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Table S1: Number of clusters and average silhouette width for different clustering 

methods 

 Hierarchical Non-hierarchical 

 
Single 

linkage1 

Complete 

linkage2 
UPGMA3 UPGMC3 Ward4 PAM5 

Optimal number of 

clusters 
2 3 3 3 3 3 

Average silhouette 

width 
0.79 0.81 0.81 0.81 0.81 0.81 

Number of 

replications 

Cluster 1 220 220 220 220 220 220 

Cluster 2 180 140 140 143 140 140 

Cluster 3 - 40 40 37 31 40 

 

 
Figure S1: Average silhouette width plotted against number of clusters. The highest 

average silhouette width corresponding to the optimum number of clusters is represented with 

a red dot. 

 

 
Figure S2: Silhouette plot obtained with 3 clusters using PAM. For each cluster j, the 

number of replications and the average silhouette width of the cluster are given on the right.  



 

 

 

Figure S3: Complete conceptual model of Pestivirus spread (adapted from Beaunée et al., 

20156). Squares represent health states: 𝑆0, newborns and juveniles protected by maternal 

immunity, 𝑆, susceptible to infection, 𝑇, transiently infected, 𝑅, immune, 𝑅𝑔, immune females 

infected during pregnancy, 𝑃, persistently infected and 𝑉, vaccinated. Solid horizontal arrows 

represent flows between compartments (loss of maternal antibodies, infection, recovery, loss of 

acquired immunity, vaccination, and loss of vaccine-induced immunity). Solid vertical arrows 

represent natural mortality and disease-induced mortality for 𝑇  and 𝑃 . Solid grey arrows 

represent transitions between age classes. Dashed arrows represent births. 

  



 

 

 

Figure S4: Graphical representation of seasonality. Mating season started the 5th of 

November and ended the 7th of January (𝜏 = 0), birth period started the 30th of April and ended 

the 1st of July (𝜀 = 1), and consequently the gestation period (𝜈 = 1) lasted from the 5th of 

November (beginning of mating season) to the 1st of July (end of birth season). 

 

 

  

Figure S5: Matrix contacts based on sex, age and season (adapted from Beaunée et al., 

20156). During mating season on the left, and out of mating season on the right. In black: 

possible contact, in white: no contact. Age classes: juveniles J, subadults Sa, adults A, old adults 

O, very old adults VO. Sex: males in blue and females in red. During mating season, 𝜏 = 0 

because all individuals were in contact (on the left), and out of mating season 𝜏 = 1 because 

adult males (A, O and VO) form a separate group, adult females stay with juveniles and 

subadults females, and subadult males were in contact with both groups.  



 

 

 

Figure S6: Distribution of probability density of parameter values for 1%, 2%, 3%, 5%, 

10%, 20%, 30%, 40% and 50% of simulations producing lowest chi-square distance between 

observed and simulated data using Approximate Bayesian Computation (ABC) approach and 

data as described in Beaunée et al. (2015)6. Parameter values corresponded to the 1% threshold 

(median and 95% confidence intervals): the coefficient of horizontal transmission from 

transiently infected animals 𝛽𝑇 = 0.01[0.002; 0.028] , the coefficient of horizontal 

transmission from persistently infected animals 𝛽𝑃 = 0.48[0.33; 0.59] and the disease-related 

mortality of transiently infected animals 𝜇𝑇 = 0.76[0.72; 0.81]. 
  



 

 

Equations S(1)-(30): Model equations 

 

Transitions between compartments were modelled as stochastic flows assuming demographic 

stochasticity. Possible transitions were: mortality Μ, loss of maternal antibodies Δ, infection Υ, 

recovery Γ, loss of acquired immunity Ω, vaccination Θ, loss of vaccine-induced immunity Λ, 

hunting Φ  and test-and-cull Φ𝑇𝑃 . Each was the outcome of a binomial trial. For multiple 

transitions from a given compartment, multinomial distributions were used. 

