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In this paper, we obtain two analogues of the Sturm bound for modular forms in the function field setting. In the case of mixed characteristic, we prove that any harmonic cochain is uniquely determined by an explicit finite number of its first Fourier coefficients where our bound is much smaller than the ones in the literature. A similar bound is derived for generators of the Hecke algebra on harmonic cochains. As an application, we present a computational criterion for checking whether two elliptic curves over the rational function field Fq(θ) with same conductor are isogenous. In the case of equal characteristic, we also prove that any Drinfeld modular form is uniquely determined by an explicit finite number of its first coefficients in the t-expansion.

Introduction

The Sturm bound provides a sufficient condition for classical modular forms to be identically zero.

Theorem 0.1. (Sturm [START_REF] Sturm | On the congruence of modular forms[END_REF], see also [START_REF] Miyake | Modular forms[END_REF]Cor. 2.3.4] and [START_REF] Stein | Modular forms, a computational approach[END_REF]Chap. 9]) Let k and N be positive integers. Given a modular form f of weight k for the congruence subgroup Γ 0 (N ), consider its Fourier expansion f (z) = ∞ n=0 c n (f )e 2πinz . Then f is identically zero if

c n (f ) = 0 for 0 ≤ n ≤ [SL 2 (Z) : Γ 0 (N )] • k 12 .
Moreover, if f is a cusp form, then f is identically zero if

c n (f ) = 0 for 0 ≤ n ≤ [SL 2 (Z) : Γ 0 (N )] • k 12 - 1 N + 1 N .
Let m denote the dimension of the C-vector space M k (Γ 0 (N )) of weight-k modular forms for Γ 0 (N ). Comparing the former bound with m, the theorem says that a given modular form in M k (Γ 0 (N )) is uniquely determined by only slightly more than its first m Fourier coefficients. Such bounds have many theoretical and computational applications, in particular they are widely used in algorithms for computing with modular forms.

Let T k (N ) be the Hecke algebra acting on the space S k (Γ 0 (N )) of weight-k cusp forms for Γ 0 (N ). It is well-known that the first Fourier coefficient provides a perfect pairing between T k (N ) and S k (Γ 0 (N )). As a consequence, one can derive from Theorem 0.1 an explicit bound for the number of Hecke operators generating T k (N ) (cf. [START_REF] Stein | Modular forms, a computational approach[END_REF]). Moreover, combined with the modularity theorem for elliptic curves over Q, the Sturm bound can be used to check efficiently whether two elliptic curves over Q are isogenous. Note also that the statement of Theorem 0.1 is the version at the "generic prime": the bound actually holds as well at every "closed prime" for arithmetic modular forms and is essential in the study of their congruence relations.

Recently, Sturm-type bounds for Hilbert modular forms and Siegel modular forms have been the subject of several investigations. The aim of this paper is to give an attempt on studying the generic version of this question for modular forms over function fields, in both cases of mixed and equal characteristic. 0.1. Mixed characteristic setting. Let K := F q (θ) be the rational function field with one variable θ over a finite field F q with q elements. Let K ∞ be the completion of K with respect to the infinite place ∞. Put A := F q [θ] and denote by A + the set of monic polynomials in A.

A combinatorial analogue of the complex upper half plane in this setting is the Bruhat-Tits tree T associated to PGL 2 (K ∞ ). We are interested in harmonic cochains, also called Drinfeld-type automorphic forms, which are functions on the set of the oriented edges of T satisfying the so-called harmonicity property. Harmonic cochains, which can be viewed as analogue to classical weight-2 modular forms, are objects of great interest in the study of function field arithmetic (for instance cf. [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF], [START_REF] Rück | Heegner points and L-series of automorphic cusp forms of Drinfeld type[END_REF], [START_REF] Wei | On metaplectic forms over function fields[END_REF], [START_REF] Wei | Theta series and function field analogue of Gross formula[END_REF]). Moreover let Γ 0 (n) be the Hecke congruence subgroup of GL 2 (A) for a given n ∈ A + . The space of Γ 0 (n)-invariant C-valued harmonic cochains is denoted by H(n). Every f in H(n) admits a unique Fourier expansion with coefficients c 0 (f ) and (c m (f )) m∈A+ .

Classical Sturm bounds may be proved using the so-called valence formula for modular forms. Since no such formula is available for harmonic cochains, a more natural approach is to use a fundamental domain of the quotient graph Γ 0 (n)\T , as we describe in Theorem 2.4 for instance. Our first bound is stated in terms of the arithmetic quantity τ (n) introduced in Definition 4.6.

Theorem 0.2. Given n ∈ A + , let f ∈ H(n). Then f is identically zero if c m (f ) = 0 for all m ∈ A + with

deg m ≤ deg n -1 + 2τ (n).
One may observe that τ (n) ≤ deg n -2 when deg n ≥ 2. If t(n) denotes the number of prime factors of n, we also have the following special values:

τ (n) = 0 if 0 ≤ t(n) ≤ q, 1 if q < t(n) ≤ 2q.
Remark 0.3. It seems difficult to tell the precise value of τ (n) when t(n) > 2q. However, from the numerical data in (4.1) and (4.2) which were computed using SageMath, we predict that

(0.1) τ (n) ?≤ t(n) -1 q .
Moreover, when q and deg n are small, data (4.4) shows that our Sturm-type bound is actually sharp in certain cases. 0.1.1. Cuspidal harmonic cochains. Let H 0 (n) denote the subspace of cuspidal Γ 0 (n)-invariant C-valued harmonic cochains, which consists of elements of H(n) which are finitely supported modulo n. The next bound is given in terms of the arithmetic quantity ℓ(n) introduced in Definition 4.2.

Theorem 0.4. [START_REF] Gekeler | Fundamental domains of some arithmetic groups over function fields[END_REF]Th. 2.17]). Thus when

Given n ∈ A + , let f ∈ H 0 (n). Then f is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ deg n -2 +            0 if n is a prime power, 0 if n is square-free and f is "new", 0 if n = p 2 q for primes p, q ∈ A + with deg q = 1 and f is "new", ℓ(n) otherwise. Remark 0.5. When deg n < 3, it is known that H 0 (n) = {0} by the genus formula for G(n) ([
deg n = 3, every f ∈ H 0 (n) is "new" and Theorem 0.4 says that f is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ 1.
We point out that ℓ(n) and τ (n) are defined in very different ways. From a computational point of view, it is relatively harder to determine the value ℓ(n) than τ (n). However, we can show that ℓ(n) ≤ 2τ (n) + 1 for every n ∈ A + (Corollary 4.7), which indicates that the bound in Theorem 0.4 is better than the one in Theorem 0.2. 0.1.2. Hecke algebra on harmonic cochains. Similarly to the classical case, the pairing between the Hecke algebra and the space of C-valued harmonic cochains coming from the first Fourier coefficient c 1 is indeed perfect, cf. Lemma 5.1, and the action of the Hecke algebra can be seen actually from the Fourier expansion. Consequently, the previous bounds allow an explicit control on the number of Hecke operators which generate the Hecke algebra.

Corollary 0.6.

(1) Let T(n) be the Hecke algebra acting on H(n). Then T(n) is spanned as a C-vector space by T m for all m ∈ A + with

deg m ≤ deg n -1 + 2τ (n).
(2) Let T 0 (n) be the Hecke algebra acting on H 0 (n). Then T 0 (n) is spanned as a C-vector space by T m for all m ∈ A + with

deg m ≤ deg n -2 + 0 if n is a prime power, ℓ(n) otherwise.
(3) Let T new 0 (n) be the restriction of T 0 (n) acting on the "new" subspace of H 0 (n). If n is either square-free or n = p 2 q for primes p, q ∈ A + with deg q = 1, then In order to improve on existing bounds, our input is to carefully describe the quotient graph Γ 0 (n)\T and to utilize the harmonicity property. We mention that although Gekeler and Nonnengardt [START_REF] Gekeler | Fundamental domains of some arithmetic groups over function fields[END_REF] have worked on the structure of this graph, no Sturm bound seems to appear explicitly in their paper, although it is possible that some bound can be derived. 0.1.4. Isogeny between elliptic curves. Let E be an elliptic curve over K with split multiplicative reduction at the place ∞. Denote by n ∞ the conductor of E with n ∈ A + . From the work of Weil, Jacquet-Langlands, Grothendieck, Deligne, Drinfeld and Zarhin, there exists a unique Γ 0 (n)-invariant C-valued cuspidal "new" harmonic cochain f E corresponding to the K-isogeny class of E ( [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF]). Combined with Theorem 0.4 applied to f E , we get the following isogeny criterion.

