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THE THUE-MORSE AND RUDIN-SHAPIRO SEQUENCES AT
PRIMES IN PRINCIPAL NUMBER FIELDS

S. DRAPPEAU AND G. HANNA

1. Introduction

1.1. Digits and multiplicative structure. The present work is concerned with the
interaction between the additive, multiplicative, and numeration properties of numbers,
which is a reccurrent motivating theme in analytic number theory. The recent years, a lot
of progress has been made on our understanding of digits of multiplicatively constrained
integers (e.g. primes): see [FM96b, FM96a, DT05, MR10, MR15, Han17, DMR09]
for sum of digits of primes in residue classes, [HK08, Bou15, Swa19] for primes with
restricted digits, or [MR09, DMR11, DM12, MR18, DMR19] for digits of polynomials.
Here we are interested in two particular digital functions (defined in terms of digit
expansion), the sum-of-digits function

sq(n) :=
∑

0≤j<J
bj if n =

∑
0≤j<J

bjq
j, bj ∈ {0, . . . , q − 1}.

and the Rudin-Shapiro sequence

r(n) :=
∑

0≤j<J−1
bjbj+1 if n =

∑
0≤j<J

bj2j, bj ∈ {0, 1}.

Given a fixed integer m, the functions n 7→ sq(n) (mod m) and n 7→ r(n) (mod m) are
two particular instances of automatic sequences, and it is predicted by Sarnak’s Möbius
randomness conjecture [Sar12] (in one of its lowest complexity case) that they should not
be correlated with integer factorization, in the precise sense that the Möbius function
should have average zero along automatic sequences. For the sum-of-digit function, this
expectation goes back to conjectures of Gel’fond [Gel68]. This question was solved, in a
strong quantitative form, by Mauduit and Rivat [MR10] for the sum-of-digit case, then
by the same authors [MR15] for the Rudin-Shapiro case; and finally the full Sarnak
conjecture for automatic sequences was proved by Müllner [Mül17]. The arguments
in [MR15] are one of the crucial inputs in [Mül17].

1.2. Digits of integers in number fields. Our aim is to take up the study [MR15]
and explore the corresponding questions in number fields. Let K/Q be an algebraic
extension, and OK be its ring of integers. We endow OK with a numeration structure,
in the following way.

Definition 1. Let q ∈ OK r {0} and D ⊂ OK be a set of representatives of OK/(q).
We call the pair (q,D) a number system with the finiteness property (FNS) if:

— 0 ∈ D,
— the Galois conjugates of q have moduli larger than 1,
— every n ∈ OK has an expansion of the form n = ∑

0≤j<J bjq
j, where bj ∈ D.
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We make a small account of works on these systems in Section 2.1 below; see also
Section 3.1 of the survey [BBLT06] for a discussion in the broad context of numeration
systems.

The smallest J ∈ N≥0 such that bj = 0 for j ≥ J will be called the length of n.
The simplest non-rational example is the case K = Q(i), q = −1 + i, and D = {0, 1};
see [Knu81, p. 206]. We make an account of existing works on number systems relevant
to our case in Section 2.1 below, and refer to [BBLT06] for more references on this topic.

Our aim is to show that this numeration structure does not correlate with the multi-
plicative structure of OK . We will assume, throughout, that OK is principal, so that it
is a unique factorization domain. We present our results in the representative cases of
the generalized sum-of-digit and Rudin-Shapiro functions.

Define, for all n ∈ OK , the sum-of-digits function s(n) = sq,D(n) as
(1.1) sq,D(n) :=

∑
0≤j<J

bj if n =
∑

0≤j<J
bjq

j, bj ∈ D.

Several aspects of this function have been studied in the past: asymptotic formula for the
mean-value and fluctuations in its the constant term [GKP98, Thu98b], equidistribution
modulo 1 [GL99], central limit theorems [GT00, Mad10], and equidistribution along
squares [Mor10]. In the case q = −1 + i, D = {0, 1}, we have sq,D(n) ∈ N, and as a
special case of [GL99, Theorem 11] we have that for any α ∈ RrQ, the multi-sets

{αsq(n), n ∈ OK of length ≤ J}
become equidistributed modulo 1 as J →∞.

We are interested in this question when n is restricted to be prime in OK . In [DRS08,
Mor12], this problem was addressed in the Gaussian integer setting K = Q(i), using the
approach of [MR10]. The question of whether the same method holds for other number
systems was left open; the case when K is imaginary quadratic has specific aspects,
notably the fact that multiplication by a complex number is an isometry, which are
implicitely at play in [Mor12]. We show that the expected statement in fact holds in full
generality.
Theorem 1. Suppose that OK is a unique factorization domain, let (q,D) be a number
system with the finiteness property, and φ : K → R be a linear form. Then, as J →∞,
the multi-sets
(1.2) {φ(sq(p)), p ∈ OK prime of length ≤ J}
becomes equidistributed modulo 1 if and only if φ(b) ∈ RrQ for some b ∈ D.

Under the appropriate conditions, which are more involved, a similar equidistribution
statement holds for linear maps φ : K → Rd where d = [K : Q]. Note also that we have
chosen, for simplicity, to control the size of p by its digital length.

We next turn to the Rudin-Shapiro sequence, which was introduced due to the ex-
tremal properties of its associated trigonometric polynomials [Rud59, Sha53]. We con-
sider the multidimensional variants constructed in [BvH05]: we call (q,D) a binary
FNS if card(D) = 2. Binary NFS were characterized in [BvH06]. We define a func-
tion rq,D : OK → N by
(1.3) rq,D(n) :=

∑
0≤j<J−1

1(bjbj+1 6= 0) if n =
∑

0≤j<J
bjq

j, bj ∈ D,

where 1(n 6= 0) is 0 or 1 according to whether n = 0 or not.
We are interested in this sequence because it is a non-trivial and natural instance of

a digital function which has much less useful analytic properties than sq,D: it is not
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q-additive, and by analogy with the rational case, we do not expect its discrete Fourier
transforms to have better than square-root cancellation in L1 norm (as opposed to sq,D).
The arguments in [MR15] were partly designed to work without these useful analytic
properties.

In [DGL08], this function was considered in the general setting of “block-additive
functions”. There it was shown, using ergodic methods, that for any α ∈ R r Q, the
multi-sets

{αrq,D(n), n ∈ OK of length ≤ J}
become equidistributed modulo 1 as J →∞1.

We show that the corresponding statement holds for primes in full generality.

Theorem 2. Suppose that K is a unique factorization domain, let (q,D) be a binary
FNS, and α ∈ RrQ. Then, as J →∞, the multi-sets

(1.4) {αrq,D(p), p ∈ OK prime of length ≤ J}

becomes equidistributed modulo 1.

As we mentioned in the introduction, in the recent work [Mül17] pertaining to the
case K = Q, the Sarnak conjecture over was fully solved for automatic sequences de-
tecting integers given by their usual digital expansion. By combining the arguments of
Sections 4.1–4.2 of [Mül17] with the work presented here, we expect that the Möbius
function

µK(n) =

(−1)k if n is, up to units, a product of k distinct primes,
0 otherwise,

is asymptotically orthogonal to the output of an automaton reading the digits of f in any
FNS. Here, however, we choose to remain in the formalism of [MR15], having in mind
only the sum-of-digits and the Rudin-Shapiro sequence. The input required to handle
arbitrary automatic sequences does not substantially differ from [Mül17] and we believe
it would obfuscate the “number field” aspects of our arguments. We also believe that
by mixing the arguments of [MR18] with the ones presented here, one should be able
to show that the multi-sets {αrq,D(n2), n ∈ OK of length ≤ J} become equidistributed
as J →∞ if α 6∈ Q.

Another interesting direction would be to restrict the sets (1.2), (1.4) to rationals
that are prime in OK , which form a very sparse subset of all primes. The arguments
presented here are, in their present form, not effective enough to address this question.
Note however that partial results have been proved in [GKP98] for the average of the
sum-of-digit function, without the primality condition.

1.3. Overview. The difficulties we encounter in Theorems 1 and 2 are of two kinds.
The first is related to point-counting on lattices, and the “skewing phenomenon”. The

multiplication by q, viewed as a map on the lattice OK , can be quite far from an isometry
in general, depending on the relative moduli of Galois conjugates of q. This can induce
an inefficiency in lattice-point counting estimates in large dilates qνOK . The effect of
this skewing will be counteracted by systematically using Dirichlet’s theorem on the
structure of the group of units.

1The authors [DGL08] work exclusively in the Knuth setting (q,D) = (−1 + i, {0, 1}), but the
statement above can be easily deduced from our arguments.
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The second, more substantial difficulty is the harmonic analysis of the fundamental
tile

F = {
∑
j≥1

bjq
−j, bj ∈ D}.

By contrast with earlier works, the method of [MR15], which we take up here, makes a
particularly extensive use of information on the Fourier transform χ̂F of the indicator
function χF of F (viewed as a subset of Rd through a choice of basis of OK). In the
classical case K = Q, the fundamental tile is an interval (see [MR15, Lemma 1]), so
that we have explicit expressions and bounds for its Fourier transform. In the general
case, and in fact already for the Knuth setting K = Q(i), (q,D) = (−1 + i, {0, 1}),
the fundamental tile has a non-trivial fractal boundary, known as the “twin-dragon”
([Man82, p. 66], [Knu81, p. 206]). The Fourier transform χ̂F does not decay uniformly
enough for the method to naively go through2. To handle this, we rework the arguments
of [MR15] so as to require as few information of the Fourier transform as possible: as
we will show, the arguments of [MR15] can be recast so that the only essential input is
an L2 bound on χ̂F , which we will obtain easily from Parseval’s identity.

2. Setting

2.1. Number field. LetK be a number field, with its trace map denoted 〈x〉 = Tr(x) =
TrK/Q(x). We denote O∨ the dual of O for the scalar product (x, y) 7→ Tr(xy). It is
a fractional ideal, and the different ideal DK := (O∨)−1 ⊂ O is of norm equal to the
discrimant of K [Nar04, Chapter 4.1].

Given an base q ∈ O, all of whose conjugates have moduli greater than 1, and a set
of digits D, assume that any element of n ∈ O has a unique base q expansion

n =
r∑
j=0

bjq
j, r ∈ N, bj ∈ D.

On the other hand, when the ring O is principal, n also possesses a factorisation n =
p1 · · · p` as a product of prime elements, which is also unique up to order and multipli-
cation by units.

Let (ω1, . . . , ωd) be a Z-basis of O, and (ω∨1 , . . . , ω∨d ) its dual basis O∨. For any
(xj)1≤j≤d, (yj)1≤j≤d ∈ Rd, denote

ι(x1, . . . , xd) =
d∑
j=1

xjωj, ι∨(y1, . . . , yd) =
d∑
j=1

yjω
∨
j .

Note that K = ι(Qd) = ι∨(Qd), and

(2.1) O = ι(Zd), O∨ = ι∨(Zd).

We fix a norm ‖ · ‖ on Rn, and when x ∈ K, we use the notation ‖x‖ to mean ‖ι−1(x)‖.
We pick a base q ∈ OK and assume that all conjugates of q have modulus > 1. Let D

be a set of representatives of OK/(q) containing 0. Borrowing the terminology of [PT18],
we call such a pair (q,D) a number system. If every n ∈ OK has a finite expression

n =
r∑
j=0

bjq
j

2The analysis of the rates of decay of functions such as χ̂F is in fact an important object of study in
wavelet theory; see the references in Section 3.2.2.
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with bj ∈ D and r ≥ 0, then we say that (q,D) has the finitess property. Note that
such an expansion, if it exists, is unique. We use the abbreviation FNS to designate a
number system with the finiteness property.

Given a pair (q,D), Kovács and Pethő [KP91] have shown that the question of
whether (q,D) is a FNS can be decided algorithmically in finite time (they also char-
acterize completely such number systems in positive characteristics). Gröchenig and
Haas [GH94, Theorem 2.2] have shown that it corresponds exactly to a certain explicit
matrix having spectral radius < 1 (which is equivalent to the existence of cycles in a
certain directed graph, which we will mention below in Section 3.2.1). The FNS are
characterized for d = 1 in Theorem 2.3 of [GH94]; in the same paper, the authors
characterize the numbers q which can arise as the bases of FNS for the field K = Q(i).

If (q,D) is a number system with D = {0, . . . , N(q) − 1}, the pair (q,D) is called
a canonical number system (CNS). The fields K which admit a CNS with the finitess
property have been characterized in [Kov81]: they are exactly those fields for which O
has a primitive element. Many works have been devoted to deciding whether a given
pair (q,D) is a CNS with the finiteness property. The problem was completely solved
in the quadratic case d = 2 by Kátai and Szabó [KS75] and Kátai and Kovács [KK80,
KK81]. For d ≥ 3, only partial results are known; Akiyama and Pethő [AP02] construct
an algorithm which determines whether (q,D) is a CNS with the finiteness property
using only the coefficients of the minimal polynomial of q. Other partial results have
been proved for d = 3 [ABP03] and d = 4 [BHP06].

Returning to general number systems, Germán and Kovács [GK07] proved that any q
having all its conjugates of moduli < 1/2 admits a set of digits D for which (q,D) is a
FNS.

From now on, we assume that (q,D) has the finiteness property.
Let F be the fundamental tile

(2.2) F =
{ r∑
j=1

bjq
−j, r ≥ 1, bj ∈ D

}
.

We will state in Section 3.2.2 below the basic properties of F ; for now, let us simply
mention that there exist R−F , R+

F > 0 (depending on (q,D) and ‖ · ‖) such that

(2.3) {x ∈ K, ‖x‖ ≤ R−F} ⊂ F ⊂ {x ∈ K, ‖x‖ ≤ R+
F}.

In particular, since all the conjugates of q have moduli > 1, for some Λ ∈ N there holds

(2.4) (F + F) ∪ (−F) ∪ (F · F) ⊂ qΛF .

For any integer κ ≥ 0, we define

Nκ :=
{ κ−1∑
j=0

bjq
j, bj ∈ D

}
.

2.2. Hypotheses on f and (q,D). We work with the formalism introduced in [MR15],
which assumes two hypotheses of different nature on f .

Definition 2. We say that f satisfies the Carry property if there exists a number η1 > 0
such that for any κ, λ, ρ ∈ N with ρ ≤ λ, the number of v ∈ Nλ such that

(2.5) f(u1 + u2 + vqκ)f(u1 + vqκ) 6= fκ+ρ(u1 + u2 + vqκ)fκ+ρ(u1 + vqκ)

for some (u1, u2) ∈ N 2
κ , is bounded by O(N(q)λ−η1ρ).
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Definition 3. We say that f satisfies the Fourier property if there exist a non-decreasing
function γ : N→ R+, and c > 0, such that uniformly for λ ∈ N, κ ≤ cλ and t ∈ K,

(2.6)
∑
v∈Nλ

f(vqκ)e2πi〈tv〉 � N(q)λ−γ(λ).

