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Two arithmetic applications of perturbations of composition operators

Introduction

The present note is concerned with a case of asymptotic perturbation of a linear operator, which is a widely studied subject; we refer to the monograph [START_REF] Kato | Perturbation theory for linear operators[END_REF] and to the recent work [START_REF] Kloeckner | Effective perturbation theory for simple isolated eigenvalues of linear operators[END_REF] for references. There are well-understood general results which deal with the behaviour of the spectrum of the perturbation T + ε of a bounded linear operator T , granted one can find a norm with respect to which ε can indeed be considered a perturbation.

In the recent works [START_REF] Bettin | Statistical distribution of the Stern sequence[END_REF][START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF], instances of this question arose which do not fall in the scope of the general analysis, the reason being that the natural norms one has do not account for the true expected magnitude of the perturbation. The purpose of this note is to present an alternate argument, which relies on an ad-hoc construction but allows to answer completely the questions in [START_REF] Bettin | Statistical distribution of the Stern sequence[END_REF][START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF]. We begin by a discussion of the two arithmetic applications we are considering.

1.1. Moments of a Thue-Morse generating function. In this section only, for all m ∈ N, we let t(m) ∈ {±1} denote the parity of the sum of digits of m in base 2, so that (t(m)) m≥0 is the celebrated Prouhet-Thue-Morse sequence [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF]. For all n ∈ N, we let T n : R/Z → C be defined as

T n (x) = 0≤r<n (1 -e(2 r x)) = 0≤m<2 n

t(m)e(mx).

In [START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF], the authors study the moments

M k (n) := ˆ1 0 |T n (x)| 2k dx, k ∈ N.
Upper-bounds on M k (n) are an important ingredients on works on the level of distribution of the Thue-Morse sequence, in particular in [START_REF] Fouvry | Sommes des chiffres et nombres presque premiers[END_REF][START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] where estimates of M 1/2 (n) = T n 1 and lim k→∞ M k (n) 1/(2k) = T n ∞ are used to obtain asymptotic formulas for the number of integers with multiplicative constraints (primes or almost-primes) having a predetermined parity of their sum-of-digits modulo 2.

In [START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF], the authors show that the sequence (M k (n)) n≥0 satisfies a linear recurrence equation, and they deduce, for each k > 0 the existence of constants C k > 0 and k > 0 such that

(1.1) M k (n) ∼ C k n k (n → +∞).
The behaviour of the constant k as k → +∞ was left as an open question in [START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF]. The authors conjectured that k =1 2 3 k (1 + O(k -2 )) for k ≥ 1. Towards this estimate, they show the upper-bound k ≤ 1 2 (3 k + 4 2k/3 ). Using Theorem 3 below we are able to prove this conjecture, isolating also a secondary term of size exponentially smaller. 

Theorem 1. For δ 1 = n≥1 2 √ 3 sin( π 3 (1 + (-1) n 2 n )) = 0.6027 • • • and η = 0.506, we have k = 1 2 3 k 1 + δ 2k 1 + O(η 2k
s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1).
This sequence has been widely studied due to its links with Farey fractions and enumeration of the rationals [START_REF] Kesseböhmer | Infinite ergodic theory of numbers[END_REF], Automatic sequences [START_REF] Allouche | Automatic sequences[END_REF], or the Minkowski function and the thermodynamic formalism of the Farey map [START_REF] Prellberg | Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions[END_REF][START_REF] Dodds | On the thermodynamic formalism for the Farey map[END_REF][START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF][START_REF] Bettin | Statistical distribution of the Stern sequence[END_REF]. For all τ ∈ C and N ∈ N >0 , define the moment sequence