T new 0 (n) is spanned as a C-vector space by T m for all m ∈ A + with deg m ≤ deg n -2.
Corollary 0.8. Let E 1 and E 2 be two elliptic curves over K with the same conductor n ∞ and split multiplicative reduction at ∞. Then E 1 and E 2 are isogenous over K if and only if a p (E 1 ) = a p (E 2 ) for every prime p ∈ A + with

deg p ≤ deg n -2 +            0 if n is a prime power, 0 if n is square-free, 0 if n = q 2 1 q 2 for primes q 1 , q 2 ∈ A + with deg q 2 = 1, ℓ(n) otherwise.
Here a p (E) is introduced in (5.2). 0.2. Equal characteristic setting. Let C ∞ be the completion of a chosen algebraic closure of K ∞ . Set Ω := C ∞ -K ∞ , the Drinfeld half plane. Let k, m be non-negative integers with 0 ≤ m ≤ q -2. Given n ∈ A + , recall that a Drinfeld modular form f of weight k and type m for the congruence subgroup Γ 0 (n) admits a so-called t-expansion:

f = ∞ j=0 b j (f )t m+(q-1)j ,
where t : Ω → C ∞ is a chosen uniformizer at the cusp infinity. We obtain a Sturm-type bound for Drinfeld modular forms which generalizes Gekeler [6, Corollary 5.17] in the case n = 1. Theorem 0.9. Given n ∈ A + , let f be an ℓ-cuspidal Drinfeld modular form of weight k and type m for Γ 0 (n) as defined in Section 6.1. Then f is identically zero if

b j (f ) = 0 for all 0 ≤ j ≤ [GL 2 (A) : Γ 0 (n)] • k q 2 -1 - ℓ (q -1)q deg n + ℓ -mq deg n (q -1)q deg n .
This bound is essentially similar to the classical Sturm bound (Theorem 0.1) and is proved likewise. However, given n ∈ A + , k, ℓ ∈ Z ≥0 , and an integer m with 0 ≤ m ≤ q -2, the pairing between the space of ℓ-cuspidal Drinfeld modular forms of weight k and type m for Γ 0 (n) and the associated Hecke algebra, given by the first coefficient b 1 , is not expected to be perfect (cf. Section 6.2). Besides it is not obvious to how read off the action of the Hecke algebra on Drinfeld modular forms via their t-expansions. Thus, differently from the cases of classical modular forms and harmonic cochains, the bound of Theorem 0.9 does not give directly a bound for generators of the Hecke algebra on Drinfeld modular forms. 0.3. Content. This paper is organized as follows. We set up basic notations in Section 1. In Section 2, we review the structure of the quotient graph of T by congruence subgroups Γ 0 (n) and in Section 3 the needed properties of harmonic cochains. In Section 4, we first prove Theorem 0.4 for cuspidal harmonic cochains in Section 4.1; Theorem 0.2 for harmonic cochains is obtained in Section 4.2. Section 5 includes applications of our Sturm-type bounds for harmonic cochains to the Hecke algebra and to isogenies between elliptic curves: Corollary 0.6 is shown in Section 5.1 and Section 5.2, and Corollary 0.8 is derived in Section 5.3. Finally, we prove Theorem 0.9 for Drinfeld modular forms in Section 6.2.

1. Preliminaries 1.1. Notations. Let F q be a finite field with q elements and K := F q (θ), the rational function field with one variable θ over F q . Let A := F q [θ] be the ring of integers of K and A + be the set of monic polynomials in A. The degree valuation on K, i.e. the valuation corresponding to the infinite place ∞ of K, is defined by:

∀a, b ∈ A with b = 0, ν ∞ (a/b) := deg b -deg a
and the corresponding absolute value is normalized to be:

∀α ∈ K, |α| ∞ := q -ν∞(α) . Take π ∞ := θ -1 , a uniformizer at ∞. Let K ∞ := F q ((π ∞ )) be the completion of K with respect to | • | ∞ , and set O ∞ := F q [[π ∞ ]], the ring of integers in K ∞ . 1.2. Bruhat-Tits Tree. Let T be the Bruhat-Tits tree associated to PGL 2 (K ∞ ). Let V (T ) := GL 2 (K ∞ )/K × ∞ GL 2 (O ∞ ) be its set of vertices and E(T ) := GL 2 (K ∞ )/K × ∞ I ∞ its set of oriented edges, where I ∞ is the Iwahori subgroup I ∞ := a b c d ∈ GL 2 (O ∞ ) c ≡ 0 mod π ∞ .
For an edge e, we denote by o(e) is origin, t(e) its terminus, and ē the opposite edge. Given g ∈ GL 2 (K ∞ ) let e g be the coset of g in E(T ), i.e. the oriented edge corresponding to g on T . More precisely we have

o(e g ) := g • K × ∞ GL 2 (O ∞ ) ∈ V (T ) and t(e g ) := g 0 1 π ∞ 0 • K × ∞ GL 2 (O ∞ ) = g θ 0 0 1 • K × ∞ GL 2 (O ∞ ) ∈ V (T ).
In particular, the opposite edge ēg of e g is represented by g 0 1

π ∞ 0 ∈ GL 2 (K ∞ ).

Congruence subgroups Γ 0 (n) and quotient graphs

Let Γ := GL 2 (A) ⊂ GL 2 (K ∞ ), which acts from the left on T . In this section, we shall recall the needed properties of the quotient graphs associated to the congruence subgroups

Γ 0 (n) of Γ. Let Γ ∞ := a b c d ∈ Γ c = 0 .
Recall Weil's decomposition of elements in GL 2 (K ∞ ) as follows:

Theorem 2.1. (Cf. [23, 3 and 4])

(1) Given g ∈ GL 2 (K ∞ ), there exists a unique r ∈ Z ≥0 such that g = γ • θ r 0 0 1 • z • κ for some γ ∈ Γ, z ∈ K × ∞ , and κ ∈ GL 2 (O ∞ ). (2) For each r ∈ Z ≥0 , let v r (resp. e r ) be the vertex (resp. oriented edge) of T represented by θ r 0 0 1 . Then the stabilizer of v r under Γ is Stab Γ (v r ) =        GL 2 (F q ) if r = 0, Γ (r) 
∞ := a b 0 d ∈ Γ ∞ deg b ≤ r if r > 0,
and the stabilizers of e r and ēr under Γ are

∀r ≥ 0, Stab Γ (e r ) = Stab Γ (ē r ) = Γ (r) ∞ .
Given two vertices v, v ′ ∈ V (T ), we denote by d(v, v ′ ) the distance between v and v ′ , i.e. the number of edges lying in the unique path connecting v and v ′ .

Lemma 2.2. Given γ = a b c d ∈ Γ, one has d(γv 0 , v 0 ) = 2 max(deg a, deg b, deg c, deg d).
Proof. By the Iwasawa decomposition, there exists κ

∈ GL 2 (O ∞ ) such that γ • κ =            1 d det γ bd 0 d 2 if deg d ≥ deg c, 1 c det γ ac 0 c 2 otherwise. Note that for a vertex v ∈ V (T ) represented by α u 0 β ∈ GL 2 (K ∞ ), one can derive from [9, p. 185] that d(v, v 0 ) = max ν ∞ (α) -ν ∞ (u), 0 + min ν ∞ (α), ν ∞ (u) -ν ∞ (β)
. The result then follows from a straightforward argument.