As is noted in [MR15, eq. (26)], if (2.6) holds then we always have
(2.7) γ(λ) ≤ λ/2.

We define the following two “distortion” parameters on the number system:

(2.8) Θ := max
π∈GK

d log |qπ|
logN(q) ≥ 1,

(2.9) θ := min
π∈GK

d log |qπ|
logN(q) > 0.

Note that the inequality in (2.8) is obvious, and that the inequality in (2.9) follows from
the assumption, made in Section 2.1, that the Galois conjugates of q have moduli > 1.

As a consequence of (2.9), the multiplication matrix associated to q−1 has spectral
radius at most N(q)−θ < 1 (it is asymptotically contractant). We will use repeatedly
the Gelfand inequality in the form
(2.10) ‖qλ‖ � λd−1N(q)Θλ, ‖q−λ‖ � λd−1N(q)−θλ,
for λ ∈ N>0, see [Wir98, Lemma 2.3].

2.3. Main result. Our main result is the proof of the following statement, which shows
that the analogue of [MR15] holds in number fields in the most general formulation.

Theorem 3. Assume that OK is principal, (q,D) is a FNS, and f : OK → C has
the Carry and Fourier properties with the above notations, and c ≥ 20Θθ−1. There
exist C, δ, η2 > 0, with δ � η1η2d

−1 min{η1η2, θ}, such that for all λ ∈ N>0, we have

(2.11)
∑
p∈Nλ
p prime

f(p)�K,q,D λ
CN(q)λ−δγ( λ

100Θθ−1 ).

The constant η2 is a natural parameter associated the addition automaton of the
NFS (q,D); in particular it depends only on (q,D). It is formally introduced below in
Lemma 8. In Appendix A below, we study the asymptotic behaviour of this constant in
infinite families of canonical number systems q = −m+ x, m ∈ N, m→∞.

2.4. Plan of the paper. After compiling technical lemmas in Section 3, we state and
prove our type I and II estimates in Sections 4 and 5. We then prove Theorem 3 in
Section 6, and deduce Theorems 1 and 2 in Section 7. Appendix A is concerned with a
subsidiary result on asymptotic behaviour of carry constants.

2.5. Notations. In the sequel, we abbreviate
Q := N(q),

e(z) := e2πiz.

It will also be useful to denote, for λ ∈ N and t ∈ K,

(2.12) eλ(t) = e
(〈

t

qλ

〉)
.
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We recall the definitions (2.3), and we let further
(2.13) R∗F = sup

x∈F

∏
π∈GK

(1 + |xπ|).

3. Lemmas

On many occasions, we will use the following simple bounds on norms of products.
Lemma 1.

(1) For all x, y ∈ K, ‖xy‖ � ‖x‖‖y‖,
(2) For all x ∈ K r {0}, ‖x−1‖ � N(x)−1‖x‖d−1.

Proof. The first part is obvious. The second part follows fromN(x) = ∏
π∈GK x

π. Indeed,
writing x = ∑d

i=1 xiωi with xi ∈ Q, then for any k ∈ {1, . . . , d}, we have〈
ω∨k x

−1
〉

= N(x)−1
〈
ω∨k

∑
(iπ)π 6=id

∏
π 6=id

xiπωiπ

〉

= N(x)−1 ∑
(iπ)π 6=id

( ∏
π 6=id

xiπ

)〈
ω∨k

∏
π 6=id

ωiπ

〉

� N(x)−1‖x‖d−1.

�

We also state now an upper-bound for the number of units in a certain angle.
Lemma 2. For all x ∈ K∗, we have

card
{
ε ∈ O∗, ‖ε/x‖ ≤ 1

}
� (log(2 +N(x)))d−1,

where the implicit constant may depend on K and ‖ · ‖.
Proof. Shifting by a suitable unit, we may assume that |xπ| � N(x)1/d for all π ∈
GK . The condition ‖ε/x‖ ≤ 1 then implies |επ| � N(x)1/d. Since ε ∈ O∗, we also
deduce |επ| � N(x)1−1/d. Let (ε1, . . . , εr) be a Z-basis of the free part of O∗ [Neu99,
Theorem I.7.3] (where r ≤ d − 1). We are then reduced to counting the number of
tuples (n1, . . . , nr) ∈ Zr such that

r∑
j=1

nj log |επj | = O(log(2 +N(x)))

for all π ∈ GK . Inverting this condition by using a subset of embeddings of size r as
in [MV07, p.55], we find that there are at most O(log(2 +N(x))r) solutions, whence the
claimed bound. �

3.1. Additive characters and van der Corput’s inequality.

3.1.1. Orthogonality. We recall the following orthogonality relations.
Lemma 3. For all q ∈ OK r {0} and ξ ∈ O∨, we have

1
Q

∑
n∈O/q

e(
〈
q−1nξ

〉
) =

1 if ξ ∈ qO∨,
0 otherwise,

and similarly, for all n ∈ OK,

1
Q

∑
ξ∈O∨/q

e(
〈
q−1ξn

〉
) =

1 if n ∈ qOK ,
0 otherwise.



8 S. DRAPPEAU AND G. HANNA

3.1.2. Counting additive characters. In Section 4 below, we will require properties of
additive characters in O, which we quote from [Hux68, p. 179]. We recall that given an
integral ideal m and an additive character σ (mod m), we say that σ is a proper additive
character modulo m if σ is not periodic n for any integral ideal n ) m.

We will mainly work with additive characters of the form n 7→ e(〈nk/m〉), for m ∈ O,
k ∈ O∨/m and m 6= 0. In this context, given an additive character σ, let us denote

(k,m) ∼ σ ⇐⇒ ∀n ∈ O, σ(n) = e(〈nk/m〉).
Note that for any such k and m, there is a unique pair (m, σ), where m containing m,
and a unique proper additive character σ (mod m), such that (k,m) ∼ σ.

Lemma 4. Let µ ∈ N, and σ (mod m) be a proper additive character. Then
∑
m∈Nµ
k∈O∨/m
(k,m)∼σ

1
N(m) �

µd

N(m) .

The implicit constant may depend on (q,D).

Proof. For any m on the left-hand side, there can be at most one k ∈ O∨/m for
which (k,m) ∼ σ. Moreover, since σ is proper, this can only happen if m | m. There-
fore, the quantity on the left-hand side is at most ∑m∈Nµ∩m

1
N(m) . We sort this sum

according the principal ideal a = (m). First note that N(m) ≤ R∗FQ
µ (we recall the

definition (2.13)). Then ∑
m∈Nµ∩m

1
N(m) ≤

∑
a principal

m|a
N(a)≤R∗FQ

µ

1
N(a)

∑
m∈Nµ
(m)=a

1.

For all a in the first sum, we pick a generator u ∈ O such that |uπ| � N(a)1/d for all
field imbedding π ∈ GK . Then the second sum is∑

m∈Nµ
(m)=a

1 =
∑
ε∈O∗
εu∈Nµ

1� µd−1

by Lemma 2, and so∑
a principal

m|a
N(a)≤R∗FQ

µ

1
N(a)

∑
m∈Nµ
(m)=a

1� µd−1 ∑
a ideal
m|a

N(a)≤R∗FQ
µ

1
N(a) �

µd

N(m)

as claimed. �

3.1.3. Van der Corput’s inequality. For all ρ ∈ N, we define the set
(3.1) ∆ρ = Nρ −Nρ = {m− n, (m,n) ∈ N 2

ρ }.

Lemma 5. Let ρ, κ, ν ∈ N with ρ + κ ≤ ν, and (zn)n∈O be complex numbers sat-
isfying zn = 0 when n 6∈ Nν. There exists an even function wρ : O → N, such
that |wρ(r)| � Qρ uniformly in r ∈ O, and∣∣∣∣∑

n

zn

∣∣∣∣2 � Qν−2ρ ∑
r∈∆ρ

wρ(r)
∑
n

zn+qκrzn.
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Proof. By following the proof of [MR09, Lemma 17], we find∣∣∣∣∑
n

zn

∣∣∣∣2 ≤ card
( ⋃
r∈Nρ

(Nν − qκr)
)
Q−2ρ ∑

r∈∆ρ

wρ(r)
∑
n

zn+qκrzn,

where wρ(r) = card{(r1, r2) ∈ N 2
ρ , r = r1 − r2}. The claimed bound follows by our

hypothesis ν ≥ κ+ ρ, which implies that the sets q−ν(Nν − qκr) are uniformly bounded
for r ∈ Nρ. �

3.1.4. Majorants of the fundamental tile. Since most of our sums over lattices will be
estimated by Poisson summation, it will be convenient to work with smooth majorant
functions having a compactly supported Fourier transform.

Lemma 6. For any bounded set B ⊂ Rd, there exists a function V : Rd → R+ in the
Schwartz class, depending on B, satisfying the following:

(1) for all x ∈ Rd, if x ∈ B, then V (x) ≥ 1,
(2) the Fourier transform V̂ (ξ) =

´
Rd
V (x)e(〈ξ, x〉)dx vanishes unless ‖ξ‖∞ ≤ 1.

Proof. We take V (x) = α
∏d
j=1 f̂(βxj), where f is given as in Theorem A.3 of [Swa19]

for some small enough β > 0 and large enough α depending on B. �

3.1.5. The large sieve inequality. The following is a multidimensional version of the large
sieve inequality, and corresponds to Theorem 2 of [Hux68]. The main difference lies in
the scaling of the set of points: when dealing with ideals (rather than arbitrary lattices),
we can avoid the “skewing” phenomenon refered to above. We refer to [Mon78] for
history and additional references on the large sieve.

Lemma 7. Let α ∈ K∗, X ∈ [1,∞) and (c(n))n∈O be complex numbers. Then

∑
m ideal

0<N(m)≤X

∑
σ (mod m)

proper

∣∣∣∣∣∣
∑
n∈O
‖n/α‖≤1

c(n)σ(n)

∣∣∣∣∣∣
2

�K (N(α) +X2)
∑
n∈O
‖n/α‖≤1

|c(n)|2 ,

where in the sum on the left-hand side, σ runs over proper additive characters (mod m).

Proof. Let ε ∈ O∗ be such that |(εα)π| � N(α)1/d, and denote α′ = εα. For any m, the
map σ 7→ (a 7→ σ(ε−1a)) is a permutation of the proper additive characters (mod m).
Therefore, we have

∑
m ideal

0<N(m)≤X

∑
σ (mod m)

proper

∣∣∣∣∣∣
∑
n∈O
‖n/α‖≤1

c(n)σ(n)

∣∣∣∣∣∣
2

=
∑

m ideal
0<N(m)≤X

∑
σ (mod m)

proper

∣∣∣∣∣∣
∑
n∈O

‖n/α′‖≤1

c′(n)σ(n)

∣∣∣∣∣∣
2

with c′(n) = c(ε−1n). The condition ‖n/α′‖ ≤ 1 implies ‖n‖ � ‖α′‖ � N(α)1/d, and
so Theorem 2 of [Hux68] can be applied with Nj � N(α)1/d, which yields the claimed
result. �

3.2. Numeration.

3.2.1. Carry propagation. Let rν,µ(n) be the integer formed with the digits of n of in-
dices {ν, . . . , µ − 1}, so that if n = ∑

j≥0 njq
j, then rν,µ(n) = ∑

0≤j<µ−ν nν+jq
j. We

write rν,∞(n) = limµ→∞ rν,µ(n). We wish to quantify the fact that propagation of a carry
is an exponentially rare event. This has been studied in particular in [GL99, MTT01].
In fact the following lemma can be seen as an arithmetic restatement of a weaker version
of [MTT01, Proposition 4.1].
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Lemma 8. There exists η2 = η2(q,D) ∈ (0, 1], such that for all integers 0 ≤ ρ ≤ ν ≤ µ,
we have
(3.2) card{m ∈ Nµ,∃n ∈ Nν−ρ, rν,∞(m+ n) 6= rν,∞(m)} � Qµ−η2ρ.

However, in [MTT01] and with their notations, the authors work under the assumption
that a certain graph G̃(S) is primitive. Since we are only interested in the upper-
bound (3.2), we do not need this assumption here. What is required is that, from any
vertex, there is a path leading to an absorbing state; the possibility of the matrix of
the graph G̃(S) having multiple dominant eigenvalues does not affect us. In [ST02], the
primitivity of G̃(S) is proved, however in the more specific case of canonical number
systems. For these reasons we include a self-contained proof of Lemma 8.

Proof. We have assumed that 0 ∈ D, and that every element inO has a base q expansion.
Let B = D −D, and define a sequence of sets by

B0 = {0}, Bj+1 = B + qBj
for all j ≥ 0. Note that Bj = B + qB + · · · qj−1B for j ≥ 1, so that this sequence is
increasing. Since D ⊂ B, we have Nj ⊂ Bj. Moreover, for all j > 0 and all n ∈ Bj, there
exist a ∈ D and m ∈ Bj−1 such that n+ a ∈ qm+D.

Next we let {0} ⊂ Bst ⊂ O be the smallest set such that Bst +D+D ⊂ D+ qBst; the
existence of Bst is ensured by boundedness of {∑r

j=1(nj,1+nj,2−nj,3)q−j, r ≥ 1, nj,k ∈ D}.
The set Bst is our initial set of carries. We define a Markov chain on the set of states Bst
by setting, for every n ∈ Bst and digit a ∈ D, an edge

n
a−→ m ⇐⇒ n+ a ∈ qm+D,

each digit a ∈ D being chosen with equal probability. Note that by construction, we do
have m ∈ Bst. The main point is that 0 is an absorbing state for this chain. Therefore, a
random walk on Bst of length ρ ∈ N, starting at any given vertex, has probability O(cρ)
of not ending at 0, for some c ∈ (0, 1).

Let m = ∑µ−1
j=0 mjq

j, with mj ∈ D. Suppose that there is an n ∈ Nν−ρ such that (m+
n)[ν,∞] 6= (m)[ν,∞]. Consider the sequences of carries (bj)j≥−1 in the addition m + n.
More precisely, if we let n = ∑

j≥0 njq
j with nj = 0 if j ≥ ν − ρ, then b−1 = 0 and

for all j ≥ 0, bj is the unique element of O such that bj−1 + mj + nj ∈ D + qbj. By
construction, we have bj ∈ Bst for all j ≥ −1. For all j ≥ ν, the recurrence relation
reads, with our above notations,

bj−1
mj−→ bj.

Our hypothesis on m and n implies that bν 6= 0. Therefore, the tuple (mj)ν−ρ<j≤ν
describes a walk on Bst of length at least ρ, not ending at 0. The number of such
tuples is at most O(cρ), and so the number of possibilities for m is at most O(Qµ−η2ρ)
with η2 = −(log c)/ logQ > 0 �

Remark. We will call any admissible constant η2 in Lemma 8 a carry constant. WhenK =
Q(i), we may choose

η2 =


0.238186 . . . , (q,D) = (−1 + i, {0, 1}),
0.195636 . . . , (q,D) = (−2 + i, {0, 1, 2, 3, 4}),
0.053205 . . . , (q,D) = (−2 + i, {0,−2i, 2, 3, 4}).

