

can later be deleted and inserted back with the minimum height; the operations that access

it will then be extremely rare. The same reasoning holds when comparing an internal node

with key Ki of a binary tree located at the root or close to the leaves.

As explained before, an accurate cache miss analysis cannot be satisfied with average

access rates. Therefore, the information on the possible significant variations of rates should

not be diluted into a single access rate of the node. To avoid that, we pass the information

through virtual nodes: a node of the structure is divided into a set of virtual nodes, each

of them holding a different flavor of the initial node (height of the node in the skip list or

subtree size in the binary tree). The virtual nodes go through the whole analysis instead of

the initial nodes, before we extract the average behavior of the system hence throughput.

OPODIS 2018



9:12 Lock-Free Search Data Structures: Throughput Modeling with Poisson Processes

Search (key=k’)

key=-∞ key=k key=k’ key=∞

Node

Node
Data

Routing

Figure 2 Skip List Events: Read Event Probability.

6.3 Skip List

There exist various lock-free skip list implementations and we study here the lock-free skip

list [25].

Skip lists offer layers of linked lists. Each layer is a sparser version of the layer below

where the bottom layer is a linked list that includes all the elements that are present in the

search data structure. An element that is present in the layer at height h appears in layer at

height h + 1 with a fixed appearance probability (1/2 for our case) up to some maximum

layer hmax that is a parameter of the skip list.

Skip list implementations are often realized by distinguishing two type of nodes: (i) valued

nodes reside at the bottom layer and they hold the key-value pair in addition to the two

pointers, one to the next node at the bottom layer and one to the corresponding routing

node (could be null); (ii) routing nodes are used to route the threads towards the search

key. Being coupled with a valued node, a routing node does not replicate the key-value

pair. Instead, only a set of pointers, corresponding to the valued node containing the next

key in different layers, are packed together in a single routing node (that fits in a cacheline

with high probability). Every Read event in a routing node is preceded by a Read in the

corresponding valued node.

We denote by N rou
k,h the routing node containing key k, whose set of pointers is of height h,

where h ∈ [1..hmax ]. A valued node containing the key k is denoted by Ndat
k,h when connected

to N rou
k,h (h = 0 if there is no routing node). Furthermore, there are four sentinel nodes

Ndat
0,hmax

, N rou
0,hmax

, Ndat
R+1,hmax

, N rou
R+1,hmax

. The presence probabilities result from the coin flips

(bounded by hmax): for z ∈ {dat, rou}, pz
k,h = 2−(h+1)qk if h < hmax , pz

k,h = qk −
∑hmax−1

ℓ=0 pz
k,ℓ

otherwise.

By decomposing into three cases, we compute the probability that an operation opo
k′ of

type o ∈ {ins, del, src}, targeted to k′, causes a Read triggering event at N z
k,h when N z

k,h ∈ D.

Let assume first that k′ > k. The operation triggers a Read event at node N z
k,h if for all

(x, y) such that y > h and k < x ≤ k′, Nz
x,y is not present in the skip list (i.e. in Figure 2, no

node in the skip list overlaps with the red frame). Let assume now k′ < k. The occurrence of

a Read event requires that: for all (x, y) such that y ≥ h and k′ ≤ x < k, N z
x,y, is not present

in the structure. Lastly, a Read event is certainly triggered if k′ = k. The final formula is

given by:

P
[

opo
k′  read

(

N z
k,h

)]

=







∏k′

x=k+1

(

1 −
(

∑hmax

y=h+1 pz
x,y

))

, if k ≤ k′

∏k−1
x=k′

(

1 −
(

∑hmax

y=h pz
x,y

))

, if k > k′

To be complete, we describe in [4] how to compute the probability for CAS events,

following a similar approach.
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6.4 Binary Tree

We show here how to estimate the throughput of external binary trees. They are composed

of two types of nodes: internal nodes route the search towards the leaves (routing nodes) and

store just a key, while leaves, referred to as external nodes contain the key-value pair (valued

node). We use the external binary tree of Natarajan [23] to instantiate our model. The

search traversal starts and continues with a set of internal nodes and ends with an external

node. We denote by N int
k (resp. Next

k ) the internal (resp. external) node containing key k,

where k ∈ [1..R]. The tree contains two sentinel internal nodes that reside at the top of the

tree (hence are accessed by all operation): N int
−1 and N int

0 .