M τ (N ) := 2 N <n≤2 N +1 s(n) τ .
In [START_REF] Bettin | Statistical distribution of the Stern sequence[END_REF], the asymptotic estimation of M τ (N ) as N → ∞ for τ in a neighborhood of 0 led to a central limit theorem for the values log s(n). The asymptotic behaviour of M τ (N ) for τ away from 0 is an interesting question. Let us focus on large integer moments, τ = k ∈ N. It is not difficult to show, in analogy with (1.1), that the sequence (M τ (N )) N ≥0 satisfies a linear recurrence equation, from which we deduce the following statement, to be proven in Section 4 below: for all k ∈ N, there are constants D k > 0 and σ k > 0 such that

(1.2) M k (N ) ∼ D k σ N k (N → +∞).
It is well-known [3, eq. (1.4)] that σ 1 = 3 (in fact, M 1 (N ) = 3 N exactly). The constant σ k is related to the pressure function associated to the Farey system [START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF][START_REF] Dodds | On the thermodynamic formalism for the Farey map[END_REF], and one can show 1 that σ k = exp(P (-k/2)), where P (θ) denotes the pressure function of the Farey system [10, p.135]. In Proposition 4.4.( 8) of [START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF], the authors show by combinatorial arguments that

φ k ≤ σ k ≤ φ k (1 + (1 -φ -6 ) k ) (φ = 1+ √ 5 
2 ). Note that 1 -φ -6 ≈ 0.944 • • • ; we also refer to [START_REF] Dodds | On the thermodynamic formalism for the Farey map[END_REF]Theorem 4.15] for a qualitative estimate. Also in this case we are able to identify a secondary term in the asymptotic expansion. 

σ k = φ k 1 + δ k 2 + O(η k )).
Using a suitable uniform version of our arguments, particularly the size of the series r V + r , r V - r (x) in Lemma 2 below, one could deduce an upper-bound for the number of very large values of s(n) (see [START_REF] Paulin | Largest values of the Stern sequence, alternating binary expansions and continuants[END_REF] for works on related questions).

1.3. Perturbations of composition operators. We will obtain Theorems 1 and 2 as consequences of a more general result on perturbations of composition operators, for which we need to introduce some notation.

Let X be a set, a, b : X → X be two maps and κ : X → C be a bounded map. We assume that a has a unique fixed point x 0 ∈ X, which is attracting on X; we will assume stronger estimates below. Denote L ∞ (X) the set of bounded functions from X to C, and define T :

L ∞ (X) → L ∞ (X) by (1.3) T [f ](x) = (f • a)(x) + κ(x)(f • b)(x).
Note that for κ = 0, the operator T 0 : f → f • a has spectral radius 1, and in this case 1 is an eigenvalue. A corresponding eigenfunction is 1, with eigenprojection given by f → f (x 0 )1. Define κ 0 := κ(x 0 ). An application of [8, th. VIII.2.6] (see also Theorem 1.6 of [START_REF] Kloeckner | Effective perturbation theory for simple isolated eigenvalues of linear operators[END_REF]) shows that if T 0 is compact, if 1 is an isolated simple eigenvalue of T 0 , and if κ ∞ is small enough in terms of a, then the spectral radius of T is asymptotically 1

+ κ 0 + O( κ 2 ∞ ).
In order for this estimate to be useful, it is crucial that κ 2 ∞ = o(κ 0 ). The setting in which we are interested here is one where such a bound is not satisfied because κ does not decay uniformly in X.

We will answer this question, in the special case κ ≥ 0 and under the specific conditions stated below, by constructing an approximate eigenfunction and taking into account the interaction of a and b on X. For k 1 , k 2 , . . . ∈ N ≥0 and x ∈ X, we will use the shorthand notation

a k 1 b k 2 . . . x for (a k 1 • b k 2 • . . . )(x).
Let (α + k ), (α - k ), (β ), (δ ) (with indices k, ∈ N ≥0 ) be sequences of non-negative real numbers. Assume that γ > 0, β 0 ≥ 1, and

c 1 := k≥0 α + k < +∞ ≥1 δ β 1 • • • β -1 < +∞, (1.4) η := γ + k≥0 α - k + ≥2 β 1 • • • β -1 < +∞, (1.5)
We make the following hypotheses.

