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ONE-LEVEL DENSITY ESTIMATES FOR DIRICHLET L-FUNCTIONS
WITH EXTENDED SUPPORT

SARY DRAPPEAU, KYLE PRATT, AND MAKSYM RADZIWILL

ABSTRACT. We estimate the 1-level density of low-lying zeros of L(s,x) with x ranging
over primitive Dirichlet characters of conductor € [@/2,Q] and for test functions whose
Fourier transform is supported in [—2 — %,2 + %]. Previously any extension of the
support past the range [—2,2] was only known conditionally on deep conjectures about
the distribution of primes in arithmetic progressions, beyond the reach of the Generalized
Riemann Hypothesis (e.g Montgomery’s conjecture). Our work provides the first example
of a family of L-functions in which the support is unconditionally extended past the “trivial
range” that follows from a simple application of the underlying trace formula (in this case
orthogonality of characters). We also highlight consequences for non-vanishing of L(s, x).

1. INTRODUCTION

Motivated by the problem of establishing the non-existence of Siegel zeros (see [CI02] for
details), Montgomery [Mon73] investigated in 1972 the vertical distribution of the zeros of the
Riemann zeta-function. He showed that under the assumption of the Riemann Hypothesis
for any smooth function f with supp f C [—1,1],

0y, 2 S50 ) = [ (s (B2 )

T<y'<2T

where N(T') denotes the number of zeros of the Riemann zeta-function up to height 7" and
7,7 are ordinates of the zeros of the Riemann zeta-function, and 6(u) is a Dirac mass at 0.
Dyson famously observed that the right-hand side coincides with the pair correlation function
of eigenvalues of a random Hermitian matrix.

Dyson’s observation leads one to conjecture that the spacings between the zeros of the
Riemann zeta-function are distributed in the same way as spacings between eigenvalues of a
large random Hermitian matrix. Subsequent work of Rudnick-Sarnak [RS94] provided strong
evidence towards this conjecture by computing (under increasingly restrictive conditions) the
n-correlations of the zeros of any given automorphic L-function. Importantly the work of
Rudnick-Sarnak suggested that the distribution of the zeros of an automorphic L-function
is universal and independent of the distribution of its coefficients.

For number theoretic applications of particular interest is the distribution of the so-called
“low-lying zeros”, that is zeros close to the central point (see e.g [HB04, You06| for various
applications). Following the work of Katz-Sarnak [KS99] and Iwaniec-Luo-Sarnak [ILS00]
we believe that the distribution of these low-lying is also universal and predicted by only a
few random matrix ensembles (which are either symplectic, orthogonal or unitary).
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Specifically the work of Katz-Sarnak suggests that for any smooth function ¢ and any
natural “family” of automorphic objects F,

2) 77 ) 6B ) /R o) K (x)da

where ~, are ordinates of the zeros of the L-function attached to m, ¢, is the analytic
conductor of 7 and Kz(z) is a function depending only on the “symmetry type” of F
(see [ILS00] for a more detailed discussion).

There is a vast literature providing evidence for (4) (see [MMR*16]). Similarly to Mont-
gomery’s result (1) all of the results in the literature place a restriction on the support of
the Fourier transform of ¢. This restriction arises from the limitations of the relevant trace
formula. In practice an application of the trace formula gives rise to so-called “diagonal”
and “off-diagonal” terms. Trivially bounding the off-diagonal terms corresponds to what we
call a “trivial” application of the trace formula R

A central yet extremely difficult problem is to extend the support of ¢ beyond what a
“trivial” application of the trace formula gives. In fact most works in which the support of ¢
has been extended further rely on the assumption of various deep hypothesis about primes
that sometimes lie beyond the reach of the Generalized Riemann Hypothesis (GRH).

For example Iwaniec-Luo-Sarnak show that in the case of holomorhic forms of weight
< K one obtains unconditionally a result for ¢ supported in [—1,1] and that under the
assumption of the Generalized Riemann Hypothesis this can be enlarged to [—2,2] (it is
observed in [LDS] that assuming GRH only for Dirichlet L-functions is sufficient). Iwaniec-

Luo-Sarnak also show that this range can be pushed further to supp 5 C (—22/9,22/9)
under the additional assumption that, for any ¢ > 1, (a,¢) =1 and € > 0,

Z e(2y/p/c) <. x'/*TE

psz
p=a (mod c)

A similar behaviour is observed on low-lying zeroes of dihedral L-functions associated to an
imaginary quadratic field [FI03], where an extension of the support is shown to be equivalent
to an asymptotic formula on primes with a certain splitting behaviour.

As another example, it follows for instance from minor modifications of [HR03, CLLR14]
that in the family of primitive Dirichlet characters of modulus < () one can estimate 1-
level densities unconditionally for ¢ with ¢ supported in [—2,2]*. Fiorilli-Miller [FM15] have
shown that for any § € (0,2), this support can be enlarged to [—2 — §,2 + §] under the
following “de-averaging hypothesis”

(3) Z ‘ Z logp—% < Q92 Z Z‘ Z logp—LQ.