Given n ∈ A + , put

Γ 0 (n) := a b c d ∈ Γ c ≡ 0 mod n . Let G(n) := Γ 0 (n)\T be the quotient graph of T by Γ 0 (n). Its set of vertices is V (G(n)) := Γ 0 (n)\V (T ) and its set of oriented edges is E(G(n)) := Γ 0 (n)\E(T )
. If e is an edge of T , we denote by [e] the corresponding edge of G(n). 1) is a half line (cf. Figure 1), and the vertices (resp. oriented edges) of G(1) are represented by v r ∈ V (T ) (resp. e r and ēr in E(T )) for r ∈ Z ≥0 .

[v 0 ] [v 1 ] [v 2 ] [v 3 ] Figure 1. Graph of Γ\T By Theorem 2.1, the quotient graph G(
For general n, by Theorem 2.1 we know that the vertices and the oriented edges of G(n) can be respectively represented in T by elements in

(2.1) {γ v r | r ∈ Z ≥0 and γ ∈ Γ 0 (n)\Γ} and {γ e r , γ ēr | r ∈ Z ≥0 and γ ∈ Γ 0 (n)\Γ}.
Moreover, γ v r and γ ′ v r ′ (resp. γe r and γ ′ e r ′ ) represent the same vertex (resp. edge) in G(n) if and only if r = r ′ and

γ ′ Stab Γ (v r )γ -1 ∩ Γ 0 (n) = ∅ (resp. γ ′ Stab Γ (e r )γ -1 ∩ Γ 0 (n) = ∅). (2.2) Remark 2.3. (1) For γ, γ ′ ∈ Γ and distinct r, r ′ ∈ Z ≥0 , the edge [γe r ] is always different from [γ ′ e r ′ ]
and

[γ ′ ēr ′ ] in E(G(n)). (2) If [γ e r ] = [γ ′ e r ] in E(G(n)) for some r ≥ 1 and γ, γ ′ ∈ Γ, then [γ e r+n ] = [γ ′ e r+n ]
for all n ∈ Z ≥0 .

For γ = a b c d ∈ Γ, we let

n γ := n gcd(c 2 , n) ,
and call it the width of γ.

Let P 1 (A/n) be the projective line over the ring A/n consisting of elements denoted by (c : d) mod n. The group Γ acts from the right on P 1 (A/n). We call C(n

) := P 1 (A/n)/Γ ∞ the set of cusps of G(n). The Γ ∞ -orbit represented by (c : d) mod n is denoted by [c : d].
The quotient graph G(n) can be decomposed as follows:

Theorem 2.4. Given n ∈ A + , the quotient graph G(n) is the union of a finite graph G(n) o and a set of ends E s indexed by the cusps s ∈ C(n). Here:

• The set of vertices of the finite subgraph G(n) o is the image of

{γ v r | 0 ≤ r ≤ deg n γ -1 and γ ∈ Γ 0 (n)\Γ} ⊂ V (T ),
and the set of edges of 

G(n) o is the image of {γ e r , γ ēr | 0 ≤ r ≤ deg n γ -2 and γ ∈ Γ 0 (n)\Γ} ⊂ E(T ). • For each s = [c : d] ∈ C(n),
(c ′ : d ′ ) ≡ (c : d) • β mod n ∈ P 1 (A/n).
In this case, we have n γ = n γ ′ , r = r ′ , and the edges γe r+n and γ ′ e r+n represent the same edge in G(n) for every n ∈ Z ≥0 . Therefore the result follows.

Remark 2.5. Algorithmic procedures to compute the quotient graph Γ 0 (n)\T given n ∈ A + have been provided in [START_REF] Nonnengardt | Arithmetische definierte Graphen über rationalen Funktionenkörpern[END_REF], [START_REF] Gekeler | Fundamental domains of some arithmetic groups over function fields[END_REF], [START_REF] Tan | Computation of L-series for elliptic curves over function fields[END_REF] and [START_REF] Butenuth | Ein Algorithmus zum Berechnen von Hecke-Operatoren auf Drinfeldsche Modulformen[END_REF].

Let

w n = 0 -1 n 0 ∈ GL 2 (K).
We end up this section by the following technical lemma: 

Lemma 2.6. Suppose an element γ = a b c d ∈ Γ is given. (1) Let ℓ = max(deg c, deg d), and put ǫ = 1 if deg c ≥ deg d and 0 otherwise. There exists u ∈ K ∞ such that the edge [γe 0 ] ∈ E(G(n)) can be represented by π 2ℓ+ǫ ∞ u 0 1 0 1 π ∞ 0 ǫ . (2 
w n π deg n+2δ+ǫ ∞ u 0 1 0 1 π ∞ 0 ǫ .
Proof. We may assume det γ = 1 without loss of generality. Then (1) directly follows from the Iwasawa decomposition:

a b c d =            d -2 b/d 0 1 d 0 0 d 1 0 d -1 c 1 if deg c < deg d, c -2 θ -1 a/c 0 1 0 θ 1 0 c 0 0 c 1 c -1 d 0 -1 if deg c ≥ deg d, where 1 0 d -1 c 1 (resp. 1 c -1 d 0 -1 ) belongs to I ∞ in the first (resp. second) case. For (2),
it is observed that gcd(ax + by, cx + dy) divides gcd(x, y), which is equal to 1. Therefore we have gcd(n(ax + by), cx + dy) = 1. Take α, β ∈ A so that αn(ax + by) + β(cx + dy) = 1. Then

γ 0 := -(cx + dy) ax + by αn β ∈ Γ 0 (n),
and γ 0 γ is equal to

0 -1 n 0 n -1 n -1 (αbn + βd) 0 -x x -1 0 0 1 1 0 -x -1 y 1 where 1 0 -x -1 y 1 ∈ I ∞ if deg x > deg y, and 
0 -1 n 0 n -1 n -1 (αan + βc) 0 y y -1 θ -1 0 0 1 0 θ 1 0 1 -y -1 x 0 1 where 1 -y -1 x 0 1 ∈ I ∞ if deg x ≤ deg y. Take u := -(xn) -1 (αbn + βd) if deg x > deg y, (yn) -1 (αan + βc) otherwise.
Then the edge [γ 0 γ e 0 ] of G(n) can be represented by

w n π deg n+2δ+ǫ ∞ u 0 1 0 1 π ∞ 0 ǫ .
Thus the result holds.

Harmonic cochains and Fourier expansion

We recall the definition and the needed properties of harmonic cochains on T .

3.1. Harmonic cochains.

Definition 3.1. A C-valued function f on E(T ) is called a harmonic cochain if f satisfies the following harmonicity property:

∀e ∈ E(T ) ∀v ∈ V (T ), f (e) + f (ē) = 0 = ev ∈E(T ) o(ev )=v f (e v ).
If G is a subgroup of Γ, we say that

f is G-invariant if ∀γ ∈ G ∀e ∈ E(T ), f (γe) = f (e).
For n ∈ A + , let H(n) be the space of Γ 0 (n)-invariant C-valued harmonic cochains. An element of H(n) can be seen as a C-valued function on E(G(n)). We call f cuspidal if f is finitely supported as a C-valued function on E(G(n)). The subspace of cuspidal harmonic cochains in 

H(n) is denoted by H 0 (n). Remark 3.2. Given n ∈ A + , it is known that: (1) Every f ∈ H 0 (n) is supported on the finite graph E(G(n) o ) by harmonicity and Theorem 2.4. (2) dim C H 0 (n) is equal to g(G(n)),
0 / / H 0 (n) / / H(n) c / / [0:1] =s∈C(n) C / / 0,
where c(f

) := f (γ s e ℓs ) | [0 : 1] = s ∈ C(n) . In particular, dim C H(n) = g(G(n)) + #(C(n)) -1.
The following result will be a key-lemma for proving our Sturm-type bounds. does not belong to E(G(n) o ) hence it belongs to an end of G(n). Any cuspidal Γ 0 (n)-invariant harmonic cochain vanishes on it by Remark 3.2 (1). This proves the result for H 0 (n). See also [START_REF] Gekeler | Fundamental domains of some arithmetic groups over function fields[END_REF]Prop. 3.2] for a related statement.