κ(b x) ≤ β , ( ≥ 0) (1.6) 0 < κ 0 -α - k ≤ κ(a k x) ≤ κ 0 + α + k , (k ≥ 0), (1.7) κ(a k bax) ≤ κ 0 + γα + k , (k ≥ 1). (1.8) Finally, let g : X → R * + be such that (1.9) sup x∈X g(x) + 1 g(ax) < ∞, sup x∈X g(x) g(b x) + sup x,y∈X g(x) g(b ay) ≤ δ . Let T [g] act on functions on X by T [g] [f ] := gT [g -1 f
] (this is well-defined by (1.9)).

Theorem 3. Under the conditions (1.4)-(1.9), if κ 0 and η are small enough in terms of c 1 , then the series

(1.10) F x (z) = r≥0 z r T r [g] [1](x) (x ∈ X), F + (z) = r≥0 z r T r [g] [1] ∞ have radius of convergence 1 -κ 0 + O c 1 (ηκ 0 + κ 2 0 )
, where the implied constant depends at most on c 1 . In particular,

lim sup r→∞ T r [g] 1/r ∞ = 1 + κ 0 + O c 1 (ηκ 0 + κ 2 0 ).
Translating Theorem 3 in terms of an expansion of the leading eigenvalue of T , instead of the spectral radius, would a priori require additional hypotheses on a and b, at the cost of restraining the applications. In the applications mentioned above, the objects of interest are, in fact, the iterates of some fixed function.

The method could in principle be extended to provide further lower order term, under a strengthening of the condition (1.7), but this is not straightforward to carry out, especially compared with the methods of [START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Kloeckner | Effective perturbation theory for simple isolated eigenvalues of linear operators[END_REF].
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Proof of Theorem 3

The proof of Theorem 3 is simply based on an explicit estimation of iterates of T [g] . In the proof, we denote c 2 > 0 any number satisfying

β 0 + ≥1 δ β 1 • • • β -1 + sup x∈X g(x) + 1 g(ax) ≤ c 2 .
The value of c 2 will not affect the uniformity of the error term. Given a word w = w 1 • • • w n ∈ {a, b} * , of length |w| = n, and x ∈ X, we interpret wx to mean w 1 • • • • • w n (x). Let ε denote the empty word. For all w ∈ {a, b} * and x ∈ X, we define u(w, x) recursively by

(2.1) u(ε, x) = 1, u(wa, x) = g(x) g(ax) u(w, ax), u(wb, x) = g(x) g(bx) κ(x)u(w, bx).
It is easily seen, by induction, that

(2.2) u(w, x) = g(x) g(wx) v∈{a,b} * w∈{a,b} * bv κ(vx),
where the product is over all words v such that bv is a suffix of w. For instance,

u(aba 4 b 2 aba, x) = g(x) g(aba 4 b 2 abax) κ(a 4 b 2 abax)κ(babax)κ(abax)κ(ax).
By iterating the relations (2.1), we obtain that for all r ≥ 0,

(2.3) T r [g] [1](x) = w∈{a,b} r

u(w, x).

There are as many κ-factors in u(w, x) as occurences of b in w. Since we expect κ to typically have small value, the main contribution to the sum (2.3) is expected to come from words containing few occurences of b. For these terms, we expect the product (2.2) to consist of words v starting with a long string of a, and so with an associated κ-value close to κ 0 . Similarly, under some regularity assumptions on g (which we eventually will not need), we expect g(wx) ≈ g(x 0 ) for such words. If |w| b denotes the number of occurrences of b in w, then we are indeed led to expect T r