Q/2<¢<Q p<w Q/2<q<Q (a,q)= p<z go(q)
p=1 (mod q) p=a (mod q)

In this paper we give a first example of a family of L-functions in which we can uncondi-
tionally enlarge the support past the “trivial” range that follows from a simple application
of the trace formula (in this case orthogonality of characters).

'This is in fact the GL(1) analogue of the result of Iwaniec-Luo-Sarnak for holomorphic forms
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Theorem 1. Let ® be a smooth function compactly supported in [3/4,9/4], and ¢ be a smooth

function such that supp ¢ C [—2 — 25,2+ 252]. Then, as Q — oo,
q log @ ~ q
(4) ;cb(@) Zd > o( ) =60 2 e(5) > L+ol(@)
prlIII?l?,lVE? B ! Xpri(nr?izivg )

Here % + iy, correspond to zeros of L(s,x) and since we do not assume the Generalized
Riemann Hypothesis we allow the v, to be complex.

Note that ¢, initially defined on R, is analytically continued to C by compactness of supp gg
Our arguments can be adapted to show that if supp ¢ C [-2 — 25z +€,2 + 1005 — ] for
some ¢ > 0, then the error term in (4) is O(Q*™%) with J = §(¢), up to altering slightly the
main terms.

We remark that we make no progress on the “de-averaging hypothesis” (3) of Fiorilli-
Miller, which remains a difficult open problem. We estimate the original sum over primes
in arithmetic progressions, on average over moduli, by a variant of an argument of Fou-
vry [Fou85] and Bombieri-Friedlander-Iwaniec [BFI86] which is based on Linnik’s dispersion
method. The GRH will be dispensed with by working throughout, as in [Dral5|, with char-
acters of large conductors.

The asymptotic formula (4) is expected to hold true without the extra averaging over q.
This extra averaging over ¢, and the fact that the summands are summed in relative values,
play an important role in our arguments.

If the GRH is true for Dirichlet L-functions, then choosing any 0 < xk <

ola) = (

1093
sinm(2 + m)x)Q
T(2+ k)

and using the inequality

-3 o(5m) <1240 #0)

we deduce from Theorem 1 that the proportion of non-vanishing L(3, x) with y ranging over
primitive characters of conductor in [@)/2, Q)] is at least 1 — (2 + /i) ! for any r < 20-. We
record this consequence in the Corollary below.

1093

Corollary 2. Let € € (0,107%). Assume the Generalized Riemann Hypothesis for Dirichlet

L-functions. Then for all Q) large enough, the proportion of primitive characters x with
modulus € [Q/2,Q)] for which

L(3,x)#0
1s at least
L + 25 > (0.51118
9 T35 ST ‘

Corollary 2 is related to a recent result of Pratt [Pral9] who showed unconditionally that
the proportion of non-vanishing in this family is at least 0.50073. We note that both the
arguments of [Pral9] and those presented here eventually rely on bounds of Deshouillers-
Iwaniec [DI82] on cancellation in sums of Kloosterman sums.
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Notations. We call a map f : Ry — C a test function if f is smooth and supported
inside (1, 3].
Forwe N, ne Z and R > 1, we let

1
uR(na U}) = ]-nEI (mod w) — T/ Z X(n)

QD(’UJ) X (mod w)
cond(x)<R
Note the trivial bound
Rr(w
(5) |uR(TL,'lU)| < ]-nEl (mod w) + ( )

p(w)
The symbol n ~ N in a summation means n € [N,2N)NZ. We say that a sequence (),
is supported at scale N if o, = 0 unless n ~ N.

The letter ¢ will denote an arbitrarilly small number, whose value may differ at each
occurence. The implied constants will be allowed to depend on e.

Acknowledgments. Part of this work was conducted while the second author was sup-
ported by the National Science Foundation Graduate Research Program under grant number
DGE-1144245. The third author acknowledges the support of a Sloan fellowship and NSF
grant DMS-1902063.

2. PROOF OF THEOREM 1

2.1. Lemmas on primes in arithmetic progressions. We will require two results about
primes in arithmetic progressions. The first is a standard estimate, obtained from an appli-
cation of the large sieve.

Lemma 3. Let A > 0, X,Q,R > 2 satisfy 1 < R < Q and X > Q*/(logQ)*, and f be a
test function with || 9| <; 1. Then

(6) > A (5 )Amur(ng)

q<Q |neN

\/y Xd/S
< Q(log Q)O(l)\/f@ 70 T 0 )

The implied constant depends at most on A and the implied constants in the hypothesis.