For each divisor m of n, we recall the Atkin-Lehner involution W m on f ∈ H(n) which is defined by

∀e ∈ E(T ), (f |W m )(e) := f sm t un vm e ,
where s, t, u, v ∈ A with svm 2utn = m. Note that the operator W m is independent of the chosen s, t, u, v. In the particular the involution W n on H(n) is defined by

∀e ∈ E(T ), (f |W n )(e) := f (w n e) = f 0 -1 n 0 e .
3.2. Fourier expansion. Let ψ : K ∞ → C × be the additive character defined by

ψ n a n π n ∞ := exp 2π √ -1 p Trace Fq/Fp (a 1 ) ,
where p denotes the characteristic of F q . In particular, the ring A is self-dual with respect to ψ, i.e.

A ∨ := {x ∈ K ∞ | ∀a ∈ A, ψ(ax) = 1} = A.
Let f be a Γ ∞ -invariant C-valued harmonic cochain. Viewing f as a C-valued function on GL 2 (K ∞ ), the Fourier expansion of f is given by (cf. [24, Chapter III]):

∀r ∈ Z ∀u ∈ K ∞ , f π r ∞ u 0 1 = m∈A f * (r, m)ψ(mu)
where

f * (r, m) := A\K∞ f π r ∞ u 0 1 ψ(-mu)du,
and the Haar measure du is chosen to be self-dual with respect to ψ, i.e. vol(A\K ∞ , du) = 1. Let

c 0 (f ) := f * (2, 0)
and

∀m ∈ A + , c m (f ) := |m| ∞ • f * (deg m + 2, m)
(this normalization differs from [START_REF] Gekeler | Analytic construction of Weil curves over function fields[END_REF]). The harmonicity property implies the following properties on the Fourier coefficients (cf. [8, Section 2], [16, Section 2]):

Proposition 3.4. Let f be a Γ ∞ -invariant C-valued harmonic cochain. For m ∈ A we have (1) f * (r, m) = 0 unless r ≥ deg m + 2. ( 2 
) f * (deg m + 2 + ℓ, εm) = q -ℓ f * (deg m + 2, m) for all ℓ ∈ Z ≥0 and ε ∈ F × q .
(3) f is identically zero if and only if c 0 (f ) = 0 and for every m ∈ A + , c m (f ) = 0.

In particular, given a Γ ∞ -invariant C-valued harmonic cochain f , the Fourier expansion of f can be written as:

∀r ∈ Z, ∀u ∈ K ∞ , f π r ∞ u 0 1 = q -r+2 •   c0(f ) + m∈A + deg m+2≤r c m (f )Ψ(mu)    , (3.1)
where

Ψ(x) := ε∈F × q ψ(εx) ∈ {-1, q -1}. Remark 3.5. Every f ∈ H 0 (n) satisfies c 0 (f ) = 0. Indeed f is supported on E(G(n) o ) by Remark 3.2 (1), [e 0 ] / ∈ E(G(n) o
) by Theorem 2.4, and c 0 (f ) = q -2 f (e 0 ) by (3.1).

Sturm-type bound for harmonic cochains

The aim of this section is to find a Sturm-type bound for harmonic cochains in H(n) when a level n ∈ A + is given. 

f (γe 0 ) =            f π 2 deg d ∞ u 0 1 if deg c < deg d, -f π 2 deg c+1 ∞ u 0 1 if deg c ≥ deg d.
f π r ∞ u 0 1 | 2 ≤ r ≤ 2 deg n -2 and u ∈ K ∞ .
From Remark 3.5 and the Fourier expansion (3.1), we conclude:

Proposition 4.1. Let n ∈ A + . Then f ∈ H 0 (n) is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ 2 deg n -4.
However the bound 2 deg n -4 seems larger than log q (dim C H 0 (n)) as deg n increases. In the following, we shall derive a smaller bound using the Fourier expansion with respect to the cusp [1 : 0] ∈ C(n). 

4.3. Given γ = a b c d ∈ Γ, there exists u ∈ K ∞ such that the edge [γe 0 ] ∈ E(G(n))
is represented by

w n π deg n+2δn(c,d)+ǫn(c,d) ∞ u 0 1 0 1 π ∞ 0 ǫn(c,d)
.

Proof. Take x 0 , y 0 ∈ A with max(deg x 0 , deg y 0 ) = δ n (c, d) and gcd(cx 0 + dy 0 , n) = 1. We must have gcd(x 0 , y 0 ) = 1. Then the result follows directly from Lemma 2.6. We then have:

Proposition 4.5. Let n ∈ A + . Then f ∈ H 0 (n) is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ deg n -2 + ℓ(n). Proof. Given f ∈ H 0 (n) satisfying c m (f ) = 0 for all m ∈ A + with deg m ≤ deg n -2 + ℓ(n), let f ′ := f |W n , which belongs to H 0 (n).
From the Fourier expansion (3.1), we know that 

∀u ∈ K ∞ and r ≤ deg n + ℓ(n), (f ′ |W n ) π r ∞ u 0 1 = f π r ∞ u 0 1 = 0.
τ (n) := min{m ∈ Z ≥0 | t(n) < t(m, deg n)}.
Then: Corollary 4.7. For each n ∈ A + , we have 

ℓ(n) ≤ 2τ (n) + 1. Thus f ∈ H 0 (n) is identically zero if c m (f ) = 0 for m ∈ A + with deg m ≤ deg n -1 + 2τ (n).
δ n (c, d) = min{max(deg x, deg y) | gcd(cx + dy, n) = 1} ≤ max(deg x 0 , deg y 0 ) ≤ m.
One may observe that t(n -2, n) = +∞ for any n ≥ 2 hence τ (n) ≤ deg n -2 when deg n ≥ 2. Moreover, it can be checked that t(0, n) = q + 1 for n ≥ 3. Thus τ (n) = 0 if t(n) < q + 1. We also have: 

Lemma 4.8. We have t(1, n) ≥ 2q + 1 for n ≥ 4 hence τ (n) = 1 when q < t(n) ≤ 2q. Consequently when q < t(n) ≤ 2q, f ∈ H 0 (n) is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ deg n + 1.
c ε = c + εd if ε ∈ F q , d if ε = ∞.
There exists

ε ′ ∈ P 1 (F q ) such that θ -ε ∤ c ε ′ for every ε ∈ F q . Without loss of generality, assume ε ′ = ∞ and θ | c (i.e. c = c 0 and d = c ∞ ). Suppose θ -1 | c (resp. θ -1 ∤ c). Then for (ε 0 , ε 1 ) ∈ F × q × F q (resp. F q × F q ), let z(ε 0 , ε 1 ) := (ε 0 θ + ε 1 )c + d if θ -1 | c, (θ -1)d if θ -1 ∤ c.
one has gcd z(ε 0 , ε 1 ), c = 1 = gcd z(ε 0 , ε 1 ), d ,

and for β ∈ F × q : gcd z(ε 0 , ε 1 ), c β =    gcd ε 0 θ + ε 1 -β -1 , c β if θ -1 | c, gcd (ε 0 θ + ε 1 -β -1 (θ -1)), c β if θ -1 ∤ c.
On the other hand, for each ε ∈ F × q with θε ∤ c, there exists a unique

β ε ∈ F × q such that θ -ε | c βε . Thus for ε ∈ F × q with θ -ε ∤ c, one has gcd (ε 0 θ + ε 1 )c + d, c β = θ -ε if and only if β = β ε and ε 0 ε + ε 1 -β -1 ε = 0 if θ -1 | c, ε 0 ε + ε 1 -β -1 ε (ε -1) = 0 if θ -1 ∤ c.
In this case, ε 1 is uniquely determined by the choices of ε 0 and ε. Suppose θ -1 | c (resp. θ -1 ∤ c). There are at most q -2 (resp. q -1) choices of ε ∈ F × q so that θε ∤ c. Thus we obtain that there are at least (q -1) • 2 (resp. q) choices of the pair (ε 0 , ε 1 ) ∈ F × q × F q (resp. 