[g] [1](x) ≈ g(x) g(x 0 ) w∈{a,b} r κ |w| b 0 = g(x) g(x 0 ) (1 + κ 0 ) r .
We seek an upper-bound for u(w, x) valid for all words w, and a lower-bound valid for specific words which are expected to yield the main contribution to the sum (2.3). For ≥ 1, write

σ = β 1 • • • β -1 , δ k, =    c 2 2 (k > 0), δ (k = 0), γ =    γ ( = 1), 1 ( > 1)
.

with the convention σ 1 = 1. To ease notations, we also denote

Π(k 0 , . . . , k r ) = 1≤j≤r j odd σ k j 1≤j≤r-3 j odd (κ 0 + γ k j+2 α + k j+1 ) . Lemma 1. For r ≥ 2, k 0 ∈ N ≥0 , k 1 , . . . , k r ∈ N >0 and x ∈ X, we have u(a k 0 b k 1 • • • a kr , x) ≤ δ k 0 ,k 1 (κ 0 + α + kr )Π(k 0 , . . . , k r ) (r even) (2.4) u(a k 0 b k 1 • • • b kr , x) ≤ δ k 0 ,k 1 β 0 (κ 0 + α + k r-1 )Π(k 0 , . . . , k r ). (r odd) (2.5) Moreover, for r ≥ 0, k 0 , k 1 , . . . , k r ≥ 0 and x ∈ X, we have u(a k 0 ba k 1 • • • ba kr , x) ≥ c -1 2 g(x) 1≤j≤r (κ 0 -α - k j ). (2.6)
Proof. Let us examine the case of positive, even r. Then

u(a k 0 b k 1 • • • a kr , x) = g(x) g(a k 0 b k 1 • • • x) r-1 j=1 odd k j =1 κ(b k j -a k j+1 • • • x). By (1.6), we have κ(b k j -a k j+1 • • • x) ≤ β k j -if 1 ≤ ≤ k j -1. If = k j , then we may use (1.7)-(1.8) to obtain κ(a k j+1 • • • x) ≤ κ 0 + γ k j+2 α + k j+3 if j ≤ r -3
, whereas if j = r -1, then we use (1.7) to get κ(a kr x) ≤ κ 0 + α + kr . Finally, the hypotheses (1.9) yield

g(x) g(a k 0 b k 1 •••x) ≤ δ k 0 ,k 1 in
all cases. The proof for odd r and for the bound (2.6) is similar.

We now sum this over r ≥ 0. Let

S σ (ρ) = ≥1 ρ σ , S + (ρ) = k≥1 ρ k (κ 0 + α + k ), S δ (ρ) = ≥1 ρ δ σ , S -(ρ) = k≥1 ρ k (κ 0 -α - k ), S * (ρ) = k, ≥1 ρ k+ σ (κ 0 + γ α + k ).
Define further

V r (x) := k 0 ,...kr≥0 ρ r+ j k j u(a k 0 ba k 1 • • • ba kr , x), V + r := k 0 ≥0 k 1 ,...,kr≥1 ρ j k j u(a k 0 b k 1 • • • * kr , •) ∞ ,
where * = a or b according to whether r is even or odd. Note that, by (2.3) and positivity, for F x and F + as in (1.10) we have

(2.7) r≥0 V r (x) ≤ F x (ρ) ≤ F + (ρ) ≤ r≥0 V + r .
Lemma 2. For 0 ≤ ρ < 1, we have

• V + 0 ≤ c 2 2 1-ρ , • V + 1 ≤ β 0 (S δ (ρ) + c 2 2 ρ 1-ρ S σ (ρ)), • if r is even and r ≥ 2, V + r ≤ (S δ (ρ) + c 2 2 ρ 1-ρ S σ (ρ))S * (ρ) (r-2)/2 S + (ρ), • if r is odd and r ≥ 3, V + r ≤ β 0 (S δ (ρ) + c 2 2 ρ 1-ρ S σ (ρ))S σ (ρ)S * (ρ) (r-3)/2 S + (ρ), • for all r ≥ 0, V r (x) ≥ c -1 2 g(x) 1 1-ρ (ρS -(ρ)) r . Proof.
The first two inequalities follow easily as in the proof of Lemma 1. Moreover, if r ≥ 2 is even, summing the estimate (2.4) we have