Proof. By a combinatorial formula for primes, for instance [IK04, Proposition 13.4], we
restrict to proving the bound with A(n) replaced by convolutions of type I and II, say

YN am  (M< XYY,

n=mt
mn~M

DY o (XM <M< X,

n=mt
mn~M

We treat the type I case by the Polya-Vinogradov inequality [IK04, Theorem 12.5], getting
a bound O(MR*?(log Q)°M). We treat the type II case by the large sieve [IK04, Theo-

rem 17.4], getting a contribution O(v/X (log @Q)°V(Q + VM + /X/M +VXR™)). O

The second estimate is substantially deeper and we defer its proof to Section 4.
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Proposition 4. Let k € (O,m) and € > 0. Let ¥ and f be test functions, A > 0,

X, Q,W,R>1, and b € N. Assume that
2
Q — <<X < Q2+H, X1/2Q_1 S R S Q2/3X_2/9,

(log @)

b<QF QUKW K,
and that || f9]|, |V <; 1. Then if ¢ > 0 is small enough in terms of k, we have

Z ( >ZA < )uR(nbw)<<Q1 /X,

weN

The implied constant depends at most on k, A, and the implied constants in the hypotheses.

Proof. See Section 4. O

2.2. Explicit formula. We now rewrite the left-hand side of (4) by applying the explicit
formula, e.g. [Sic98, Theorem 2.2], where we put ®(p) = (5L logQ), so that F(z) =

21

@qﬁ(@). For ¢ > 1 and x (mod ¢) primitive, we obtain

T ¢<(p—%)10gé2)
poer 211
Re(p)€(0,1)

(7) L(px)=0
1 ~, loggq 1 _, W A(n)~/logn
= 0(15,5) * 9016~ G D () + X ioea)

since the terms I, J appearing in [Sic98, Theorem 2.2] satisfy ‘I(%, b)}—l— ’J(%, b)‘ < (logQ)™!
for b € {0,1} by reasoning similarly as in [Sic98, Theorem 3.2]. Let ¥(z) = ®(z)z~".
Summing (7) over y and ¢ we see that to conclude it remains to show that

1 1 A(n)~/logn
®  s@=300(F) ¥ logQ;(x(n)+Y(n))%¢<loggQ> ~ 0(Q)

qeN

primitive
We will in fact obtain the following slightly stronger result.

Proposition 5. Let k € (0
of K, we have

,m) For all Q large enough and € > 0 small enough in terms

S.(Q) = O(logQ)-

The implied constant depends on ¢ and € at most.

We break down the proof of Proposition 5 into the following three sections.

2.3. Orthogonality and partition of unity. Applying character orthogonality for prim-
itive characters (see the third display in the proof of Lemma 4.1 of [BM11]), we get

S e )

n=1 (mod w)
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Let V' be any test function generating the partition of unity
x
> V() -1
JEZ
for all z > 0. Inserting this in (9), we obtain

$Q-5g X ZZ‘I’(W>“T)(T_Z %)V(??)a(igg)‘

n=1 mo

1/2<X: 2J <2Q2+“

Set fj(x) = V2V () ( loliggc)) for 3 < 27 < 2Q?™*. Differentiating the product, we have

that for all £ > 0, there exists Cj > 0 such that ||f](k)||C>O < Oy, for all j. We deduce
S.(Q) < sup X Vsup |Th(Q, X)),
f

1<<X<<Q2+/€

where f varies among test functions subject to || f*)|| < Chs, and

SR (3L 2 )

n=1 (mod w)

We handle the very small values of X by the trivial bound
X1
> ams(h) « 29

w

n=1 (mod w)

which implies

T.(Q,X) < XIOgQ221 < X(log Q).

w=Q

It will therefore suffice to show that for
Q%/(logQ)’ < X < Q**,

VXQ
(QX)<<@

2.4. Substracting the main term. We insert the coprimality condition (n,v) = 1. Since

S3e(E)thr Y ams(y)

we have

n=1 (mod w)
(n,w)>1
<X S on) Y
v<Q plv wlpk—1
1<k<log X
<@,

we obtain

ST ()5 n(3) s
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Let 1 < R < /2 so that R < vw for any v, w appearing in the sum. We replace the
condition n = 1 (mod w) by ug(n,w). The difference is

Ti() 3, B g-

r= Cond(x) R
rlq

since r < ¢ by our choice of R, so that
vw ( ﬁ 14¢
-y 3 () et ( )1A<n>f(X)uR<n,w> +O(@Q™)

We next remove the coprimality condition on n, using the trivial bound (5). For the first
term 1,=1 (mod w) i Ug(n,w), this was already justified above. For the second term, we get

< RQ~ 1+522210gp < RQ".

vwa

Since R < @, both error terms are acceptable. We get
T.(Q, X) = Tx(Q, X, R) + O(Q""),

where

T.(Q, X, R) ZZ\IJ (Uw) —#A(w),
(10) ZA £ (5 Jun(n,w).

