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aOnera, Department of Materials and Structures, Châtillon, France
bAirbus, Airport Operations, Blagnac, France

cCnam, Structural Mechanics and Coupled Systems Lab., Paris, France

Abstract

Impact identification is a major concern in structural health monitoring. It consists in localizing the impact
point and in reconstructing the applied load history from indirect measurements. However, it is well-known
that this double inverse problem is ill-posed. In this paper, a single-sensor approach for quickly localizing
a Dirac-like impact and for estimating its intensity from vibration measurements is proposed. It is proved
that the relative proportions of specific modal ponderations are a signature of impact location. Rules
are provided to select the appropriate vibration modes in the analysis and to position the sensor. The
identification process is robust if the vibration modes kept in the analysis are weakly damped and if their
natural frequencies are well separated. Experiments are conducted on a metallic plate to validate this single-
sensor approach on a 2D structure. The success rate for localizing impacted cells is 100% when appropriate
method parameters are selected.

Keywords: Structural health monitoring, impact identification, impact localization, inverse problem

1. Introduction

Real-time reporting of impact events allows to monitor the structure’s integrity during its operating con-
ditions. However, direct measurement of the loads acting on the structure are often unavailable, mainly
because impact location is undetermined. Inverse methods must be employed to identify both the impact
location and the applied load history from vibration measurements of a limited number of sensors. Numerous
researches have been conducted for impact localization and load identification by assuming a linear elastic
behavior and a point impact. Both the localization problem and the reconstruction problem are known to
be ill-posed [1]. A small perturbation of the data, such as measurement noise or modelling errors, may lead
to a completely erroneous identification. Two approaches are investigated in the scientific literature to deal
with this double inverse problem.

The first approach consists in localizing the impact point before reconstructing the load history. The
impact location can be triangulated by estimating the Time-Of-Flights (TOFs) of some elastic waves at
different points of the structure. Ahmari and Yang [2] numerically validated a triangulation technique on a
simply supported metallic plate virtually equipped with 12 displacement sensors. They used an analytical
propagation velocity model of flexural waves to translate the TOFs into distances in order to localize the
simulated impacts. Zhao et al. [3] considered the propagation of the fundamental anti-symmetric Lamb wave
mode A0 in a Carbon Fiber Reinforced Polymer (CFRP) plate equipped with four strain gauges in its corners.
They estimated the TOFs with a wavelet transform to reduce the influence of the measurement noise. The
triangulation problem is formulated with a non-linear set of equations depending on the propagation angles.
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They developed a numerical procedure combining a particle swarm optimization algorithm and a genetic
algorithm to solve it. Frieden et al. [4] proposed to use an experimental reference data set to build the
velocity model of A0 waves traveling in a composite structure. They experimentally validated their technique
on a clamped CFRP plate equipped with four accelerometers or FBG sensors located in the corners of the
plate.
The applied load history can be reconstructed once impact location is known. With the assumptions of
a linear elastic behavior and a point impact, the reconstruction problem becomes a linear deconvolution
problem [5]. However, this problem is ill-conditioned and a regularization technique must be employed
[6]. Chen and Chan [7] used the Truncated Singular Value Decomposition (TSVD) to reconstruct dynamic
loads acting on a bridge deck. The regularization parameter was the number of removed singular values.
Tikhonov regularization [8] is also commonly employed to regularize the reconstruction problem. Khalori
et al. [9] used the L-curve method [10] to determine the optimal Tikhonov regularization parameter. They
experimentally validated this technique to reconstruct impact loads applied on a steel-beam-reinforced con-
crete deck. However, Jacquelin et al. [11] pointed out that the L-curve method becomes tricky in the case
of multiple corners. Generalized Cross Validation (GCV) is another commonly used technique to estimate
the regularization parameter [12]. Choi et al.[13] compared the L-curve method and the GCV technique
to numerically reconstruct impact forces applied on a simply supported plate. The L-curve technique was
shown to give better results for noisy data while GCV methods were better for lightly noised data. Eventu-
ally, l1 regularization [14] can be considered to estimate impact loads that are characterized by a very short
duration. Hence the reconstruction problem consists in the estimation of a sparse vector. Qiao et al. [15]
experimentally validated this technique on a composite wind turbine blade and on a shell structure.

The second approach consists in simultaneously solving the localization problem and the reconstruction
problem. Mainly three techniques have been developed to this end. Firstly, sweeping techniques consist
in solving the reconstruction problem on a grid of candidate impact points defined on the structure. The
candidate of the grid that leads to the minimization of a distance between predictions and measurements is
selected as the impact point. Li and Lu [16] simultaneously identified the impact point and the applied load
history on a clamped beam equipped with two accelerometers. They solved the reconstruction problem on a
grid of evenly spaced candidates with Tikhonov regularization and the L-curve method. A quadratic distance
was used to compare the predictions with the measurements. Vladislav et al. [17] numerically validated the
same sweeping technique with a finite elements model of a metallic panel with a hole. The grid of candidates
was the mesh of the model. They proposed an interpolation technique to refine the localization of the impact
point. Secondly, techniques based on modal ponderations consist in estimating the contributions of some
vibration modes in the response as a signature of impact location. Briggs and Tse [18] proposed to build an
experimental data set to link a few modal ponderations to impact location and intensity. They assumed that
the frequency spectrum of applied load history was flat in the frequency band of the selected vibration modes.
They experimentally validated their technique on a beam-like structure equipped with one accelerometer
only. The four first vibration modes were kept in the analysis but no general rule was provided regarding
this choice. Wang and Chiu [19] developed a similar technique in time domain to simultaneously identify
impact location and intensity. They proved that modal ponderations are linked to the lines of the modal
matrix. They proposed a least-squares procedure to simultaneously estimate impact intensity and modal
ponderations. They experimentally validated their technique on a simply supported beam equipped with one
accelerometer only. They observed that the accelerometer location had a strong influence on the accuracy
of the impact identification. In particular, multiple impact locations were identified if the accelerometer
was close to a modal node. Eventually, non-model based techniques have been developed to simultaneously
identify impact location and some load history parameters. Zhong et al. [20] trained a neural network to
localize impacts applied on a stiffened composite panel and to estimate the impact energy.

The objective of this work is to develop an accurate and robust procedure for quickly localizing an impulse
and for estimating its intensity from vibration measurements of a single point. The assumption is made
that the impact load can be approximated as a Dirac function. The proposed technique is based on modal
ponderations and general rules are provided to select the appropriate vibration modes in the analysis. Both
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the accuracy and the robustness of this impulse identification technique are investigated. In particular,
specific sensor locations are proposed to increase the robustness of the procedure. Experiments are conducted
on a simply supported plate to demonstrate the presented method.

This paper is organized as follow. Section 2 introduces the assumptions underlying the theoretical framework
and a procedure is described for estimating modal ponderations from acceleration measurements. It is proved
in section 3 that modal ponderations are a robust signature of impact location if appropriate vibration modes
are selected in the analysis. The proposed impulse identification procedure is then presented. Sufficient
conditions are provided in section 4 for estimating the modal ponderations with accuracy and robustness.
Eventually, section 5 addresses the experimental validation of the proposed impulse identification technique
on a simply supported aluminum plate.

2. Estimation of modal ponderations

2.1. Impulse response

Consider a weakly damped linear elastic structure and let S be the set of all the points of its geometry that
are not blocked by the boundary conditions. Assume that the structure is submitted to a transverse impact
(normal to the surface) of duration T > 0 applied at some point F ∈ S at time t = 0. Let t 7→ ψ(t) be the

normalized applied load history such that
∫ T

0
|ψ(t)|dt = 1. Let f 6= 0 be the impulse intensity (expressed

in N.s) so that the applied load history is given by t 7→ fψ(t). Assume that p ≥ 2 non-rigid vibration
modes are known and that the structure is initially at rest (null initial conditions). The natural pulsation
of the j-th mode is noted ω0j > 0 and its damping ratio is noted ηj < 1. The transverse vibration response
t 7→ q(t) is considered at some point C ∈ S (see Figure 1). Let’s note φj(M) the j-th mode shape evaluated
at some point M ∈ S along the transverse direction. Assuming a modal behavior [21], the projection q̃ of q
on the p known vibration modes is given by:

q̃(t) =

p∑
j=1

φj(C)φj(F )(fψ ∗ gj)(t) (1)

where fψ ∗ gj denotes the convolution product between the load history and the impulse response of the
j-th modal coordinate. This latter is defined by:

gj(t) =
1

ωj
e−ηjω0jt sin (ωjt) (2)

with ωj = ω0j

√
1− η2

j . If the impact duration T is short enough then ψ can be modelled with a Dirac

function δ. In this case, q̃ is well approximated at any time by:

q̃(t) ≈
p∑
j=1

fφj(C)φj(F )gj(t) (3)

If equation (3) holds it is said in the following that the applied impact is an impulse, relatively to the
dynamics of the p vibration modes considered in the analysis.

f.δ

F C

t 7→ q(t)

Figure 1: Dirac-like impact at point F producing a vibration response at point C.

3



2.2. Amplified Modal Ponderation Vector (AMPV)

Depending on impulse location F , equation (3) shows that the p vibration modes are not excited in the same
proportions through the ponderations (φj(F ))1≤j≤p. If the impulse occurs at the modal node of the i-th
mode then it will not participate to the response (φi(F ) = 0). The impulse intensity f does not change the
proportions in which the modes are excited: it uniformly amplifies each modal ponderation. Therefore, we
introduce the Amplified Modal Ponderation Vector (AMPV) defined by ZF = f.(φ1(F ) ... φp(F ))T . It can
be seen as the image of the impulse parameters in the vibration response: (F, f) 7→ ZF. It is the purpose of
section 3 to show that the reverse link ZF 7→ (F, f) holds if appropriate vibration modes are selected in the
analysis.

It is straightforward to notice that the vibration response is linear with respect to the AMPV. Indeed,
equation (3) can be written:

q̃(t) = L(t).ZF (4)

with L(t) = (φ1(C)g1(t) ... φp(C)gp(t)). The modal properties of the p selected modes are known hence
L can be evaluated at any time. The previous equation also holds for an acceleration response model by
derivating twice with respect to time:

ã(t) = L̈(t).ZF (5)

In comparison with displacement sensors, accelerometers are generally smaller and do not require a reference
point. Hence acceleration measurements are in practice preferred for estimating the modal ponderations.

2.3. Estimation of the AMPV

Let (a(ti))1≤i≤n be n samples of the acceleration response at some point C of the structure. Measurements
are taken at times ti = i∆t with ∆t the sampling period of the accelerometer. A linear least-squares
procedure is proposed to estimate the AMPV from data that are possibly affected by noise. The cost
function J to be minimized is expressed as follows:

J(Z) =

n∑
i=1

(L̈i.Z− a(ti))
2 (6)

where L̈i = L̈(ti). Equation (6) can be written in the convenient form:

J(Z) = ZTAZ− 2UTZ− c (7)

with A =
∑n
i=1 L̈Ti L̈i, U =

∑n
i=1 a(ti)L̈

T
i and c =

∑n
i=1 a(ti)

2. It is known that the minimum of J is unique
if, and only if, the p× p matrix A is regular [22]. In that case, the minimum is reached for:

ẐF = A−1U (8)

The regularity of the matrix A is a requirement for the unique estimation of the AMPV. It is the purpose of
section 4 to study the properties of this matrix in order to select adequate measurement parameters (sensor
location, sampling frequency and acquisition duration).
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3. Reverse link between the AMPV and the impulse parameters

The purpose of this section is to prove that the identification of specific modal ponderations leads to the
impulse parameters. The validity and the robustness of the reverse link ZF 7→ (F, f) are investigated. The
theoretical concepts of Discriminating Modes Family (DMF) and Angular Robustness Maps (ARM) are
introduced and illustrated with the experimental use-case in section 5.

3.1. Discriminating Modes Family (DMF)

Assume that the amplified modal ponderation vector ZF ∈ Rp associated to an impulse (F, f) is known.
Two cases are considered:

Case 1: ZF = 0. Each modal ponderation is null, hence the impact occurred at an intersection point of the
nodal lines of the modes kept in the analysis. Let’s note Lj(0) = {M ∈ S | φj(M) = 0} the j-th nodal line.
Then:

F ∈ ∩pj=1Lj(0) (9)

Case 2: ZF 6= 0. At least one of the modal ponderations is not null, say φi(F ) 6= 0. One can write:

ZF ∝
(
φ1

φi
(F ) ...

φi−1

φi
(F ) 1

φi+1

φi
(F ) ...

φp
φi

(F )

)T
(10)

At this step, the idea is to extend the previous concept of nodal line to the concept of iso-proportion line
between two vibration modes. More precisely, let’s define Lj/i(α) = {M ∈ S | φj(M) = αφi(M)} with α
a real number. Then, similarly to the previous case, the impact occurred at an intersection point of p − 1
iso-proportion lines:

F ∈ ∩pj=1,j 6=iLj/i(λji) (11)

with λji = φj(F )/φi(F ). Note that all the coefficients λji are known since the AMPV is assumed known.

The previous discussion suggests to introduce the following set of points:

I(F ) =

{
∩pj=1Lj(0) if φj(F ) = 0 for any j ∈ J1, pK
∩pj=1,j 6=iLj/i(λji) if φi(F ) 6= 0 for some i ∈ J1, pK

(12)

It becomes clear that the AMPV is bijectively linked to the impulse location if, and only if:

I(F ) = {F} (13)

In this case, it is said that F = (φj)1≤j≤p is a Discriminating Modes Family (DMF) for the point F ∈ S. If
this unique intersection point property holds for any M ∈ S, then it is said that F is a global DMF of the
structure. An example of a global DMF is given in section 5.2.1.

It must be mentioned at this stage that the identification of a DMF from a known family of vibration modes
is a combinatory problem. A tool is however presented in section 3.3 to help identifying and selecting one.
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3.2. Truncation of the modal matrix on a global DMF

In practice, mode shapes are often not analytically known, hence iso-proportion lines cannot be used to
determine the impulse location. The structure is generally discretized to evaluate, either experimentally or
numerically, the mode shapes at several Degrees Of Freedom (DOF). Let φi ∈ RN be the i-th discretized
mode shape evaluated along N transverse DOFs. Then the N × p modal matrix Φ = [φ1|...|φp] is available.
The columns of its transpose are noted φ∗i ∈ Rp so that:

ΦT = [φ∗1|...|φ∗N] (14)

To simplify the notations, let’s abusively note F ∈ J1, NK the index of the DOF at which an impulse of
intensity f occurred. Then the AMPV is given by:

ZF = fφ∗F (15)

It is a remarkable property that if the modal matrix is truncated on a global DMF, then for any i 6= j the
couple (φ∗i , φ

∗
j ) is independent [23]. In other words, each DOF keeps its individuality in terms of modal

ponderations if discriminating vibration modes are selected in the analysis. In particular, this property
provides the basic idea of the proposed impulse identification technique (presented in its final form in
section 3.4):

� The impulse location F ∈ S corresponds to the unique index i ∈ J1, NK such that ZF and φ∗i are
collinear,

� The impulse intensity f is the collinearity factor between ZF and φ∗i .

It can be appreciated that the nonlinear inverse problem of impulse localization is replaced by the linear
inverse problem (8) followed by a simple collinearity research procedure. However the estimated AMPV ẐF

might not be exactly collinear to a column of ΦT. More theory is presented in next section to adapt the
above-mentioned technique to real cases.

3.3. Angular Robustness Map (ARM)

In practice the AMPV is always affected by an estimation error:

ẐF = ZF + e (16)

The error term e ∈ Rp may be due to some noise contiminating the data, due to modelling errors in (3),
or due to the fact that the impact occurred at a DOF at which the mode shapes have not been evaluated.
Consequently ẐF might not be exactly collinear to a column of ΦT. Instead we shall look for the columns
of ΦT that are roughly collinear to ẐF. This can be done by introducing a collinearity tolerance in the
procedure. In the following, the angle between two vectors u and v is defined by the small angle θ ∈ [0, π/2]
between v and span (u) (see Figure 2).

θ1θ2

u

v1v2

v3

v4

θ3
θ4

Figure 2: Definition of the small angles between a vector u and other vectors vi.
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Let’s note ε > 0 a proximity tolerance as an objective of localization performance. For instance, in the use-
case presented in section 5 the objective is to localize all the applied impacts within 3.6cm. A collinearity
tolerance angle θc is said admissible (for the proximity tolerance ε and for the impact point F ) if all the
φ∗i making a small angle with φ∗F lower or equal than θc are associated to points Fi ∈ S such that ‖Fi−F‖ ≤ ε.

Now let’s introduce θε(F ) as the maximum admissible collinearity tolerance for the proximity tolerance ε
and for the impact point F . Figure 4 presents a procedure for evaluating θε at the N DOFs of the structure.
It becomes straightforward to notice (see Figure 3) that all the candidates Fi are within the proximity
tolerance ε if the following condition is satisfied:

θc + θ̂F < θε(F ) (17)

where θ̂F is the small angle (unknown in practice) between ẐF and φ∗F.

ε

f.δ

F

ẐF

φ∗F
θ̂F

θε(F )

θc

Figure 3: Conversion of the proximity tolerance ε into a collinearity tolerance θε(F ).

Finally, for a given proximity tolerance ε, we define for a given vibration modes family its Angular Robustness
Map (ARM) by the mapping:

M 7→ θε(M) (18)

The ARM is an important tool to determine if a given vibration modes family is suitable for localizing
impacts within a desired proximity tolerance. If θε is null in an area of the structure then the ε-localization
of any impact applied in this area will fail. On the other hand, higher values of θε in an area of the structure
mean that the procedure can resist larger estimation errors on the AMPV. Several ARMs are presented in
section 5.2.2.

Inputs:
Φ: modal matrix
ε: proximity tolerance
M : DOF of the
structure
∆θ: Angular
resolution

Initialization:
Set θ = ∆θ

Find the subset of indices
I ⊂ J1, NK such that for any
i ∈ I the small angle between
φ∗M and φ∗i is lower than θ

Associate each i ∈ I to
a DOF Mi

Is ‖Mi −M‖ ≤ ε for each i ∈ I?

No

Output:
θε(M) = θ −∆θ

Yes

θ ← θ + ∆θ

Figure 4: Procedure to evaluate θε(M).
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3.4. Impulse identification technique with an adaptive collinearity tolerance

As discussed in previous section there might be important discrepancies in the values of θε. Therefore it is
proposed to use an adaptive collinearity tolerance in the procedure as follow. First let’s arbitrarily chose
a fixed collinearity tolerance θc ∈]0, π/4] to consider only candidates Fi ∈ S associated to φ∗i making a

relatively small angle with ẐF. Then let’s chose a dispersion factor γ ≥ 1 to reject candidates associated to
the largest angles. The impulse identification technique with an adaptive collinearity tolerance is then:

Inputs: Acceleration measurements, modal matrix Φ truncated on a DMF, collinearity tolerance θc,
dispersion factor γ

Step 1: Estimate the AMPV ẐF from the measurements with equation (8),

Step 2: Search for the subset of indices I ⊂ J1, NK such that for any i ∈ I the small angle θ̂i between

ẐF and φ∗i is lower than θc,

Step 3: Compute θ̂m = mini θ̂i and reject all the candidates such that θ̂i > γθ̂m. Update I.

Step 4: Associate each i ∈ I to a point Fi ∈ S and compute the collinearity factors fi between ẐF

and the φ∗i :

fi =
(φ∗i )

T
.ẐF

‖φ∗i ‖22
(19)

Step 5: Estimate the impulse intensity with a weighted barycenter:

f̂ =
∑
i∈I

wifi (20)

with wi ≥ 0 and
∑
i∈I wi = 1. In this study wi = cos(θ̂i)/

∑
k∈I cos(θ̂k) to give more weight to

candidates associated to small θ̂i.

Step 6: (optional) If the structure is planar within the area delimited by the candidates Fi ∈ S then
estimate the impulse location with the same formula:

F̂ =
∑
i∈I

wiFi (21)

Outputs: Estimation of the impulse intensity f̂ and location F̂

Note that the sensivity of γ on the localization results is low if θ̂m ≈ 0. Note also that γ = 1 consists in
selecting the candidate (provided it is unique) associated to the φ∗i the most collinear to ẐF. However it has
been observed in [23] that moderate values of γ, between 2 and 10, provide the most accurate and robust
results. No rule has however been found yet to select an optimal value of γ prior testing the technique on
several impacts.
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3.5. Implementation

Figure 5 illustrates the program flowchart of the proposed impulse identification technique. Several steps of
the procedure are described in the following:

DMF identification. This is a combinatory problem to be solved, with trials and errors, by plotting the
ARMs of several modes families associated to a desired proximity tolerance ε. As a rule of thumb the
minimum value of θε should be greater than 3-4◦in the area of the structure submitted to impacts. From
[23], if d is the dimensionality of the structure’s geometry (e.g. d = 2 for a plate) then the minimum number
of modes to be kept in the analysis to form a DMF is pmin = d + 1. Hence only combinations of at least
d+ 1 modes should be considered for plotting the ARMs (e.g. p = 3 for a plate).

Measurement parameters. Once a DMF is identified, the sampling frequency and the acquisition duration
should be selected, as a rule of thumb, such that:

∆t ≤ 2π

10× ω0p
, D ≥ 10× 2π

ω01
(22)

where ω01 and ω0p are respectively the lowest and the highest natural pulsations of the modes in the selected
DMF. The dynamics of the vibration modes selected for the analysis can then be correctly captured.

Sensor location. The sensor can be positionned on a point C such that the condition number in 2-norm
κa(A, C) of the matrix A defined in section 2.3 is minimal (see example in section 5.2.3). The robustness
of the inversion (8) is then increased.

Off-line steps Real-time steps

Modal analysis of
the structure

DMF identification
with the ARMs

Select tolerance
parameters θc and γ

Select sampling time ∆t
and acquisition duration D

Impact event in F
t 7→ f.ψ(t)

Measurements in C
(a(ti))1≤i≤n

AMPV estimation ẐF

Compute angular

distances θ̂i

Collinearity research
procedure

Candidates (Fi, fi)

Estimate impulse

parameters (F̂ , f̂)

Sensor placement
C ∈ argminM∈S κa(A,M)

Figure 5: Program flowchart of the impulse identification technique.
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4. Conditions for an accurate and robust impulse localization

Accuracy and robustness are desirable properties for an impact localization technique. For instance, consider
the localization results of numerous impacts applied at the same point F of a plate-like structure. Each
repetition is somehow different, which traduces in different perturbations of the model response (3). The
technique is said accurate for localizing an impact applied in F if the center of the estimates (F̂i) is near F ;
it is said robust if the diameter of the set of all the estimates (F̂i) is small. Figure 6 shows that a localization
technique can be inaccurate but robust, or accurate but not robust.

F

F̂

F

F̂

a) b)

x x

yy

Figure 6: The localization technique is a) inaccurate but robust b) accurate but not robust.

The objective of this section is to propose sufficient conditions for an accurate and robust estimation of the
AMPV. Displacement measurements are considered in the following to simplify mathematical expressions.
These latter can be adapted to acceleration measurements by noticing that g̈i takes the form:

g̈i(t) = − ω2
0i√

1− η2
i

gi(t+ τi) (23)

The proofs of the important relations are given in the Appendix to enhance the readability.

4.1. Almost-orthogonality conditions (a-o conditions)

The general term of matrix A, defined in section 2.3, is given by:

Aij = φi(C)φj(C).
(
Gi

T .Gj

)
(24)

where Gi = (gi(t1) ... gi(tn))
T

is the i-th modal impulse response discretized in time. Let’s define the modal
separation sij between two modes i and j by a real number within 0 and 1:

sij =
|ω0i − ω0j |
ωi + ωj

(25)

If the sampling frequency and the acquisition duration are large enough, then the normalized elements
G∗i = Gi/‖Gi‖ satisfy (see Appendix):

‖G∗i ‖ = 1 and for i 6= j |(G∗i )T .G∗j | ≤ µp =
µ+ η2

Max

1− η2
Max

(26)

with:
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µ =
η2
Max

(1− (η2
Max − η2

min))(η2
min + s2)

(27)

ηmin = min
i
ηi (28)

ηMax = max
i
ηi (29)

s = min
i6=j

sij (30)

If the p vibration modes selected in the analysis are weakly damped (ηMax is small) and well separated (s
is high), then the normalized family (G∗i )1≤i≤p is almost-orthogonal (a-o):

µp � 1 (31)

This can be understood by the fact that Gi
T .Gj is similar to an integral of harmonic functions if modal

dampings are small, natural frequencies are separated, and both sampling frequency and observation duration
are large enough. Note that a-o conditions have a practical meaning only if the smallnest of the a-o coefficient
µp is specified (see sections 4.2 and 4.3).

4.2. Accuracy with a modal truncation error

Let Q be the discretized measured response and assume that Q has a decomposition in a family of m > p
discretized modal impulse responses (Gi)1≤i≤m. Let Q̃ be the discretized model response (3). Let’s note

Qe = Q − Q̃ the modelization error. This latter may be due to the modal truncation as only p vibration
modes are kept in the analysis, while m > p vibrations modes are significantly excited. The accuracy of the
AMPV estimation, the modelization error and the a-o coefficient are linked as follow:

‖ẐF − ZF‖∞ ≤ c.µm.(m− p)‖Qe‖∞ (32)

where µm is the a-o coefficient of the family (G∗i )1≤i≤m obtained by evaluating equation (27) with the
corresponding family of m modes, and where c is a constant independent of m.

The relation (32) shows that the truncation error term, included in (m − p)‖Qe‖∞, can be attenuated by
the almost-orthogonality of the modal impulse responses. Hence the AMPV can be accurately estimated in
a-o conditions, even if the modal truncation error is important.

4.3. Robustness with appropriate sensor placement

A necessary condition for the sensor position is to avoid the nodal lines of the p modes selected in the
analysis:

C /∈ ∪pi=1Li(0) (33)

Otherwise the matrix A is singular. From a physical point of view, if C ∈ Lk(0) then the ponderation of
mode k, namely φk(F ), is not sensed hence it cannot be estimated.

If relation (33) holds and if µp is small enough, then it is a remarkable property that the matrix A takes a
strictly dominant diagonal form:

|Aii| >
p∑
j 6=i

|Aij | (34)
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From [24], the condition number in 2-norm of such a matrix can be approximated by the largest ratio of its
diagonal coefficients:

κd(A, C) ≈ max

(
φ2
j (C)

ηjω3
0j

)
/min

(
φ2
j (C)

ηjω3
0j

)
(35)

where the underscript “d” in κd refers to displacement measurements. In practice, acceleration measurements
are used (see section 2.3). It can be proved [23] in a similar manner that:

κa(A, C) ≈ max

(
ω0jφ

2
j (C)

ηj

)
/min

(
ω0jφ

2
j (C)

ηj

)
(36)

This approximation is discussed in section 5.4. One can minimize the condition number of A by adequatly
positioning the sensor on a robustness point:

C ∈ argminM∈S κa(A,M) (37)

In particular, if relation (33) is not satisfied then κa(A, C) = +∞, hence the matrix A is singular.

4.4. Summary

The AMPV estimation is accurate and robust if the following conditions are satisfied:

(i) The vibration modes significantly excited by the impact are weakly damped and well separated,

(ii) The sampling frequency and the acquisition duration are large enough,

(iii) The sensor is not located near a modal node of one of the p modes selected in the analysis.

It is important to notice that condition (i) depends on the modal properties of the structure, while conditions
(ii)-(iii) depend on the measurement parameters.
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5. Experimental validation on a simply supported metallic plate

The purpose of this section is to validate the proposed single-sensor approach for impulse identification.
Experimental studies are conducted on an academic structure in order to ease the modal analysis step (see
Figure 5) and to illustrate the new concepts introduced in previous sections.

5.1. Set-up

The experimental set-up consists in a rectangular aluminum plate mounted on a specific support that
reproduces simply supported boundary conditions (see Figure 7). The details of this set-up are described
in [25]. Plate properties are given in Table 1. A Finite Element Model (FEM) of the plate is created with
Nastran 2014 to compute the first six mode shapes of the plate. The FEM consists in a plate discretized in 8×
8 CQUAD8 elements. Hence the plate is divided in 64 rectangular cells of dimension ae×be with ae = 4.5cm
and be = 5.25cm. This grid allows a spatial resolution for the localization problem of min(ae/2, be/2) = 2.25
cm. The number of unblocked DOFs in the transverse direction of the plate is N = 161.

Three accelerometers 352C22 PCB Piezotronics are glued to the surface of the plate at points C1 = (3ae, 3be),
C2 = (6ae, 5be) and C3 = (2ae, 6be) (see section 5.2.3). Impacts are applied with the steel tip of an impact
hammer IH-02 Tenlee Piezotronics. Impact load history and acceleration data are recorded with the software
m+p Analyzer Rev 5.1 with a sampling frequency of 12.8kHz and a total measurement duration of 0.64s.

C3

C1

C2

x

0

y

Accelerometer

Impact
hammer

Acquisition chain

BladeFrame

Plate

Figure 7: Experimental set-up.

Dimensions a = 36cm, b = 42cm, h = 3mm
Density 2800 kg.m−3

Young modulus 72.5 GPa
Poisson ratio 0.33

Mode 1 ω01 = 595 rad/s, η1 = 1%
Mode 2 ω02 = 1406 rad/s, η2 = 0.3%
Mode 3 ω03 = 1693 rad/s, η3 = 0.6%
Mode 4 ω04 = 2454 rad/s, η4 = 0.3%
Mode 5 ω05 = 2700 rad/s, η5 = 0.09%
Mode 6 ω06 = 3438 rad/s, η6 = 0.14%

Table 1: Properties of the plate manufactured by Vancouver2 (Toulouse, France) and results of an experimental modal analysis.

13



5.2. Theoretical predictions

5.2.1. Global DMF

From [26], the (i, j) mass-normalized flexural mode shape of a simply supported plate is given by:

φi,j(x, y) ∝ sin

(
iπx

a

)
sin

(
jπy

b

)
(38)

Let’s note φ1 = φ1,1, φ2 = φ1,2, and φ3 = φ2,1. The objective is to show that F1 = (φ1, φ2, φ3) is a global
DMF of the plate (see Figure 8).

Let S =]0, a[×]0, b[ be the set of all the points of the plate that are not blocked by boundary conditions.
Let F = (xF yF ) ∈ S be a point of the plate submitted to a transverse impulse with an arbitrary intensity
f 6= 0. The first mode is necessarily excited: φ1(F ) 6= 0. The associated AMPV can be normalized as follow:

ZF ∝
(

1
φ2

φ1
(F )

φ3

φ1
(F )

)T
= (1 λ21 λ31)

T
(39)

with λ21 = sin
(

2πyF
b

)
/ sin

(
πyF
b

)
and λ31 = sin

(
2πxF

a

)
/ sin

(
πxF

a

)
. By using mode shape equation (38) and

the notations of section 3.1, it is straightforward to show:

L2/1(λ21) = {(x, y) ∈ S | y = yF } (40)

L3/1(λ31) = {(x, y) ∈ S | x = xF } (41)

Thus I(F ) = {F} for any F ∈ S. Therefore, F1 is a global DMF of the plate. Intuitively, φ1 acts as a non
uniform reference, φ2 allows to discriminate upper/lower halves of the plate, and φ3 allows to discriminate
right/left halves.

φ1 φ2 φ3

x

y

Figure 8: Mode shapes of the global DMF F1 = (φ1, φ2, φ3).

5.2.2. Angular Robustness Maps (ARMs)

The modal truncation error may be too large for accurately estimating the AMPV if only the three vibration
modes of F1 are kept in the analysis (see section 4.2). However, it is straightforward to notice that adding a
mode to a DMF forms a new DMF. The idea is then to iteratively add one mode to F1 in order to improve
the ARMs (see section 3.3). This process successively leads to F2 = (F1, φ5), F3 = (F2, φ6) and eventually
F4 = (F3, φ4). Figure 9 shows the ARMs of these different modes families with ε = 3.63cm (see section
5.3.1). It can be seen that successively adding appropriate modes in the analysis increases both minimal
and maximal values of θε. These maps are used in section 5.3.2 to interpret the localization results.
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 9: Angular Robustness Map M 7→ θε(M) (in ◦) depending on modes selection (computed with ε = 3.63cm and
∆θ = 0.1◦).

5.2.3. Identification of robustness points

The robustness of the AMPV estimation can be increased by adequatly positioning the sensor on the
structure (see section 4.3). Figure 10 shows the robustness points of the plate, defined by relation (37), with
the four vibration modes families. Measurement points C1 and C2 are robustness points of the plate (red
areas), and C3 is at the border of the robustness point areas. The three accelerometers are located at these
points to validate the single-sensor approach (see Figure 7).
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C1

C2

C3

(a) F1 (b) F2

(c) F3 (d) F4

Figure 10: Points of the plate maximizing 1/κ(A) depending on modes selection.

5.3. Impulse identification performances

5.3.1. Description of the procedure

Impacts are applied at the center of the grid cells that are represented on Figure 7. The plate is initially
at rest before each impact. The proximity tolerance is set to ε = 3.63cm (5% more than the half of a cell
diagonal). Therefore, an impact localization is considered successful if ‖F̂ − F‖ ≤ ε.

It is assumed in section 2 that the instant of impact t = t0 is known (t0 = 0). In practice, measurements
start before the impact time hence t0 is an unknown parameter. Consequently, the impulse identification
technique is slightly modified as follow to estimate the instant of impact. The cost function (6) to be
minimized becomes J = J(Z, τ), where τ represents the impulse delay. A first estimation τ0 is obtained
with a threshold technique based on a level of 5% of measured acceleration amplitude: τ0 = argmin|a(ti)| >
0.05×max |a(ti)|. Then an interval [τm, τM ] is uniformly discretized with a resolution ∆τ . The least-squares
procedure described in section 2.3 is repeated for each τk = τ0 + k∆τ (k may be negative). The parameter
τ∗ that leads to the minimal value of J is selected as the impact time:

t0 = τ∗ (42)

The parameters of the procedure are summarized in Table 2.
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Cells dimensions ae = 4.5cm, be = 5.25cm
Proximity tolerance ε = 3.6cm
Measurement duration D = 10× 2π

ω01
= 0.105s

Sampling frequency fe = 1/∆t = 12.8kHz
Accelerometer positions C1 = (3ae, 3be), C2 = (6ae, 5be), C3 = (2ae, 6be)
Available modes (φ1, ..., φ6)
Collinearity tolerance θc = π/6
Dispersion factor γ = 2
Impact time estimation ∆τ = ∆t, τm = −5∆τ , τM = +30∆τ

Table 2: Parameters for the impulse identification procedure.

5.3.2. Localization results

Table 3 summarizes the localization performances depending on the measurement point and the DMF
selection. The rate of ε-localization success ranges typically from 80% with F1 to 100% with F4. There is
only one impact that seems more accurately localized with F3 than with F4. Perhaps the corresponding
cell has not been exactly impacted at its center during the tests. The proposed single-sensor approach is
however validated for accurately localizing impacts applied on a plate.

DMF C1 C2 C3

F1 53 52 52
F2 59 59 62
F3 64(100%) 61 63
F4 63 64(100%) 64(100%)

Table 3: Number of ε-localizations (/64) depending on accelerometer location and DMF selection.

Figure 11 shows the localization maps obtained with the accelerometer located in C3 depending on DMF
selection. Most of the impacts are successfuly localized. However, impacts applied near the borders/corners
of the plate are uncorrectly localized by using F1. It can be seen on Figure 9a that θε is much smaller at
the borders of the plate and especially at its corners. As a result, the procedure is less robust for impacts
applied at these points.

It is observed in Figures 11a and 11c that some estimates, corresponding to impacts applied near a border,
are diametrically opposed to the true impact point. It happens when the estimated AMPV takes the form
ẐF = (δ ∗ ∗)T , with δ small with respect to other coordinates. The localization error can then be explained
by the symmetry of the mode shapes as follow. From Figure 12, the plate can be divided in four quadrants
defined by the relative signs of the mode shapes: Q1 = (+,+,+), Q2 = (+,−,+), Q3 = (+,−,−) and
Q4 = (+,+,−). When the first coordinate of the estimated AMPV is small with respect to the others, there
is no much difference between (δ ∗ ∗)T and (−δ ∗ ∗)T . As a result, the collinearity research procedure is
likely to capture candidates that belong to the wrong quadrant.
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 11: Localization maps with C3 depending on modes selection (green cross: impact point, black cross: estimate).
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Q4 = (+,+,−) Q1 = (+,+,+)

Q2 = (+,−,+)Q3 = (+,−,−)

Figure 12: Division of the plate in quadrants depending on mode shapes signs.

5.3.3. Impulse intensity predictions

The impulse intensity is defined as the integral of the applied load history in absolute value (see section 2.1).

Therefore, the impulse intensity estimate f̂ (see section 3.4) must be compared to the area A of the applied
load history under its curve (expressed in N.s). Figure 13 shows the correlations between estimated impulse
intensity, noted f on the plot, and A. Only the impulse estimates associated to the best localization results
are displayed, namely by using F4 (see Table 3). There is a good correlation between f̂ and A (r=+0.8),
meaning that the procedure is robust for estimating impulse intensity as well.

However, it is observed that all the estimates are below the bisector, meaning that the estimate f̂ is always
lower than A. The slopes of the linear curves are indeed closer to 0.7 than to expected 1. The most
inaccurate estimates of f either correspond to impacts applied on the corners, or to applied load histories
that cannot be modelled with a Dirac function. Figure 14a shows that the load histories corresponding to the
red crosses displayed in Figure 13a are spiky with multi-peaks. Therefore, the impact durations may not be
short enough to use the impulse response approximation (3). On the other hand, Figure 14b shows that the
nearest estimates from the bisector, displayed with green crosses in Figure 13a, correspond to rather smooth
load histories with a very short duration (≈ 2ms). Therefore, the procedure is accurate for estimating the
intensity of a Dirac-like impact.
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(a) C1

(b) C2

(c) C3

Figure 13: Correlation between impulse intensities f̂ estimated by using F4 and the integrals A of associated applied load
histories. The green line corresponds to a perfect estimation of the force amplitude.
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(a) Multi-peaks load histories corresponding to the two red crosses displayed on Figure 13a
(estimates far from the bisector).

(b) Single-peak load histories corresponding to the green crosses displayed on Figure 13a (es-
timates near the bisector).

Figure 14: Influence of the load history shape on the estimation of the impulse intensity.

5.4. Discussion

Validity of a-o conditions. The robustness of the proposed technique depends on the a-o coefficient µp
defined in section 4.3. The evaluation of µp by considering F1 or F4 respectively gives 0.012 and 0.043
(< 1). The normalized matrices A1 and A4, associated to F1 and F4, computed with the parameters in
Table 2 are:

A1 =

 0.25 −0.0011 −0.00068
−0.0011 1 −0.0094
−0.00068 −0.0094 0.86

 (43)

A4 =


0.16 0.00069 −0.00043 −0.00051 0.00051 0.00025

0.63 −0.0059 −0.0002 0.0020 −0.000073
0.54 −0.0024 −0.0018 0.0021

0.79 −0.012 0.013
(sym.) 0.77 −0.0069

1

 (44)

Both A1 and A4 are strictly diagonally dominant (see section 4.3). The condition number in 2-norm of Ak

can be computed as a function of the measurement duration D. Figure 15 shows that the prediction (36)
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agrees well with the true condition number of Ak when D is large enough. Therefore a-o conditions are
valid for this experimental use-case.

(a) F1 (b) F4

Figure 15: Evolution of the condition number κa(Ak, C1) depending on measurement duration D and DMF selection.

Localization accuracy. The localization results depend on the accuracy of the modal ponderation estima-
tions. Figure 16 shows an example of a frequency content reconstruction of acceleration measurements. It
is observed that the modal ponderations of the modes in F4 are correctly captured, even if the truncation
error seems large (modes up to 2.5kHz are excited). As suggested in section 4.2, it is important to keep
a sufficient number of modes in the analysis to correctly estimate the ponderations of the discriminating
vibration modes. Otherwise the truncation error may be too large.

Figure 16: Reconstruction of F4 frequency band [60Hz,580Hz].

Implementation for a more complex structures. The general procedure is described in Figure 5. The most
difficult step is to identify some mode shapes of the structure. This can be done numerically with a reliable
finite element model of the structure or experimentally. Then, discriminating vibration modes can be
identified and sensors can be adequatly positioned. Furthermore, it is experimentally observed that the
proposed approach is more sensitive to errors on natural frequencies than to errors on damping ratios.
Hence the implementation of this technique on a structure operating in a complex environment should
include a calibration step to use actual natural frequencies of the selected DMF.
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6. Conclusion

An inverse technique is presented in this study for quickly localizing a Dirac-like impact and for estimating
its intensity from vibration measurements. The identification is performed by estimating a few modal
ponderations from acceleration measurements of a single point on the structure. Compared to previous
studies on modal ponderations, general rules are provided to select the appropriate vibration modes in the
analysis and to position the sensor on the structure. The experimental results show the validity of the
proposed technique to achieve impact localization and impulse intensity estimation on a 2D structure with
help of one accelerometer only.
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Appendix: Proofs of section 4 properties

Let E be the vector space of continuous square integrable functions on the interval [0,+∞[. Let (.|.)E be

the usual scalar product on E defined by (u|v)E =
∫ +∞

0
u(t)v(t)dt. Let G∗ = (g∗j )1≤j≤p be a family of p

normalized modal impulse responses gj/‖gj‖E .

Property 1. The elements of G∗ satisfy:

‖g∗j ‖E = 1 and for i 6= j |(g∗i |g∗j )E | ≤ µ =
η2
Max

(1− (η2
Max − η2

min))(η2
min + s2)

Proof. It is straightforward to get:

(gi|gi)E =
1

4ηiω3
0i

For i 6= j, more developements lead to:

|(gi|gj)E | ≤
1

4(ω0iω0j)3/2

ηMax

(1− (η2
Max − η2

min))(η2
min + s2)

The property on G∗ follows by using:

1

‖gi‖E‖gj‖E
≤ 4ηMax(ω0iω0j)

3/2

Let’s note F = Rn and let Gj = (gj(t1) ... gj(tn))T be the j-th modal impulse response discretized in time.
Let (.|.)F be the usual euclidian scalar product on F defined by (U|V)F = UT .V. Let ∆t be the sensor
sampling period and D = n∆t be the acquisition duration. Let’s note G∗j = Gj/‖Gj‖F the normalized
modal impulse reponses discretized in time.

Property 2. If the measurement duration D is large enough and if the sampling period ∆t is small enough
then the elements G∗j satisfy:

‖G∗j‖F = 1 and for i 6= j |(G∗i |G∗j )F | ≤ µp =
µ+ η2

Max

1− η2
Max

Proof. Recall that D = n∆t. The first step is to prove that (u|v)E can be approximated by ∆t(U|V)F at
a given tolerance if the measurement duration D and the sampling frequency 1/∆t are large enough:

∀ε > 0,∃D∗ > 0,∃n∗(D) > 0,
(D ≥ D∗, n ≥ n∗(D)⇒ |∆t(U|V)F − (u|v)E | ≤ ε)

This property is then applied to the family (gi)1≤i≤p of modal impulse responses:

∀ε > 0,∃D∗ > 0,∃n∗(D) > 0,
(D ≥ D∗, n ≥ n∗(D)⇒ ∀i, j ∈ J1, pK, |∆t(Gi|Gj)F − (gi|gj)E | ≤ ε)

By noting G′i =
√

∆t
‖gi‖E Gi it is straightforward to show:

|∆t(Gi|Gj)F − (gi|gj)E | ≤ ε⇔

{
1− ε/‖gi‖2E ≤ ‖G′i‖2F ≤ 1 + ε/‖gi‖2E
|(G′i|G′j)F | ≤ µ+ ε/(‖gi‖E‖gj‖E) for i 6= j

The property follows by noting G∗j = G′j/‖G′j‖F = Gj/‖Gj‖F and by chosing ε = η2
Max mini ‖gi‖2E .
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Let Q be the discretized measured response and assume that Q has a decomposition in a family of m > p
discretized modal impulse responses (Gi)1≤i≤m. Let Q̃ be the discretized model response defined with

(3). Let’s note Qe = Q − Q̃ the modelization error and let Q̂ be the orthogonal projection of Q on

span((Gi)1≤i≤p). Recall that Q̂ is obtained with the least-squares procedure (see section 2.3). Let X, X̃,Xe

and X̂ be the vectors of the components of Q, Q̃,Qe and Q̂ in (Gi)1≤i≤m.

Property 3. Let µm be the a-o coefficient associated to (G∗i )1≤i≤m. Then:

‖X̂− X̃‖∞ ≤ µm(m− p)‖Xe‖∞

Proof. Let’s note Ni = G∗i . Then Q =
∑m
i=1 xiNi, Q̃ =

∑p
i=1 xiNi and Q̂ =

∑p
i=1 x̂iNi. Recall that Q̂ is

the orthogonal projection of Q on span(N1, ...,Np). Hence:

∀j = 1, ..., p
(
Q− Q̂ | Nj

)
= 0(

m∑
i=1

xiNi −
p∑
i=1

x̂iNi | Nj

)
= 0

Therefore:

∀j = 1, ..., p

p∑
i=1

x̂i (Ni | Nj) =

m∑
i=1

xi (Ni | Nj)

=

p∑
i=1

xi (Ni | Nj) +

m∑
i=p+1

xi (Ni | Nj)

Let Np,p be the matrix of general term (Ni | Nj) with i, j ∈ J1, pK. Let’s note q = m − p and let Np,q be

the matrix of general term (Ni | Nj) with i ∈ J1, pK and j ∈ Jp + 1,mK. Let’s note X̂ = (x̂1 ... x̂p)
T and

X = (X̃ Xe)T with X̃ = (x1 ... xp)
T and Xe = (xp+1 ... xm)T . Then:

Np,pX̂ = Np,pX̃ + Np,qXe

By definition (Ni | Ni) = 1 and | (Ni | Nj) | ≤ µm. For any vector Y = (y1 ... yl)
T let’s note ‖Y‖∞ =

supi |yi|, and for any k × l matrix M let ‖M‖∞ = sup‖Y‖∞≤1 ‖MY‖∞ be the induced matrix norm. The
property follows by using the separation property of the induced norm in the previous relation.

An appropriate scaling c independent of m then leads to the relation (32).

Property 4. Let µp be the a-o coefficient associated to (G∗i )1≤i≤p. Then:

1− η2
Max

4∆t

φ2
i (C)

ηiω3
0i

≤ Aii ≤
1 + η2

Max

4∆t

φ2
i (C)

ηiω3
0i

And for i 6= j

|Aij | ≤ µp
1− η2

Max

4∆t

|φi(C)φj(C)|
(ηiηj)1/2(ω0iω0j)3/2

Proof. By noticing that the general coefficient of matrix A expresses as:

Aij = φi(C)φj(C)(Gi|Gj)F =
φi(C)φj(C)

∆t
‖G′i‖F ‖G′j‖F ‖gi‖E‖gj‖E(G∗i |G∗j )F

It follows from the previous property that A takes a strictly diagonally dominant form if µp is small enough
and if C /∈ ∪pi=1Li(0).
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