F q × F q ) so that ∀β ∈ F × q , gcd z(ε(ε 0 , ε 1 ), c β = 1. Let S ′ 1 := z(ε 0 , ε 1 ) ∀β ∈ P 1 (F q ), gcd z(ε 0 , ε 1 ), c β = 1 . Then given distinct z(ε 0 , ε 1 ), z(ε ′ 0 , ε ′ 1 ) ∈ S ′ 1 , one has gcd z(ε 0 , ε 1 ), z(ε ′ 0 , ε ′ 1 ) = gcd z(ε 0 , ε 1 ), (ε ′ 0 -ε 0 )θ + (ε ′ 1 -ε 1 ) = 1. Note that #S ′ 1 ≥ 2(q -1) if θ -1 | c, q if θ -1 ∤ c. Take S ′ 0 := c ε ε ∈ P 1 (F q ) and S ′ := S ′ 0 ∪ S ′ 1 . Then S ′ ⊂ S(c, d; 1) and #(S ′ ) ≥ 2q + 1. Therefore t(1, n) ≥ 2q + 1 for n ≥ 4.
γ 0 γ = 0 -det γ 1 αbn + βd = 0 -1 n 0 n -1 n -1 (αbn + βd) 0 -det γ .
Thus for f ∈ H 0 (n), one has

f (γe 0 ) = (f |W n ) π deg n ∞ -det γ -1 n -1 (αbn + βd) 0 1 . If p | c, then gcd(εc + d, n) = 1 for every ε ∈ F q . Similarly, we take α ε , β ε ∈ A such that α ε (εa + b)n + β ε (εc + d) = 1. Then γ 0,ε = -(εc + d) εa + b α ε n β ε ∈ Γ 0 (n) and we have γ 0,ε γ ε 1 1 0 = 0 det γ 1 α ε an + β ε c = 0 -1 n 0 n -1 n -1 (α ε bn + β ε c) 0 det γ .
For f ∈ H 0 (n), the harmonicity property implies

f (γe 0 ) = - ε∈Fq f γ 0,ε γ ε 1 1 0 = - ε∈Fq (f |W n ) n -1 n -1 (α ε bn + β ε c) 0 det γ .
Following a similar argument as in Proposition 4.5, we get: Corollary 4.9. Suppose n = p r where r is a positive integer and p ∈ A + is a prime. Then

f ∈ H 0 (n) is identically zero if c m (f ) = 0 for all m ∈ A + with deg m ≤ deg n -2.
4.1.3. Computational data. It seems difficult to give a precise formula for t(m, n) when m > 0 in general. However we are able to compute the actual value using SageMath in the following cases: From these tables, we predict the following lower bound for t(m, n):

Value of t(m, n) (q = 2) ❛ ❛ ❛ ❛ ❛ ❛
for every n ≥ m + 3, t(m, n) ?≥ (m + 1)q + 1.
If so, then we would get for any n ∈ A + : The quantity b ′ (n) is much easier to compute than τ (n). We now numerically compare it to the optimal Sturm bound for Γ 0 (n)-invariant cuspidal harmonic cochains, which is :

(4.3) deg n -1 + 2τ (n) ?≤ deg n -1 + 2 t(n) -1 q =: b ′ (n).
b true (n) := min b ∈ Z ≥0 f ∈ H 0 (n) is identically zero if c m (f ) = 0 for any deg m ≤ b . First let us explain how we compute b true (n) through genera of finite subgraphs of G(n) o . Put H 0 (n) (ℓ) := {f ∈ H 0 (n) | ∀m ∈ A + , deg m ≤ ℓ, c m (f ) = 0}. Given ℓ ∈ Z + and u ∈ K ∞ , let e(ℓ, u) := π ℓ+2 u 0 1 e 0 ∈ E(T ).
The Fourier expansion (3.1) shows that, given n ∈ A + , f ∈ H 0 (n) and ℓ ∈ Z + , one has :

f ∈ H 0 (n) (ℓ) if and only if ∀ 0 ≤ ℓ ′ ≤ ℓ, ∀ u ∈ π ∞ O ∞ /π ℓ ′ +2 ∞ O ∞ , f (e(ℓ ′ , u)) = 0. Let G(n) o (ℓ) be the subgraph of G(n) o obtained by removing the edges of the form [e(ℓ ′ , u)] and [ē(ℓ ′ , u)] for each 0 ≤ ℓ ′ ≤ ℓ and u ∈ π ∞ O ∞ /π ℓ ′ +2 ∞ O ∞ .
From these observations we get:

Lemma 4.10.

(

) Let f ∈ H 0 (n). Then f ∈ H 0 (n) (ℓ) if and only f is supported on the edges of G(n) o (ℓ) . (2) dim C H 0 (n) (ℓ) is equal to the genus g(G(n) o (ℓ) ) of G(n) o (ℓ) . (3) b true (n) = min{ℓ ∈ Z + | g(G(n) o (ℓ) ) = 0}. 1 
With the help of SageMath, we compute values of this genus. For n ∈ Z with n ≥ 3 we put b true (n

) := max{b true (n) | deg n = n}, b ′ (n) := max{b ′ (n) | deg n = n}.
Using this method we have obtained the following data which show that our predicted bound b ′ (n) actually reaches the sharp bound b true (n) in certain cases. 

q = 2 n b true (n) b ′ (n) 3 1 2 4 3 5 
q = 3 n b true (n) b ′ (n) 3 1 2 4 3 3 
Lemma 4.11. Suppose n ∈ A + is given. For f ∈ H(n) with c m (f ) = 0 for all deg m < deg n, we must have c 0 (f ) = 0.
Proof. For f |W n ∈ H(n), the harmonicity property gives:

0 = (f |W n ) 0 1 1 1 + (f |W n ) 0 1 1 1 0 θ 1 0 = f 1 1 0 n + f 1 0 n 1 0 -1 n 0 1 0 1 θ = f π deg n ∞ -n -1 0 1 + f π deg n+1 ∞ n -1 0 1 . (4.5) Suppose c m (f ) = 0 for all m ∈ A + with deg m < deg n. Then the Fourier expansion of f (3.1) implies f π deg n ∞ -n -1 0 1 = q -deg n+2 c 0 (f ) and f π deg n+1 ∞ n -1 0 1 = q -deg n+1 c 0 (f ).
From (4.5), we get c 0 (f ) = 0.

Therefore:

Proposition 4.12. Let n ∈ A + . Then f ∈ H(n) is identically zero if c m (f ) = 0 for m ∈ A + with deg m ≤ deg n -1 + 2τ (n). Proof. Let f ∈ H(n) with c m (f ) = 0 for all m ∈ A + such that deg m ≤ deg n -1 + 2τ (n)
. By Lemma 4.11 we have c 0 (f ) = 0, which shows by the Fourier expansion (3.1) that

∀r ≤ deg n + 1 + 2τ (n), ∀u ∈ K ∞ , f π r ∞ u 0 1 = 0.
Let f ′ := f |W n . Then Lemma 4.3 and Corollary 4.7 implies that f ′ (γe 0 ) = 0 for all γ ∈ Γ. Therefore f ′ is identically zero by Lemma 3.3, and so is f . Remark 4.13.

(1) As directly seen from the proof, the bound in Proposition 4.12 can be improved to max(deg n -2 + ℓ(n), deg n -1). 

T p r+2 = T p r+1 T p -µ n (p) • |p| ∞ • T p r ,
where µ n (p) := 1 if p ∤ n and 0 otherwise. Moreover, for f ∈ H(n), it can be checked that

∀m ∈ A + , c 1 (f |T m ) = c m (f ). Let T(n) := C[T m | m ∈ A + ] ⊂ End C H(n)
, the Hecke algebra on H(n).

Lemma 5.1. We have the following perfect pairing:

•, • : H(n) × T(n) -→ C ( f , T ) -→ c 1 (f |T )
which satisfies f |T, T ′ = f, T T ′ for all f ∈ H(n) and T, T ′ ∈ T(n).

Proof. Adapt Gekeler's proof [START_REF] Gekeler | Analytic construction of Weil curves over function fields[END_REF]Theorem 3.17] in the cuspidal case by using Lemma 4.11 and the Fourier expansion (3.1).