We are required to show that

vVXQ

(11) Ti(Q X, R) < 35

2.5. Reduction to the critical range. We now impose the additional conditions
(12) QPP < R<QY?, Kk<2/3.

Let B € [1,Q"?] be a parameter. In T,.(Q, X, R), we write % = D b @ and exchange

summation, so that
n@ xR < oS e(7 ) A

bow
log B)? su ‘ v Abw‘+E+E,
<g bv<pB Z (Q> ( ) ' ?
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where E) (resp. Es) corresponds to the sum over b, v restricted to b > B (resp. v > B). We
recall that supp ¥ C [%, 3] by hypothesis. On the one hand, we have

B < Y3 1AGw)

bw<3Q
b>B

< QB A9
q<3Q

< Q" VXB™L
using (6) along with our hypotheses (12). On the other hand, we have

<Yy CIAGw)

bw<3Q/B

<Q D 1A
q<3Q/B
< QVX(Q°B 4+ Q)

again by (12) and (6).
Grouping the above, we conclude that it will suffice to show that for all fixed A > 0 and ¢,

we have )
3 W(%)A(bw) < QU VX

uniformly for b,v < @° and ¥ and f are test functions. This now follows from Proposition 4
applied with W = %, which completes the proof of (11), hence of Proposition 5.

3. EXPONENTIAL SUMS ESTIMATES

In this section, we work out the modifications to be made to the arguments underly-
ing [DI82] in order to exploit current knowledge on the spectral gap of the Laplacian on
congruence surfaces [KS03]. We will follow the setting in Theorem 2.1 of [Dral7], since we
will need to keep track of the uniformity in ¢o. We also take the pportunity to implement
the correction recently described in [BFI].

Let @ > 0 be a bound towards the Petersson-Ramanujan conjecture, in the sense of [Dral?,
eq. (4.6)]. Selberg’s 3/16 theorem corresponds to # < 1/4, and the Kim-Sarnak bound [KS03]
asserts that 0 < 7/64.

Proposition 6. Let the notations and hypotheses be as in [Dral7, Theorem 2.1|. Then

rd
; ; ; Z ;bnmsg(c, d,n,r, s)e<n§>

c=co and d=dp (mod q)
(grd,sc)=1

Loy ((CDNRS)TOEI B2 K(C D N, R, S)||bn .52,
where ||by rs|l3 = ans |bm«75|2, and here

(13) K(C,D,N,R,S)* = qCS(RS + N)(C + RD) + C*™DS((RS + N)R)** + D*NR.
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Remark 7. The bound of Proposition 6 is monotonically stronger as 6 decreases. Under the
Petersson-Ramanujam conjecture for Maass forms, which predicts that § = 0 is admissible,
the second term in (13) is smaller than the first.

Proof. We implement the remark made in [Dral7, p.703]; the statements which are affected
are Lemma 4.10, Proposition 4.12, Proposition 4.13 and the proof of Theorem 2.1.
— In Lemma 4.10, the term (NY)'/2 can be replaced by (NY)?Q'=%. This does not
require any change in the recursion argument, but merely to use the bound [ty < 6
in the very last step, page 278 of [DI82], whereby /Y/Y] is replaced by (Y/Y;)%.
— In Proposition 4.12, using the new bound for Lemma 4.10, the term L. can be
replaced by

VM|[by,g,s||2-

N)<1+X_1>29( MN )9 VRS
RS RS RS+ N/ 1+ X
— In Proposition 4.13, the term K. can be replaced by

Ko i= C*S2(R(N + RS))™%.

This is seen by using the new definition on Ly in Proposition 4.12, and by keeping
track of a factor ¢717% coming from the term (1 4 X)~1+2¢,

— Finally, we modify the proof of Theorem 2.1 at two places. First, the bound for Ay
on page 706, as explained in [BFI], is wrong unless further hypotheses on (b, s) are
imposed. The correct bound in general is

Ay < ¢ *(log S)>’D(NR)?||bw r s,

and this yields the term D2NR instead of D?NRS~!. Secondly, our new bound
for K. in Proposition 4.13 gives a contribution C*™?(R(RS + N))'?’ instead
of C®*y\/R(RS + N) in the definition of Ley. and L*(M;) on p.707 of [Dral7]. This
yields a term C**4DS((N + RS)R)'~% instead of C2DS+/(N + RS)R in eq. (4.39)

of [Dral7], and by following the rest of the arguments we deduce our claimed bound.

O

1_
Lexc = Q()2 20<1 +

4. PRIMES IN ARITHMETIC PROGRESSIONS: PROOF OF PROPOSITION 4

The proof of Theorem 1 relies on Proposition 4 which for the convenience of the reader
we recall below.

Proposition. Let k € (0, %) ande > 0. Let W, f be test functions, A >0, X,Q,W,R > 1,

and b € N. Assume that

2
(1022 gp <X <@ XPQT < R< VX,

b< QT QUKW Q,
and that || f9|«, ¥ o <; 1. Then if € > 0 is small enough in terms of k, we have

S (%) S An) f(%)uR(n, bw) < Q' VX,

weN

The implied constant depends at most on k, A, and the implied constants in the hypotheses.
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Remark 8. What is crucial in our statement is the size of the error term, which should
be negligible with respect to Qv X. On the other hand, we are only interested in values
of X larger than Q?. This is in contrast with most works on primes in arithmetic progres-
sions [FI83, BFI86, Zhal4], where the main challenge is to work with values of X much
smaller than @2, while only aiming at an error term which is negligible with respect to X.
The main point is that in both cases, the large sieve yields an error term which is always
too large (see [IK04, Theorem 17.4]), an obstacle which the dispersion method is designed
to handle.