 

Each flow (1, … , 𝑗)  from a compartment 𝑖  was associated with a daily rate 𝜅𝑖𝑗(𝑡) . The 

probability associated with each event 𝑗 was 𝑝𝑖𝑗 =  [1 − 𝑒𝑥𝑝(− ∑ 𝜅𝑖𝑗𝑗≠𝑖 )]. 𝜅𝑖𝑗 ∑ 𝜅𝑖𝑗𝑗≠𝑖⁄  (Bretó 

et al., 20097), with 𝑝𝑖𝑖 =  1 − ∑ 𝑝𝑖𝑗𝑗≠𝑖  the probability of staying in compartment 𝑖. 
 

Births Η followed a binomial distribution with probability 1 − 𝑒𝑥𝑝(−𝜂). As newborn orphans 

are expected to have a very low survival rate, only breeding females still alive at birth time were 

considered. 

 

The complete system of mathematical equations describing the updating of variables 

corresponding to health states at each time step is given below (1), with 𝑋 the class age, and ⚥ 

the symbol used when equations are the same between males ♂ and females ♀. 

 

The transitions between age groups were not included in these equations because they were 

considered as deterministic discrete events happening each 1st of July, with every 𝐵, 𝐽, and 𝑆𝑎 

individuals going into the next age class (𝐽, 𝑆𝑎 and 𝐴 respectively), 1 6⁄  of 𝐴 becoming 𝑂 (the 

adult age lasting 7 − 2 + 1 = 6 years) and 1 5⁄  of 𝑂 becoming 𝑉𝑂 (the old adult age lasting 

12 − 8 + 1 = 5 years). 

 

(1) 

𝑆0𝑋⚥(𝑡 + 1) = 𝑆0𝑋⚥(𝑡) − Μ𝑆0𝑋⚥(𝑡) − Φ𝑆0𝑋⚥(𝑡) − Δ𝑋⚥(𝑡) + Η𝑆0𝑋⚥(𝑡) 

𝑆𝑋⚥(𝑡 + 1) = 𝑆𝑋⚥(𝑡) − Μ𝑆𝑋⚥(𝑡) − Φ𝑆𝑋⚥(𝑡) − Υ𝑋⚥(𝑡) − Θ𝑋⚥(𝑡) + Δ𝑋⚥(𝑡) + Λ𝑋⚥(𝑡)

+ Ω𝑋⚥(𝑡) + Η𝑆𝑋⚥(𝑡) 

𝑉𝑋⚥(𝑡 + 1) = 𝑉𝑋⚥(𝑡) − Μ𝑉𝑋⚥(𝑡) − Φ𝑉𝑋⚥(𝑡) − Λ𝑋⚥(𝑡) + Θ𝑋⚥(𝑡) 

𝑇𝑋⚥(𝑡 + 1) = 𝑇𝑋⚥(𝑡) − Μ𝑇𝑋⚥(𝑡) − Μ𝑇𝑋⚥
𝑇 (𝑡) − Φ𝑇𝑋⚥(𝑡) − Φ𝑇𝑋⚥

𝑇𝑃 (𝑡) − Γ𝑋⚥(𝑡) + Υ𝑋⚥(𝑡) 

𝑅𝑋♂(𝑡 + 1) = 𝑅𝑋♂(𝑡) − Μ𝑅𝑋♂(𝑡) − Φ𝑅𝑋♂(𝑡) − Ω𝑋♂(𝑡) + Γ𝑋♂(𝑡) + Η𝑅𝑋♂(𝑡) 

𝑅𝑋♀(𝑡 + 1) = 𝑅𝑋♀(𝑡) − Μ𝑅𝑋♀(𝑡) − Φ𝑅𝑋♀(𝑡) − Ω𝑋♀(𝑡) + (1 − 𝜈(𝑡)). Γ𝑋♀(𝑡) + Η𝑅𝑋♀(𝑡) 

𝑅𝑔𝑋♀(𝑡 + 1) = 𝑅𝑔𝑋♀(𝑡) − Μ𝑅𝑔𝑋♀(𝑡) − Φ𝑅𝑔𝑋♀(𝑡) + 𝜈(𝑡). Γ𝑋♀(𝑡) 