From this perfect pairing, Proposition 4.12 provides a bound for the number of Hecke operators generating T(n): 2) for H 0 (n) and H(n) translate directly into the same bounds for the Hecke algebras T 0 (n) and T(n), respectively. 5.2. The case of the "new" subspace. Given f 1 , f 2 ∈ H 0 (n), recall the Petersson inner product :

f 1 , f 2 Pet := [e]∈E(G(n)) f 1 (e)f 2 (e) #Stab Γ0(n) (e)
where • denotes here the complex conjugation. A cuspidal harmonic cochain is called old if it is a C-linear combination of the following type of harmonic cochains:

∀e ∈ E(T ), f m ′ (e) := f 1 0 0 m ′ e where f ∈ H 0 (m) with m, m ′ ∈ A + , (m • m ′ ) | n and m = n. Let H new 0 (n) := f ∈ H 0 (n) for all old f ′ ∈ H 0 (n), f, f ′ Pet = 0 .
We then have: 

Lemma 5.5. Given n ∈ A + , suppose n is square-free. Then f ∈ H 0 (n) is identically zero if, for every u ∈ K ∞ and m ∈ A + with m | n and deg m ≤ deg n -2, (f |W m ) π deg n-deg m ∞ u 0 1 = 0. (5.1) Proof. Given a coset Γ 0 (n)γ ∈ Γ 0 (n)\Γ,
(f |W m ′ )(γ) = f αm ′ β -n am ′ a b m d = f 1 αbm ′ + βd 0 m ′ det γ . Suppose f ∈ H 0 (n) satisfies (5.1). Let f ′ := f |W n . For γ = a b m d ∈ Γ with m | n and deg m ≤ deg n -2, we then have f ′ (γ) = f |W m |W m ′ (γ) = (f |W m ) π deg m ′ ∞ (m ′ det γ) -1 (αbm ′ + βd) 0 1 = 0.
Therefore f ′ is identically zero by Lemma 3.3, and so is f .

Given n ∈ A + and a prime factor p of n, suppose p 2 ∤ n. Let f ∈ H new 0 (n). It is known that f |(T p + W p ) = 0. Thus for a square-free factor n 0 of n which is coprime to n/n 0 , one has

f |W n0 = (-1) t(n0) • f |T n0 ,
where t(n 0 ) is the number of prime factors of n 0 . Moreover, we have: Lemma 5.6. Given n 0 , n ∈ A + with n 0 | n, put n ′ 0 := n/n 0 . Suppose n 0 is square-free and coprime to n ′ 0 . For each u ∈ K ∞ , the following identity holds:

(f |W n0 ) π deg n ′ 0 ∞ u 0 1 = (-1) t(n0) q -deg n ′ 0 +2 m∈A + deg m+2≤deg n ′ 0 c n0m (f )Ψ(mu).
Corollary 5.9. Given n ∈ A + , suppose n is either square-free or n = p 2 q for two primes p, q ∈ A + with deg q = 1. The Hecke algebra T new 0 (n) is spanned as a C-vector space by T m for m ∈ A + with deg m ≤ deg n -2.

5.3.

Isogeny between elliptic curves. Let E be an elliptic curve over K which has split multiplicative reduction at the place ∞. For each prime p ∈ A + , let 

a p (E) :=            |p| ∞ + 1 -#E(F p ) if E
(n) such that        c 1 (f E ) = 1; f E |T m = c m (f E ) f E for every m ∈ A + ; c p (f E ) = a p (E) for every prime p ∈ A + . (5.3)
Moreover f E only depends on the K-isogeny class of E ( [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF]). Using our Sturm-type bound, we are able to determine effectively when two such given elliptic curves over K are isogenous.

Proof of Corollary 0.8. We only have to prove the converse statement. Let f E1 , f E2 be the harmonic cochains in H new 0 (n) corresponding to E 1 , E 2 respectively, and such that a p (E 1 ) = a p (E 2 ) for any prime p as in the statement of the corollary. Then (5.3) shows that c m (f E1 ) = c m (f E2 ) for every m ∈ A + with deg m ≤ deg n -2 if n is either a prime power or square-free or n = p 2 q for primes p, q ∈ A + with deg q = 1, and deg m ≤ deg n -2 + ℓ(n) otherwise. By Corollary 4.9, Proposition 5.7, Lemma 5.8 and Proposition 4.5 according to the several cases, we get f E1 = f E2 , therefore E 1 and E 2 are isogenous over K.

Sturm-type bound for Drinfeld modular forms

In this section, we study an analogous problem for Drinfeld modular forms. Let C ∞ be the completion of a chosen algebraic closure of K ∞ . The Drinfeld half plane is Ω := C ∞ -K ∞ , which has a rigid analytic structure and is equipped with a left action of GL 2 (K ∞ ) via fractional linear transformations. Given non-negative integers k and m with 0 ≤ m ≤ q -2, for a rigid holomorphic function f (1) for all γ ∈ Γ 0

: Ω → C ∞ we set ∀γ = a b c d ∈ GL 2 (K ∞ ), ∀z ∈ Ω, (f k,m [γ])(z) := (det γ) m (cz + d) -k f az + b cz + d .
(n), f k,m [γ] = f ; (2) f is holomorphic at all cusps of Γ 0 (n).
We denote by M k,m (n) the C ∞ -vector space of Drinfeld modular forms of weight k and type m for Γ 0 (n).

To state condition (2) more precisely, we recall the t-expansions of Drinfeld modular forms at the cusps of Γ 0 (n) as follows. Let t be given by

∀z ∈ Ω, t(z) := a∈A 1 z -a ,
which is a holomorphic function on Ω satisfying t(z + a) = t(z) for every a ∈ A. Then t(z) is a uniformizer at the cusp infinity. Given f ∈ M k,m (n), condition (1) implies that f (z + a) = f (z) for every a ∈ A. Thus f can be written for any z ∈ Ω with |t(z)| ∞ small enough, as

f (z) = n∈Z a n (f ) t n (z),
where {a n (f ) ∈ C ∞ | n ∈ Z} is uniquely determined by f . To shorten notation, we will omit the condition that |t(z)| ∞ is small enough in what follows. In general, for every γ ∈ Γ, one has

∀a ∈ A, (f | k,m [γ])(z + n γ a) = (f | k,m [γ])(z),
where n γ is the width of γ, introduced after Remark 2.3. Thus we may write

∀z ∈ Ω, (f | k,m [γ])(z) = n∈Z a γ n (f ) t z n γ .
Condition 2 says that a γ n (f ) = 0 for every n < 0 and γ ∈ Γ.

Remark 6.2. In fact, condition (1) for the matrix γ = ε 0 0 ε with ε ∈ F × q tells that M k,m (n) = 0 unless k ≡ 2m mod q -1. Moreover, since t(εz) = ε -1 t(z) for any ε ∈ F × q , choosing γ = ε 0 0 1 in (1) gives that a n (f ) = 0 unless n = m + (q -1)j with j ∈ Z ≥0 .

As a consequence, we put b j (f ) := a m+(q-1)j (f ) for j ∈ Z ≥0 so that the t-expansion of f is

f (z) = ∞ j=0
b j (f ) t m+(q-1)j (z).

For ℓ ≥ 0, we are interested in 

≤ j ≤ κ(n) • k q 2 -1 - ℓ (q -1)|n| ∞ + ℓ -m|n| ∞ (q -1)|n| ∞ .
Remark 6.4. Using Proposition 4.3 of [START_REF] Cornelissen | A survey of Drinfeld modular forms[END_REF] for 0 ≤ m ≤ q -2, we have:

dim M k,m (1) = 1 + k q 2 -1 - m q -1 .
Thus the bound of the theorem is sharp for n = 1.

Proof. Suppose that n = 1. For f ∈ M k,m (1), let ord t (f ) denote the order of vanishing of f with respect to the uniformizer t. Suppose that f ∈ M (ℓ) k,m (1) with b j (f ) = 0 for every j ≤ k q 2 -1 -m q-1 . Then we have

f (z) = j> k-(q+1)m q 2 -1
b j (f ) t m+(q-1)j (z) hence ord t (f ) > k q+1 . But according to Gekeler's valence formula for Drinfeld modular forms for Γ ([6, (5.14)]), any nonzero g ∈ M k,m (1) satisfies ord t (g) ≤ k q + 1 .