In what follows, we will systematically write
X = Q2+w

so that —o(1) < w < Kk +0(1) as Q — oc.

4.1. Combinatorial identity. We perform a combinatorial decomposition of the von Man-
goldt function into sums of different shapes: Type d; sums have a long smooth variable, Type
ds sums have two long smooth variables, and Type II sums have two rough variables that are
neither too small nor too large. We accomplish this decomposition with the Heath-Brown
identity and the following combinatorial lemma.

Lemma 9. Let {t;}i1<j<; € R be non-negative real numbers such that » . t; = 1. Let
A, 0,0 > 0 be real numbers such that

1
—5<E,
)

. L _ 9
0S§ 2

— 2\+0<3.
Then at least one of the following must occur:

— (Type dy) There exists t; with t; > 5 + A
— (Type dy) There exist i, j, k such that % —0 <ttt < % + A, and

Z t:<o
— (Type 1I) There exists S C {1,...,J} such that
o<y ;<30
jes

Proof. Assume that the Type d; case and the Type II case both fail. Then for every j we
have ¢; < % + A, and for every subset S of {1,...,J} we either have

Zt]’ <o
or

th>%—5.

jes
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Let si,..., sk denote those t; with % —0<t; < % + A. We will show that K" = 3. Let ¢ be
any other ¢;, so that ¢j < % — 9, and therefore 7 < 0. We claim that

Zt; < 0.
J

If not, then ) G > % — 0. By a greedy algorithm we can find some subcollection S* of the
¢ such that

Since 20 < % — 0 this subcollection satisfies the Type II condition, in contradiction to our
assumption.
Now we show that K = 3. Observe that K > 3, since if K < 2 we have

K

1= ;=) si+> t1<2(i+N) +o<l
j 1 j

1=

Furthermore, we must have K < 3, since if K > 4 we have

K
1
1= t; > ;>4 ==0)>1.
Yuzdezi(3-0)
This completes the proof. O

Using e.g. Heath-Brown’s combinatorial identity [HB82], we deduce the following.

Corollary 10. Let f be a test function, u: N — C be any map, and X > 1. Then for some
sequences (ﬁéj))n, j €{1,2,3}, satisfying
89| < d(n)®,

and some test functions g,ga, g satisfying 99|, 197" [loe: 195" lse < 1, depending on f
only, we have

n
(14) Z*M")f(})lt(n) <<(10gX)10(T1+T2+TH)7
neN
where
1) = s |35 (5) o)
N>X1/3E2 neN N
MN=<X o M
n1 Mo
(16) ? X1/3_5<<N81i]% < X1/34A Zzzgl N, 92 N, B u(mnins)
MN, No X mnaEN
W T s [S S et
XOLKNLX/B3=A 1
MN<X kg

Here the suprema are over numbers M, N, N1, No > 1. The implied constants are absolute.

In what follows, we successively consider 77,7, and Tj;, which we specialize at u(n) :=
ug(n,bw), and we sum over w against W(w/W).
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4.2. Type d; sums. We suppose M and N are given as in (15), and we rename ﬁ,(ﬁ) into 3,,.
The quantity we wish to bound is

S T ol T o)

m~ M neN

(m,bw)=1 mn=1 (mod bw)
X xm) 3 ()
_ m n -~
o (bw) X x\n)g N
x (mod bw) (n,bw)=1
cond(x)<R

By Poisson summation and the classical bound on Gauss sums [IK04, Lemma 3.2], we have

> (B =i Y a(%)e(%)w(@—f‘),

n=m (mod bw) v 0<|h|<W1te/N
1 c N _ QR'/?
) = 501 (v = 0] )
@(bw)( b )1x(0)9 (N) 5o9(0)1(x = x0) + ( T
Therefore

N 1 w _(Nh mh 3/2 e
non =3 v (i) X oa X a(Gr)e () rourrien
w (m,bw)=1 0<|h|<W1l+e /N
m~M

Our goal is to get cancellation in the exponential phases by summing over the smooth variable
w. We apply the reciprocity formula

which implies

N [ Nh bwh
T1<M,N):3§ v (s )mglﬁmo<|h|;wﬁ/]vg<w)e(7)

m~M
_'_O(MRB/ZQs_i_QlJrstl)'
We rearrange the sum as
N 1 w bwh
FY oy oy (i) a5
(mb)=1  0<|h|[<Wite/N (w,m)=1 w W m
mn~M

By partial summation and a variant of the Weil bound [FR18, Lemma 2.4], the sum on w is

</ (h,m)VMQ-.

Summing over h and m, we obtain a bound

Ti(M,N) < Q" + M*PQ° + MRY?Qr.
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This bound is acceptably small provided

2/34¢
N > (%) = X%‘Fs(z )+§ig€’

1/2 p3/2
N >> —X R = X2+w+2p+2+w

Q1—2a

with c sufficiently large. These inequalities are satisfied, for all sufficiently small € > 0, under
the assumptions

w 4 — 2w
18 A>— < —.
(18) P 9ere)

We have proved the following.