𝑃𝑋⚥(𝑡 + 1) = 𝑃𝑋⚥(𝑡) − Μ𝑃𝑋⚥(𝑡) − Μ𝑃𝑋⚥
𝑃 (𝑡) − Φ𝑃𝑋⚥(𝑡) − Φ𝑃𝑋⚥

𝑇𝑃 (𝑡) + Η𝑃𝑋⚥(𝑡) 

 

 

With:  ∃(𝑉, Φ, Θ, Λ) ⟺ 𝑋 ≠ 𝐵;   ∃(𝑆0, Δ) ⟺ 𝑋 ∈ {𝐵, 𝐽}; 

 ∃Η ⟺ 𝑋 = 𝐵 

 ∃𝑅𝑔 ⟺ 𝑋 ∈ {𝑆𝑎, 𝐴, 𝑂, 𝑉𝑂};  ∃Ω ⟺ 𝑋 ∈ {𝐴, 𝑂, 𝑉𝑂} 

 

The equations describing flows are given below for each health state (2-19). Parameter 

descriptions are given in Table 2 of the article. 

 

𝑺𝟎 : Individuals protected by maternal antibodies were affected by three events: natural 

mortality Μ𝑆0, hunting Φ𝑆0 (except for newborns) and loss of maternal antibodies Δ. We used 

the notation 𝑆0̅̅ ̅  for the event in which individuals stayed in compartment 𝑆0 , 

with 𝑆0̅̅ ̅ =  (Μ𝑆0 ∪ Φ𝑆0 ∪ Δ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 



 

 

(2) Newborns: (Μ𝑆0𝐵,  Δ𝐵, 𝑆0̅̅ ̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆0𝐵 ,  𝑝1,  𝑝2, 1 − ∑ 𝑝𝑗
2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝐵(𝑡), 𝛼] 

 

(3) Juveniles: (Μ𝑆0𝐽, Φ𝑆0𝐽,  Δ𝐽, 𝑆0̅̅ ̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆0𝐽,  𝑝1,  𝑝2,  𝑝3, 1 − ∑ 𝑝𝑗
3
𝑗=1 ) 

With: ∀𝑗 ∈ [1,3],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

3
𝑗=1 ]

∑ 𝜅𝑗
3
𝑗=1

 And: 𝜅 = [𝜇𝐽𝑢𝑣(𝑡), 𝜙(𝑡). 𝜇𝐽𝑢𝑣
𝐻 , 𝛼] 

 

𝑺 : Susceptible individuals were affected by the following events; natural mortality Μ𝑆 , 

hunting Φ𝑆, transient infection Υ and vaccination Θ. We used the notation 𝑆̅ for the event in 

which individuals stayed in compartment 𝑆, with 𝑆̅ =  (Μ𝑆 ∪ Φ𝑆 ∪ Υ ∪ Θ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 

The horizontal transmission function depended on sex and age of individuals and took into 

account changes in contact patterns due to the mating season through the Boolean parameter 𝜏 

defined in §2.2 and Table 1 of the article. Thus, according to the contact matrix (see 

Supplementary Fig. S6), three forces of infection were considered (4-6): 𝑓1  for juveniles 

(females and males) and breeding females (subadult to very old adult age classes), 𝑓2  for 

subadult males and 𝑓3 for adult males. 𝑁 is the total population, every other capital letter refers 

to total number of either a class age (independent of the health state) or a health state (from the 

whole population or in a specific class of age and sex as indicated in subscripts). The 

transmission function was assumed to be frequency-dependent. 
 

(4) 𝑓1 =  (
𝛽𝑇 . (𝑇 − 𝜏(𝑡). 𝑇(𝐴+𝑂+𝑉𝑂)♂) +  𝛽𝑃. (𝑃 − 𝜏(𝑡). 𝑃(𝐴+𝑂+𝑉𝑂)♂)

𝑁 − 𝜏(𝑡). (𝐴♂ + 𝑂♂ + 𝑉𝑂♂)
) 

(5) 𝑓2 =  (𝛽𝑇 .
𝑇

𝑁
+ 𝛽𝑃.