Our first aim is to find the paths followed by any operation through the binary tree, in order

to obtain the access triggering rates, thanks to Equation 1. Binary trees are more complex

than the previous structures since the order of the operations impact the positioning of the

nodes. The random permutation model proposes a framework for randomized constructions

in which we can develop our model. Each key is associated with a priority, which determines

its insertion order: the key with the highest priority is inserted first. The performance

characteristics of the randomized binary trees are studied in [24]. In the same vein, we

compute the access probability of the internal node with key k in an operation that targets

key k′.

◮ Lemma 1. Given an external binary tree, the probability of accessing N int
k in an operation

that targets key Kk′ is given by: (i) 1/f(k, k′) if k′ ≥ k; (ii) 1/(f(k′, k) − 1) if k′ < k, where

f(x, y) provides the number internal nodes whose keys are in the interval [x, y].

Proof. N int
k would be accessed if it is on the search path to the external node with key k′.

Given k′ ≥ k, this happens iff N int
k has the highest priority among the internal nodes in the

interval [k, k′]. This interval contains f(k, k′) internal nodes, thus, the probability of N int
k to

possess the highest priority is 1/f(k, k′). Similarly, if k′ < k, then N int
k is accessed iff it has

the highest priority in the interval (k′, k]. Hence, the lemma. ◭

Even if in the binary tree, nodes are inserted and deleted an infinite number of times,

Lemma 1 can still be of use. The number of internal nodes in the interval [k, k′] (or

(k′, k] if k′ < k) is indeed a random variable which is the sum of independent Bernoulli

random variables that models the presence of the nodes. As a sum of many independent

Bernoulli variables, the outcome is expected to have low variations because of its asymptotic

normality. Therefore, we replace this random variable with its expected value and stick to

this approximation in the rest of this section. The number of internal nodes in any interval

come out from the presence probabilities: pz
k = qk, where z ∈ {int, ext}.

In an operation is targeted to key k′, a single external node is accessed (if any): Next
k′ ,

if present, else the external node with the biggest key smaller than k′, if it exists, else the

external node with the smallest key. Then, we have:

P
[

opo
k′  read

(

N int
k

)]

=
{

1/(1 +
∑k−1

i=k′+1 pint
i ), if k > k′

1/(1 +
∑k′

i=k+1 pint
i ), if k ≤ k′

,

P
[

opo
k′  read

(

Next
k

)]

=










1, if k = k′

∏k′

i=k+1(1 − pext
i ), if k < k′

∏k−1
i=1 (1 − pext

i ), if k > k′

These probabilities finally lead to the computation of the Read (resp. CAS) rates λread
z,k

(resp. λcas
z,k) of Nz

k , where z ∈ {int, ext}, that will be used in the last following step.
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We focus now on the Read rate of the internal nodes. We have found the average behavior

of each node in the previous step; however, the node can follow different behaviors during the

execution since the Read rate of N int
k depends on the size of the subtree whose root is N int

k ,

which is expected to vary with the update operations on the tree. We dig more into this and

reflect these variations by decomposing N int
k into Hk virtual nodes, N int

k,h, where h ∈ [1..Hk].

We define the Read rate λread
int,k,h of these virtual nodes as a weighted sum of the initial node

rate thanks the two equations pint
k =

∑Hk

h=1 pint
k,h and pint

k λread
int,k =

∑Hk

h=1 pint
k,hλread

int,k,h.

We connect the virtual nodes to the initial nodes in two ways. On the one hand, one

can remark that the Read rate is proportional to the subtree size: λread
int,k,h ∝ hλread

int,k. On the

other hand, based on the probability mass function of the random variable Subk representing

the size of the subtree rooted at N int
k , we can evaluate the weight of the virtual nodes:

pint
k,h = pint

k P [Subk = h].