Consequently, f is identically zero.

Suppose that deg n > 1. Let κ = κ(n) and ( 1 0 0 1 ) = γ 1 , γ 2 , ..., γ κ be representatives of the right cosets of

Γ 0 (n) in Γ. Given f ∈ M (ℓ) k,m (n), put f := κ i=1 f k,m [γ i ].
Then f is a Drinfeld modular form of weight κ • k and type m for Γ, where 0 ≤ m ≤ q -2 is such that m ≡ κ • m mod (q -1). Considering the t-expansions of f and (f |k,m [γ i ]) 2≤i≤κ we have Since f is ℓ-cuspidal, one has a γi n (f ) = 0 for n ≤ ℓ and 2 ≤ i ≤ κ. Now suppose

f (z) =
b j (f ) = 0 for j ≤ κ • k q 2 -1 - ℓ (q -1)|n| ∞ + ℓ -m|n| ∞ (q -1)|n| ∞ .
Let t n (z) := t(z/n) for z ∈ Ω. Expressing as t n -expansions on both sides of (6.1), we then obtain that b j ( f ) = 0 for j ≤ kκ/(q 2 -1)m/(q -1). From the case n = 1 proved previously, we get f is identically zero. Since the ring of rigid analytic functions on Ω is an integral domain, f is identically zero. 

M (ℓ) k,m (n) × T (ℓ) k,m (n) -→ C ∞ ( f , T m ) -→ b 1 (f | k T m ).
However, unlike the classical case, this pairing is not expected to be perfect in general, cf. [1, Theorem 1.1 and Conjecture 6.9]. Besides, the action of Hecke operators on the t-expansion of f is not well-understood. Therefore our Sturm-type bound for Drinfeld modular forms does not directly provide a finite family of Hecke operators generating the C ∞ -algebra

T (ℓ)
k,m (n).

Remark 0. 7 .

 7 Using Theorem 2.4, we also get the coarse bounds 2 deg n -4 for H 0 (n) and T 0 (n), and max(2 deg n -3, deg n -1) for H(n) and T(n) (Proposition 4.1, Remarks 4.13(2) and 5.4). The bounds of Theorems 0.2, 0.4 and Corollary 0.6 are obtained by twisting the fundamental domain by the Atkin-Lehner involution W n ; computational data, in particular (0.1), suggest that they are smaller than the coarse bounds. 0.1.3. Review of previous Sturm-type bounds for harmonic cochains. Tan and Rockmore [19] proved a Sturm bound for certain general automorphic cusp forms on GL 2 over K: for harmonic cochains, one can derive bounds of the form 5 deg n + 5 for normalized Hecke eigenforms ([19, Section 3, p. 128]), and deg n -2 under the further assumption that n is squarefree ([19, Section 4, p. 131]) (note that their level N corresponds here to n ∞). It can be compared with the square-free case of Theorem 0.4 where we only assumed that the harmonic cochain is "new". When deg n = 3, it is known since Gekeler [4, 5.8 and 7.1] that any f ∈ H 0 (n) is identically zero when c m (f ) = 0 for all m ∈ A + with deg m ≤ 1. The same bound can be derived for the corresponding cuspidal Hecke algebra ([15, Theorem 1.4 (iii)]). These results are recovered by Theorem 0.4 and Corollary 0.6 (see Remark 0.5).

  we may assume that gcd(c, d, n) = 1 and choose a, b ∈ A so that adbc = 1; let γ s := a b c d ∈ Γ and ℓ s := max(0, deg n γs -1). The vertices (resp. oriented edges) of the end E s are represented by {γ s v r | r ≥ ℓ s } (resp. {γ s e r , γ s ēr | r ≥ ℓ s }). Proof. See [11, Section 1.8] and [19, Section 3.1], except for the input of the width n γ for γ ∈ Γ. We recall the argument here for the sake of completeness. We first identify Γ 0 (n)\Γ with P 1 (A/n) by sending γ = a b c d to (c : d) mod n. In particular, one may take the representatives γ = a b c d for the right cosets of Γ 0 (n) in Γ satisfying c | n and deg d ≤ deg n-1. For two cosets of Γ 0 (n) represented by γ = a b c d and γ ′ = a ′ b ′ c ′ d ′ respectively, with c, c ′ | n and deg d, deg d ′ ≤ deg n-1, let r = max(0, deg n γ -1) and r ′ = max(0, deg n γ ′ -1). Using (2.2), Theorem 2.1 and Remark 2.3, it can be checked that the edges γ e r and γ ′ e r ′ of T represent the same edge in G(n) if and only if there exists β ∈ Γ ∞ such that

)

  Take x, y ∈ A with gcd(x, y) = 1 = gcd(n, cx + dy). Let δ = max(deg x, deg y), and put ǫ = 0 if deg x > deg y and 1 otherwise. There exists u ∈ K ∞ such that the edge [γe 0 ] ∈ E(G(n)) can be represented by

4. 1 . 4 . 1 . 1 .

 1411 The cuspidal case. The general bound. By Lemma 3.3, any given f ∈ H 0 (n) is uniquely determined by its values at γe 0 for all γ ∈ Γ 0 (n)\Γ with deg n γ ≥ 2. Without loss of generality, we may assume γ = a b c d with c | n and deg d < deg n. By Lemma 2.6 (1), there exists u ∈ K ∞ such that

Since 2 ≤

 2 deg n γ ≤ deg ndeg c and deg d < deg n, one has that f is uniquely determined by

Definition 4 . 2 .

 42 For c, d ∈ A with gcd(c, d) = 1, let δ n (c, d) := min{max(deg x, deg y) | gcd(cx + dy, n) = 1}. Set ǫ n (c, d) := 0 if there are x 0 , y 0 ∈ A satisfying deg y 0 < deg x 0 = δ n (c, d) and gcd(cx 0 + dy 0 , n) = 1, and ǫ n (c, d) := 1 otherwise. We define ℓ(n) := max 2δ n (c, d) + ǫ n (c, d) [c : d] ∈ C(n) .

Lemma

  

Remark 4 . 4 .

 44 Suppose deg n > 0. For γ = a b c d ∈ Γ, by Lemma 2.2 we can actually show that min d(γ 0 γv 0 , w n v 0 ) | γ 0 ∈ Γ 0 (n) = deg n + 2δ n (c, d) -1. In other words, the minimal distance between the vertices [γv 0 ] and [w n v 0 ] in the quotient graph G(n) is deg n+2δ n (c, d)-1.

Definition 4 . 6 .

 46 Since f ′ is uniquely determined by its values at γe 0 for γ ∈ Γ 0 (n)\Γ by Lemma 3.3, Lemma 4.3 implies that f ′ = f |W n is identically zero, and so is f . Next we shall connect the integer ℓ(n) with the number of prime factors of n. Given m, n ∈ Z ≥0 , for each pair (c, d) with c, d ∈ A and gcd(c, d) = 1, we put S(c, d; m) := {xc + yd | deg x, deg y ≤ m}. Let t(c, d; m) := max{#(S ′ ) | S ′ ⊂ S(c, d; m) with, for any distinct α, β ∈ S ′ , gcd(α, β) = 1}. We define t(m, n) := min{t(c, d; m) | c, d ∈ A with gcd(c, d) = 1 and m + 1 < max(deg c, deg d) < n} if n ≥ m + 3, and t(m, n) := +∞ otherwise. Finally, given n ∈ A + let t(n) be the number of prime factors of n. For n ∈ A + , put

Proof.