𝑃

𝑁
) 

(6) 𝑓3 =  (
𝛽𝑇 . [𝑇 − 𝜏(𝑡). (𝑇𝐵+𝐽+(𝑆𝑎+𝐴+𝑂+𝑉𝑂)♀ )] + 𝛽𝑃. [𝑃 − 𝜏(𝑡). (𝑃𝐵+𝐽+(𝑆𝑎+𝐴+𝑂+𝑉𝑂)♀ )]

𝑁 − 𝜏(𝑡). (𝐵 + 𝐽 + 𝑆𝑎♀  + 𝐴♀  + 𝑂♀ + 𝑉𝑂♀)
) 

 

(7) Newborns: (Μ𝑆𝐵,  Υ𝐵, 𝑆̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝐵,  𝑝1,  𝑝2, 1 − ∑ 𝑝𝑗
2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝐵(𝑡), 𝑓1] 

(8) Juveniles and breeding females (𝑋 = {𝐽, 𝑆𝑎♀, 𝐴♀, 𝑂♀, 𝑉𝑂♀}): 

 (Μ𝑆𝑋 ,  Φ𝑆𝑋 ,  Υ𝑋 ,  Θ𝑋 , 𝑆̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑋 ,  𝑝1,  𝑝2,  𝑝3,  𝑝4, 1 − ∑ 𝑝𝑗
4
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝐵(𝑡), 𝑓1] 

(9) Subadult males: 

 (Μ𝑆𝑆𝑎♂, Φ𝑆𝑆𝑎♂, Υ𝑆𝑎♂, Θ𝑆𝑎♂, 𝑆̅)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑆𝑎♂,  𝑝1,  𝑝2,  𝑝3,  𝑝4, 1 − ∑ 𝑝𝑗
4
𝑗=1 ) 

With: ∀𝑗 ∈ [1,4],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

4
𝑗=1 ]

∑ 𝜅𝑗
4
𝑗=1

 And: 𝜅 = [𝜇𝑆𝑎♂, 𝜙(𝑡). 𝜇𝑆𝑎
𝐻 , 𝑓2, 𝜃(𝑡). 𝑣𝑆𝑎♂] 

(10) Adult males (𝑋 = {𝐴♂, 𝑂♂, 𝑉𝑂♂}): 

 (Μ𝑆𝑋 , Φ𝑆𝑋 , Υ𝑋, Θ𝑋 , 𝑆̅)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑋 ,  𝑝1,  𝑝2,  𝑝3,  𝑝4, 1 − ∑ 𝑝𝑗
4
𝑗=1 ) 

With: ∀𝑗 ∈ [1,4],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

4
𝑗=1 ]

∑ 𝜅𝑗
4
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜙(𝑡). 𝜇𝐴♂
𝐻 , 𝑓3, 𝜃(𝑡). 𝑣𝐴♂] 



 

 

𝑽: Vaccinated individuals were affected by natural mortality Μ𝑉 , hunting Φ𝑉  and loss of 

vaccine-induced immunity Λ. We used the notation 𝑉̅ for the event in which individuals stayed 

in compartment 𝑉, with 𝑉̅ =  (Μ𝑉 ∪ Φ𝑉 ∪ Λ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

(11) Juveniles, Subadults and Adults (𝑋 = {𝐽, 𝑆𝑎♀, 𝑆𝑎♂, 𝐴♀, 𝐴♂, 𝑂♀, 𝑂♂, 𝑉𝑂♀, 𝑉𝑂♂}): 

 (Μ𝑉𝑋 , Φ𝑉𝑋 ,  Λ𝑉𝑋 , 𝑉̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑉𝑋 ,  𝑝1,  𝑝2,  𝑝3, 1 − ∑ 𝑝𝑗
3
𝑗=1 ) 

With: ∀𝑗 ∈ [1,3],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

3
𝑗=1 ]