These values were obtained by approximating the spectral radius of the adjacency matrix
associated with the graph on Bst considered above (with the absorbing state removed).
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3.2.2. Harmonic analysis of the fundamental tile. In this section we study some har-
monic analytic properties of the indicator function of the fundamental tile defined
in (2.2). For this purpose we will study the closure of this tile in Rd,

F = ι−1(F) ⊂ Rd

In our context the set F plays the rôle of the unit interval [0, 1] in [MR15]. For example,
when d = 1, q < −1 and D = {0, . . . , |q| − 1}, we have explicitly

F =
[

q

q2 − 1 ,
1

q2 − 1

]
.

In general however, the set F is of a more complicated nature, and is a main object of
study in the theory of self-similar tilings of Rn (see [LW96]).

Here, we have assumed that (q,D) is a FNS; we refer to Proposition 2.1 of [MTT01]
for general properties of F . In particular, F is compact, measurable with Lebesgue
measure meas(F ) = 1; by Theorem 1 of [Vin95], F contains an open neighborhood of
the origin; and finally

meas(F ∩ (F + a)) = 0 (a ∈ Zd r {0}).

Remark.
— When d = 1, the set F needs not be an interval, as the example q = −3,
D = {0, 2, 7} shows. The pair (q,D) is a FNS (see [GH94, Th. 2.3]) but the
boundary ∂F has Hausdorff dimension 0.8798 · · · = log λ/ log 3, where λ is the
real root of X3 −X2 − 2X − 6.

— When d ≥ 2, the set F needs not be connected, as the case

K = Q(i), q = 3, D = {0, i, 2i, 1, 1 + i, 1 + 2i, 2, 2 + i, 5 + 5i}

shows (see [LW96, Figure 2.1]). In this case, an admissible carry constant is η2 =
1 − log λ/ log 9 = 0.237701 . . . , where λ is the largest real root of X4 − 4X3 −
8X2 + 4X + 3.

The set F has been studied in a variety of cases:
(1) For CNS and d = 2, in [Gil86] for K = Q(i), and in [Thu98a, Thu01] for all

quadratic fields.
(2) For CNS and arbitrary d, under a generic condition on the minimal polynomial

of q, the upper-box dimension of ∂F is obtained in [ST02].
(3) For general FNS, Keesling [Kee99] has shown that the Hausdorff dimension

dimH(∂F ) is always strictly less than d, and that it can be arbitrarily close to d.
Note that dimH(∂F ) ≥ d− 1, and that equality is achieved in the case q = −2,
D = {∑i∈I ωi, I ⊂ {1, . . . , d}}, for which F = [0, 1]d. Upper and lower bounds
on dimH(∂F ) in terms of the carry constant η2 are obtained in [MTT01]; the
bounds coincide when Θ = θ = 1.

In the present work, we will require some information of the decay of the Fourier
transform of the characteristic function of F . This is ultimately due to the fact that
the information we will use of the function f concerns its correlation with additive
characters (2.6) and its behaviour with respect to the digital expansion (2.5).

For x, ξ ∈ Rd, let

χ(x) = 1x∈F , χ̂(ξ) =
ˆ

F

e(−〈x, ξ〉)dx.
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For λ ∈ N>0, define
ψλ(x) :=

∑
k∈Zd

χ(qλ(x+ k)),

where q is viewed as a linear map of Rd by qx = ι−1(qι(x)) for all x ∈ Rd. The function ψλ
is Zd-periodic, and its Fourier coefficients are

ψ̂λ(ξ) = Q−λχ̂(q̃−λξ) (ξ ∈ Zd),

where q̃ is the adjoint of q.
The less regular ∂F is, the more slowly the function χ̂ decays: for instance, in the

case K = Q(i), q = −1 + i, D = {0, 1}, it is shown by Cohen and Daubechies [CD93,
eq. (5.3)] that χ̂(ξ) � ‖ξ‖−1/2 for all ξ ∈ Rd, the exponent 1/2 being in fact optimal.
This and related questions are known in wavelet theory as the regularity problem of self-
refinable functions; see in particular [CD96, PW08]. Here we are largely able to avoid
this question altogether. We essentially require two informations: a truncated Fourier
expansion of ψλ, and an estimate for L2 norms.

In the context of distribution of q-additive functions, this difficulty has been encoun-
tered in [GT00] in the case K = Q(i), and [Mad10] for general K (see [Ste02] for related
earlier computations in the context of Parry expansions). To truncate the Fourier se-
ries of ψλ, one wishes to smooth out the function χ̂. In the above-mentioned works,
this is done by convolving with the characteristic function of a hypercube (Urysohn
approximation), however, it is technically convenient to use smooth, compactly sup-
ported majorants, so that sums over lattices can be estimated more easily by Poisson
summation.

Lemma 9. Let λ, τ ∈ N>0. There exist complex numbers (aλ,τ (ξ))ξ∈Zd and (bλ,τ (ξ))ξ∈Zd
satisfying the following.
(i) For all fixed A ≥ 0, we have

(3.3) |aλ,τ (ξ)| �A Q
−λ(1 + ‖q̃−λ−τξ‖)−A, |bλ,τ (ξ)| �A Q

−λ−η2τ (1 + ‖q̃−λ−τξ‖)−A.

(ii) The functions Aλ,τ (x) and Bλ,τ (x) defined by

Aλ,τ (x) =
∑
ξ∈Zd

aλ,τ (ξ)e(〈ξ, x〉), Bλ,τ (x) =
∑
ξ∈Zd

bλ,τ (ξ)e(〈ξ, x〉)

satisfy
|ψλ(x)− Aλ,τ (x)| ≤ Bλ,τ (x).

(iii) For all κ ∈ {0, . . . , λ} and ξ0 ∈ Zd, we have

(3.4)
∑
ξ∈Zd
|aλ,τ (ξ0 + q̃κξ)|2 � Q−λ−κ,

(3.5)
∑
ξ∈Zd
|bλ,τ (ξ0 + q̃κξ)|2 � Q−λ−κ−η2τ .

Proof. Let φ : Rd → [0, 1] be a smooth function satisfying

1‖x‖≤1/2 ≤ φ(x) ≤ 1‖x‖≤2,

ˆ
Rd
φ(x)dx = 1,

where ‖x‖ is the euclidean norm. Define φτ := Qτφ(qτx). Define

(3.6) χτ := χ ∗ φτ ,
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and let V1 = ∂F +q−τB(0, 2) and V2 = ∂F +q−τB(0, 2)+q−τB(0, 2). Note that V1 ⊂ V2,
and

{x ∈ Rd : χ(x) 6= χτ (x)} ⊂ V1.

We focus first on V2. Let ρ ∈ N be such that B(0, 2) ⊂ qρF . Each number x ∈ qτV2
can be decomposed uniquely as x = m + y where m ∈ Zd and y ∈ F . Note that m ∈
qmax(ρ,τ)+2ΛF , so that certainly ι(m) ∈ Nτ+ρ+2Λ. The condition m+y ∈ ∂(qτF ) implies
the existence of z+, z− ∈ qρ+2ΛF such that m + y − z+ ∈ Zd ∩ qτF and m + y − z− ∈
Zd r qτF . Therefore, there exist n+, n− ∈ Zd ∩ qρ+4ΛF such that m + n+ ∈ qτF
and m + n− /∈ qτF . By Lemma 8 the number of such m is at most � Q(1−η2)τ , and
therefore

(3.7) meas(V2) = Q−τ
∑
m∈Zd

ˆ
F

1(m+ y ∈ qτV2)dy � Q−η2τ .

We now write
|χ(x)− χτ (x)| ≤ 1V1(x) ≤ (1V2 ∗ φτ )(x).

Define now the smooth, Zd-periodic functions
Aλ,τ (x) =

∑
k∈Zd

χτ (qλ(x+ k)), Bλ,τ (x) =
∑
k∈Zd

(1V2 ∗ φτ )(qλ(x+ k)).

We have Bλ,τ (x)� 1. Let aλ,τ (ξ) and bλ,τ (ξ) be the coefficients in the Fourier expansions
of Aλ,τ (x) and Bλ,τ (x), respectively. We have

aλ,τ (ξ) = Q−λχ̂(q̃−λξ)φ̂(q̃−λ−τξ),

bλ,τ (ξ) = Q−λφ̂(q̃−λ−τξ)
ˆ
V2

e(
〈
q̃−λξ, y

〉
)dy.

By partial summation, we have the bound
(3.8)

∣∣∣φ̂(ξ)
∣∣∣�A (1 + ‖ξ‖)−A

for any A > 0. By (3.7), we deduce parts (i) and (ii) as claimed.
For part (iii), let us consider the case of bλ,τ . By absolute convergence and orthogo-

nality (Lemma 3), we have

(3.9)
∑
ξ∈Zd
|bλ,τ (ξ0 + q̃κξ)|2 = Q−κ

∑
`∈Zd/BκZd

e(−
〈
q̃−κξ0, `

〉
)
∑
ξ∈Zd
|bλ,τ (ξ)|2 e(

〈
q̃−κξ, `

〉
).

On the other hand, by Poisson summation, we have∑
ξ∈Zd
|bλ,τ (ξ)|2 e(〈q̃−λξ, `〉) =

ˆ
Rd/Zd

Bλ,τ (x+ q−λ`)Bλ,τ (x)dx.

Let V3 = V2 + q−τB(0, 2); it is a bounded set. By construction, the support of Bλ,τ is
included in Zd + q−λV3. Therefore, for any given x ∈ Rd, the integrand above vanishes
unless there exists k ∈ Zd such that

qκk + ` ∈ qκ−λV3,

and the latter is a bounded set since κ ≤ λ, therefore, there are at most a bounded
number of ` contributing to the sum on the right-hand side of (3.9). We deduce∑

ξ∈Zd
|bλ,τ (ξ0 + q̃κξ)|2 � Q−κ−λ−η2τ

by (3.7), and we obtain (3.5). The bound (3.4) is proved using identical argument in a
simpler way; therefore we do reproduce the details. �
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Remark. It is an important point in the proof that the smooth majorant φ is scaled
down by powers of q, rather than e.g. homotheties (in which case the carry constant η2
would be replaced by the upper-box dimension of ∂F , which is less understood in
general [MTT01, ST02]).

There would be much technical simplification to be gained, in our later arguments, by
having an analogue of Vaaler’s construction of band-limited majorants [Vaa85], as was
used in [MR15]; our attempts were unsuccessful.

In the sequel, for x ∈ K and ξ ∈ O∨, we will denote
(3.10) ψλ(x) = ψλ(ι∨(x)), aλ,τ (ξ) = aλ,τ (ι∨(ξ))
and similarly for bλ,τ .

3.3. Fourier estimates. In this section, we prove an analogue of Lemma 10 of [MR15],
concerning restricted L2 estimates for the discrete Fourier transform of f .

3.3.1. Fourier property over the middle digits. The next lemma concerns a variant of the
Fourier property (2.6), in which the sum is effectuated only over the middle digits. This
additional flexibility comes at the price of a numerically smaller gain in the exponent.

Lemma 10. Let α, β, δ ∈ N satisfy δ ≤ α+β, and let λ := α+β+δ. For all f satifying
the Fourier property, we have

1
Qβ

∑
u1∈Nβ

fκ+λ(qκ(u0 + qαu1 + qα+βu2))e(〈u1t〉)� Q−η
′γ(λ)+α+δ

uniformly for u0 ∈ Nα, u2 ∈ Nδ, t ∈ K and κ ≤ cλ, where η′ = η2(1 + η2)−1.

Proof. We recall the notation (2.12). By orthogonality, our sum is
1
Qβ

∑
u∈Nλ

f(qκu)eα(ut)1u−u0∈qαO1 u

qα+β ∈u2+F+qδOeκ(−u0t)e−β(−u2t)

= eκ(−u0t)e−β(−u2t)
∑

`∈O/qα
eα(−u0`)S

(
`,
t+ `

qα

)
,

where
S(`, t) = 1

Qα+β

∑
u∈Nλ

f(qκu)e(〈ut〉)ψδ
(
u

qλ
− u2

qδ

)
.

Let τ ∈ N, τ ≤ α + β, be a parameter. At this point, we wish to apply Lemma 9, to
replace ψδ by its smoothed version Aσ,τ . The ensuing main term is

Sτ (`, t) = 1
Qα+β

∑
u∈Nλ

f(qκu)e(〈ut〉)Aδ,τ
(
u

qλ
− u2

qδ

)
,

where we recall the notation (3.10). We Fourier expand and use the Fourier property,
getting

Sτ (`, t) =
∑
ξ∈O∨

aδ,τ (ξ)eδ(−ξu2) 1
Qα+β

∑
u∈Nλ

f(qκu)eλ(u(ξ + tqλ))

� Qδ−γ(λ) ∑
ξ∈O∨

|aδ,τ (ξ)|

� Q−γ(λ)+τ+δ.
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We justify the Fourier truncation (replacement of ψσ by Aσ,τ ) in a similar way to (3.7).
Assuming δ is large enough in terms of q, by Lemma 9, we know that

(3.11) ψδ

(
u

qλ
− u2

qδ

)
− Aδ,τ

(
u

qλ
− u2

qδ

)
� 1

(
u

qλ−δ
− u2 ∈ ∂F +B(0, 2/H) + qδO

)
.

Let τ ∈ N be the largest such that B(0, 2/H) ⊂ q−τF ; note that τ ≥ O(1)+ logH
2Θ logQ . By a

reasoning similar to (3.7), we may find an element n′ ∈ Nα+β−τ+4Λ such that rα+β,∞(u−
qα+βu2 − qλk + n′) 6= rα+β,∞(u − qα+βu2 − qλk). Denoting u′ = u − qα+βu2 − qλk, we
deduce

|S(`, t)− Sτ (`, t)| �
1

Qα+β

∑
u∈Nλ

1
(

u

qλ−δ
− u2 ∈ ∂F +B(0, 2/H) + qδO

)

� 1
Qα+β

∑
k∈N6Λ

card{u′ ∈ Nλ+3Λ,∃n ∈ Nα+β−τ+4Λ,

rα+β,∞(u′) 6= rα+β,∞(u′ + n)}
� Qδ−η2τ

by Lemma 8. Using (2.7), we may optimize τ under the condition τ ≤ α + β and find
S(`, t)� Q−η

′γ(λ)+δ

with η′ = η2(1 + η2)−1, as claimed. �

3.3.2. Incomplete L2 bound on the Fourier transform. The statements of this section
depend of certain parameters which will be introduced later in Section 5. For now, we
let µ, µ0, µ1 and µ2 be natural numbers subject to

µ0 < µ1 < µ < µ2.

We let σ = µ2 − µ0, and define, for all n ∈ O,
(3.12) g(n) = fµ2(qµ0n)fµ1(qµ0n).
We recall the definition of the discrete Fourier transform of g,

(3.13) ĝ(h) := 1
Qσ

∑
u∈O/qσ

g(u)eσ(−uh).