V + r ≤ k 0 ≥0 k 1 ≥1 ρ k 0 +k 1 δ k 0 ,k 1 σ k 1 kr≥1 ρ kr (κ 0 + α + kr ) r-3 j=1 j odd k j+1 ≥1, k j+2 ≥1 ρ k j+1 +k j+2 σ k j+2 (κ 0 + γ k j+2 α + k j+1 ) = (S δ (ρ) + c 2 2 ρ 1-ρ S σ (ρ))S + (ρ)S * (ρ) (r-2)/2
. The last two inequalities can be obtained in a similar way.

We are ready to prove Theorem 3. On the one hand, we deduce that r≥0 V + r converges if ρ < 1 and S * (ρ) < 1. But by (1.5) and the definition of S * , (2.8)

S * (ρ) ≤ κ 0 (1 + η) 1 -ρ + c 1 η, so that S * (ρ) < 1 if ρ ≤ 1 -κ 0 -c ηκ 0
, for some real number c depending on c 1 . We conclude that the radius of convergence ρ + of F + (z) satisfies ρ + ≥ 1 -κ 0 + O c 1 (ηκ 0 ). On the other hand, we deduce that r≥0

V r (x) diverges if ρS -(ρ) > 1. Since S -(ρ) ≥ κ 0 ρ 1 -ρ -η, we deduce that ρS -(ρ) > 1 if ρ ≥ 1 -κ 0 + c (ηκ 0 + κ 2 0
) if c is taken large enough. We conclude that the radius of convergence ρ(x) of F x (z) satisfies ρ(x) ≤ 1-κ 0 +O(ηκ 0 +κ 2 0 ). Theorem 3 then follows by (2.7).

Proof of Theorem 1

For all x ∈ [0, 1], define

a(x) = 1 - x 2 , b(x) = x 2 , S(x) = 2 √ 3 sin πx 2 .
Note that

(3.1) a n (x) = 2 3 + -1 2 n x - 2 3 , b n (x) = 1 2 n x,
and S(2/3) = 1. Therefore, the product

(3.2) G(x) = n≥0 S(a n x)
converges absolutely for x ∈ (0, 1]; note that, due to the n = 0 term, it vanishes at order 1 at x = 0. Finally, let τ > 0, and g, ξ, κ : [0, 1] → [0, 1] be given by

ξ(x) := G(x/2) G(1 -x/2) , g(x) := G(x) τ , κ(x) := ξ(x) τ
The functions G and ξ are depicted in Figure 1. Proof. The values ξ(0) = 0 and ξ(1) = 1 are simple to compute. The C 1 regularity of ξ follows by the uniform convergence of the product defining G. To see that ξ > 0, we define, for all x ∈ [0, 1] and n ≥ 0, with x = 0 if n = 0,

h n (x) = cot π 3 + π 2 -1 2 n x 2 - 2 3 + cot π 3 + π 2 -1 2 n 1 3 - x 2 .
By the derivative cot = -1 -cot 2 and since cot ≥ 0 on (0, π/2], we find h n ≤ 0. Moreover, we have

h 2n (1) -h 2n+1 (0) = cot π 3 - π 12 1 4 n -cot π 3 + π 6 1 
4 n > 0. We deduce that for all x, y ∈ (0, 1], we have h 2n (x) > h 2n+1 (y), and so

ξ ξ (x) = π 4 n≥0 -1 2 n h n (x) > 0.
We define the operator T τ : L ∞ ((0, 1]) → L ∞ ((0, 1]) by

(3.3) T τ [f ] := (f • a) + κ • (f • b). Lemma 4. For k ≥ 1, we have k = 3 k 2 lim r→+∞ gT r 2k [g -1 ] 1/r ∞ . Remark. Note that the operator f → gT 2k [g -1 f
] is well-defined also as an operator acting on C([0, 1]), since g • a > 0 on [0, 1] and by extending g g•b continuously at 0.