∑ 𝜅𝑗
3
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜙(𝑡). 𝜇𝑋
𝐻, 𝜆] 

 

𝑻 : Transiently infected animals were affected by natural mortality Μ𝑇 , infection-related 

mortality Μ𝑇
𝑇, hunting Φ𝑇, test-and-cull Φ𝑇

𝑇𝑃 and recovery Γ. We used the notation 𝑇̅ for the 

event in which individuals stayed in compartment 𝑇 , with  

𝑇̅ =  (Μ𝑇 ∪ Μ𝑇
𝑇 ∪ Φ𝑇 ∪ Φ𝑇

𝑇𝑃 ∪ Γ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

(12) Newborns: (Μ𝑇𝐵,  Μ𝑇𝐵
𝑇 ,  Γ𝐵, 𝑇̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑇𝐵,  𝑝1,  𝑝2,  𝑝3, 1 − ∑ 𝑝𝑗

3
𝑗=1 ) 

With: ∀𝑗 ∈ [1,3],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

3
𝑗=1 ]

∑ 𝜅𝑗
3
𝑗=1

 And: 𝜅 = [𝜇𝐵(𝑡), 𝜇𝑇 , 𝛾] 

(13) Juveniles, Subadults and Adults (𝑋 = {𝐽, 𝑆𝑎♀, 𝑆𝑎♂, 𝐴♀, 𝐴♂, 𝑂♀, 𝑂♂, 𝑉𝑂♀, 𝑉𝑂♂}) : 

 (Μ𝑇𝑋,  Μ𝑇𝑋
𝑇 ,  Φ𝑇𝑋 ,  Φ𝑇𝑋

𝑇𝑃 ,  Γ𝑋 , 𝑇̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑇𝑋 ,  𝑝1,  𝑝2,  𝑝3,  𝑝4,  𝑝5, 1 − ∑ 𝑝𝑗
5
𝑗=1 ) 

With: ∀𝑗 ∈ [1,5],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

5
𝑗=1 ]

∑ 𝜅𝑗
5
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜇𝑇 , 𝜙(𝑡). 𝜇𝑋
𝐻, 𝜃(𝑡). 𝜇𝑋

𝐻𝑇𝑃, 𝛾] 

 

𝑹: Recovered individuals (immune) were affected by natural mortality Μ𝑅, hunting Φ𝑅 and 

loss of acquired immunity Ω (adults only). We used the notation 𝑅̅  for the event in which 

individuals stayed in compartment 𝑅, with 𝑅̅ =  (Μ𝑅 ∪ Φ𝑅 ∪ Ω)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

(14) Newborns: Μ𝑅𝐵(𝑡)~𝐵𝑖𝑛(𝑅𝐵(𝑡), 1 − 𝑒𝑥𝑝[−𝜇𝐵(𝑡)]) 

(15) Juveniles and Subadults (𝑋 = {𝐽, 𝑆𝑎♀, 𝑆𝑎♂}): 

 (Μ𝑅𝑋,  Φ𝑅𝑋 , 𝑅̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑅𝑋 ,  𝑝1,  𝑝2, 1 − ∑ 𝑝𝑗
2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜙(𝑡). 𝜇𝑋
𝐻] 

(16) Adults (𝑋 = {𝐴♀, 𝐴♂, 𝑂♀, 𝑂♂, 𝑉𝑂♀, 𝑉𝑂♂}) : 

 (Μ𝑅𝑋,  Φ𝑅𝑋 ,  Ω𝑋 , 𝑅̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑅𝑋 ,  𝑝1,  𝑝2,  𝑝3, 1 − ∑ 𝑝𝑗
3
𝑗=1 ) 

With: ∀𝑗 ∈ [1,3],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

3
𝑗=1 ]

∑ 𝜅𝑗
3
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜙(𝑡). 𝜇𝑋
𝐻, 𝜔] 

 