Proposition 1. With the above notation and hypotheses, for all t ∈ K and λ ∈ N,
if c−1µ0 ≤ λ ≤ σ, then we have∑

h∈O∨
‖h/qσ−λ‖≤1

|ĝ(h+ t)|2 � Q2(µ1−µ0)(Q−η′′γ(λ) +Q−η1(σ−λ))

where η′′ = 2η1η2(2 + η1)−1(1 + η2)−1.

Proof. The proof mirrors that of [MR15]: the point is that we may use the carry property
to essentially factor ĝ(h+t) as a sum over Nλ times a sum over Nσ−λ. Parseval’s identity
will be applied to the second factor, to recover the full h-sum, while the Fourier property
on the first factor will allow for an extra saving. For each h ∈ Nσ−λ, we write

ĝ(t) = 1
Qσ

∑
u∈Nλ

∑
v∈Nσ−λ

g(u+ qλv)eσ(−ut)eσ−λ(−vt).

Here, we have by periodicity
g(u+ qλv) = f(qµ0(u+ qλv))fµ1(qµ0u).
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Let ρ3 ≤ σ − λ. By the carry property (2.5), we have

f(qµ0(u+ qλv)) = fµ0+λ+ρ3(qµ0(u+ qλv))f(qµ0+λv)fµ0+λ+ρ3(qµ0+λv)
except when u+ qλv ∈ Wρ3 , for some setWρ3 of cardinality at most Qσ−η1ρ3 . Therefore,

ĝ(t) = G1(t) +G2(t),

G1(t) = 1
Qσ

∑
u∈Nλ

∑
v∈Nσ−λ

fµ0+λ+ρ3(qµ0(u+ qλv))f(qµ0+λv)×

× fµ0+λ+ρ3(qµ0+λv)fµ1(qµ0u)eσ(−ut)eσ−λ(−vt),

G2(t) = 1
Qσ

∑
w∈Nσ

b(w)eσ(−wt),

with |b(w)| ≤ 2, supported on Wρ3 .
In the sum G1(t), we detect the congruence class w = v (mod qρ3) by orthogonality,

and write
fµ0+λ+ρ3(qµ0+λv) = fµ0+λ+ρ3(qµ0+λw),

fµ0+λ+ρ3(qµ0(u+ qλv)) = fµ0+λ+ρ3(qµ0(u+ qλw)).
We obtain

G1(t) =
∑

`∈O∨/qρ3
dh(`)

1
Qρ3

∑
w∈O/qρ3

eρ3(−`w)ch(w),

where
dt(`) = 1

Qσ−λ

∑
v∈Nσ−λ

f(qµ0+λv)eσ−λ(−vt)eρ3(v`),

ch(w) = fµ0+λ+ρ3(qµ0+λw)
Qλ

∑
u∈Nλ

fµ0+λ+ρ3(qµ0(u+ qλw))fµ1(qµ0u)eσ(−ut).

By splitting again u = u0 + qµ1−µ0u1 with u0 ∈ Nµ1−µ0 and u1 ∈ Nλ−µ1+µ0 , we get that
under the additional assumption ρ3 ≤ λ,

|ch(w)| ≤ 1
Qµ1−µ0

∑
u0∈Nµ1−µ0

∣∣∣∣ ∑
u1∈Nλ−µ1+µ0

f(qµ0(u0 + qµ1−µ0u1 + qλw))eσ−µ1+µ0(−u1t)
∣∣∣∣

� Q−η
′γ(λ+ρ3)+µ1−µ0+ρ3

by Lemma 10. We can now sum over h. Using the Cauchy–Schwarz inequality and
Parseval’s equality as in [MR15], we get∑

h∈O∨
‖h/qσ−ρ‖≤1

|G1(h+ t)|2 ≤ sup
t′∈K

w∈O/qρ3

|ct′(w)|2 sup
`∈O∨/qρ3

∑
h∈O∨

‖h/qσ−λ‖≤1

|dh(`)|2 .

We write ∑
h∈O∨

‖h/qσ−λ‖≤1

|dh+t(`)|2 =
∑

α∈O∨/qσ−λ
|dα+t(`)|2

∑
h∈O∨

h−α∈qσ−λO∨
‖h/qσ−λ‖≤1

1.

Note that the last sum is O(1), and the remaining sum over α is again O(1) by Parseval’s
identity. We deduce ∑

h∈O∨
‖h/qσ−ρ‖≤1

|G1(h+ t)|2 � Q−2η′γ(λ)+2(µ1−µ0+ρ3).
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On the other hand, by Parseval’s equality and reasoning as above,
∑
h∈O∨

‖h/qσ−λ‖≤1

|G2(h+ t)|2 ≤
∑
h∈O∨
‖h/qσ‖�1

|G2(h+ t)|2 � 1
Qσ

∑
w∈Nσ

|b(w)|2 � Q−η1ρ3 ,

and by optimising ρ3 (note that we always have η′γ(λ) ≤ λ by (2.7)), the result follows.
�

3.4. Sums over lattices. In this section, we estimate sums over lattices that will appear
repeatedly later in our arguments. As we already mentioned an additional difficulty
when d > 1 is the possibility of the multiplication by q skewing the latticeO (see [Mad10,
pp. 203–204]). This issue does not occur in O thanks to the additional structure of the
unit group O∗.

Lemma 11. Let a be a fractional ideal, and R ≥ 0. Then

card{h ∈ ar {0}, ‖h‖ ≤ R} � N(a)−1Rd.

Proof. As in the proof of Lemma 7, let c ⊂ O be an ideal in the same class as a,
with 1 ≤ N(c) � 1. Then a ⊂ c−1a = (u) for some u ∈ K with N(u) � N(a), and by
multiplying by units we may impose |uπ| � N(u)1/d. Then

card{h ∈ a, h 6= 0, ‖h‖ ≤ R} ≤ card{h ∈ O, h 6= 0‖uh‖ ≤ R}
≤ card{h ∈ O, h 6= 0, ‖h‖ ≤ CRN(u)−1/d}

for C � 1, since ‖uh‖ ≤ R implies ‖h‖ � ‖u−1‖ � N(u)−1/d. The last cardinality is
simple to evaluate, since the basis (ωj) of O satisfies ‖ωj‖ � 1. �

Lemma 12. Let t be an integral ideal, α, β ∈ t−1 and q ∈ O. Then

card{n ∈ O/q, αn+ β ∈ qt−1} ≤ N(αt + (q)).

Proof. By homogeinizing, we have

card{n ∈ O/q, αn+ β ∈ qO∨} ≤ card{n ∈ O/q, nα ∈ qO∨}.

Let α0 = αt and d = α0 + (q). The condition nα ∈ qt−1 becomes (q) | nα0 and so n ∈ I,
where I = (q)d−1 is an integral ideal. But |I/(q)| = |O/d| = N(d) as claimed. �

Lemma 13. Let s1, s2, q ∈ O with q | sj. Let t be an integral ideal, and α, β ∈ t−1.
Let V0 : Rd → C be in the Schwartz class, and define two functions on K by V = V0 ◦ ι−1

and V̂ = V̂0 ◦ (ι∨)−1. Then

∑
m∈O

V
(
m

s1

)∣∣∣∣ ∑
n∈O

V
(
n

s2

)
e
(〈

n(αm+ β)
q

〉)∣∣∣∣� N(s1)N(s2)
N(q) N(αt + (q))N(t).

Proof. Note first that by the Poisson summation formula, for any η ∈ Kr{0} and t ∈ K,
∑
n∈O

V
(
n

η

)
e(〈nt〉) = N(η)

∑
ξ∈O∨

V̂ (η(ξ + t)).
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Therefore, we have

∑
m∈O

V
(
m

s1

)∣∣∣∣ ∑
n∈O

V
(
n

s2

)
e
(〈

n(αm+ β)
q

〉)∣∣∣∣
≤ N(s2)

∑
m∈O

V
(
m

s1

) ∑
ξ∈O∨

∣∣∣∣V̂ (s2

(
αm+ β

q
+ ξ

))∣∣∣∣
≤ N(s2)

∑
m∈O

V
(
m

s1

) ∑
ξ∈t−1O∨

∣∣∣∣V̂ (s2

(
αm+ β

q
+ ξ

))∣∣∣∣
≤ N(s2)

∑
m0∈O/q

∑
ξ∈t−1O∨

∣∣∣∣V̂ (s2

(
αm0 + β

q
+ ξ

))∣∣∣∣ ∑
m∈O

m≡m0 (mod q)

V
(
m

s1

)
.

Again by Poisson summation,
∣∣∣∣∣∣

∑
m∈O

m≡m0 (mod q)

V
(
m

s1

)∣∣∣∣∣∣ = N(s1)
N(q)

∣∣∣∣∣∣
∑
ω∈O∨

V̂
(
s1ω

q

)
e
(〈−m0ω

q

〉)∣∣∣∣∣∣
≤ N(s1)

N(q)
∑
ω∈O∨

∣∣∣∣V̂ (s1ω

q

)∣∣∣∣
�V

N(s1)
N(q) .

Next, by Lemma 12 with t ← tDK (where we recall that DK = (O∨)−1 is the dif-
ferent ideal), for each γ ∈ t−1O∨/q, the number of m0 ∈ O/q such that αm0 + β ≡
γ (mod qt−1O∨) is at most N(αtDk + (q))�K N(αt + (q)). Therefore,

∑
m0∈O/q

∑
ξ∈t−1O∨

∣∣∣∣V̂ (s2

(
αm0 + β

q
+ ξ

))∣∣∣∣� N(αt + (q))
∑

ξ∈t−1O∨

∑
γ∈t−1O∨/q

∣∣∣∣V̂ (s2

(
γ

q
+ ξ

))∣∣∣∣
= N(αt + (q))

∑
ξ∈t−1O∨

∣∣∣∣V̂ (s2ξ

q

)∣∣∣∣
� N(αt + (q))

∑
ξ∈t−1O∨

1
(1 + ‖ξ‖)d+1 .

By Lemma 11 and partial summation, we obtain ∑ξ∈t−1O∨(1 + ‖ξ‖)−d−1 � N(t), which
concludes our proof. �

Lemma 14. Let R ≥ 0, t be an integral ideal, and q ∈ O. Then

∑
h∈t−1O

0<‖h‖≤R

N(ht + (q))� τ(q)RdN(t),

where τ(q) is the number of integral ideal divisors of (q), and the implicit constant
depends on K only.
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Proof. In our sum, we sort according to the ideal d = ht+(q) and use Lemma 11, getting∑
h∈t−1O

0<‖h‖≤R

N(ht + (q)) ≤
∑
d|q
N(d)

∑
h∈dt−1O
0<‖h‖≤R

1

�K

∑
d|q
RdN(t)

� τ(q)RdN(t).
�

Lemma 15. Let t be an integral ideal, q ∈ O and R0, R1 ∈ R+. Then∑
h0,h1∈t−1

h0+h1 6=0
‖hj‖≤Rj

N((h0 + h1)t + (q))� τ(q)N(t2)(R0 + 1)d(R0 +R1)d.

Proof. Given a non-zero fractional ideal a ⊂ t−1, we have∑
h0,h1∈t−1

‖hj‖≤Rj
06=h0+h1∈a

1 ≤
∑

h0∈t−1

‖h0‖≤R0

∑
h′∈ar{0}
‖h′‖≤R0+R1

1� N(ta−1)(1 +R0)d(R0 +R1)d

By Lemma 11. The conclusion follows by setting a = dt−1 and summing over d | q,
against N(d) = det(a)N(t), similarly as in Lemma 14. �

4. Type I sums

The following estimate is a generalization of Proposition 1 of [MR15].

Proposition 2. Let f : O → C satisfy the Carry and Fourier properties (2.5)–(2.6).
Let V0 : Rd → C be a smooth map, compactly supported inside Rd r {0}. Let V =
V0 ◦ ι−1 : K → C, define V̂ = V̂0 ◦ (ι∨)−1 and

ΣV :=
∑
ξ∈O∨

|V̂ (ξ)|.

Then for µ ≤ c
c+2ν, we have

(4.1) SI =
∑
m∈Nµ

∣∣∣∣ ∑
n∈O

V
(
mn

qµ+ν

)
f(mn)

∣∣∣∣� ΣV µ
d+1Q

µ+ν− η1
1+η1

γ(ν−µ)
.

The implied constant depends on (q,D), and on the diameter of the support of V .

Remark.
— The same bound holds, with the same proof, for the more general quantity

(4.2)
∑
m∈Nµ

max
a∈O/m

∣∣∣∣ ∑
n∈O

V
(
mn+ a

qµ+ν

)
f(mn+ a)

∣∣∣∣.
— The bounds (4.1) and (4.2) can be viewed as a statement on cancellations of f(n)

on average over arithmetic progressions n ≡ 0 (mod m); this is an analogue of
the Bombieri-Vinogradov theorem in the context of multiplicative number theory.
Bounds of the type (4.1) go back to work of Fouvry and Mauduit [FM96b]. The
quality of the bound (4.1) can be measured by the exponent of distribution, which
is the maximum asymptotically allowable value for the ratio µ

µ+ν . As in [MR15],
we have ϑ = c

2(c+1) , independently of γ, and this value on the exponent is precisely
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the analogue of the Bombieri-Vinogradov theorem if c can be picked arbitrarily
large; in both cases, the limitation arises from the large sieve inequality.

— Obtaining an exponent of distribution greater than 1/2 is a challenging question
in general. In the sum-of-digits case f(n) = (−1)sq(n), such a result was obtained
in [FM96b] with a value ϑ ≥ 0.55711 (and a slightly larger exponent for q = 2).
This has been improved to ϑ ≥ 2/3 in [MS17]; a proof of the value ϑ = 1 has
recently been announced by Spiegelhofer [Spi18].

Proof. First note that replacing ν by ν+C, for some C depending on (q,D) and V , and
rescaling V accordingly, we may assume that V (x) 6= 0 =⇒ x ∈ F . For any ` ∈ Nµ+ν ,
we have

V
(

`

qµ+ν

)
=

∑
u∈O

qµ+ν |u−`

V
(

u

qµ+ν

)

by our hypothesis on the support of V . Then

SI =
∑
m∈Nµ

∣∣∣∣ ∑
n∈O

V
(
mn

qµ+ν

)
f(mn)

∣∣∣∣
=

∑
m∈Nµ

1
N(m)

∣∣∣∣ ∑
k∈O∨/m

∑
`∈Nµ+ν

e
(〈

k`

m

〉)
V
(

`

qµ+ν

)
f(`)

∣∣∣∣
=

∑
m∈Nµ

1
N(m)Qµ+ν

∣∣∣∣ ∑
k∈O∨/m

∑
h∈O∨/qµ+ν

∑
`∈Nµ+ν

e
(〈

k`

m

〉)
eµ+ν(−h`)f(`)×

×
∑
u∈O

V
(

u

qµ+ν

)
eµ+ν(hu)

∣∣∣∣.
The Poisson formula yields∑

u∈O
V
(

u

qµ+ν

)
eµ+ν(hu) = Qµ+ν ∑

v∈O∨
V̂ (h− qµ+νv),

and so ∑
h∈O∨/qµ+ν

∣∣∣∣ ∑
u∈O

V
(

u

qµ+ν

)
eµ+ν(hu)

∣∣∣∣ ≤ Qµ+ν ∑
v∈O∨

|V̂ (v)| � ΣVQ
µ+ν .