Lemma 11. Under the notations and hypotheses of Corollary 10, and assuming (18), we
have

T, < Q" VX.

The implied constant depends on A\, p and w.

4.3. Type dy sums. The treatment of the type dy sums (16) is nearly identical to [BFI86,

Section 14]. For convenience, we rename (N7, Ny, L) into (M, N, L) and Bf) into 3, so that
we have MNL =< X. We wish to bound

v n=%0 Do) (LY s () ()

{~L (w,0)=
Imn=1 (mod bw)

B (;w) > w033 a(5)e(y) X(m”))'
v X (Igﬁd)z%) (mn,bw)=1
cond(x)<

We perform Poisson summation on the m-sums to get

2 oG -m o) ()o@

m=fn (mod bw) |h|<H
my plbw) _ £ p1/2
( bz)_lxon)gl (57) = 5o MG (O1(x = x0) + O (Q°R?).

where H = WM ~1, The contribution of the error terms is
< LNR¥?@°.

The zero frequency of Poisson summation cancels out. For the non-zero frequencies we
employ reciprocity in the form

Gy (Y (B
Now )~ T LNW )
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and the error term contributes a quantity of size O(Q'*¢). We therefore have

o morxn =55 5 5e(F) & e 2 66 (5)

I~ w,0)=1 (nyw)=1 0<|h|<H
(20) +0(Q"* + LNR?(p?).

We next separate the variables h and w. We change variables to write

~ (Mh / wy AW
g1 bw M n b Y.

Since g; and ¥ are test functions, the integral is restricted to 0 < y < M/W. We move the
integral to the outside to write the first term of the right-hand side of (19) as

<5t [ 2, () T @) (502 () (5]

bw
0<y<M/W 0<hI<H

We then use [DI82, Theorem 12], amended as described in [BFI]. It is easier to sum up the
bounds if we assume

(21) N < Wite,
We find
Ty(M, N, L) < LNR¥2Q* + ¢ (JYL n \/MNL5/4> .

This contribution is acceptable provided

(22) M > X2(2?w)+%p+€, MN > X%+2(in) +e
and
(23) MB32NV2 > x3taitzt2e,
The bounds (21)—(23) are satisfied if

1 w 1 w 1
24 0< —— —— A< = — ——— < -.
(24) 12 22+ w) 6 22+w=)’ "6

We therefore conclude the following.

Lemma 12. Under the notations and hypotheses of Corollary 10, and assuming (24), we
have

T, < QI VX.
The implied constant depends on X, 6, p and w.

4.4. Type II sums. In the type II case (17), we rename 57(13) into 3,,. We wish to prove the

bound
Tu(M, N) : Zm( )ZZamﬁnuRmnbw)<<\/_Q”

where « is supported at scale M, 3 is supported at scale N, MN =< X, and X7 < N <
X370 We have |a(m)| < 7(m)°W, and similarly for 3. We use Linnik’s dispersion
method [Lin63], following closely [Fou85]; see also [BFI86, Section 10].
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We interchange the order of summation and apply the triangle inequality, writing our sum
as

Applying the Cauchy-Schwarz inequality, we arrive at
(25) S? < M(log M)°WD,

where

D=3 (3) | XD v () e gy > 0337w (i) et
R W A
Here f is some fixed, non-negative test function majorizing 1(; 9. It suffices to show that
D < NQ'™.
We open the square and arrive at

(26) D:D1—2RGD2+D3,

say. We treat each sum D; in turn.

4.4.1. Evaluation of Ds. By definition we have

=Y (HEETY X v (i) v (i) sapm)

w1,w2,n1,n2
(mny,bw1)=1  x; (mod bw;)
(mna,bwa)=1 cond(x;)<R

The computations in [Dral7, p. 712-713] can be directly quoted, putting formally

(27) Y(q) = 1(b | q)¥(q/(BW)),

with the modification that cond(y1Yz) < R? (instead of R, as stated incorrectly in [Dral7]).
We get

D3 = Ms + O(Q°N*R),

where the main term is computed as in [Dral7, p. 712] to be

Wy Wa aF _ o (bwyws)
My = M v () v (52) BB .
= MIO2 3 0 D V) () e e ot
(nj,bwj)=1 cond(x)<R
cond(x)|b(w1,w2)
The error term is acceptable provided

NR® < Q*~.
Since N < X'/3 this is acceptable provided

4 —w
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4.4.2. Evaluation of Dy. We have

w w9\ — x(n m
D=3 YN Y () v (). A S s ().
w W o (bws) M

W1,W2,11,72 X (mod bws) mn1=1(bw1)

(nJ bw;)=1 cond(x)<R (m,w2)=1
The computations in [Dral7, p. 712-713] can be also quoted directly with the identifica-
tion (27). We obtain

D2 _ Mg + O(R3/2N2Q1+E).