𝑹𝒈: Immune females infected during pregnancy (𝑋 = {𝑆𝑎♀, 𝐴♀, 𝑂♀, 𝑉𝑂♀}) were affected by 

natural mortality Μ𝑅𝑔  and hunting Φ𝑅𝑔 . We used the notation 𝑅𝑔̅̅ ̅̅  for the event in which 

individuals stayed in compartment 𝑅𝑔, with 𝑅𝑔̅̅ ̅̅ =  (Μ𝑅𝑔 ∪ Φ𝑅𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

(17)  (Μ𝑅𝑔𝑋,  Φ𝑅𝑔𝑋 , 𝑅𝑔̅̅ ̅̅ ) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑅𝑔𝑋,  𝑝1,  𝑝2, 1 − ∑ 𝑝𝑗
2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜙(𝑡). 𝜇𝑋
𝐻] 

 



 

 

𝑷: Permanently infected animals were affected by natural mortality Μ𝑃 and infection-related 

mortality Μ𝑃
𝑃, hunting Φ𝑃 and test and cull Φ𝑃

𝑇𝑃. We used the notation 𝑃̅ for the event in which 

individuals stayed in compartment 𝑃, with 𝑃̅ =  (Μ𝑃 ∪ Μ𝑃
𝑃 ∪ Φ𝑃 ∪ Φ𝑃

𝑇𝑃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 

(18) Newborns: (Μ𝑃𝐵,  Μ𝑃𝐵
𝑃 , 𝑃̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃𝐵,  𝑝1,  𝑝2, 1 − ∑ 𝑝𝑗

2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,2],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

2
𝑗=1 ]

∑ 𝜅𝑗
2
𝑗=1

 And: 𝜅 = [𝜇𝐵, 𝜇𝑃] 

(19) Juveniles, Subadults and Adults (𝑋 = {𝐽, 𝑆𝑎♀, 𝑆𝑎♂, 𝐴♀, 𝐴♂, 𝑂♀, 𝑂♂, 𝑉𝑂♀, 𝑉𝑂♂}): 

 (Μ𝑃𝑋,  Μ𝑃𝑋
𝑃 ,  Φ𝑃𝑋 ,  Φ𝑃

𝑇𝑃, 𝑃̅) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃𝑋 ,  𝑝1,  𝑝2,  𝑝3,  𝑝4, 1 − ∑ 𝑝𝑗
2
𝑗=1 ) 

With: ∀𝑗 ∈ [1,4],  𝑝𝑗 = 𝜅𝑗 .
1 − 𝑒𝑥𝑝[∑ 𝜅𝑗

4
𝑗=1 ]

∑ 𝜅𝑗
4
𝑗=1

 And: 𝜅 = [𝜇𝑋 , 𝜇𝑃, 𝜙(𝑡). 𝜇𝑋
𝐻, 𝜃(𝑡). 𝜇𝑋

𝐻𝑇𝑃] 

 

Equations describing births for each health state are given below, 

with 𝑋 = {𝑆𝑎, 𝐴, 𝑂, 𝑉𝑂} (22-27). The number of females infected during the first half (mothers 

of 𝑃 newborns) and second half (mothers of 𝑅 newborns) of pregnancy are (20-21): 

 

(20) 1st half: 𝜓𝑅𝑔𝑋♀1(𝑡)~𝐵𝑖𝑛((𝑝𝑋♀1 + 𝑝𝑋♀2). [𝑅𝑔𝑋♀(𝑡) − Μ𝑅𝑔𝑋♀(𝑡) − Φ𝑅𝑔𝑋♀(𝑡)], 𝑝𝑋♀1) 

(21) 2nd half: 𝜓𝑅𝑔𝑋♀2(𝑡) = (𝑝𝑋♀1 + 𝑝𝑋♀2). [𝑅𝑔𝑋♀(𝑡) − Μ𝑅𝑔𝑋♀(𝑡) − Φ𝑅𝑔𝑋♀(𝑡)] − 𝜓𝑅𝑔𝑋♀1(𝑡) 

 

𝑝𝑋♀1(𝑡) was the proportion of females in class 𝑋  (𝑆𝑎 , 𝐴, 𝑂 , or 𝑉𝑂) that became 𝑅𝑔  after 

recovery and were transiently infected during the first half of pregnancy (16). Pregnancy lasted 

170 days (Serrano et al., 20158). Females who became infected up to 51 days before pregnancy 

were included because the virus was still present when they got pregnant. 