Therefore,

SI � ΣVQ
µ+ν sup

t∈K

∑
m∈Nµ

1
N(m)

∑
k∈O∨/m

∣∣∣∣f̂µ+ν

(
t− k

m
qµ+ν

)∣∣∣∣,
where

f̂λ(t) = 1
Qλ

∑
`∈N`

f(`)eλ(−t`).

Now, by computations identical to [MR15, pp. 2606-2607], we write

(4.3) f̂µ+ν(t) = Gκ,1(t) +Gκ,2(t),
where

Gκ,1(t) =
∑

h∈O∨/qρ1

( 1
Qκ

∑
u∈Nκ

cκ,ρ1(u, h)eµ+ν(−ut)
)

×
( 1
Qµ+ν−κ

∑
v∈Nµ+ν−κ

f(vqκ)eµ+ν−κ(−tv)eρ1(hv)
)
,
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cκ,ρ1(u, h) = 1
Qρ1

∑
w∈Nρ1

fκ+ρ1(u+ wqκ)fκ+ρ1(wqκ)eρ1(−hw),

and

Gκ,2(t) = 1
Qµ+ν

∑
(u,v)∈Nκ×Nµ+ν−κ

f(vqκ)eµ+ν(−(u+ vqk)t)

×
(
f(u+ vqκ)f(vqκ)− fκ+ρ1(u+ vqκ)fκ+ρ1(vqκ)

)
.

By the carry property (2.5), we have f(u + vqκ)f(vqκ) = fκ+ρ1(u + vqκ)fκ+ρ1(vqκ)
unless (u, v) belongs to a subset Wκ,ρ1Nκ ×Nµ+ν−κ of size at most

|Wκ,ρ1| � Qµ+ν−η1ρ1 .

If κ satisfies (c+ 1)κ ≤ c(µ+ ν), then we have

(4.4) Gκ,1(t)� Q−γ(µ+ν−κ) ∑
h∈O∨/qρ1

1
Qκ

∣∣∣∣ ∑
u∈Nκ

cκ,ρ1(u, h)eµ+ν(−ut)
∣∣∣∣

uniformly.
For all m ∈ Nµ and k ∈ O∨/m, there is a unique ideal m dividing m, and proper addi-

tive character σ (mod m) such that σ(ξ) = e(〈ξk/m〉) for all ξ ∈ O; we write (k,m) ∼ σ.
Note that we have N(m)� Qµ. We rearrange our sum as∑

m∈Nµ

1
N(m)

∑
k∈O∨/m

∣∣∣∣f̂µ+ν

(
t− k

m
qµ+ν

)∣∣∣∣
=

∑
m ideal

N(m)�Qµ

∑
σ (mod m)∗

∑
m∈Nµ

1
N(m)

∑
k∈O∨/m
(m,k)∼σ

∣∣∣∣f̂µ+ν

(
t− k

m
qµ+ν

)∣∣∣∣.
For each m in this sum, we apply the decomposition (4.3) with the unique integer κm
for which Qκm−1 < N(m)2 ≤ Qκm . Hence 0 ≤ κm ≤ 2µ + C where C = 1 +

⌊2 logR∗F
log 2

⌋
.

Call SI,1, resp. SI,2 the contribution of Gκ,1, resp. Gκ,2. The inequality (4.4) holds if we
assume µ ≤ c

c+2ν − C
c+1
c+2 . We obtain, using Cauchy–Schwarz,

SI,1 � ΣVQ
µ+ν+ρ1/2 sup

t∈K

2µ+C∑
κ=0

(T1(κ)T2(κ))1/2

Qκ+γ(µ+ν−κ) ,

where

T1(κ) :=
∑

h∈O∨/qρ1

∑
Q(κ−1)/2<N(m)≤Qκ/2

∑
σ (mod m)∗

∣∣∣∣ ∑
u∈Nκ

cκ,ρ1(u, h)eµ+ν(−ut)σ(u)
∣∣∣∣2.

T2(κ) :=
∑

Q(κ−1)/2<N(m)≤Qκ/2

∑
σ (mod m)∗

( ∑
m∈Nµ

∑
k∈O∨/m
(m,k)∼σ

1
N(m)

)2
.

Using Lemma 4, we get T2(κ)� µ2d. On the other hand, by Lemma 7, we have

T1(κ)� κd(d−1) ∑
h∈O∨/qρ1

Qκ
∑
u∈Nκ

|cκ,ρ1(u, h)|2 = κd(d−1)Q2κ,

and we conclude
SI,1 � µd

2ΣVQ
µ+ν+ρ1/2−γ(ν−µ)

whenever µ ≤ c
c+2ν − C

c+1
c+2 and ρ1 ≤ ν − µ.
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Let dκ(u, v) := f(u + vqκ)f(vqκ) − fκ+ρ1(u + vqκ)fκ+ρ1(vqκ), which is of modulus at
most 2 and vanishes unless (u, v) ∈ Wκ,ρ1 . We have

|Gκ,2(t)| ≤ Q−µ−ν
∑

v∈Nµ+ν−κ

∣∣∣∣ ∑
u∈Nκ

dκ(u, v)eµ+ν(−ut)
∣∣∣∣,

from which we deduce, similarly as above,

SI,2 � ΣVQ
µ+ν sup

t

∑
m∈Nµ

1
N(m)

∑
k∈O∨/m

∣∣∣∣Gκ,2

(
t− k

m
qµ+ν

)∣∣∣∣
� µdΣV sup

t

2µ+C∑
κ=0

Q−κ/2
∑

m ideal
N(m)2≤Qκ

∑
σ (mod m)∗

∑
v∈Nµ+ν−κ

∣∣∣∣ ∑
u∈Nκ

dκ(u, v)eµ+ν(−ut)σ(u)
∣∣∣∣

� µΣVQ
µ+ν

2 sup
t

2µ+C∑
κ=0

Q−κ/2×

×
( ∑
v∈Nµ+ν−κ

∑
m ideal

N(m)≤Qκ

∑
σ (mod m)∗

∣∣∣∣ ∑
u∈Nκ

dκ(u, v)eµ+ν(−ut)σ(u)
∣∣∣∣2)1/2

� µd+1ΣVQ
µ+ν−η1ρ1/2.

We choose ρ1 = 2
1+η1

γ(ν − µ). This gives the bound (4.1) if µ ≤ c
c+2ν −C

c+1
c+2 . If C > 0,

then replacing ν by ν + bC(c+ 1)/cc + 1 and rescaling V accordingly yields our result
as stated. �

5. Type II sums

The following estimate is an analogue of Proposition 2 of [MR15], and is the core of
the argument. Given a sequence (αm)m∈O and p ≥ 1, we denote by ‖α‖p the usual `p
norm of (αm).

Proposition 3. Let f : O → C satisfy the Carry and Fourier properties (2.5)–(2.6), for
some c ≥ 20Θθ−1. Let 2 ≤ µ ≤ ν, (αm)m∈Nµ and (βn)n∈Nν be two sequences of complex
numbers, and ψ : K → R be a linear map. Then we have

(5.1) SII =
∑
m∈Nµ

∑
n∈Nν

αmβnf(mn)e(ψ(mn))� µO(1)‖α‖2‖β‖4Q
µ/2+3ν/4−δγ(b µ

20Θθ−1 c),

where
δ = cmin{η2

1η2, η1θ}
for some absolute constant c > 0. The implied constant depends at most on (q,D)
and ‖ · ‖.

We let V1 be given as in Lemma 6, and as before define V, V̂ : K → C by V = V1 ◦ ι−1

and V̂ = V̂1 ◦ (ι∨)−1, so that for any λ ∈ N, we have 1n∈Nλ ≤ V (n/qλ), and V̂ (ξ) = 0
for ‖ξ‖ > 1.

5.1. Preparatory lemma. As in [MR15], we will now use the carry property (2.5) in
the context of a multiplicative convolution mn = u1 + qκv, and so we wish to count the
pairs (m,n) yielding exceptional values of v. The following lemma is the analogue of
Lemmas 7 to 9 of [MR15].

Lemma 16.



DIGITS OF PRIMES IN PRINCIPAL NUMBER FIELDS 23

(1) For any finite set B ⊂ O and µ, µ′, ν ∈ N with µ′ ≥ µ, we have

card
{

(m,n) ∈ Nµ ×Nν ,∃u ∈ Nµ′ , v ∈ B,mn = u+ qµ
′
v
}
� µdQµ′ cardB.

(2) For µ, ν, ρ ∈ N with ρ ≤ 2ν, we have

card
{

(m,n) ∈ Nµ ×Nν ,∃k ∈ Nµ+ρ, f(mn+ k)f(mn) 6= fµ+2ρ(mn+ k)fµ+2ρ(mn)
}

� µdQµ+ν−η1ρ.

(3) Let µ, ν, µ0, µ1, µ2 ∈ N, and assume that µ0 ≤ µ1 ≤ µ ≤ µ2. For all a, b, c ∈ O,
the number E(a, b, c) of pairs (m,n) ∈ Nµ ×Nν such that

fµ2(mn+ am+ bn+ c)fµ2(qµ0rµ0,µ2(mn+ am+ bn+ c))
6= fµ1(mn+ am+ bn+ c)fµ1(qµ0rµ0,µ2(mn+ am+ bn+ c))

satisfies
E(a, b, c)� µ

Oq(1)
2 Qµ+ν−η1(µ1−µ0).

Proof. (1) Following [MR15, p.2603], the quantity we wish to bound is at most∑
m∈Nµ

∑
v∈B

∑
u∈O

u≡−qµ′v (mod m)

V
(
u

qµ′

)

= Qµ′
∑
m∈Nµ

1
N(m)

∑
v∈B

∑
k∈O∨/m

e
(〈

qµ
′
kv

m

〉) ∑
u∈O

V̂
(
qµ
′
(
ξ + k

m

))

� (cardB)Qµ′
∑
m∈Nµ

1
N(m) card

{
ξ ∈ O∨, ‖qµ′ξ/m‖ ≤ 1

}
.

The claimed bound then follows from the fact that the condition ‖qµ′ξ/m‖ ≤ 1
implies ‖ξ‖ � ‖m/qµ′‖ � 1 (since µ′ ≥ µ), and by Lemma 4 with m = (1) (so
that the condition (k,m) ∼ σ is equivalent to k = 0).

(2) Using point (1) and the carry property (2.5), the argument given in [MR15] can
be applied with no modifications.

(3) We use the carry property (2.5) with κ ← µ0, λ ← µ2 − µ0, ρ ← µ1 − µ0. We
deduce that for some set B ⊂ Nµ2−µ0 , with cardB � Qµ2−µ0−η1(µ1−µ0), we have

E(a, b, c) ≤
∑
`∈B

card{(m,n) ∈ Nµ ×Nν , rµ0,µ2(mn+ am+ bn+ c) = `}

≤
∑
`∈B

∑
m∈O

V
(
m

qµ

) ∑
n∈O

V
(
n

qν

)
ψµ2−µ0

(
mn+ am+ bn+ c

qµ2
− `

qµ2−µ0

)
.

We apply Lemma 9 with τ = 0 and λ = µ2 − µ0, and use the triangle inequality
along with the bound (3.3) with A = d+ 1, obtaining

E(a, b, c)� cardB
Qµ2−µ0

∑
ξ∈O∨

1
(1 + ‖q−µ2+µ0ξ‖)d+1

∑
n∈O

V
(
n

qν

)∣∣∣∣ ∑
m∈O

V
(
m

qµ

)
eµ2(ξm(n+ a))

∣∣∣∣.
The contribution of ξ = 0 is� (cardB)Qµ+ν−µ2+µ0 � Qµ+ν−η1(µ1−µ0). To bound
the remainder, we apply Lemma 13 with t = qµ2−µDK (this gives a slight loss,
which is why we isolated ξ = 0), getting∑

n∈O
V
(
n

qν

)∣∣∣∣ ∑
m∈O

V
(
m

qµ

)
eµ2(ξm(n+ a))

∣∣∣∣� Qν+µ2−µN(ξDk + (qµ)),
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and so, by Lemma 14 with t = qµ2−µ0DK ,

E(a, b, c)� Qµ+ν−η1(µ1−µ0) +Qν+µ2−µ−η1(µ1−µ0) ∑
ξ∈qµ0−µ2O∨

ξ 6=0

N(ξqµ2−µ0DK + (qµ))
(1 + ‖ξ‖)d+1

� Qµ+ν−η1(µ1−µ0) + τ(qµ2−µ0Qµ+ν−µ0−η1(µ1−µ0),

whence the claimed bound.
�

5.2. Van der Corput step. The rest of this section is devoted to the proof of Propo-
sition 3. Let ρ1, ρ2, ρ ∈ N, assume that

(5.2) ρ2 ≤ ρ1, ρ1 + ρ ≤ µ

2 ,

and define
µ0 = µ− 2(ρ1 + ρ), µ1 = µ− 2ρ1, µ2 = µ+ 2ρ2.

We recall the definition (3.1), and we define further, for all λ ∈ N,

(5.3) ∆∗λ = ∆λ r {0}.