This is acceptable if

2 21
29 <y @
(29) P<3* T 501 m)

4.4.3. Evaluation of D;. We have

D= S v (e () e Y f(5)
121711,1%211,)11)1,:7? mn;=1 (mod bw;)
TL1§TJL; (inod b)

We need to separate the variables wy, ws,n1,no from each other, and this requires a subdi-
vision of the variables. We decompose these variables uniquely, following [FR18], as follows:

(d = (n17n2)7

ny = ddyvy, with d; | d* and (d,14) =1,
nog = dis,

qo = (w1, wy),

w; = qog;, i € {1,2}.

The summation conditions imply

(dleI;QOQI> = (dV2;QOQ2) =1
We therefore have

D, = Z Z Z D (d, dy, qo),

(d,b)=1d1|d> (qo,d)=

Di(---) = ZZZZ f (qo—mzl) f (qoqQ> Bady v Bavs Z f (%) :

q1,92,V1,V2 mddivi=1 (mod bq0q1)
(dv1,v2)=(q1,92)=1 mdra=1 (mod bgoga)
(q192,d)=(v1,d)=1
(v1,q1)=(v2,g2)=(v1v2,bq0)=1
dll/lEl/Q (InOd bqo)

Using smooth partitions of unity we break the variables into dyadic ranges: d < D,d; <
D+, qp < Qo. The contribution from d < D and d; < Dy is

< Q‘EMZ Z Z Z |de11/1||6du2| < QeMNQ Z Z dl (gll)

d=xD dy|d>® vixN/ddy voa<xN/d D dy|d>
d1=<D1

< QaMNQDl_H—aQD_l,
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and this is acceptable provided
X
DDy > o=’
so we may henceforth assume DD; < XQ~2*¢.
The contribution from gy < @) is

<@ > 22 21

q0=Q0 q1XQ/q0 n1=n2 (mOd go) m=n1 (mod qoq1)

couy ¥ Loyy

q0=Qo ¢1XQ/q0 ni=nz (mod go)
< Q° (MN?*Qy' + MN),
which is acceptable provided
X

X
(30) N> —— and Q> o

Q2
so we may henceforth assume Qy < XQ27*.
We use Poisson summation, following [Dral7, pp. 714-716]. Let

q = bqoq1q2 = %Vl (mod bgoq1),
7 dv, (mOd bq0q2),

With H = ¢ M~ < Q*™/(qoM), we get

z S ()~ 5 () ro i)

m=p (mod q) q |h|<H q

The zero frequency in (31) contributes the main term, which, after summing over d, dy, qo
(and reintegrating the values DD, Qg larger than X Q~2"¢ which were discarded earlier), is

given by
M= FIOT S S50 (15) ¥ () by

w1,w2,N1,Nn2
(nj,bw;)=1
ni=nz (mod b)

The error term in (31) induces in D;(d, d;, qo) a contribution

« 1N (ﬁ +1),
bqo ddy \bgo
and therefore in D; a contribution b~'N2()¢, which is acceptable if
(32) N < Q.
We solve the congruence conditions on p by writing
divr — v = bgot, pddyvy = 1+ bgoqil, pdvy = 1+ bgogam,

with ¢,/,m € Z. We deduce

pdt = qil — gam, t = qval — qadivym.
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Then we have the equalities, modulo Z,

I 1 n 14
q  bgoqiga  ddivibgoqigy  ddivige
_ 1 ¢dd; N (i Gs
ddi11bqoqiqa  V1Gs dd;
_ 1 tqivaddy  bgoqirqe
- dd;v1bqoq1G2 V142 B dd,
_ 1 divy — vy uieddy  bgoqiviGe
- dd;v1bqoq1G2 bqo V142 - ddy

By estimating trivially the first term, we have

h dyvy — dd,  hb H
(33) e(#) _ e(h 1 — Vy utpady QOC_I1V1(12) —|—O( %2)'
q bqo V1G2 dd, NW
The error term here is < Q°X !, which contributes to D;(d, dy, qy) a quantity
2+5N N
¢ <1 + —),
Xqadd, d

and upon summing over (d,dy, qo), this contributes to D; a quantity O(Q***N?X~!). This
error is acceptable by our hypothesis (32).

Then we insert the first term of (33) in (31), and insert the Fourier integral. The non-zero
frequencies contribute a term

Riddia) =358 [ S SS S w (B w (B 50

q1,92,V1,V2 h|<H
(dvy,v2)= (Q1 q2)=1 0<lhrl<
(q192,d)=(v1,d)=1
(v1,q1)=(v2,92)=(v1v2,bq0)=1
divi=vs (mod bgo)

% f( QOQ1QQ>e<hd1V1 — vy q12dd,y thOQ1V1QQ>e(htMQO> dt.

bqo V1q2 dd, e
Let now Aj, Ay € (Z/ddy7Z)*, and
WbaATNe | htMa
bnﬂ‘,s = Z Z Z /delyl/ﬁdlj2e< — 7 + o >’
| Z T2} 0<|h|<H .
V2led:1ifr h(lelfllg):bqu