𝑝𝑋♀2(𝑡) was the proportion of females in class 𝑋  (𝑆𝑎 , 𝐴, 𝑂 , or 𝑉𝑂) that became 𝑅𝑔  after 

recovery and were transiently infected during the second half of gestation (17). Females that 

became infected less than 51 days before giving birth were not included because they became 

𝑅 and not 𝑅𝑔 (immunity was acquired after birth). 

𝑇𝑁,𝑋♀(𝑡) was the number of new cases of transiently infected individuals at time 𝑡 (incidence) 

in females of class 𝑋 (𝑆𝑎, 𝐴, 𝑂, or 𝑉𝑂). 

 

(22) 𝑝𝑋♀1(𝑡) =  
∑ 𝑇𝑁,𝑋♀(𝑘)𝑘=𝑡−86

𝑘=𝑡−(170+51)

∑ 𝑇𝑁,𝑋♀(𝑘)𝑘=𝑡−51
𝑘=𝑡−(170+51)

 (23) 𝑝𝑋♀2(𝑡) =  
∑ 𝑇𝑁,𝑋♀(𝑘)𝑘=𝑡−51

𝑘=𝑡−85

∑ 𝑇𝑁,𝑋♀(𝑘)𝑘=𝑡−51
𝑘=𝑡−(170+51)

 

 

As long as no female became infected during pregnancy (denominator null), 𝑝𝑋♀1 and 𝑝𝑋♀2 

were null and 𝜓𝑅𝑔𝑋♀1 = 𝜓𝑅𝑔𝑋♀2 = 0 . In the other cases, 𝑝𝑋♀1(𝑡) + 𝑝𝑋♀2(𝑡) = 1  so  

𝜓𝑅𝑔𝑋♀1 + 𝜓𝑅𝑔𝑋♀2 = 𝑅𝑔𝑋♀(𝑡) − Μ𝑅𝑔𝑋♀(𝑡) − Φ𝑅𝑔𝑋♀(𝑡). 

 

(24) 𝑺𝟎 

 Η𝑅𝑋→𝑆0(𝑡)~𝐵𝑖𝑛(𝑅𝑋♀(𝑡) − Μ𝑅𝑋♀(𝑡) − Φ𝑅𝑋♀(𝑡),1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 
 

Females ♀: Η𝑆0𝐵♀(𝑡)~𝐵𝑖𝑛(Η𝑅𝑆𝑎→𝑆0(𝑡) + Η𝑅𝐴→𝑆0(𝑡) + Η𝑅𝑂→𝑆0(𝑡) + Η𝑅𝑉𝑂→𝑆0(𝑡), 𝛿) 

Males ♂: Η𝑆0𝐵♂(𝑡) = Η𝑅𝑆𝑎→𝑆0(𝑡) + Η𝑅𝐴→𝑆0(𝑡) + Η𝑅𝑂→𝑆0(𝑡) + Η𝑅𝑉𝑂→𝑆0(𝑡) − Η𝑆0𝐵♀(𝑡) 

  



 

 

(25) 𝑺 

 Η𝑆𝑋→𝑆(𝑡)~𝐵𝑖𝑛(𝑆𝑋♀(𝑡) − Μ𝑆𝑋♀(𝑡) − Φ𝑆𝑋♀(𝑡), 1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Η𝑉𝑋→𝑆(𝑡)~𝐵𝑖𝑛(𝑉𝑋♀(𝑡) − Μ𝑉𝑋♀(𝑡) − Φ𝑉𝑋♀(𝑡),1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Females ♀: Η𝑆𝐵♀(𝑡)~𝐵𝑖𝑛(∑ Η𝑆𝑋→𝑆(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑉𝑋→𝑆(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} , 𝛿) 