The beginning of the argument mirrors closely pp. 2610-2613 of [MR15], using the van
der Corput inequality in the form of Lemma (3.1), twice. The computations being the
same, we restrict to mentionning the main steps: we obtain, using Lemma 5, Cauchy–
Schwarz’s inequality, and 16.(2),

|SII | ≤
∑
m∈O

V
(
m

qµ

)∣∣∣∣ ∑
n∈Nν

βnf(mn)e(ψ(mn))
∣∣∣∣

� ‖α‖2‖β‖2Q
µ/2+ν/2−ρ2/2

+ ‖α‖2Q
ν/2
(
Q−ρ2

∑
r∈∆∗ρ2

∑
n∈Nν

|βn+rβn|
∣∣∣∣ ∑
m∈O

V
(
m

qµ

)
f(mn+mr)f(mn)e(ψ(mr))

∣∣∣∣)1/2

� µd/4‖α‖2‖β‖4Q
µ/2+3ν/4−η1ρ2/4

+ ‖α‖2Q
ν/2
(
Q−ρ2

∑
r∈∆∗ρ2

∑
n∈Nν

|βn+rβn|
∣∣∣∣ ∑
m∈O

V
(
m

qµ

)
fµ2(mn+mr)fµ2(mn)e(ψ(mr))

∣∣∣∣)1/2

� µd/4‖α‖2‖β‖4Q
µ/2+3ν/4−η1ρ2/4 + ‖α‖2‖β‖4Q

µ/4+ν/2
(
Q−ρ2−2ρ1

∑
r∈∆∗ρ2
s∈∆∗2ρ1

|SII,1(r, s)|
)1/4

,

(5.4)

where

SII,1(r, s) =
∑

n,m∈O
V
(
n

qν

)
V
(
m+ qµ1s

qµ

)
V
(
m

qµ

)
fµ2((m+ qµ1s)(n+ r))fµ2(mn)×

× fµ2((m+ qµ1s)n)fµ2(m(n+ r))

=
∑

n,m∈O
V
(
n

qν

)
Vs

(
m

qµ

)
fµ1,µ2((m+ qµ1s)(n+ r))fµ1,µ2(mn)×

× fµ1,µ2((m+ qµ1s)n)fµ1,µ2(m(n+ r)).
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Here we let Vs(x) = V (x + sqµ1)V (x), and fµ1,µ2 = fµ2fµ1 . The part (3) of Lemma 16
allows to replace, in SII,1(r, s), each term fµ1,µ2(u) by g(u) = f(qµ0rµ0,µ2(u)). We deduce

(5.5) SII,1(r, s) = SII,2(r, s) +O(µO(1)
2 Qµ+ν−2η1ρ),

where, abbreviating u0 = rµ0,µ2(mn), u1 = rµ0,µ2(mn+mr),

SII,2(r, s) =
∑
m∈O

Vs

(
m

qµ

) ∑
n∈O

V
(
n

qν

)
g(u1+qµ1−µ0sn+qµ1−µ0sr)g(u1)g(u0+qµ1−µ0sn)g(u0)

Let σ = µ2 − µ0. The definition of u0 and u1 is inserted as

SII,2(r, s) =
∑
m∈O

∑
n∈O

∑
u0,u1∈O/qσ

Vs

(
m

qµ

)
V
(
n

qν

)
ψσ

(
mn

qµ2
− u0

qσ

)
ψσ

(
mn+mr

qµ2
− u1

qσ

)
×

× g(u1 + qµ1−µ0sn+ qµ1−µ0sr)g(u1)g(u0 + qµ1−µ0sn)g(u0).

Let τ ∈ N be a parameter. We may proceed as in Lemma 2 of [MR15] to deduce
(5.6) |SII,2(r, s)| ≤ |S4(r, s)|+ E4(r, 0) + E4(0, r) + E ′4(r),
where

S4(r, s) =
∑
m∈O

∑
n∈O

∑
u0,u1∈O/qσ

Vs

(
m

qµ

)
V
(
n

qν

)
Aσ,τ

(
mn

qµ2
− u0

qσ

)
Aσ,τ

(
mn+mr

qµ2
− u1

qσ

)
×

× g(u1 + qµ1−µ0sn+ qµ1−µ0sr)g(u1)g(u0 + qµ1−µ0sn)g(u0),

E4(r, r′) =
∑
m∈O

∑
n∈O

∑
u0∈O/qσ

Vs

(
m

qµ

)
V
(
n

qν

)
Bσ,τ

(
mn+mr

qµ2
−u0

qσ

) ∑
u1∈O/qσ

ψσ

(
mn+mr′

qµ2
−u1

qσ

)
,

E ′4(r) =
∑
m∈O

∑
n∈O

∑
u0∈O/qσ

Vs

(
m

qµ

)
V
(
n

qν

)
Bσ,τ

(
mn

qµ2
− u0

qσ

) ∑
u1∈O/qσ

Bσ,τ

(
mn+mr

qµ2
− u1

qσ

)
.

At this point, we are in a situation analogous to eq. (64) of [MR15].

5.3. Bound on E4(r, r′). In E4(r, r′), the u1-sum evaluates to 1. Therefore,

E4(r, r′) =
∑
m∈O

∑
n∈O

Vs

(
m

qµ

)
V
(
n

qν

) ∑
u0∈O/qσ

Bσ,τ

(
mn+mr

qµ2
− u

qσ

)
.

By Lemme 9,

E4(r, r′) =
∑
h∈O∨

bσ,τ (h)
∑
m∈O

∑
n∈O

Vs

(
m

qµ

)
V
(
n

qν

) ∑
u0∈O/qσ

eµ2(h(mn+mr))eσ(−hu0)

= Qσ
∑
h∈O∨

bσ,τ (hqσ)
∑
m∈O

∑
n∈O

Vs

(
m

qµ

)
V
(
n

qν

)
eµ0(h(mn+mr))

by orthogonality. We apply Lemma 13 with t = DK , using the fact that Vs � V , getting
E4(r, r′)� Qµ+ν+σ−µ0

∑
h∈O∨

|bσ,τ (hqσ)|N(hDK + (qµ0))

� Qµ+ν−µ0−η2τ
∑
h∈O∨

N(hDK + (qµ0))
(1 + ‖h/qτ‖)d+1 .

Here we may apply Lemma 14 after changing h to qτh, with t = qτDK . Along with
partial summation, we obtain

(5.7) E4(r, r′)� µO(1)Qµ+ν
{
Q−η2τ +Q(1−η2)τ+2(ρ+ρ1)−µ

}
.
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5.4. Bound on E ′4(r). Similarly as before, we use Lemma 9 to expand Bσ,τ , and we
execute the uj-sums, which selects frequencies which are multiples of qσ. We get

E ′4(r) = Q2σ ∑
h0,h1∈O∨

bσ,τ (h0q
σ)bσ,τ (h1q

σ)
∑
m∈O

∑
n∈O

Vs

(
m

qµ

)
V
(
n

qν

)
eµ0(mn(h0+h1)+mrh1).

The contribution of the diagonal contribution h0 + h1 = 0 is bounded by

� Q2σ+µ+ν ∑
h∈O∨

|bσ,τ (hqσ)|2 � Qµ+ν−η2τ .

Therefore, using again Vs � V , it suffices to obtain a non-trivial bound for

T4 := Q2σ ∑
h0,h1∈O∨
h0+h1 6=0

|bσ,τ (h0q
σ)bσ,τ (h1q

σ)|
∑
m∈O

V
(
m

qµ

)∣∣∣∣ ∑
n∈O

V
(
n

qν

)
eµ0(mn(h0 + h1))

∣∣∣∣.
The (m,n)-sums are bounded using Lemma 13 with t = DK , which yields

T4 � Qµ+ν+2σ−µ0
∑

h0,h1∈O∨
h0+h1 6=0

|bσ,τ (h0q
σ)bσ,τ (h1q

σ)|N((h0 + h1)DK + (qµ0))

� Qµ+ν−µ0
∑

h0,h1∈O∨
h0+h1 6=0

N((h0 + h1)DK + (qµ0))
(1 + ‖h0/qτ‖)2d+1(1 + ‖h1/qτ‖)d+1

� µO(1)Qµ+ν+2τ−µ0

by Lemma 15 and partial summation. We conclude that

(5.8) E ′4(r)� Qµ+ν
{
Q−η2τ + µO(1)Q2τ−µ0

}
.

5.5. Bound on S4. In S4(r, s), we expand Aσ,τ in Fourier series, and we sort according
to the values of u3 = u1 + qµ1−µ0s(n + r) (mod qσ) and u2 = u0 + qµ1−µ0sn (mod qσ).
We get

(5.9) S4(r, s) = Q−2σ ∑
h=(h0,h1,h2,h3)

h0,h1∈O∨
h2,h3∈O∨/qσ

aσ,τ (h0)aσ,τ (h1)eµ2−µ1(h3sr)U(h)W (h),

where

U(h) :=
∑

m,n∈O
Vs

(
m

qµ

)
V
(
n

qν

)
eµ2(mn(h0 + h1) +mrh1 + qµ1ns(h2 + h3)),

W (h) :=
∑

u0,u1,u2,u3
uj∈O/qσ

g(u0)g(u1)g(u2)g(u3)eσ(u0(h2 − h0) + u1(h3 − h1)− u2h2 − u3h3).

With the notation

(5.10) ĝ(h) := Q−σ
∑

u∈O/qσ
g(u)eσ(−uh),

we have W (h) = Q4σĝ(h0 − h2)ĝ(h3 − h1)ĝ(−h2)ĝ(h3).
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5.5.1. Off-diagonal terms. First we consider the contribution S ′′4 (r, s) to the sum (5.9)
of those indices which satisfy h0 +h1 6= 0. By Lemma 13 with q ← qµ, α← q−2ρ(h0 +h1)
and t← (q2ρ2), we obtain

U(h)� Qν+2ρ2N((h0 + h1)DK + (qµ)).
On the other hand, arguing as in p. 2621 of [MR15] by Cauchy-Schwarz and Parseval’s
identity, for all h0, h1 ∈ O∨ we have∑

h2,h3∈O∨/qσ
|W (h)| ≤ Q4σ.

Therefore, we obtain
S ′′4 (r, s)� Qν+2σ+2ρ2

∑
h0,h1∈O∨
h0+h1 6=0

|aσ,τ (h0)aσ,τ (h1)|N((h0 + h1)DK + (qµ))

� Qν+2ρ2
∑

h0,h1∈O∨
h0+h1 6=0

N((h0 + h1)DK + (qµ))
((1 + ‖ h0

qσ+τ ‖)(1 + ‖ h1
qσ+τ ‖))2d+1

= Qν+2ρ2
∑

h0,h1∈(qσ+τDK)−1

h0+h1 6=0

N((h0 + h1)qσ+τDK + (qµ))
((1 + ‖h0‖)(1 + ‖h1‖))2d+1

� µO(1)Qν+2ρ2+2(σ+τ)−µ(5.11)
by Lemma 13 with t = qσ+τDK and partial summation.

5.5.2. Diagonal terms. Note that Aσ,τ (ξ) ∈ R, so that aσ,τ (−ξ) = aσ,τ (ξ). Let S ′4(r, s)
denote the contribution to S4(r, s) coming from indices h0 + h1 = 0, so that
(5.12) S4(r, s) = S ′4(r, s) + S ′′4 (r, s).
We define

U1(h; r, s) :=
∑
m∈O

Vs

(
m

qµ

)
eµ2(−mrh), U2(h′) :=

∑
n∈O

V
(
n

qν

)
eµ2−µ1(nsh′),

so that
S ′4(r, s) = Q2σ ∑

h∈O∨
h2,h3∈O∨/qσ

|aσ,τ (h)|2eµ2−µ1(h3sr)U1(h; r, s)U2(h2 + h3)×

× ĝ(h− h2)ĝ(h3 + h)ĝ(−h2)ĝ(h3)
and consequently
|S ′4(r, s)| ≤ Q2σ ∑

h∈O∨
h′∈O∨/qσ

|aσ,τ (h)|2|U1(h; r, s)||U2(h′)|×

×
∑

h3∈O∨/qσ
|ĝ(h− h′ + h3)ĝ(h3 + h)ĝ(−h′ + h3)ĝ(h3)|.

Note that by Cauchy–Schwarz,∑
h3∈O∨/qσ

|ĝ(h− h′ + h3)ĝ(h3 + h)ĝ(−h′ + h3)ĝ(h3)| ≤ W (h),

where
W (h) =

∑
h3∈O∨/qσ

|ĝ(h3 + h)ĝ(h3)|2.
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We note for further reference that, using |ĝ| ≤ 1 and Parseval’s identity,
(5.13) |W (h)| ≤ 1.
Assume
(5.14) ν ≥ µ2 − µ1 = 2(ρ1 + ρ2).
We have∑
h′∈O∨/qσ

|U2(h′)| ≤ Qν
∑

h′∈O∨/qσ

∑
ξ∈O∨

|V̂ (qν−2(ρ1+ρ2)(sh′ + q2(ρ1+ρ2)ξ))|

= Qν+2ρ′ ∑
ξ∈O∨

|V̂ (qν−2(ρ1+ρ2)ξ)|
∑

h′∈O∨/q2(ρ1+ρ2)

1(sh′ − ξ ∈ q2(ρ1+ρ2)O∨).

By Lemma 6, the only ξ contributing to the sum is ξ = 0. We bound the h′-sum as
in Lemma 12: the condition sh′ ∈ q2(ρ1+ρ2)O∨ means h′ ∈ q2(ρ1+ρ2)d−1O∨, where d =
(s) + (q2(ρ1+ρ2)). Since |q2(ρ1+ρ2)d−1O∨/(q2(ρ1+ρ2))| = |O/dDK | = N(dDK) � N(d), we
find ∑

h′∈O∨/qσ
|U2(h′)| ≤ Qν+2ρ′N((s) + (q2(ρ1+ρ2))),

and so
S ′4(r, s)� Qν+2σ+2ρ′N((s) + (q2(ρ1+ρ2)))

∑
h∈O∨

|aσ,τ (h)|2|U1(h; r, s)|W (h),

where
We now execute the sum over s ∈ ∆∗2ρ1 . Define

U1(h; r) = sup
s∈∆∗2ρ1

|U1(h; r, s)| .

Then, with C = 2R+
F (where we recall the definition (2.3)), we have

1
Q2ρ1

∑
s∈∆∗2ρ1

N((s) + (q2(ρ1+ρ2))) ≤ 1
Q2ρ1

∑
d|(q2(ρ1+ρ2))

N(d) card
{
s ∈ q−2ρ1d, 0 < ‖s‖ ≤ C

}

� τ(q2(ρ1+ρ2))

by Lemma 11, and the last quantity is O(ρO(1)
1 ). We deduce

1
Q2ρ1

∑
s∈∆∗2ρ1

|S ′4(r, s)| � µO(1)Qν+2σ+2ρ′ ∑
h∈O∨

|aσ,τ (h)|2U1(h; r)W (h).

Define τ = ρ2(2 + θ−1), τ ′ := τ + σ + bµεc for some parameter ε ∈ (0, 1] to be chosen
later, and impose the condition

Θτ ′ ≤ 1
2θµ.

We will prove the three bounds∑
h∈O∨
‖h/qτ ′‖>1

|aσ,τ (h)|2U1(h; r)W (h)�ε Q
−10µ,(5.15)

1
Qρ2

∑
r∈∆∗ρ2

U1(h; r)�A µ
O(1)

(
Qµ−Aθρ2 +Q−10µ

)
, if ‖ h

qτ ′
‖ ≤ 1, ‖ h

qτ
‖ > 1,(5.16)

∑
h∈O∨
‖h/qτ‖≤1

W (h)� Q2ρ′−η′′γ(σ−τ) +Q2ρ′−η1τ .(5.17)
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Along with the bounds (5.13) and |aσ,τ (h)| � Q−σ, this will yield

(5.18)

1
Qρ1+2ρ2

∑
r∈∆∗ρ2
s∈∆∗2ρ1

|S ′4(r, s)|

�A µ
O(A)Qµ+ν+2ρ′

{
Q−10µ +Qτ ′−Aθρ2 +Q2ρ′−η′′γ(σ−τ) +Q2ρ′−η1τ

}
.