Proof. By Proposition 1 of [START_REF] Mauduit | Moments of a Thue-Morse generating function[END_REF], we have

k = lim r→+∞ P r k [1] 1/r
∞ , where P k acts on continuous functions on [0, 1] by

P k [f ](x) = 1 2 2 sin πx 2 2k f x 2 + 1 2 2 cos πx 2 2k f x + 1 2 .
Note that P τ preserves the subspace of functions symmetric with respect to 1 2 . We "desymmetrize" it by defining, for all τ > 0, an operator U τ on C([0, 1]) by

U τ [f ](x) = S(x) τ f 1 - x 2 + f x 2 .
Then, writing f * (t) := f (1 -t), we have

P k [f + f * ](x) = 3 k 2 U 2k [f ](x) + U 2k [f ](1 -x) = 3 k 2 U 2k [f ](x) + U 2k [f ] * (x) ,
and so, by induction, we have for all r ∈ N (3.4)

P r k [f + f * ](x) = 3 k 2 r (U r 2k [f ](x) + U r 2k [f ] * (x)).
We take f = 1, and deduce by positivity that 1 2 U r 2k [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF] ∞ ≤ P r k [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF] ∞ ≤ U r 2k [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF] ∞ . In particular, We can now finish the proof of Theorem 1. Since G(x) vanishes at order 1 at x = 0, we may find c > 0 so that (cx) τ ≤ g(x) ≤ (x/c) τ . Also, note that for 0 ≤ x ≤ y ≤ 1, (3.6) ξ(y) τ -ξ(x) τ ≤ (y -x) ξ ∞ τ ξ(y) τ -1 .

Define κ 0 := ξ(2/3) τ , and

β = ξ(2 -) τ , α - k = 2 3 2 -k ξ ∞ τ ξ( 5 6 ) τ -1 , α + k =    1 (k ∈ {0, 1}), 2 -k max(1, 2 3 ξ ∞ τ ξ( 3 4 ) τ -1 ) (k ≥ 2), γ = 2 3 ξ ∞ τ ξ( 7 8 ) τ -1 , δ = c -2τ 2 1+( +1)τ .
We apply Theorem 3 with κ = ξ τ . The condition (1.6) 

Theorem 2 . 5 2 . For δ 2 = 2 √ 5

 2525 Let φ = 1+ √ = 0.8944 • • • and η = 0.837, we have

Figure 1 .Lemma 3 .

 13 Figure 1. Approximate plots of G (left) and ξ (right)

  By construction, we haveT τ [f ] = g -1 U τ [gf ] for all f ∈ C((0, 1]), in other words, gT τ [g -1 f ] = U τ [f ]. This yields the claimed formula.

  follows from the fact that ξ is increasing, and b ([0, 1]) = [0, 2 -]. The condition (1.7) follows from (3.6) and the inclusion ak [0, 1] ⊂ [ 2 3 (1 -2 -k ), 2 3 (1 + 2 -k )].The condition (1.8) follows from the inclusion a k ba[0, 1] ⊂ [0,7 8 ], and the condition (1.9) follows from a[0, 1] ⊂ [ 1 2 , 1]. The convergence of the series (1.4) is ensured by the fact that ξ(2 -) → 0 as → ∞. With η = O(τ ξ(78 ) τ ), the above yields lim sup r→+∞ gT r τ [g -1 ] 1/r ∞ = 1 + κ 0 + O(ηκ 0 ).