More details are to be found in [4], on how to obtain the mass function of the random

variable Subk to compute Read rates for the virtual nodes and how to deal with the CAS

events.

7 Experimental Evaluation

We validate our model through a set of well-known lock-free search data structure designs,

mentioned in the previous section. We stress the model with various access patterns and

number of threads to cover a considerable amount of scenarios where the data structures

could be exploited. For the key selection process, we vary the key ranges and the distribution:

from uniform (i.e. the probability of targeting any key is constant for each operation) to

zipf (with α = 1.1 and the probability to target a key decreases with the value of the key).

Regarding the operation types, we start with various balanced update ratios, i.e. such that

the ratio of Insert (among all operations) equals the ratio of Delete. Then, we also consider

asymmetric cases where the ratio of Insert and Delete operations are not equal, which

changes the expected size of the structure.

7.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The system is

composed of two sockets, each containing eight physical cores. The system is equipped with

Intel Xeon E5-2687W v2 CPUs. Threads are pinned to separate cores. One can observe the

performance change when number of threads exceeds 8, which activates the second socket.

In all the figures, y-axis provides the throughput, while the number of threads is repres-

ented on x-axis. The dots provide the results of the experiments and the lines provide the

estimates of our framework. The key range of the data structure is given at the top of the

figures and the percentage of update operations are color coded.

We instantiate all the algorithm and architecture related latencies, following the meth-

odologies described in [6] In line with these studies, we observed that the latencies of tcas

and trec are based on thread placement. We distinguish two different costs for tcas according

to the number of active sockets. Similarly, given a thread accessing to a node Ni, the

recovery latency is low (resp. high), denoted by trec
low (resp. trec

high), if the modification has

been performed by a thread that is pinned to the same (resp. another) socket. Before the

execution, we measure both trec
low and trec

high, and instantiate trec with the average recovery

latency, computed in the following way for a two-socket chip. For s ∈ {1, 2}, we denote by

Ps the number of threads that are pinned to socket numbered s. By taking into account
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Figure 3 Hash Table with

load factor 2.
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Figure 4 Skip List.
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Figure 5 Binary Tree.

all combinations, we have trec = (P1(P1trec
low + P2trec

high) + P2(P2trec
low + P1trec

high))/P 2. Since

P = P1 + P2, we obtain trec = trec
low + 2(P1/P )(1 − P1/P )(trec

high − trec
low).

For the data structure implementations, we have used ASCYLIB library [11] that is

coupled with an epoch based memory management mechanism which has negligible latency.

7.2 Search Data Structures

In Figure 3, 4 and 5, we provide the results for the hash table, skip list and binary tree where

the key selection is done with the uniform distribution. One can see that the performance

drops as the update rate increases, due to the impact of CAS related factors. This impact

is magnified with the activation of the second socket (more than 8 threads) since the event

becomes more costly. When there is no update operation, the performance scales linearly

with the number of threads. Since the threads access disjoint parts of structure, we observe

a similar behaviour for the cases with updates. See [4] for a more comprehensive set of

experiments and applications.

8 Conclusion

In this paper, we have modeled and analyzed the performance of search data structures under

a stationary and memoryless access pattern. We have distinguished two types of events that

occur in the search data structure nodes and have modeled the arrival of events with Poisson

processes. The properties of the Poisson process allowed us to consider the thread-wise and

system-wise interleaving of events which are crucial for the estimation of the throughput.

For the validation, we have used several fundemental lock-free search data structures.

As a future work, it would be of interest to study to which extent the application workload

can be distorted while giving satisfactory results. Putting aside the non-memoryless access

patterns, the non-stationary workloads such as bursty access patterns, could be covered by

splitting the time interval into alternating phases and assuming a stationary behaviour for

each phase. Furthermore, we foresee that the framework can capture the performance of

lock-based search data structures and also can be exploited to predict the energy efficiency

of the concurrent search data structures.
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