5.5.3. Large h. First, for ‖h/qτ ′‖ > 1, we have

‖q−σ−τh‖ � ‖h/qτ ′‖Qθµεµ1−d

by Lemma 1 and our definition (2.8). By using Lemma 9, we have for any A ≥ 1,

|aσ,τ (h)|2 �A
1

Q2σ+Aθµε‖h/qτ ′‖A
.

We deduce, by (5.13),∑
h∈O∨
‖h/qτ ′‖>1

|aσ,τ (h)|2U1(h; r)W (h)�A Q
−2σ−Aθµε ∑

h∈q−τ ′O∨
(1 + ‖h‖)−d−1

�ε Q
−10µ

by assuming ρ ≤ µ and by picking A large enough in terms of ε. This proves (5.15).

5.5.4. Middle-sized h. Assume that ‖h/qτ ′‖ ≤ 1 and ‖h/qτ‖ > 1. For all r ∈ ∆∗ρ2 , we
have ∥∥∥∥ rhq2ρ2

∥∥∥∥� ‖h/qτ‖‖q2ρ2−τr−1‖−1

by the triangle inequality, while

‖q2ρ2−τr−1‖ � ‖qρ2−τ‖Qρ2N(r)−1‖r/qρ2‖d−1 � ‖qρ2−τ‖Qρ2 � ρ1−d
2 Q−θρ2 ,

by Lemma 1 and since r ∈ ∆ρ2 ⊂ O. We conclude that for h ∈ Nτ ′rNτ , for all r ∈ ∆∗ρ2 ,
we have

(5.19) ‖q−2ρ2rh‖ � ρ
O(1)
2 Qθρ2 .

On the other hand, we have
1
Qρ2

∑
r∈∆∗ρ2

U1(h; r) = 1
Qρ

∑
r∈∆∗ρ2

sup
s∈∆∗2ρ1

∣∣∣∣ ∑
m∈O

Vs

(
m

qµ

)
eµ2(mrh)

∣∣∣∣
= Qµ−ρ ∑

r∈∆∗ρ2

sup
s∈∆∗2ρ1

∣∣∣∣ ∑
ξ∈O∨

V̂s

(
qµξ + rh

q2ρ2

)∣∣∣∣.
Here have ‖ rh

q2ρ2 ‖ � ‖h‖ ≤ QΘτ ′ , while for ξ 6= 0, ‖qµξ‖ � µO(1)Qθµ. Moreover,
since Vs(x) = V (x)V (x+ qµ1−µs), the derivatives of Vs are bounded uniformly in s, and
so
∣∣∣V̂s(x)

∣∣∣�A (1 + ‖x‖)−A for all x ∈ K and A ≥ 0. Assuming

(5.20) Θτ ′ ≤ 1
2θµ,

we obtain that for µ large enough, either ξ = 0 or∥∥∥∥qµξ + rh

q2ρ2

∥∥∥∥ ≥ ‖qµξ‖2 � µO(1)Qθµ‖ξ‖.
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Summarizing the above, we conclude that for ‖h/qτ ′‖ ≤ 1 and ‖h/qτ‖ > 1,
1
Qρ2

∑
r∈∆ρ2

U1(h; r)�A Q
µµO(A)

(
Q−Aθρ2 +Q−Aθµ

)
.

for any fixed A ≥ 0. This yields (5.16).

5.5.5. Small h. Finally, we focus on the case ‖h/qτ‖ ≤ 1. In this range, we use the
estimate |aγ,τ (h)| � Q−σ from Lemma 9, and the trivial bound U1(h; r)� Qµ. We get∑

h∈O∨
h∈Nτ

|aσ,τ (h)|2U1(h; r)W (h)� Qµ−2σ ∑
h∈O∨
‖h/qτ‖≤1

W (h).

Assuming that
µ0 ≤ c(σ − τ),

Lemma 1 applies, and yields∑
h∈O∨
‖h/qτ‖≤1

W (h)� Q2ρ′
(
Q−η

′′γ(σ−τ) +Q−η1τ
) ∑
h3∈O∨/qρ3

|ĝ(h3)|2 .

The sum over h3 evaluates to 1 by Parseval’s identity, and we obtain (5.17).

5.6. Optimization. Grouping successively the bounds (5.11), (5.12), (5.18), and (5.4)–
(5.8) yields

SII =
∑
m∈Nµ

∑
n∈Nν

αmβnf(mn)�ε µ
O(1)‖α‖2‖β‖4Q

µ/2+3ν/4−δ/4,

where
δ = min

{
η1ρ2, 2η1ρ

′, η2τ, µ− 2(τ + ρ′ + ρ1), η′′γ(σ − τ)− 4ρ′, η1τ − 4ρ′
}
,

with τ = (2 + θ−1)ρ2 and τ ′ = τ + 2(ρ′ + ρ1 + ρ2) + bµεc, under the conditions:
ρ2 ≤ ρ1 ≤ µ, 2(ρ′ + ρ1 + ρ2) ≤ µ, µ+ cθ−1ρ2 ≤ 2(c+ 1)ρ′ + (2c+ 1)ρ1, Θτ ′ ≤ 1

2θµ.

Let K = 20Θθ−1, so that by hypothesis c ≥ K. Then with the choice

ρ1 = µ

K
+O(1), ρ′ = η′′

8 γ
(⌊

µ

K

⌋)
+O(1), ρ2 = θµ

K
+O(1),

the claimed result follows.

6. Sums over prime elements: proof of Theorem 3

In this section we assume that O is principal. Our goal is to use Propositions 2 and 3
to estimate mean values over prime elements of O, and prove Theorem 3.

6.1. Combinatorial identity. In this section we express the characteristic function of
prime elements into convolutions for which Propositions 2 and 3 apply. The methods
that have been developed to perform this step has a long history, since Vinogradov’s
work [Vin37]. We refer to [Ram13] for an account and references. In [MR10, MR15],
this rôle is played by the combinatorial identity of Vaughan [Vau80]; see [Hin88] for a
number field analogue.

One advantage of Vaughan’s identity as it is cast in [MR10] is the absence of divisor
functions in the upper-bound. One inconvenient, as with all methods which pass through
the van Mangoldt function, is the necessity to use partial summation to detect the size
of logN(n). Here we take the opportunity to proceed along a slightly different argument
(see [DT18, Theorem 3.3]), with the benefit that we avoid completely partial summation.
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For a non-zero ideal n ⊂ O, let
P+(n) = max

p|n
N(p), P−(n) = min

p|n
N(p),

where p denotes a prime ideal, and by convention P+((1)) = 1 and P−((1)) = +∞.
Lemma 17. Let X ≥ 2, and (g(n))n 6=0 be complex numbers with g(n) = 0 if N(n) > X.
Then∣∣∣∣∑

p

g(p)
∣∣∣∣� ‖g‖∞X 1

2 +
∑

N(m)≤X
1
4

∣∣∣∣∑
n

g(mn)
∣∣∣∣+ (logX) sup

(α,β)

∣∣∣∣ ∑
m

∑
n

X
1
4<N(m)≤X

3
4

αmβng(mn)
∣∣∣∣,

where the supremum is over all sequences (αm), (βn) satisfying |αm| ≤ 1 and |βn| ≤ τ(n).

Proof. Discarding those prime ideals of norm at most X 1
2 , the sum we wish to evaluate

is
O(‖g‖∞X

1
2 ) +

∑
n

P−(n)>X
1
2

g(n).

The condition is detected by Möbius inversion,∑
n

P−(n)>X
1
2

g(n) =
∑

P+(m)≤X
1
2

µ(m)
∑
n

g(mn).

The contribution of thosem withN(m) ≤ X
1
4 yields the first term. Suppose thatN(m) >

X
1
4 and m squarefree. Let ≺ be any ordering of the prime ideals which respects the norm,

i.e. N(p1) < N(p2) implies p1 ≺ p2. Enumerating the prime ideals with respect to this
ordering induces a bijection φ : {p prime} → N>0, satisfying φ(p) � N(p). Let p+(n)
(resp. p−(n)) denote the maximal (resp. minimal) prime divisor of n 6= (1) with respect
to φ. Write

m = p1 · · · pk,
where φ(pj) < φ(pj+1). Then there is a minimal index jm for which, letting m1 =
p1 · · · pjm , we have N(m1) > X

1
4 . The ideal m1 is characterized by the conditions

m1 | m, X
1
4 < m1 ≤ X

1
4P+(m1), φ(p+(m1)) < φ(p−(m/m1)).

We deduce∑
N(m)>X

1
4

P+(m)≤X
1
2

µ(m)
∑
n

g(mn) =
∑∑

X
1
4<N(m1)≤X

1
4 P+(m1)

P+(m2)≤X
1
2

φ(p+(m1))<φ(p−(m2))

∑
n

µ(m1)µ(m2)g(m1m2n).

The condition φ(p+(m1)) < φ(p−(m2)) is detected by means of Lemma 13.11 of [IK04],
so that setting

αm(t) = φ(p+(m))itµ(m),
βn(t) =

∑
d|n,d6=(1)
P+(d)≤X

1
2

φ(p−(d))−itµ(d),

we have∣∣∣∣ ∑
X

1
4<N(m)

P+(m)≤X
1
2

µ(m)
∑
n

g(mn)
∣∣∣∣� (logX) sup

t∈R

∣∣∣∣ ∑
m

∑
n

P+(m)≤X
1
2

X
1
4<N(m)≤X

1
4 P+(m)

αm(t)βn(t)g(mn)
∣∣∣∣,
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as claimed. �

6.2. Quotient by units. When translating sums over ideals (coming from the combi-
natorial identities) to sums over O, we will use the following partition of unity, inspired
from [Tót00, Lemma 4.2], to account for the quotient by units.

Lemma 18. There exists a smooth function Φ0 : P (Rd)→ [0, 1] such that, letting Φ =
Φ0 ◦ ι−1, we have
(6.1)

∑
ε∈O∗

Φ(nε) = 1 (n ∈ O r {0}),

and for any given n, there are only finitely many non-zero terms in the sum. Moreover,
for all x ∈ K∗ with Φ(x) 6= 0, and all π ∈ GK, we have |xπ| � N(x)1/d with an implied
constant depending only on K.
In particular, if O is principal, then for any function g : {n 6= 0} → C of finite support

and any ε ∈ O∗, we have
(6.2)

∑
n 6=0

g(n) =
∑

n∈Or{0}
Φ(nε)g((n)).

Proof. Let r be the rank of the free part of O∗, and ε1, . . . , εr be any fixed basis [Neu99,
Theorem I.7.3], so

O∗ = {ωεn1
1 · · · εnrr , ω ∈ Ω, nj ∈ Z}

where Ω are the roots of unity in O. As in [MV07, p.55], we let Ψ : Rd → Rr be the
map defined by Ψ(x) = (ψ1(x), . . . , ψr(x)), where

log(|ι(x)π/N(ι(x))|) =
r∑
j=1

ψj(x) log
∣∣∣επj ∣∣∣

for all π ∈ GK . Then for λ ∈ R∗ and 1 ≤ j ≤ r, ψj is smooth and ψj(λx) = ψj(x). Let
a smooth function w : R→ [0, 1] with suppw ⊂ [−1, 1] be a partition of unity as
(6.3)

∑
n∈Z

w(x+ n) = 1 (x ∈ R),

and define, for all x ∈ K∗, Φ(x) := w(ψ1(x)) · · ·w(ψr(x)). Then the function Φ is
smooth, well-defined on P (Rd), and the property (6.1) follows by r applications of (6.3).

To prove (6.2), let n = (n0) 6= 0 be an integral ideal, with n0 ∈ O. Then∑
n∈O

(n)=n

Φ(nε) =
∑
ε′∈O∗

Φ(n0εε
′) = 1

by (6.1). �

6.3. Proof of Theorem 3.

6.3.1. Preparations. We borrow the notation χτ from Lemma 9 (see (3.6)). Let W :
R+ → R+ be a smooth function defining a partition of unity along powers of Q in the
sense that for all x ≥ 0,

W (x) ≤ 1[1/(2Q),1](x),
∑
k∈Z

W (Q−kx) = 1.

For all κ ∈ N, let

gλ(n) =
∑
n∈Nλ
(n)=n

f(n), Sλ(κ) =
∑
p

W
(
N(p)
Qκ

)
gλ(p).
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Note that by Lemma 2, we have
(6.4) |gλ(n)| � λd−1.

Next we smooth out the condition n ∈ Nλ as in Lemma 9. Let τ ∈ N be a parameter,
and for all X ≥ 1,

gλ,τ (n) =
∑
n∈O

(n)=n

χτ ◦ ι−1
(
n

qλ

)
f(n), Sλ,τ (κ) =

∑
p

W
(
N(p)
Qκ

)
gλ,τ (p).

The function gλ also satisfies the trivial bound (6.4), so that
Sλ,τ (κ)� λd−1Qκ.

Borrowing temporarily the notations φτ and V2 from Lemma 9, we have

|Sλ(κ)− Sλ,τ (κ)| ≤
∑
n∈O

(1V2 ∗ φτ )
(
ι−1
(
n

qλ

))
� Qλ−η2τ

by Poisson summation, the bound (3.7) and Lemma 11. Finally, let κ0 ∈ [λ/2, λ] ∩ N.
We use the trivial bound for κ ≤ κ0. Since g(n) 6= 0 implies 1 ≤ N(n)� Qλ, we deduce∑

n∈Nλ
n prime

f(n)� λQλ−η2τ + λdQκ0 + λ sup
κ0≤κ≤λ+C

|Sλ,τ (κ)| ,

for some C depending on (q,D) at most. Using Lemma 17, we find
(6.5)

∑
n∈Nλ
n prime

f(n)� λQλ−η2τ + λdQκ0 + λ sup
κ0≤κ≤λ+C

( ∣∣∣SIλ,τ (κ)
∣∣∣+ sup

α,β

∣∣∣SII,α,βλ,τ (κ)
∣∣∣ ),

where

SIλ,τ (κ) =
∑

N(m)≤Qκ/4

∣∣∣∣∑
n

W
(
N(mn)
Qκ

)
gλ,τ (mn)

∣∣∣∣(6.6)

SII,α,βλ,τ (κ) =
∑
m

∑
n

Qκ/4<N(m)≤Q3κ/4

αmβnW
(
N(mn)
Qκ

)
gλ,τ (mn)(6.7)

Before we proceed we require the following estimate. Define functions on Rd, resp. K,
by

V0(x) = W (Qλ−κN(ι(x)))χτ (x), V = V0 ◦ ι−1.

Lemma 19. We have ∑
ξ∈Zd

∣∣∣V̂0(ξ)
∣∣∣+ ˆ

Rd

∣∣∣V̂0(ξ)
∣∣∣ dξ � Qτ+λ−κ,

with an implied constant depending only on (q,D).

Proof. We introduce a smooth, compactly supported function W0, majorizing the indi-
cator function of the support of χ0, and redundant in the sense that χτ = χτW0. We
then have, for all ξ ∈ Rd,

V̂ (ξ) =
ˆ
Rd
χ̂τ (ξ′)Ŵ1(ξ − ξ′)dξ′,

with W1(x) = W (N ◦ ι(qλ−κx))W0(x). By (3.6) and (3.8), we have
(6.8) |χ̂τ (ξ)| �A (1 + ‖q−τξ‖)−A
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for all A ≥ 0. On the other hand, we have

Ŵ1(ξ) = Qκ−λ
ˆ
Rd
W (N ◦ ι(x))W0(qκ−λx)e(

〈
x, q̃κ−λξ

〉
)dx.

By partial differentiation, since ‖q̃κ−λ‖ � 1, we obtain for all A ≥ 0

(6.9)
∣∣∣Ŵ1(ξ)

∣∣∣�A (1 + ‖q̃κ−λξ‖)−A.

The bound for
´
Rd

∣∣∣V̂0(ξ)
∣∣∣ dξ immediately follows by multiplying the integrals of (6.8)

and (6.9) with respect to ξ. The bound for ∑ξ∈Zd
∣∣∣V̂0(ξ)

∣∣∣ follows by the upper bound∑
ξ∈Zd

(1 + ‖q̃−τ (ξ + ξ0)‖)−d−1 � Qτ ,

valid for all ξ0 ∈ Rd: indeed, by translating we may ensure that q̃−τξ0 ∈ F , and the
resulting sum is estimated by Lemma 11.

�

6.3.2. Type I sums. For each m in the sum (6.6), we have
∑
n

W
(
N(mn)
Qκ

)
gλ,τ (mn) =

∑
n∈O
m|(n)

V
(
n

qλ

)
f(n).

Using Lemma 18 on the m-sum, we deduce, for any ε ∈ O∗,

(6.10) SIλ,τ (κ) =
∑
m∈O

0<N(m)≤Qκ/4

Φ(mε)
∣∣∣∣ ∑
n∈O

V
(
mn

qλ

)
f(mn)

∣∣∣∣.
Let µ ≥ bκ/4c + 1. We pick ε so that |(qµε)π| � Qµ/d. This ensures that for any m in
the sum, we have |m/qµ| � 1, so that for some choice µ = κ/4 +O(1), we have m ∈ Nµ.
We deduce

SIλ,τ (κ) ≤
∑
m∈Nµ

∣∣∣∣ ∑
n∈O

V
(
mn

qλ

)
f(mn)

∣∣∣∣.
Note that supp(V ) ⊂ suppχ0, which depends only on (q,D). Apply Proposition 2 along
with Lemma 19 yields

(6.11) SIλ,τ (κ)� λd+1Q
λ− η1

1+η1
γ(λ/3)+τ+λ−κ

.

6.3.3. Type II sums. Splitting the interval [Qκ/4, Q3κ/4], we have

sup
(α,β)

∣∣∣SII,α,βλ,τ (κ)
∣∣∣ ≤ κ sup

µ∈N
κ
4≤µ≤

3κ
4

sup
(α,β)

∣∣∣∣ ∑
m

∑
n

Qµ<N(m)≤Qµ+1

αmβnW
(
N(mn)
Qκ

)
gλ,τ (mn)

∣∣∣∣.
Let µ, α, β satisfy the conditions in the suprema. By arguing as in (6.10), we have

∑
m

∑
n

Qµ<N(m)≤Qµ+1

αmβnW
(
N(mn)
Qκ

)
gλ,τ (mn) =

∑∑
m,n∈O

Qµ<N(m)≤Qµ+1

αmΦ(mε)βnV
(
mn

qλ

)
f(mn)

for all ε ∈ O∗. Here we abbreviated αm := α(m) and βn := β(n). We pick ε so
that |(m/qµ)π| � 1. Since also ‖mn/qλ‖ � 1 by the support of V , we deduce that
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for some µ′ = µ + O(1) and ν with µ′ + ν = λ + O(1), we have m ∈ Nµ′ and n ∈ Nν .
Writing, for all x ∈ K,

V (x) =
ˆ
Rd
V̂0(ξ)e(

〈
ξ, ι−1(x)

〉
)dξ,

we apply Proposition 3, exchanging the roles of µ and ν if µ′ > ν, and setting ψ(x) =〈
ξ, ι−1(x/qλ)

〉
. By Lemma 19, and the divisor-bound∑

n∈Nν
τ((n))4 �

∑
N(n)�Qν

τ(n)4 ∑
n∈n

‖n/qν‖�1

1� νO(1)Qν ,

we deduce∣∣∣∣ ∑∑
m,n∈O

Qµ<N(m)≤Qµ+1

αmΦ(mε)βnV
(
mn

qλ

)
f(mn)

∣∣∣∣� λO(1)Qλ−δγ(b θλ
100Θc)+τ+λ−κ,

where δ � min{η2
1η2, η1θ}. We conclude that

(6.12) sup
(α,β)

∣∣∣SII,α,βλ,τ (κ)
∣∣∣� λO(1)Qλ−δγ(b θλ

100Θc)+τ+λ−κ

6.3.4. Conclusion. The claimed bound follows upon grouping the estimates (6.5), (6.11)
and (6.12), and optimizing τ and κ0 by

λ− κ0 = δ

2 + η−1
2
γ
(⌊

θλ

100Θ

⌋)
+O(1), τ = η−1

2 (λ− κ0) +O(1).

7. Two arithmetic applications : sums of digits and Rudin-Shapiro
sequences

In this section we prove Theorems 1 and 2. In view of Theorem 3, it will suffice to
prove that the functions sq,D(n) and rq,D(n) defined in (1.1)–(1.3) satisfy the Carry and
Fourier properties (2.5)–(2.6).

7.1. Sums of digits in O. We let∑d
j=0 cjX

j be the minimal polynomial of q (with cd =
1), and also

µq =
d∑
j=0

cj ∈ Z, Mq :=
d∑
j=0
|cj|2 .

Lemma 20. Let α ∈ K. The function given by f(n) = e(〈αsq,D(n)〉) satisfies the Carry
property (2.5) with η1 = η2, and the Fourier property (2.6) with a function γ satisfying,
for some δQ > 0 depending on Q only,

(7.1) γ(λ) ≥ Cq,D,αλ+O(1), Cq,D,α = δQ
Mq(d+ 1)

∑
b∈D
‖〈µqαb〉‖2

R/Z.

Proof. We consider first the Carry property. If (2.5) holds, then there is a carry prop-
agation in the sum m + n, where m = u1 + vqκ and n = u2. Then, in the notations of
Lemma 8, the exists some b ∈ Bst such that in the addition v + b, the carry propagates
beyond the ρ-th digit. By Lemma 8 and finiteness of Bst, there are at most O(2λ−η2ρ)
possibilities for v.
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To establish the Fourier property, we argue as in Lemme 20 of [MR10], and Lemma 6.3
of [DRS08]. We let

φ(t) :=

∣∣∣∣∣∣
∑
b∈D

e(〈(α + t)b〉)

∣∣∣∣∣∣ .
Using that 0 ∈ D and Taylor expansion near the origin, we obtain the existence of $Q >
0, depending only on Q, such that∣∣∣∣∣∣

∑
b∈D

e(θb)

∣∣∣∣∣∣ ≤ Q1−$Q
∑

b∈D ‖θb‖
2

for all tuples of real numbers (θb)b∈D with θ0 = 0. We deduce, for any fixed t ∈ K,

(7.2)
∣∣∣φ(t)φ(tq) · · ·φ(tqd)

∣∣∣ ≤ Qd+1−$Q
∑

b∈D

∑d

j=0 ‖〈(α+tqd)b〉‖2

On the other hand, by the triangle and the Cauchy–Schwarz inequalities,

‖〈µqαb〉‖2
R/Z ≤

( d∑
j=0
|cj| ‖

〈
(α + tqj)b

〉
‖R/Z

)2

≤Mq

d∑
j=0
‖
〈
(α + tqj)b

〉
‖2
R/Z.

Summing this inequality over b and inserting in (7.2) yields
sup
t∈K
|φ(t)φ(tq) · · ·φ(tqn)| ≤ Q(n+1)(1−Cq,D,α),

where Cq,D,α is given in (7.1) with δQ = Q$Q. From here, reasonning as in Lemme 20
of [MR10] concludes the proof. �

Proof of Theorem 1. Let h ∈ Z6=0. For some α ∈ K and all x ∈ K, we have φ(x) = 〈αx〉.
If φ(b) 6∈ Q for some b ∈ D, then ‖h〈µqαb〉‖R/Z > 0. We apply Theorem 3 with f(n) =
e(hφ(sq(n))). Using Lemma 20, we deduce the existence of δ > 0 such that for all λ ∈ N,∑

n∈Nλ
e(hφ(sq(n)))� Q(1−δ)λ.

The Weil criterion [Ten15, Theorem I.6.13] concludes the proof. �

7.2. Rudin-Shapiro sequences.

Lemma 21. Let α ∈ R, and (q,D) be a binary FNS. The function given by f(n) =
e(αrq,D(n)) satisfies the Carry property (2.5) with η1 = η2, and the Fourier property (2.6)
with a function γ satisfying

γ(λ) ≥ λ

2 log
( 2

1 + |cos(πα)|

)
+O(1),

and any κ ∈ N.

Proof. The Carry property follows by an argument identical to the one used in Lemma
For the Fourier property, we use Theorem 3.1 in [AL91]. Note that the sum is restricted
to integers there, but what is actually considered is a sum over all words of fixed length.
The corresponding reduction in pages 12-13 is not needed in our case, since we are
summing over the full set Nλ. �

Proof of Theorem 2. The deduction of Theorem 2 is identical to the argument used in
the case sq,D(n). �
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Appendix A. Asymptotic behaviour of the addition constant

The constant η2 from Lemma 8 does not seem to admit an explicit expression in
terms e.g. of the minimal polynomial of q. In this section we consider the special case of
canonical number systems (CNS), meaning those number systems (q,D) satisfying D =
{0, 1, . . . , Q−1}. By [Kov81], if q0 is the basis of a CNS, then for all large enoughm ∈ N,
−m+q is also the basis of a CNS. The goal of this appendix is to show that asm→ +∞,
there are admissible carry constants (from Lemma 8) which are very close to the best
possible value.

Proposition 4. Suppose that q0 is the basis of a CNS, and let m ∈ N be large enough
that qm := −m + q0 also is. Then, for the CNS associated with qm, Lemma 8 holds for
a value of η2,m satisfying

η2,m ≥
1
d
−O

( 1
logm

)
,

where the implied constant depends at most on K and q0. Consequently, the border ∂Fm
of the fundamental tile associated to qm has upper-box dimension

dimB(∂Fm) ≤ d− 1 +O
( 1

logm

)
.

Note that we always have dimB(∂Fm) ≥ d− 1.

Proof. The value η2,m, as was apparent from the proof of Lemma 8, is related to the
largest eigenvalue of the adjacency matrix of the tranducer describing carry propagation
in base qm (which was used in the above proof of Lemma 8). We will work with the
formalism described in [ST02], where this transducer was described explicitely for CNS.
For all m ∈ N≥0 we let ∑d

j=0 cj,mX
j be the minimal polynomial of qm = −m + q0,

with cd,m = 1. Note that as m → ∞, we have cj,m ∼ md−j
(
d
j

)
, so that for m large

enough in terms of q0 the condition cj,m < cj−1,m is satisfied for 1 ≤ j ≤ d. We define a
transducer T in the following way :

— The set of states is indexed by subsets I ⊂ {0, . . . , d},
— The set of labels is D = {0, . . . , b0 − 1},
— Given a state I = {i0, . . . , ir} (with i0 ≤ · · · ≤ ir), we define

η(I) =
∑
j≥0

(−1)jcij ,m,

with the convention η(∅) = 0.
— From a labeled state (I1, d1), there is a transition to another labeled state (I2, d2)

determined as follows :
– If d1 + η(I1) < c0,m, then d2 = d1 + η(I1) and I2 = I + 1 := {i+ 1, i ∈ I}.
– Otherwise, d2 = d1+η(I1)−c0,m and I2 = ((I+1)r{0, 1})∪({0, 1}r(I+1)).

The states I = {0} and I = ∅ are absorbing. Let Nm(`) be the number of possible
length ` paths in T not leading to an absorbing state. Then any value η2,m > 0 such
that Nm(`) = O(Q(1−η2)`) is admissible as a carry constant.

We wish to upper-bound the number Nm(`). To this end, we partition the subsets
of {0, . . . , d} into d+ 1 classes, according to their smallest or second smallest element :

V∅, V1, V2 . . . , Vd,
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where V∅ = {{0},∅}, and for j ≥ 1, Vj consists of the sets whose minimal nonzero
element is j. We consider the directed graph G whose vertices are V∅, V1, . . . , Vd, and
for each pair (V, V ′) of vertices, we have an edge V → V ′ with (possibly nil) multiplicity
given by the number of transitions (I1, d1) → (I2, d2) in T where I1 ∈ V and I2 ∈ V ′.
Let N ′m(`) be the total number of paths in G avoiding V∅ with multiplicity. Then, by
construction, we have Nm(`) ≤ N ′m(`)

For j ≥ 1, the number of edges in G from Vj to Vj+1 (with the convention Vd+1 = V∅)
is given by

αj,m =
∑
I

min(I)=j

(c0,m − η(I)) +
∑
I: 0∈I

min(Ir{0})=j

η(I)

= 2d−j+1(c0,m − cj,m) + 2d−jcj+1,m,

while the rest of the edges going from Vj lead to V1, and the number of them is given by

βj,m = 2d−j+1cj,m − 2d−jcj+1,m.

By Perron-Frobenius’ theorem, the number of such path is controlled by the leading
eigenvalue λm > 0 of the adjacency matrix (where the absorbing state V∅ is taken away)

Mm =



β1,m β2,m β3,m · · · βd−1,m βd,m
α1,m 0 0 · · · 0 0

0 α2,m 0 · · · 0 0
... ... . . . . . . ... ...
0 0 0 . . . 0 0
0 0 0 · · · αd−1,m 0


,

in the sense that N ′m(`) = O((2λm)`), say; we will not require anything more precise.
The characteristic polynomial of Mm is

Pm(x) = xd −
d∑

k=1
α1,m · · ·αk−1,mβk,mx

d−k.

Uniformly for x ≥ 0, as m→∞, we have
d∑

k=1
α1,m · · ·αk−1,mβk,mx

d−k = (1 + o(1))m−d
d∑

k=1
2
k(2d+1−k)

2 (md)k(mx)d−k
(
d

k

)

≤ (1 + o(1))2
d(d+1)

2 ((x+md−1)d − xd).

Therefore Pm(x) > 0 if x ≥ Cmd−1 for a suitable number C (depending on K and x),
and so λm = O(md−1), so that Nm(`)1/` � md−1. We deduce that there is an admissible
constant η2,m satisfying Q1−η2,m � md−1. Since Q ∼ md, we conclude η2,m ≥ 1

d
−O( 1

logm)
as claimed. The bound on the upper-box dimension follows by [ST02, Theorem 4.7]
(with µ = Q1−η2 , Q ∼ md, and βmax ∼ m). �
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