  ) . 1.2. Moments of the Stern sequence. Our second application concerns the Stern sequence (s(n)) n∈N >0 , defined by s(1) and the recursion formula

This requires a slight alteration of the argument in Lemma 5 below, since the pressure function in[START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF] involves sums of (s(n)s(n + 1)) τ rather than s(n) τ .

Lemma 4 finishes the proof of Theorem 1. From Lemma 3, we have ξ( 7 8 ) < 1; the more precise bound ξ( 7 8 ) ∈ [0.833, 0.835] is checked numerically by truncating the product (3.2) at n = 11 and estimating the remainder.

Proof of Theorem 2

For x ∈ [0, 1], let

and for all τ ≥ 0, define

Note that ξ is an increasing function with ξ(0

Note also that the map κ :

For notation convenience, the variable k in the statement of Theorem 2 will be renamed τ . In this section, τ is a positive integer.

We define an operator T τ on C([0, 1]) by

Lemma 5. For all τ ∈ N >0 , there exist constants σ τ , D τ > 0 such that the asymptotic formula (1.2) holds. Moreover, we have

Proof. We claim that for all N ≥ 1, (4.1) M τ (N ) -M τ (N -1) = 1 2 P N τ [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF](1), where P τ acts on degree τ polynomials by

To prove this, we let B 0 = ( 0 1 1 1 ) and B 1 = ( 1 0 1 1 ). Then, by the chain rule [7, eq. (2.

3)], it follows that (4.2)

holds, where A 0 = ( 1 1 0 1 ) and A 1 = ( 1 0 1 1 ). We wish to rewrite the sum (4.2) in terms products of A 0 and A 1 . Let T = ( 0 1 1 0 ), so that T A 0 = A 1 T = B 0 , and also

by writing B 1 = A 1 , B 0 = T A 0 , and then pushing all the occurences of T to the right, using T 2 = id and T A 0 = A 1 T . Then ε N is given by the sign of det(M ). We also always have ε 0 = 1. Finally, the map (ε 0 , . . . , ε N -1 ) → (ε 1 , . . . , ε N ) is injective, since B 0 and B 1 are free over GL 2 (N) (their transposes map (R * + ) 2 into {(x, y) ∈ R 2 , x > y > 0} and {(x, y) ∈ R 2 , y > x > 0} respectively), and thus also bijective. Using this bijection in (4.2), we deduce

Now we note that T • 1 = 1, so that for each tuple (ε 1 , . . . , ε N ) in the sum,

where s = 2 N + 1≤j<N ε j 2 j + 1. Note that this is independent of ε N . As (ε 1 , . . . , ε N -1 ) runs through {0, 1} N -1 , n runs through the odd integers in [2 N , 2 N +1 ). We deduce that

and finally (4.1) follows since s(2n) = s(n).

Since P τ acting on the set R τ [x] of real polynomials of degree ≤ τ , with its canonical basis, is positive, by the Perron-Frobenius theorem, it has a simple isolated dominant eigenvalue σ τ > 0, equal to its spectral radius, and actually σ τ > 1 since

We have in particular, by positivity,

By spectral decomposition, we deduce the existence of a constant

. To conclude the proof, it suffices to remark that, by construction,

We apply Theorem 3. The hypothesis (1.6) is satisfied since b [0, 1] = [0, 1 +1 ]. The hypothesis (1.7) is satisfied by the inclusion a k [0, 1] ⊂ [0, 2 3 ] if k ≥ 2. The hypothesis (1.8) follows by the inclusion a k ba[0, 1] = a k [ 1 3 , 1 2 ] ⊂ [0, 3 4 ]. Finally the hypothesis (1.9) follows from φ τ ≤ g(x) ≤ φ 2τ . We obtain η τ ξ( 3 4 ) τ and c 1 bounded independently of τ , and deduce lim sup r→∞ gT r τ [g -1 ] 1/r ∞ = 1 + κ 0 + O(ηκ 0 ). Theorem 2 then follows by Lemma 5.
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