  Given γ = a b c d ∈ Γ, we may assume that c | n and deg c, deg d < deg n. By Proposition 4.5, it suffices to show that δ n (c, d) ≤ τ (n). Let m := τ (n). If max(deg c, deg d) ≤ m + 1, then there exists x, y ∈ A with deg x, deg y ≤ m such that cx + dy = 1. Thus δ n (c, d) ≤ m. Suppose m + 1 < max(deg c, deg d) < deg n. Take S ′ ⊂ S(c, d; m) with #(S ′ ) ≥ t(m, deg n) and gcd(α, β) = 1 for distinct α, β ∈ S ′ . Then gcd(α, n) and gcd(β, n) must be relatively prime for distinct α, β ∈ S ′ . Since t(n) < t(m, deg n) ≤ #(S ′ ), the pigeonhole principle ensures that there exists α 0 ∈ S ′ such that gcd(α 0 , n) = 1. Writing α 0 as x 0 c + y 0 d where x 0 , y 0 ∈ A with deg x 0 , deg y 0 ≤ m, we then have

Proof.

  It suffices to find S ′ ⊂ S(c, d; 1) with #(S ′ ) ≥ 2q + 1 for every pair (c, d) ∈ A 2 with gcd(c, d) = 1 and max(deg c, deg d) ≥ 3. Given c, d ∈ A with deg c ≥ 3 and gcd(c, d) = 1, for ε ∈ P 1 (F q ) put

4. 1 . 2 .

 12 The case of prime power level. Suppose n = p r where r is a positive integer and p ∈ A + is a prime. In this case we are able to give a better bound than Proposition 4.5. Let γ = a b c d ∈ Γ. Suppose that p ∤ c. Take α, β ∈ A such that αan + βc = 1. Then γ 0 = -c a αn β ∈ Γ 0 (n) and

  which is much smaller than the bound 2 deg n -4 in Proposition 4.1 when deg n is large. It is observed that t(n) ≤ 2q when deg n ≤ 10 (except for q = 2 and deg n = 10), therefore by Lemma 4.8 and the fact t(2, 10) = 8, the inequality (4.3) indeed holds at least for n ∈ A + with deg n ≤ 10.

( 2 )

 2 Similarly to Proposition 4.1, by combining Lemma 4.11 and Lemma 2.6(1), we may obtain for H(n) the coarse bound max(2 deg n -3, deg n -1) which does not involve τ (n) nor ℓ(n).

5 . Applications 5 . 1 .

 551 Generators of the Hecke algebra. Suppose n ∈ A + is given. For m ∈ A + , the m-th Hecke operator T m on H(n) is defined by: ∀e ∈ E(T ), (f |T m )(e) := f a b 0 d e , where the sum is over a, d ∈ A + , b ∈ A with ad = m, gcd(a, n) = 1, and deg b < deg d. It is known that T m and T m ′ commute with each other if gcd(m, m ′ ) = 1, and for any prime p ∈ A + and r ∈ Z ≥0 , one has

Corollary 5 . 2 .Corollary 5 . 3 .

 5253 The Hecke algebra T(n) is spanned as a C-vector space by T m for m∈ A + with deg m ≤ deg n -1 + 2τ (n). Proof. Let T ′ be the C-subspace spanned by T m for m ∈ A + with deg m ≤ deg n -1 + 2τ (n).Then Proposition 4.12 shows that the pairing •, • gives an embedding map from H(n) to the dual space of T ′ . This impliesT ′ = T(n) from the perfectness of •, • . Note that H 0 (n) is invariant by T(n). Let T 0 (n) be the image of T(n) inEnd C H 0 (n) under the restriction map. The pairing •, • restricted to H 0 (n) × T 0 (n) is still perfect. Similarly, by Proposition 4.5 and Corollary 4.9, we obtain the following result for the cuspidal Hecke algebra: The cuspidal Hecke algebra T 0 (n) is spanned as a C-vector space by T m for m ∈ A + with deg m ≤ deg n -2 + ℓ(n), where ℓ(n) is defined in Definition 4.2. Moreover, if n is a prime power, then T 0 (n) is spanned by T m for m ∈ A + with deg m ≤ deg n -2. Remark 5.4. The coarse bounds of Proposition 4.1 and Remark 4.13(

  we may assume that the representative γ is of the form a b m d with m | n. Let m ′ := n/m. Since n is square-free, there exist α, β ∈ A with αam ′ + βm = 1. For f ∈ H 0 (n), one has

6. 1 .

 1 Drinfeld modular forms. Here we recall the definition of Drinfeld modular forms and the basic properties to be used. For further details we refer to [5, V.3] and [12, Section 2].

Definition 6 . 1 .

 61 Let n ∈ A + . A Drinfeld modular form of weight k and type m for Γ 0 (n) is a rigid holomorphic function f : Ω → C ∞ satisfying:

M

  (n) := f ∈ M k,m (n) ∀γ ∈ Γ, ∀n < ℓ, a γ n (f ) = 0 .It is called the space of ℓ-cuspidal Drinfeld modular forms of weight k and type m for Γ 0 (n).

6. 2 .Theorem 6 . 3 .

 263 Sturm-type bound for Drinfeld modular forms. The following is obtained by an argument similar to proofs of the Sturm bound for classical modular forms.Given n ∈ A + , let κ(n) := [Γ : Γ 0 (n)]. Then f ∈ M (ℓ) k,m (Γ 0 (n)) is identically zero if b j (f ) = 0 for every 0

1 )

 1 Note that for 0 = a ∈ A and z ∈ Ω with |t(z)| ∞ small enough, one hast(az) = ∞ i=0 c i t |a|∞+i (z), where c i ∈ C ∞ for i ≥ 0.

Remark 6 . 5 .

 65 For each prime p ∈ A + , the Hecke operator T p on M k,m (n) is given by (following [1, Section 4.3]):∀z ∈ Ω, (f | k T p )(z) := p -1 u∈A deg u<deg p f z + u p + µ n (p) • p k-1 f (pz).Here µ n (p) = 1 if p ∤ n and 0 otherwise. In general, for m ∈ A + written as m = p r1 1 • • • p rt t with distinct primes p 1 , . . . , p t , putT m := t i=1 T ri pi ∈ End C∞ M (ℓ) k,m (n) . Let T (ℓ)k,m (n) be the C ∞ -algebra generated by (T m ) m∈A+ . The first coefficient b 1 provides the following pairing:

  the genus of the graph G(n) (cf.[12, 3.2.5], and [11, Th. 2.17] for a formula for this genus).(3) For each cusp s ∈ C(n), choose γ s ∈ Γ and ℓ s ∈ Z ≥0 as in Theorem 2.4. Then we have the following exact sequence (cf.[20, p. 277]):

  Lemma 3.3. Every harmonic cochain in H(n) (resp. H 0 (n)) is uniquely determined by its values at the edges γe 0 for all γ ∈ Γ 0 (n)\Γ (resp. with deg n γ ≥ 2).Proof. For H(n), this can be derived from[11, 2.13] or similarly by combining (2.1), (2.2) and the harmonicity property. Moreover assume that deg n γ < 2. By Theorem 2.4, the edge [γe 0 ]

  has good reduction at p, Here F p := A/p and E denotes the reduction of E at p. Let n ∞ be the conductor of E for some n ∈ A + . From the work of Weil, Jacquet-Langlands, Grothendieck, Deligne, Drinfeld and Zarhin, there exists a unique f E ∈ H new 0

	(5.2)	1 0 -1	if E has split multiplicative reduction at p, if E has additive reduction at p. if E has non-split multiplicative reduction at p,
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Proof. The previous discussion tells us that

Note that as n 0 | n, one has

Therefore the proof is complete.

When n is square-free, the previous two lemmas give us a smaller bound for f ∈ H new 0 (n) than Proposition 4.5.

The result then follows from Lemma 5.5.

When n is not square-free, we may also go a bit further in the following case:

Lemma 5.8. Let n = p 2 q for two primes p, q ∈ A + with deg q = 1.

Proof. From Corollary 4.9, we may assume that p and q are distinct. Let

We may take γ to be of the form

Then n 0 = 1 or q. Put n ′ 0 := n/n 0 . Then gcd(n 0 , n ′ 0 ) = 1. Applying the argument in Lemma 5.5, one has

Therefore the result holds.

Note that the subspace H new 0 (n) is invariant by T 0 (n). Let T new 0 (n) be the image of T 0 (n) in End C H new 0 (n) under the restriction map. Then the pairing •, • restricted to H new 0 (n) × T new 0 (n) is still perfect. Consequently, we obtain: