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Introduction 

In the last decades, the quest for monitoring and controlling processes at the cellular and 

intra-cellular level has stimulated a plethora of nanophotonics approaches. To date, the 

most successful and widespread ones are those based on quantum dots and upconversion 

nanoparticles for imaging, because of their bright luminescence emission, and those using 

metal particles for sensing, thanks to the sensitivity of surface plasmon scattering to local 

environment.(Smith & Gambhir, 2017) Recently, both Rayleigh and Mie scattering from all-

dielectric nanostructures have stimulated a lot of interest, primarily because of the reduced 

ohmic losses of these systems, their tailorable optical properties, and the compatibility of 

many of these materials with manufacturing techniques.(Baranov et al., 2017; Kuznetsov, 

Miroshnichenko, Brongersma, Kivshar, & Luk'yanchuk, 2016) Along with nanotechnology, 

the photonics industry has steadily evolved offering new enabling tools, including compact 



and cost-effective ultrashort pulse sources in a wide range of frequencies, from visible to 

mid-infrared. The availability of these new instruments has greatly facilitated the 

investigation of the nonlinear response of nanomaterials. In particular with respect to optical 

damage, which is often an issue under continuous excitation and with nanosecond pulses, 

the use of low-energy high-peak power femtosecond pulses has opened the way to safely 

probe a variety of nanomaterials within their transparency range and even around their 

resonant frequencies. Nonlinear optical observables present various advantages, including 

the possibility to detect background-free parametric signals at excitation wavelengths which 

depose no or minimal energy on the sample under investigation. Second Harmonic 

Generation (SHG) is by far the most exploited among these processes, because it is the 

easiest to obtain and collect in terms of excitation and detection settings. Increasingly, the 

concurrent nonlinear emissions, which accompany SHG, are becoming accessible along with 

the development of new laser sources. The simultaneous collection and analysis of these 

signals allow developing refined detection approaches for increased sensitivity and 

selectivity in demanding imaging applications.  

 

This chapter introduces and describes the use of a family of dielectric metal-oxide 

nanoparticles, Harmonic NanoParticles (HNPs), characterized by a noncentrosymmetric 

crystal structure, high nonlinear optical efficiencies, and displaying a very rich nonlinear 

response. We begin providing a concise reminder of some fundamental nonlinear processes 

in optics needed to understand HNP responses to light excitation and their quantitative 

assessment from colloidal ensembles. Afterwards, we outline specific properties of HNP 



materials along with their synthesis, and finally we describe their applications for 

bioimaging.  

Understanding the nonlinear optical response of Harmonic 

Nanoparticles 

This section provides a concise summary of nonlinear optical processes which are observed 

when exciting HNPs by a pulsed femtosecond laser. Following the reasoning and symbol 

convention introduced by reference textbooks,(Boyd, 2003; Gubler & Bosshard, 2002) we 

indicate with a tilde the quantities that are rapidly oscillating in time. We can physically 

understand the nonlinear response of a body invested by an external oscillating field 𝐸�(𝑡) by 

modelling the position 𝑥�(𝑡) of an electron in the medium as: 

𝑥�̈(𝑡) + 2𝛾𝑥�̇(𝑡) +
𝐹(𝑥�)
𝑚

 =
𝑒𝐸�(𝑡)
𝑚

 

 

Eq. 1 

This formula describes a harmonic oscillator with a dumping term proportional to 𝛾, and a 

restoring force 𝐹(𝑥�) =  − m( 𝜔0
2𝑥�(𝑡) + 𝑎𝑥�2(𝑡) − 𝑏𝑥�3(𝑡) + ⋯ ) constituted by the sum of 

one harmonic term, 𝜔0
2𝑥�(𝑡) with 𝜔0 the single electron resonant frequency, and several 

anharmonic contributions, 𝑎𝑥�2(𝑡) − 𝑏𝑥�3(𝑡) + ⋯ where 𝑎, 𝑏 > 0. The term on the right side 

in Eq.1 corresponds to the driving by the external field, with 𝑒 and 𝑚 the charge and mass of 

an electron, respectively. The corresponding potential energy function defining the electron 

motion, 𝑈(𝑥�) = −∫𝐹�(𝑥�).𝑑𝑥� =𝑚 �𝜔0
2𝑥 �2

2
+ a𝑥 �3

3
− b𝑥 �4

4
+ ⋯�, contains both even and odd 

powers of 𝑥�. At low excitation intensities, the electron undergoes motions in the proximity 

of its equilibrium position, 𝑥� = 0, and consequently the harmonic term is sufficient for 



describing its oscillations. The induced dipole moment, 𝑝�(𝑡) = 𝑒. 𝑥�(𝑡), linearly depends on 

the instantaneous electric field strength 𝐸�(𝑡). At higher intensities, however, the nonlinear 

components of the restoring force (i.e., 𝑎𝑥�2(𝑡) − 𝑏𝑥�3(𝑡) + ⋯ ) must be included to account 

for the distorted motions exerted by the external field. Note that if even orders nonlinear 

terms are present (e.g., 𝑎 ≠ 0) the potential energy function 𝑈(𝑥�) is not symmetric about 0 

�𝑈(𝑥�) ≠ 𝑈(−𝑥�)�, whereas if only odd terms are present the function is symmetric 

(𝑈(𝑥�) = 𝑈(−𝑥�)) although not harmonic in all cases. A perturbative expansion of Eq.1 to the 

order n leads to a series of electron oscillation amplitudes 𝑥(1), … , 𝑥(𝑛) proportional to the 

nth power of the incident electric field amplitude. In the time domain, the nonlinear 

interaction between a single harmonic oscillator and 𝐸�(𝑡) can be represented as an induced 

dipole moment 𝑝�𝑖(𝑡) whose Cartesian components 𝑖 = 1,2,3  are written as a power series 

in the strength of the instantaneous applied field (here and throughout the chapter we use 

the Einstein summation convention): 

𝑝�𝑖(t) = 𝜖0�𝛼𝑖𝑗
(1)𝐸�𝑗(𝑡) + 𝛽𝑖𝑗𝑘

(2)𝐸�𝑗(𝑡) 𝐸�𝑘(𝑡) + 𝛾𝑖𝑗𝑘𝑙
(3)𝐸𝚥� (𝑡) 𝐸�𝑘 (𝑡) 𝐸�𝑙(𝑡) + ⋯�   

Eq. 2 

In Eq. 2, 𝜖0 is the vacuum permittivity in SI units, 𝛼𝑖𝑗
(1) the linear polarizability, 𝛽𝑖𝑗𝑘

(2) is the 

second-order polarizability or first-order hyperpolarizability, and 𝛾𝑖𝑗𝑘𝑙
(3)  is the third-order 

polarizability or second-order hyperpolarizability. For a given medium, the manifestation of 

these different microscopic polarizabilities is directly related to the electron motion and 

symmetries of the potential energy function. Because accelerated charges behave as sources 

of electromagnetic fields, these motions are at the origin of the frequency components 

generated upon the interaction with the electromagnetic field. In Fig. 1, different oscillating 



dipole traces 𝑝�𝑖(𝑡) are plotted to illustrate the scattering of both linear and newly generated 

nonlinear frequencies at the two lowest nonlinear orders. In the first row, the electron 

oscillation amplitude is described by a sinusoidal function at the fundamental frequency ω: 

sin(𝜔𝑡). This situation simply results in the linear scattering of the incoming frequency. The 

case of an asymmetric oscillation about zero is reported in the second row, here the 

distorted 𝑝�𝑖(t) trace is expressed as the sum of the previous sine function plus an even 

harmonic term, cos(2𝜔𝑡), of smaller amplitude. The presence of this new frequency 

component in the material response to the field, which is associated with the small peak at 

2ω in the Fourier spectrum, corresponds to the SHG process. On the other hand, the 

addition of an odd harmonic term, sin(3𝜔𝑡) – Third Harmonic Generation (THG), to the sine 

function leads to a symmetric distortion about zero as reported in the third row. Purely odd 

harmonics spectra are characteristic of the response of centrosymmetric media, where – as 

one intuitively expects - the oscillating electrons experience the same dielectric environment 

when moving in the positive and negative directions. In general, both even and odd 

harmonics are present for noncentrosymmetric crystals as displayed in the bottom row of 

Fig. 1. 



 

Figure 1. First row: the electric dipole response is linear with respect to the amplitude of the optical field. The dipole 
oscillations are harmonic, only the fundamental frequency ω appears in the Fourier transform plot on the right. Second 
row: an antisymmetric distortion appears in the oscillation pattern (blue line) because of nonlinear dependence in the field 
strength. This distortion can be expressed as the sum of the harmonic component (black dashed line, same as in the linear 
case) and a newly generated frequency at 2ω (red line). Third row: a purely symmetric distortion can be expressed as the 
sum of the harmonic component (black dashed line) and a newly generated frequency at 3ω (red line). Fourth row: the 
general case of a complex antisymmetric distortion featuring several components, similar to the case of HNPs 
simultaneously emitting multiple even and odd harmonics. 
 

So far, our description assumed a single electron contribution as well as a lossless and 

dispersionless medium. This latter assumption is only valid when excitation and harmonic 

frequencies lie below the (multiple) electron resonances of the solid phase. Furthermore, 

additional parameters arising from the dense packing of dipoles within a lattice and from the 

symmetry properties of the relevant crystal class are to be considered. Instead of using 

electron-related variables such as 𝑥(𝑛), these parameters are included in the macroscopic 

polarization 𝑃�𝑖(t) = 𝑁.𝑝�𝑖(t) where 𝑁 stands for the number density of dipoles. In analogy to 

Eq. 2, the instantaneous polarisation component along the 𝑖 axis is written as   

  



𝑃�𝑖(𝑡) = 𝜖0�𝜒𝑖𝑗
(1)𝐸�𝑗(𝑡) + 𝜒𝑖𝑗𝑘

(2)𝐸�𝑗(𝑡) 𝐸�𝑘(𝑡) + 𝜒𝑖𝑗𝑘𝑙
(3) 𝐸𝚥� (𝑡) 𝐸�𝑘 (𝑡) 𝐸�𝑙(𝑡) + ⋯�       

= 𝑃�𝑖
(1)(𝑡) + 𝑃�𝑖

(2)(𝑡) + 𝑃�𝑖
(3)(𝑡) + ⋯  

Eq. 3 

where we introduced the nonlinear susceptibilities tensors 𝜒(𝑛) of rank 𝑛 + 1. In the linear 

regime, the proportionality between polarization and field is expressed through the first 

order susceptibility χij
(1), whereas second-order and third order nonlinear effects are 

described by the third- and the fourth-rank tensors χijk
(2) and χijkl

(3) , respectively. Importantly, 

the number of non-zero elements for each tensor is defined by the symmetry properties of 

each crystal class.(Malgrange, Ricolleau, & Lefaucheux, 2012; Nye, 1985) Note also that the 

macroscopic electric fields used in Eq. 3 differ from the local fields defined in Eq. 2 and that 

appropriate local field factors accounting for the dense packing of atoms within a solid need 

to be introduced when replacing the microscopic polarizabilities with susceptibilities.  

Equation 3 is the most comprehensive and informative expression for treating and 

understanding nonlinear phenomena in the perturbative regime. We point out that the 

presence of different conventions for defining the electric field and polarization amplitudes 

often complicates the comparison among experimental values from the literature. Here, the 

complex excitation field is described as a discrete sum of p monochromatic terms of 

frequency 𝜔𝑝. The optical field strength is given by 𝐸�(𝑟, 𝑡) = 1
2
∑ �𝐸𝑝

𝜔𝑝   𝑒−𝑖𝜔𝑝𝑡 + 𝑐. 𝑐. �𝑝  with 

𝐸𝑝
𝜔𝑝  =  𝐸𝑝0𝑒𝑖𝑘𝑝.𝑟 the spatially varying amplitude and 𝐸𝑝0 the real part of the field amplitude 

oscillating at 𝜔𝑝. Likewise, the nonlinear polarization is written 

as  𝑃�(𝑟, 𝑡) = 1
2
∑ � 𝑃𝑝

𝜔𝑝
′

 𝑒−𝑖𝜔′𝑡 + 𝑐. 𝑐. �𝑝  so that after expansion in Eq.3, the Fourier 

components of the nonlinear polarization can be derived at each nonlinear order. For 



instance, in the simplest case of a single input frequency component 𝜔, the amplitude of the 

second-order nonlinear polarization resulting from P�i
(2)(t) = 𝜖0χijk

(2)E�j(t) E�k(t) becomes 

𝑃𝑖2𝜔  =
1
2
𝜖0χijk

(2)𝐸𝑗𝜔𝐸𝑘𝜔 = 𝜖0dijk
(2)𝐸𝑗𝜔𝐸𝑘𝜔 

Eq. 4 

This expression accounts for SHG. χijk
(2) is here real and frequency-independent since optical 

frequencies are assumed in the material transparency range and well below electron 

resonance frequencies (Kleinman’s assumption). dijk
(2) is defined as the nonlinear optical 

coefficient for SHG.  

If we now consider a two-frequency input field (𝜔1 and 𝜔2), the second order polarization 

contains the previous terms calculated for 𝜔1 and 𝜔2 independently, and new terms 

corresponding to their sum 𝜔1 + 𝜔2 (sum frequency generation, SFG) and difference 𝜔1 −

𝜔2 (DFG).  

𝑃𝑖
𝜔1+𝜔2  = 𝜖0χijk

(2)𝐸𝑗
𝜔1𝐸𝑘

𝜔2   and   𝑃𝑖
𝜔1−𝜔2  = 𝜖0χijk

(2)𝐸𝑗
𝜔1(𝐸𝑘

𝜔2)∗ 

Eq. 5 

Note that the frequencies  𝜔1 and  𝜔2 are often just two distinct spectral components within 

the bandwidth of a femtosecond pulse. The derivation we just described to obtain the 

nonlinear processes at the second order can be readily repeated for the third order in the 

power expansion of 𝑃�(𝑡). In this case, one obtains two families of processes, the so-called 

parametric ones where the total photon energy is conserved, and the non-parametric ones, 

where a fraction of the beam energy is transferred to the medium and which feature an 

imaginary component for the susceptibility 𝜒(3) . To the former family belong processes like 



third harmonic generation (𝜔 + 𝜔 + 𝜔 = 3𝜔, THG), all possible sum and difference 

combinations of three frequencies (𝜔1, 𝜔2, and 𝜔3), and the intensity modulation of the 

refractive index (Kerr effect). The second family includes phenomena such as two-photon 

absorption and stimulated Raman scattering. For THG, when a unique frequency is 

considered, the amplitude of the third-order polarization is given by: 

𝑃𝑖3𝜔  =
1
4
𝜖0χijkl

(3)𝐸𝑗𝜔𝐸𝑘𝜔𝐸𝑙𝜔 

Eq. 6 

As oscillating polarization is a source of radiation, the relative strength of the nth order signal 

emitted by the nonlinear interaction in the medium scales as ( 𝐼𝜔)𝑛 with  𝐼𝜔 being the 

intensity of the excitation field. This relationship is valid within the perturbative regime we 

used for all the derivations provided. Therefore, under moderate excitation conditions, the 

lowest order allowed by symmetry should prevail since for the anharmonic terms in the 

expression of the restoring force (see Eq. 1) it is expected that  𝜔0
2𝑥�(𝑡) ≫ 𝑎𝑥�2(𝑡) ≫ 𝑏𝑥�3(𝑡) . 

This is the reason why HNPs are selected among materials possessing noncentrosymmetric 

crystal structure, so that they can exert second-order nonlinear response along with higher 

odd and even orders. 

In this respect, dielectric HNPs are genuinely different from metal particles where the 

absence of inversion symmetry at the origin of second-order processes stems only from the 

particle surface and not from its inner structure. (Nappa et al., 2005) Because the crystal 

volume of HNP materials is by itself devoid of an inversion centre, this entails that the SHG 

emission intensity is essentially associated to the square of the HNP volume, 𝑉. Within the 

electric dipole approximation, this 𝑉2 dependence comes from the coherent nature of signal 



summation over the individual nonlinear dipoles associated with each unit cell of the 

lattice.(Sandeau et al., 2007; Staedler et al., 2012) Similarly to their bulk counterparts, 

noncentrosymmetric nanocrystals are expected to exhibit large values for their second order 

susceptibility tensor 𝜒(2).(Joulaud et al., 2013; Le Dantec et al., 2011) On the other hand, 

values of the different 𝜒(𝑛) susceptibilities are not independent. There exist some heuristic 

relationships for estimating the average susceptibility value at order n from that at n-1, the 

most famous being Miller’s rule which states that 𝜒(2)(𝜔1+𝜔2,𝜔1,𝜔2)
𝜒(1)(𝜔1+𝜔2)𝜒(1)(𝜔1)𝜒(1)(𝜔2)

 is a constant for 

all noncentroysmmetric crystals if they are probed out of resonance. Similarly, some authors 

have observed that �𝜒(3)� ∝ �𝜒(2)�
2
for frequencies in the transparent range of 

noncentrosymmetric materials characterized by �𝜒(2)� ≥ 10−12 pm/V.(Morita & Yamashita, 

1993) It is therefore a reasonable assumption that all HNP materials display both large 

�𝜒(2)� and �𝜒(3)� values simultaneously. This, in turn, means that HNPs simultaneously 

generate strong, volume-dependent SHG and THG signals. In quantitative terms, the 

SHG/THG ratio scales as  𝐼3𝜔
 𝐼2𝜔

∝  𝐼𝜔 so that high excitation intensities achievable under tight 

focusing conditions tend to favour the higher order, as recently confirmed by the detection 

of the fourth order response of individual HNPs.(Riporto et al., 2018) Moreover, one cannot 

fully neglect the existence of resonances in the material, which can selectively enhance the 

response at specific range of frequencies.  

HNP materials and synthesis 

Most HNP materials belong to the family of metal oxides and their crystal classes do not 

show inversion symmetry. Because of that, they are not only SHG-active but they also 

exhibit a series of functional characteristics (piezoelectricity, ferroelectricity, electro-optical 



properties …) exploited in many sensor and transducer applications that typically require 

bulk crystals or ceramics. High-temperature and long-time processing methods have been 

developed for the preparation of these multifunctional materials. Unfortunately, crystal-

growth techniques and solid-state chemistry approaches leading to controlled size and 

shape are very limited at the nanoscale. Ideally, for HNPs, monodisperse and 

monocrystalline nanoparticles of well-defined morphology and chemical composition 

corresponding to mixed-metal oxide phases are required such as those of the perovskite 

group (e.g., Barium Titanate: BaTiO3) and the solid solutions belonging to the titanate, 

zirconate and PZT families. Lead-free niobate and tantalate materials derived from KNbO3 

and KTaO3 are also potential candidates (Lombardi, Pearsall, Li, & O'Brien, 2016; Modeshia 

& Walton, 2010) and among other transition-metal perovskites, Bismuth Ferrite (BiFeO3) 

possesses remarkable SH and TH properties.(Clarke et al., 2018; Schmidt et al., 2016) 

Several non-perovskite structure materials like LiNBO3, ZnO, and Fe(IO3)3 have also been 

investigated.  

For all these oxides and mixed-metal oxides, wet chemical routes are preferred since a 

homogenous, stoichiometric metal precursor containing two or more cations is more likely 

to be achieved from the liquid state. These approaches include chemical reactions in 

nanostructured-media and sol-gel chemistry employing a large panel of organic additives 

and/or relying on the systematic variation of several parameters such as the composition 

of the reaction medium and its temperature.(Danks, Hall, & Schnepp, 2016; Modeshia & 

Walton, 2010) Mild conditions associated with the hydro- and solvo-thermal processes 

combined with conventional furnaces or microwave heating are also increasingly applied 

for adjusting the nucleation and growth kinetics, and promoting crystallization without the 

need of a high-temperature calcination step.(Danks et al., 2016) The production of HNPs of 



tailored size, shape, and morphology ultimately relies on the elucidation of the 

reaction(Niederberger & Garnweitner, 2006) and growth mechanisms, which may comprise 

of a combination of several phenomena including aggregation-induced crystallization, 

oriented-attachment, dissolution-precipitation and Ostwald ripening.  

In practice, such a detailed understanding of the growth mechanisms requires extensive 

time-resolved measurements and there is no general rule for the above-cited HNP materials 

in spite of the increasing available literature, which also includes several reviews.(Rachid Ladj 

et al., 2013; Modeshia & Walton, 2010; Polking, Alivisatos, & Ramesh, 2015) A given material 

may indeed display a very different crystallization pathway depending on the details of the 

solution-mediated route applied. We outline below the most common ones present in the 

literature with some examples relevant for HNP synthesis.  

i) Regarding coprecipitation reactions and the use of nanostructured reaction media 

like Water-in-Oil microemulsions, Second Harmonic Scattering (see next section) has proven 

to be very useful to probe in real-time the crystallization dynamics of Fe(IO3)3. An 

aggregation-induced crystallization mechanism has been proposed to account for the 

particle growth and appearance of different hierarchically organized hybrid 

superstructures.(R Ladj et al., 2012; Mugnier et al., 2011) For BiFeO3, solubility issues might 

explain the formation of stoichiometric amorphous hydroxide precursors after the room-

temperature coprecipitation of Fe3+ and Bi3+ ions in homogeneous solutions but the 

subsequent high-temperature crystallization step only results in poorly shape-defined NPs 

without addition of organic additives.(Tytus et al., 2018) Noteworthy, in the case of lithium 

niobate and lithium tantalate (LiNbO3, LiTaO3), if the prerequisite of a homogeneous 

dispersion of the metal precursors at the atomic scale is not fulfilled, for instance when the 



Li:Nb (resp. Li:Ta) ratio is different from 1:1 with the Nb-rich hexaniobate (resp. Ta-rich 

hexatantalate) Lindqvist ions, the aqueous synthesis of phase-pure LiNbO3 (resp. LiTaO3) is 

prevented.(Nyman, Anderson, & Provencio, 2009)  

ii) The traditional sol-gel chemistry route leading to monometallic oxide 

materials(Livage & Sanchez, 1992) from alkoxide precursors has been successfully extended 

to bimetallic oxides like LiNbO3 films.(Ono & Hirano, 1997) For this approach, the availability 

and cost of the metal elements that can be used as alkoxide precursors and their high 

degree of reactivity with water are first to be considered. The initial hydrolysis and 

condensation reactions that are supposed to lead to the desired stoichiometric mixed-metal 

ABO3 phase actually depend on several experimental parameters including the element 

electronegativity, the amount of water and its pH, the solvent polarity, and the use of 

chelating agents. The detailed growth mechanisms are not always fully understood but a 

series of very convincing results have recently been reported for LiNbO3,(Mohanty et al., 

2012) derivatives of KNbO3, (Lombardi et al., 2016) and BaTiO3.(S. Liu et al., 2015) Similarly, 

oleic acid-assisted hydrothermal treatments of precipitates resulting from the fast reaction 

between aqueous metal nitrates and butoxides result in well-defined cubic and spherical 

BaTiO3 nanocrystals of varying sizes according to the nature of the solvent and co-

solvent.(Caruntu, Rostamzadeh, Costanzo, Parizi, & Caruntu, 2015) In the case of LiNbO3, 

when benzyl alcohol is first applied to reduce the niobium ethoxide reactivity, the 

subsequent addition of triethylamine as a surfactant allows mediating the growth under 

solvothermal conditions after passivation of the nanocrystal surface. Transformation of the 

initial lithium and niobium hydroxide precursors to partially crystallized aggregates, and 

finally to monocristalline nanoparticles of different size, likely results in a combination of the 



aggregation-induced crystallization, oriented-attachment, and Ostwald ripening 

processes.(Ali & Gates, 2018)  

iii) Several chelating agents are also effective for stabilizing metal complexes from 

water-soluble metal salts to circumvent some of the inherent limitations of the alkoxide-

based sol–gel route. In the case of BiFeO3, this small molecule approach(Danks et al., 2016) 

has been initiated by Ghosh (Ghosh, Dasgupta, Sen, & Sekhar Maiti, 2005) and Selbach 

(Selbach, Einarsrud, Tybell, & Grande, 2007) with citric acid and a series of carboxylic acids 

with or without deliberate addition of extra hydroxyl groups. Both phase-pure and mixed-

phase compounds can be obtained with an average crystallite size that increases with the 

annealing temperature as expected for an Ostwald ripening process for relatively aggregated 

products. This solvent evaporation route with metal complexes has then been further 

refined with mucic acid and NaCl in excess to promote the formation of phase-pure, 

monocrystalline and SHG-efficient BiFeO3 HNPs.(Clarke et al., 2018) Note also that 

ethylenediaminetetraacetic acid (EDTA) is another example of commonly  used chelating 

agent that has a key role in the solvothermal synthesis of several perovskite-type 

nanomaterials.(Modeshia & Walton, 2010) 

iv) Finally, the controlled formation of mixed-metal oxides from homogeneously 

dispersed metals in a polymeric precursor can be achieved from the Pechini method. 

Typically, citric acid is used as previously explained as a chelating agent to form metal citrate 

complexes, but a polymerizer like ethylene glycol is then added to initiate polyesterifcation 

upon heating. The as-obtained covalent organic network is expected to be more stable 

during annealing thus giving more opportunities to control the crystallization and growth 

mechanisms. Note that many other available carboxylic acids and polyols can be used in 

place of citric acid and ethylene glycol, respectively. For LiNbO3, calcination in air of the gel 



precursor requires high temperature (>450°C) and the resulting dried nanopowder then 

consists of aggregated nanocrystals.(Yerlikaya, Ullah, Kamali, & Kumar, 2016) The lowest 

crystallization temperature achievable for BiFeO3 has been found to strongly depend on the 

structure of the chelating agent and when glycerol is added to promote polyesterification 

with the mucic acid, mixed phase products and the absence of any size and shape control 

can be noticed after the gel combustion.(Clarke et al., 2018; Selbach et al., 2007) Very likely, 

ill-defined local thermodynamic conditions and a non-uniform temperature during the 

combustion step account for the presence of impurities as already observed when the 

complexing agent is replaced by a fuel.(Schwung et al., 2014)   

 

Quantitative assessments of 𝜒(2) and 𝜒(3) values from colloidal HNP 

suspensions  

Once HNP samples are obtained, the quantitative assessments of the orientation-averaged 

second- and third-order susceptibilities can be obtained by SH and TH Scattering (SHS and 

THS) measurements provided that colloidal HNP suspensions of known particle size and 

mass concentration are available. Noteworthy, SH and TH efficiencies determined by this 

approach have been found in very good agreement with the literature values on bulk 

crystals, at least for nanocrystal size larger than 10 nm. We also want to emphasize that, 

contrary to this ‘ensemble measurement’ approach, imaging of individual HNPs based on 

SHG and THG microscopy techniques is less prone to provide reliable results on nonlinear 

efficiencies. In this case, in fact, a proper modelling of the focusing and collection properties 

at each nonlinear order needs to be introduced, especially when dealing with diffraction-

limited objects. Moreover, when imaging individual nanoparticles because of the tensorial 



nature of the different harmonic processes, the polarization-resolved traces one obtains 

should be fitted with mathematical expressions whose complexity rapidly increases with the 

non-linear order and with the number of independent coefficients of the relevant crystal 

class.(Bonacina et al., 2007; Le Floc'h, Brasselet, Roch, & Zyss, 2003; Schmidt et al., 2016) 

Historically, harmonic light scattering from molecules in solutions (successively referred to 

Hyper-Rayleigh Scattering, HRS), firstly observed in 1965, (Terhune, Maker, & Savage, 1965) 

paved the way to SHS and THS experiments on colloidal suspensions of NPs. HRS was applied 

during the nineties to determine the second-order polarizability of nonpolar 

molecules.(Clays & Persoons, 1991; Hendrickx, Clays, & Persoons, 1998) The HRS intensity 

𝐼2𝜔 stems from the incoherent SH signal contributions scattered by the individual sources at 

concentration 𝑁𝑚 with a squared dependence on the incident intensity  𝐼𝜔:  𝐼2𝜔 =

𝐺2𝜔. 𝜆2𝜔−4 .𝑁𝑚.𝐹𝑚2 . 〈�𝛽(2)�2〉 . 𝐼𝜔2 . The local field factors included in 𝐹𝑚 = 𝑓𝜔
2 .𝑓2𝜔, account for the 

microscopic optical field experienced by each molecule, 𝐺2𝜔 comprises the experimental 

collection efficiency and other constant factors, while 〈�𝛽(2)�2〉 is the squared 

hyperpolarizability isotropically averaged over all orientations.(Cyvin, Rauch, & Decius, 1965) 

Keeping the original HRS experimental configuration, which implies the collection of 𝐼2𝜔 

perpendicularly to the excitation beam, HRS was successively extended to larger objects 

(Deniset-Besseau et al., 2009; Jacobsohn & Banin, 2000; Russier-Antoine, Benichou, 

Bachelier, Jonin, & Brevet, 2007) and nanocrystal suspensions.(Le Dantec et al., 2011; 

Rodriguez, de Araújo, Brito-Silva, Ivanenko, & Lipovskii, 2009) In the latter case, the 

introduction of an effective hyperpolarizability term proportional to the nanoparticle volume 

V conveniently upgrades the original HRS formalism (developed for molecular dipoles 

oscillating at 2ω) to the solid-state phase, filling the gap between microscopic and 



macroscopic entities. When HNPs are large enough to neglect surface contribution (roughly 

> 20 nm),(Kim et al., 2013; Knabe, Buse, Assenmacher, & Mader, 2012) the scattered SH 

signal can be expressed as above, viz. 𝐼2𝜔 = 𝐺2𝜔 . 𝜆2𝜔−4 .𝑁𝑁𝑃.𝑇𝑁𝑃2 . 〈�𝛽𝑁𝑃
(2)�

2
〉 . 𝐼𝜔2   where 〈𝛽𝑁𝑃

(2)〉 

is the volume-dependent hyperpolarizability given by 〈𝛽𝑁𝑃
(2)〉 = �〈�𝛽𝑁𝑃

(2)�
2
〉 = 〈𝑑𝑁𝑃

(2)〉.𝑉. 

Because of its size dependence, 〈𝛽𝑁𝑃
(2)〉 is not an intrinsic material property as it represents - 

in the Rayleigh regime(Roke & Gonella, 2012)  - the coherent contribution of the induced 

dipole moments within each unit cell of the nanoparticle lattice.(Joulaud et al., 2013; Le 

Dantec et al., 2011) In line with the previous expression, 〈𝑑𝑁𝑃
(2)〉 is the orientation-averaged 

SH coefficient linked to the second order susceptibility by 〈𝜒𝑁𝑃
(2)〉 = 2〈𝑑𝑁𝑃

(2)〉. The SHS intensity 

𝐼2𝜔 that linearly depends on the number density 𝑁𝑁𝑃 of HNPs can now be written as 

𝐼2𝜔 = 1
4

.𝐺2𝜔 . 𝜆2𝜔−4 .𝑁𝑁𝑃.𝑇𝑁𝑃2 〈(𝜒𝑁𝑃
(2))2〉.𝑉2. 𝐼𝜔2  , where the coherent contribution from the 

volume comes along with the 𝑉2 term and where the local (molecular) field factors included 

in 𝐹𝑚 are now replaced by reduction field factors included in TNP to account for the refractive 

index change. The macroscopic optical excitation field 𝐸𝑗𝜔 within the NP volume is indeed 

given by 𝐸𝑗𝜔 = 𝑡𝜔 .𝐸𝑗,𝑖𝑛𝑐
𝜔  , with 𝐸𝑗,𝑖𝑛𝑐

𝜔  the incident optical field. Assuming quasi-spherical NPs, 

𝑡𝜔 can be expressed as 𝑡𝜔 =  3𝑛𝑠𝑜𝑙
2 (𝜔)

2𝑛𝑠𝑜𝑙
2 (𝜔)+ 𝑛𝑁𝑃

2 (𝜔)
  where 𝑛𝑠𝑜𝑙(𝜔) and 𝑛𝑁𝑃(𝜔) stand for the 

solvent and nanoparticle average refractive index at 𝜔, respectively. In addition, when 

dispersion of the refractive index is considered in the vicinity of electron resonances (i.e., 

𝑛(𝜔) ≠ 𝑛(2𝜔)), the reduction field factor becomes T𝑁𝑃 = t𝜔2 . t2𝜔.  



 

 

Figure 2. Principle of the SHS technique on colloidal suspensions of HNPs and definition of the different optical fields and 
physical entities.   

 

Regarding THS measurements, a very similar formalism can be applied by using 𝐼3𝜔 =

1
16

.𝐺3𝜔. 𝜆3𝜔−4 .𝑁𝑁𝑃.𝑇𝑁𝑃2 〈(𝜒𝑁𝑃𝑠
(3) )2〉 .𝑉2. 𝐼𝜔3  where the 1/16 pre-factor is given within the 

convention used by Bosshard et al.,(Bosshard, Gubler, Kaatz, Mazerant, & Meier, 2000) and 

with 𝑇𝑁𝑃 = t𝜔3 . t3𝜔. The ratio between the two scattered harmonic signals 𝐼2𝜔 and 𝐼3𝜔 can be 

used as an approximate estimate of 〈𝜒𝑁𝑃
(3)〉 = �〈(𝜒𝑁𝑃

(3))2〉, provided that the excitation 

intensity 𝐼𝜔 is precisely known(Multian et al., 2018; Schmidt et al., 2016) and after properly 

accounting for the collection and detection efficiencies at 2ω and 3ω. More generally, a 

quantitative assessment of the second-order susceptibility 〈𝜒𝑁𝑃
(2)〉 can be obtained either by 

the internal reference method or with the external one, thanks to the availability of different 
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reference molecules such as para-nitroaniline (pNa) which is suitable for YAG laser excitation 

(1064 nm). Concerning the determination of third-order susceptibilities 〈𝜒𝑁𝑃
(3)〉, the 

straightforward internal reference approach based on very common solvents has also been 

recently demonstrated.(Van Steerteghem, Clays, Verbiest, & Van Cleuvenbergen, 2017)  

From the experimental standpoint, it is essential to point out that exclusively orientation-

averaged entities can be derived from SHS and THS measurements. In the most general case, 

the relations between 〈𝜒𝑁𝑃
(2)〉 (resp. 〈𝜒𝑁𝑃

(3)〉) and the independent elements of the χijk
(2) (resp. 

χijkl
(3) ) tensors depend on the scattering angle, the polarization of the excitation and harmonic 

signals, and the crystal symmetry. For instance, if we consider materials belonging to the 

orthorhombic lattice system and to the 222 crystal class, one of the simplest cases in terms 

of number of nonzero coefficients, any twofold rotation around one of the 𝑖 =

1,2,3 crystalline axes not only keeps constant the macroscopic (bulk) crystal morphology but 

also all the physical properties after application of the symmetry operator. It results that for 

each nonlinear order n, susceptibilities tensors 𝜒(𝑛) of rank 𝑛 + 1 must be invariant in the 

new basis after application of the tensor transformation. For the second-order susceptibility, 

this transformation operator assumes the form of χijk
(final) =  a𝑖𝑝a𝑗𝑞a𝑘𝑟 χpqr

(initial). In the case of 

the 222 point group, this transformation rule can be applied successively with the a𝑖𝑝 

coefficients of the twofold rotation matrix A1 (around 𝑖 = 1) and A3 (rotation around 𝑖 = 3). 

It results for a lossless material that the initial 27 (real) independent coefficients of the 

χpqr
(initial)susceptibility tensor are reduced to only five non-vanishing tensor coefficients xyz, 

xzy, yzx, yxz, zxy, zyx. If we now use the contracted Voigt notation, the initial 18 independent 

elements of the 3x6 χil
(2) matrix can be reduced to three nonzero coefficients. In addition, 



χ14 = χ25 = χ36 when the excitation and SH frequencies are far from electron 

resonances.(Boyd, 2003)  

𝐴1 = �
1 0 0
0 −1 0
0 0 −1

� and 𝐴3 = �
−1 0 0
0 −1 0
0 0 1

�  leads  to  χil
(2)(𝑐𝑙𝑎𝑠𝑠 222) = �

0
0
0

0
  0  
0

0  
0
0

χ14
0
0

0
χ25
0

0
0
χ36

� 

Among oxide materials belonging to high symmetry point groups, the χil
(2) matrix of sillenite 

compounds like BSO (Bi12SiO20, …, symmetry class 23) and the one of ZnO (symmetry class 

6mm) are also given below in the non-resonant case as illustrative examples.  

𝜒𝑖𝑙
(2)(BSO) = �

0
0
0

    0   
 0
 0

0
0
0

   𝜒14
0
0

 0 
𝜒14
0

0
0

 𝜒14
�            𝜒𝑖𝑙

(2)(ZnO) = �
0
0
𝜒31

 0
 0

  𝜒31

 0
0

  𝜒33

  0
𝜒31

0

   𝜒31 
0
0

 0
0
0
� 

Similarly, symmetry considerations and Kleinman’s assumption greatly reduce the number of 

nonzero components for the third-order susceptibility tensors of each crystal class. After 

application of the transformation formula χijkl
(final) =  a𝑖𝑝a𝑗𝑞a𝑘𝑟a𝑙𝑠 χpqrs

(initial) of a fourth-rank 

tensor, 3 independent coefficients (instead of 2 for 𝜒𝑖𝑙
(2)) can be noticed in the case of ZnO in 

the following  3x10 𝜒𝑖𝑚
(3)(ZnO) third-order susceptibility matrix expressed using the 

convenient contracted notation introduced by Yang et al..(Yang & Xie, 1995) 

𝜒𝑖𝑚
(3)(ZnO) = �

𝜒11
0
0

0
𝜒11
0

0
0
𝜒33

0
𝜒16
0

0
0
𝜒16

𝜒16
0
0

0
0
𝜒16

⅓. 𝜒11
0
0

0
⅓.𝜒11

0

 0
 0
  0
� 

 
For SHS and THS measurements, the orientation-averaging procedure that allows deriving 

〈𝜒𝑁𝑃
(2)〉 and 〈𝜒𝑁𝑃

(3)〉 is usually considered for an incident beam with a linear polarization angle γ 

defined in the laboratory frame. The incident (macroscopic) optical field in the laboratory 

frame {X,Y,Z} can be expressed in the crystal frame {x,y,z} of a single, randomly oriented HNP 

by applying the rotation matrix RΩ, where Ω(ϕ,θ,ψ) represent the Euler angles. Note that the 



excitation field is linked through 𝑓𝜔 to the local (microscopic) field 𝑒𝑗𝜔 experienced by each 

unit cell, as illustrated in Fig. 2. The induced dipole moments oscillating at 2ω given 

by 𝑝𝑖2𝜔  = 1
2
𝜖0βijk

(2)𝑒𝑗𝜔𝑒𝑘𝜔 can also be expressed as the product of the 3x6 βil
(2) matrix and a 6-

component excitation-field vector defined as {𝑒𝑥,
2𝑒𝑦,

2 , 𝑒𝑧,
2 , 2𝑒𝑦𝑒𝑧, 2𝑒𝑥𝑒𝑧 , 2𝑒𝑥𝑒𝑦}. The 

transformation of these nonlinear dipoles in the laboratory frame by the application of the 

operator SΩ (i.e., the transpose of  RΩ) allows calculating the macroscopic optical fields 𝐸𝐼2𝜔 

through the dipole radiation formula where the unit vector (0,1,0) is used in Fig. 3 (for a 

collection along the Y-axis direction).  

 

Figure 3. Experimental configuration for SHS and THS measurements with an incident linear polarization in the (X,Y) plane 
and a detection along the Y-axis direction. Definition of the Euler angles Ω(ϕ,θ,ψ) in the XYX convention leading to the 
orientation-averaged entities in the (macroscopic) laboratory frame {X,Y,Z}={I,J,K} from the susceptibility tensors expressed 
in the (microscopic) crystal frame {x,y,z}={i,j,k}   

 

The resulting vertically-polarized SH intensity accounting for the orientation-averaging 

procedure is then simply calculated as 𝐼𝑋2𝜔 = 1
8𝜋2 ∫ ∫ ∫ (𝐸𝑋2𝜔)2. sin𝜃 𝑑𝜃𝑑𝜑𝑑𝜓𝜓=2𝜋

𝜓=0
𝜑=2𝜋
𝜑=0

𝜃=𝜋
𝜃=0  

whereas a similar expression applies for 𝐼𝑧2𝜔 with 𝐸𝑍2𝜔. The above description is not only the 
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most natural in terms of physical understanding, but also the most efficient to be 

numerically computed. It is of course consistent with the common alternative approach that 

consists in determining the macroscopic βIJK
(2) coefficients from the corresponding βijk

(2) 

molecular components. This transformation defined by the usual tensor rotation 

formula βIJK
(2)(Ω) = ∑ (𝑆𝐼𝑖𝑆𝐽𝑗𝑆𝐾𝑘)𝛽𝑖𝑗𝑘

(2)
𝑖𝑗𝑘  becomes:  

〈�𝛽(2)�2〉 = 〈βIJK
(2)(Ω). βLMN

(2) (Ω)〉 =

1
8𝜋2  ∫ ∫ ∫ ∑ (𝑆𝐼𝑖𝑆𝐽𝑗𝑆𝐾𝑘𝑆𝐿𝑙𝑆𝑀𝑚𝑆𝑁𝑛)𝛽𝑖𝑗𝑘

(2)𝛽𝑙𝑚𝑛
(2)

𝑖𝑗𝑘𝑙𝑚𝑛 . sin 𝜃 𝑑𝜃𝑑𝜑𝑑𝜓𝜓=2𝜋
𝜓=0

𝜑=2𝜋
𝜑=0

𝜃=𝜋
𝜃=0   

for the squared, orientation-averaged hyperpolarizability expressed in the laboratory 

frame.(Cyvin et al., 1965) If we consider a colloidal suspension of nanoparticles, the coherent 

contribution from the m dipoles of the HNP volume V is written as 

 〈�𝛽𝑁𝑃𝑠
(2) �

2
〉 = 𝐹𝑁𝑃2 . 〈βIJK

(2)(Ω).βLMN
(2) (Ω)〉 .𝑚2 = �𝐹𝑁𝑃2 . 〈βIJK

(2)(Ω).βLMN
(2) (Ω)〉 .𝑁2�𝑉2 where the 

material local field factors are included in 𝐹𝑁𝑃 = 𝑓𝜔2.𝑓2𝜔 and where the number density of 

formula units is 𝑁 = 𝑚/𝑉. The relation between the macroscopic susceptibility and the 

microscopic hyperpolarizability dIJK
(2) = 1

2
χIJK

(2) = 𝐹𝑁𝑃.βIJK
(2)(Ω).𝑁 finally results in a volume-

dependent hyperpolarizability 〈�𝛽𝑁𝑃𝑠
(2) �

2
〉 = 〈𝑑𝑁𝑃𝑠

(2) 〉2 .𝑉2 = 1
4
〈𝜒𝑁𝑃𝑠

(2) 〉2 .𝑉2 as we previously 

discussed.  

As an example, when the above formalism is applied to the ZnO case under non-resonant 

conditions and for a vertically polarized incident field (γ=0) with no analyser in the detection 

path, the square of the orientation-averaged second-order susceptibility becomes  

〈�𝜒𝑁𝑃
(2)�

2
〉 = 〈�𝜒𝑋𝑋𝑋

(2) �
2
〉 +  〈�𝜒𝑍𝑋𝑋

(2) �
2
〉 with 〈�𝜒𝑋𝑋𝑋

(2) �
2
〉 = 1

7
𝜒33

2 + 24
35
𝜒31

2 + 12
35
𝜒33𝜒31 and  

〈�𝜒𝑍𝑋𝑋
(2) �

2
〉 = 1

35
𝜒33

2 + 4
21
𝜒31

2 − 4
105

𝜒33𝜒31. 



Similarly, when 𝛽𝑖𝑗𝑘
(2)𝛽𝑙𝑚𝑛

(2)  is now replaced by 𝛾𝑖𝑗𝑘𝑙
(3) . 𝛾𝑚𝑛𝑜𝑝

(3)  in the previously defined integration 

and the number of rotation matrix SΩ consistently increased, the square of the orientation-

averaged third-order susceptibility measured with the THS configuration is expressed 

as 〈�𝜒𝑁𝑃
(3)�

2
〉𝑇𝐻𝑆 = 〈�𝜒𝑋𝑋𝑋𝑋

(3) �
2
〉𝑇𝐻𝑆 +  〈�𝜒𝑍𝑋𝑋𝑋

(3) �
2
〉𝑇𝐻𝑆 with:  

〈�𝜒𝑋𝑋𝑋𝑋
(3) �

2
〉𝑇𝐻𝑆 =  1

9
𝜒332 + 128

315
𝜒112 + 32

35
𝜒162 + 16

315
𝜒33𝜒11 +  8

21
𝜒33𝜒16 + 64

105
𝜒11𝜒16  

〈�𝜒𝑍𝑋𝑋𝑋
(3) �

2
〉𝑇𝐻𝑆 =  1

63
𝜒332 + 8

315
𝜒112 + 1

7
𝜒162 − 8

315
𝜒33𝜒11 −  2

105
𝜒33𝜒16 −

8
105

𝜒11𝜒16 

where the independent third-order coefficients are here still expressed with the matrix 

notation. (Alexiewicz, Ozgo, & Kielich, 1975) (Multian et al., 2018)  

Optical bio-imaging with HNPs 
 

The choice of nanoparticles in optical bio-imaging applications over other methods 

(fluorescence immunostaining, fluorescent protein expression, ...) is usually motivated by 

one or several of the following criteria: i) need of very bright and stable emission over time; 

ii) access to multimodal detection; iii) application of targeting strategy (antibodies, enhanced 

retention, …) ; iv) use of the nanoparticles for in situ delivery of a molecular payload or as 

local triggers of a therapeutic effect. Clearly, not all these requirements are fully met by a 

single nanotechnological approach. The side effects of the use of nanoparticles (in terms of 

toxicity or other perturbation of the sample under study) should also be carefully accounted 

for in the choice. Based on these general considerations, the following characteristics of 

HNPs, discussed in the previous sections, are relevant for their selection in specific bio-

imaging applications: 



1. Typical size 50-200 nm, with in general a rather broad size distribution within this 

interval. 

2. Absence of known toxic elements in their chemical composition. 

3. Emission based on multiple simultaneous harmonic signals rather than luminescence. 

1) The relative large dimensions of HNPs follow from the chemical synthetic protocols and is 

very beneficial in terms of brightness since the signal intensity scales as 𝑉2. This volume 

dependence poses limitations to the detection of HNPs with diameter ≪ 50 nm in a 

biological sample. Because of their typical size and not homogeneous shape distribution, 

HNPs are generally not the first choice for intracellular target delivery and in general for sub-

cellular studies, with some noticeable exceptions.(J. Liu, Cho, Cui, & Irudayaraj, 2014; 

Macias-Romero et al., 2014; Nakayama et al., 2007) The particles in fact tend to remain 

localized in specific compartments after internalization (endosomes) weakly interacting with 

the rest of the cell body.(Staedler et al., 2012; Staedler et al., 2015) Under this respect, they 

are better suited to label specific individual cells in a sample.  

2) Differently from most quantum dots, HNPs do not contain heavy elements (e.g., Cd, Hg), 

known to be highly cytotoxic. However, their effects on cells viability, proliferation, 

metabolism, etc. should be assessed for each sample type as the interaction depends not 

only on the particle chemical composition but is also affected by its structural stability at 

different pHs (to avoid release of ions), its shape and size, surface charge, and concentration. 

Most importantly, HNPs-cells interaction is critically sensitive to the cell type under study. 

Note that for most bio-imaging applications, particles should be coated (e.g., with a polymer) 

and specific functionalization agents could be attached to the coating to selectively target 

cell membrane receptors.(Débarre et al., 2005; Hsieh, Grange, Pu, & Psaltis, 2010; Nami, Y., 



Roxanne, E., & Periklis, 2018; Passemard et al., 2015) These additional procedures, common 

to other nanotechnology approaches, can further modify the toxicity profile of the particle. 

So far, most of the studies on HNPs-cell interaction (including high throughput multi-

parameter analysis) have been performed on BaTiO3, BFO, and ZnO nanoparticles. The 

former two seem to affect weakly the cells and notably they have been proven compatible 

with stem-cell differentiation.(Dubreil et al., 2017; Li et al., 2016; Nami et al., 2018)  

3) HNP optical excitation and emission properties are the ones, which stand out making the 

difference with other approaches and could motivate their selection for specific imaging 

tasks. Firstly, the fact that the detected signals rely on non-parametric optical generation 

(SHG and THG) implies that signal stability over time is not affected by blinking or 

bleaching.(Le Xuan et al., 2008; Staedler et al., 2012) In fact, the light-particle interaction 

does not require sequential excitation and emission processes involving excited electronic 

states, which always possess a non-vanishing probability to lead the system into a dark state 

(e.g., surface trapping in quantum dots). Similarly, for HNPs minimal excess energy is 

deposed on the particle (contrary to the case of fluorescent probes), which helps preventing 

sample photo-degradation by cumulative heat deposition. A crucial role for motivating the 

selection of HNPs against other nanoprobes is played by the possibility to tune the excitation 

wavelength in a large spectral region spanning from near UV to mid-IR, according to the 

transparency region of each specific HNP material. The advantages opened by this possibility 

are multi-fold: the laser wavelength can be selected i) to avoid autofluorescence excitation 

and overlap with the fluorescent staining agents present in the sample; ii) to best match the 

sample optical properties to increase imaging penetration depth.(Grange, Lanvin, Hsieh, Pu, 

& Psaltis, 2011; Pantazis, Maloney, Wu, & Fraser, 2010; Rogov et al., 2015) In thick samples, 

the imaging depth critically depends on light scattering and absorption along the excitation 



path. As scattering is monotonously decreasing with wavelength, longer wavelengths are 

more favourable provided that the maxima of water absorption are avoided. With the 

advent of new light sources in the near infrared (NIR), new spectral regions amenable for 

imaging have been added to the traditional transparency tissue window (NIR I, 600-1000 

nm), namely NIR II (1100-1350 nm) and NIR-III (1600-1870 nm).(Sordillo, Pu, Pratavieira, 

Budansky, & Alfano, 2014) Very interestingly, HNPs can be excited within these NIR regions, 

and the harmonic signals produced conveniently lie in the visible, where water absorption is 

minimal. Note that the scattering properties of the sample do not constitute a limiting factor 

for the detection of the signal generated; on the contrary scattering can be convenient for 

increasing the fraction of signal photons detected in the backward direction, which is the 

standard collection geometry for in vivo studies.(Débarre, Olivier, & Beaurepaire, 2007)   



 

Figure 4. First row: HNPs on a collagen-rich tissue region. In the SHG channel, HNPs are not distinguishable from the 
background, while they appear with no hindrance in the THG channel. Second row: HNPs in a myelin-rich region. Here HNPs 
are visible with high contrast exclusively the SHG channel. Laser excitation 1300 nm. Scale bar 20 μm. (Adapted with 
permission from Dubreil et al., 2017. Copyright 2017 American Chemical Society.) 
 

The selectivity in the retrieval of HNPs in optically congested environments (e.g., tissue, body 

fluids) beside the aforementioned minimization of (auto-)fluorescence hindrance by 

wavelength selection, can be further improved using a multi-order harmonic 

approach.(Dubreil et al., 2017; Rogov et al., 2015) When excited in the NIR-II region, for 

example at 1300 nm, HNPs emit simultaneously at 650 nm (SHG) and 433 nm (THG). These 

two signals can be conveniently collected in parallel and correlated to identify nanoparticles 

against any fluorescence background but also against endogenous sources of harmonic 

emission in tissues such as collagen (SHG)(Williams, Zipfel, & Webb, 2005) and lipids 

(THG).(Débarre et al., 2005) In fact, while these endogenous structures are known to emit 



efficiently only at one nonlinear order (either SHG either THG), HNPs generate both 

harmonic signals. As reported in Fig. 4, this characteristic deems essential for identifying 

them in different tissue compartments. In panel A, an extended collagen network is visible 

by SHG. The eventual presence of structures or cells labelled by HNPs is not apparent in this 

channel, however if observed in the THG channel only HNPs appear thanks to their strong 

emission. Similarly, the lipid composition of myelin, a fatty substance surrounding nerve 

axons, appear in the THG channel hindering the presence of HNPs (panel E). In this case, the 

SHG channel provides background-free detection of the particles. Note that the excitation 

and collection of SHG and THG channel are implemented simultaneously under standard 

conditions for multiphoton imaging. However, a THG signal can be detected only when using 

laser excitation above 1100 nm, because of the transmission cut-off of microscope regular 

optics < 350 nm.  
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