(dv1,v2)=(r1v2,bq0)=1
(v1,d)=1
divi=ve  (mod bqo)

et~ w(3)s () (“5%)

Then

MqO / ~
Ri(d,d = Ri(t, (N;))dt
1( ) 17q0) bW2 txfl/\ . go:d - 1( ) ( ])) 3
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- nrd
Ri(t, (Nj)) = bn,r.s ,d,n,r, (_>
(5 O)) B eastednr (T
e=\1, d=X2  (mod bddy)
(se,rdddy)=1
We apply Proposition 6, with sizes given by
%4 N HN
cC=D=—, S=—, R=Nd, N=——.
o ddy dbgo

Let X = Q%Y, so Y = Q®. Note that
RS < N’D™', N <QNY'D'Q?< Q°RS, C < Q°RD.

We get
Ri(t; Aj) < Q°(DD1)* K ||bn o |2,

where

QK2 < Q*N'D 1D, Q52 + QYN0 D=2+ no2 )20 | g2 NSy -1 p-lp O,
To bound the term ||by, r s||2, Wwe assume
(34) DDy = o(N),

so that the case d;v; = 1, never occurs in by, . . Then

16,512 < > |Badin Bavs] < N*Y D7Dy Q" + N*Y ' D™Dy 1Qy”.

v1,v2,h

div1=v2 (mod qo)
0<|h|<H
We deduce
6
7%1 (t, ()\])) < QE Z ang Nnk,Qyﬂk,gD’ﬂkAD;]kﬁ gm,
k=1
where for each k, n, = (Mk¢)1<e<6 is given by
( 1 1 20 + 1 20+ 1 1 1\ )
3 7/2 3—30 7/2— 360 5/2 3
(ne} = —1/2 —1/2 —1/2 —-1/2 —1 —1 [
ks = /2 | 0 ’ 0 1o—-1/2 |7 12 1’| O ’
3/2 3/2 1-6 1-86 3/2 3/2
L \—3/2 -2 —20 — 3/2 —260 — 2 —5/2 -3/ )

Summing over J);, integrating over ¢, and multiplying by %V—‘Yg < N7YYQq, we get

6
R(d,di, qo) < Q° Y Qt Na=ly sl P2 piies ™2 (nett,

k=1

We sum over d, d; and qq, obtaining

6
_ +2 +2
E Rl(d’ d17q0> < QE E an,ank,Q 1Y77k,3+1D77k,4+3D;7k15 gkﬁ )
a=D k=1
dlxDl, dl‘doo

q0=Qo
(d,b)=(go0,d)=1
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Finally we sum this dyadically over )y, D, D, subject to Qg + DD; < Y Q°. We finally get

6
R < Q° E an,lNﬁk,Z*1Ynk,3+1+max(07'flk,6+2)+max(0’7]k,4+3:7’]k,5+2).
k=1

Here, the terms for £ = 5,6 are majorized by the term k = 1, therefore,

4
R, < QE Z Qek,l Nek,zyek,B’

k=1
where
1 1 1426 1+26
{6c} = 2 1,15/2,12-30],|5/2—30
9/2 4 4—0 7/2 -6

We conclude that

Dy = M; + O(Q*°N)
on the condition N < Q¢ min(QY ~%/2, Q*3Y ~8/3, Q2/3Y73(7112209> , Q%Y_%). Upon us-
ing 6 < 7/64, these conditions are implied by

50—249w 50—-217w

(35) N<X° min(X2(2+w) X 8C+w) | X 7502+w) )
and the above hypotheses (30), (32), (34).

4.4.4. Main terms. The main terms combine to form

Ms = =270 S S (32) () s oo )
X Z ZZ @uﬁngx ni) ( 2).

X prim n1,n2
cond(x)>R (1, wa) 1
cond(x)|b(w1,w2)

We may quote the computations in [Dral7, p. 717], again with the identification (27), to
obtain

My — M| < Q°M(N + N*R™%) < Q°(X + NXR™?).
This is acceptable provided

(36) N> Qw-l-a’ R> Q%+O(8)
4.4.5. Conclusion. The hypotheses (28), (29), (30), (32), (34), (35) and (36) are all satisfied
if

1 1 242w w 1 4o
37 < 1/8 < <-—0<=-——— — < p< == ——.
B0 =<8 w<o<g3 3 B2+’ 2 T 9 T 92rw)

We therefore conclude the following.

Lemma 13. Under the notations and hypotheses of Corollary 10, assuming (37), we have
Ty < VXQ'™.
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4.5. Proof of Proposition 4. We combine Lemmas 11, 12, 13 and 9. Setting 0 = w + ¢
and recalling that w < 1/8, we obtain the conditions

w 1 @
01w N6 2
2420 1 ©
Berw) 12 22tw)
w 1 4o
2+ T 2t w)

These can be satisfied whenever —o(1) < @ < 2% — o(1). This proves Proposition 4.
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