Males ♂: Η𝑆𝐵♂(𝑡) = ∑ Η𝑆𝑋→𝑆(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑉𝑋→𝑆(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} − Η𝑆𝐵♀(𝑡) 

 

(26) 𝑹 

 Η𝑇𝑋→𝑅(𝑡)~𝐵𝑖𝑛(𝑇𝑋♀(𝑡) − Μ𝑇𝑋♀(𝑡) − Μ𝑇𝑋♀
𝑇 (𝑡) − Φ𝑇𝑋♀(𝑡) − Φ𝑇𝑋♀

𝑇𝑃 (𝑡),1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Η𝑅𝑔𝑋→𝑅(𝑡)~𝐵𝑖𝑛(𝜓𝑅𝑔𝑋♀2, 1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Females ♀:Η𝑅𝐵♀(𝑡)~𝐵𝑖𝑛(∑ Η𝑇𝑋→𝑅(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑅𝑔𝑋→𝑅(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} , 𝛿) 

Males ♂: Η𝑅𝐵♂(𝑡) = ∑ Η𝑇𝑋→𝑅(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑅𝑔𝑋→𝑅(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} − Η𝑅𝐵♀(𝑡) 

 

(27) 𝑷 

 Ψ𝑃𝑋(𝑡)~𝐵𝑖𝑛(𝑃𝑋♀(𝑡) − Μ𝑃𝑋♀(𝑡) − Μ𝑃𝑋♀
𝑃 (𝑡) − Φ𝑃𝑋♀(𝑡) − Φ𝑃𝑋♀

𝑇𝑃 (𝑡),1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Η𝑃𝑋→𝑃(𝑡)~𝐵𝑖𝑛(Ψ𝑃𝑋(𝑡), 1 − 𝜌) 

Ψ𝑅𝑔𝑋(𝑡)~𝐵𝑖𝑛(𝜓𝑅𝑔𝑋♀1, 1 − 𝑒𝑥𝑝[− 𝜀(𝑡). 𝜂𝑋]) 

Η𝑅𝑔𝑋→𝑃(𝑡)~𝐵𝑖𝑛(Ψ𝑅𝑔𝑋(𝑡), 1 − 𝜌) 

Females ♀: Η𝑃𝐵♀(𝑡)~𝐵𝑖𝑛(∑ Η𝑃𝑋→𝑃(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑅𝑔𝑋→𝑃(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} , 𝛿) 

Males ♂: Η𝑃𝐵♂(𝑡) = ∑ Η𝑃𝑋→𝑃(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} + ∑ Η𝑅𝑔𝑋→𝑃(𝑡)𝑋∈{𝑆𝑎,𝐴,𝑂,𝑉𝑂} − Η𝑃𝐵♀(𝑡) 

 

Equations describing density-dependent parameters are given below (28-30): 

 

Probability of newborn and juvenile mortality as well as the subadult fertility rate were affected 

by density-dependence. For these parameters, we used a sigmoid function using explicit 

variables (𝑑: strength of density-dependence, 𝐾: carrying capacity, 𝑁: total population size). In 

the case of the subadult fertility rate, we considered the population size at the year of birth, i.e., 

two years before. 

 

(28) 𝜇𝐵(𝑡) = 𝜇𝐵
𝑚𝑖𝑛 +

𝜇𝐵
𝑚𝑎𝑥 − 𝜇𝐵

𝑚𝑖𝑛

1 + 𝑒𝑥𝑝(𝐾 ∗ 𝑑 − 𝑑 ∗ 𝑁(𝑡))
 

(29) 𝜇𝐽𝑢𝑣(𝑡) = 𝜇𝐽𝑢𝑣
𝑚𝑖𝑛 +

𝜇𝐽𝑢𝑣
𝑚𝑎𝑥 − 𝜇𝐽𝑢𝑣

𝑚𝑖𝑛

1 + 𝑒𝑥𝑝(𝐾 ∗ 𝑑 − 𝑑 ∗ 𝑁(𝑡))
 

(30) 𝜂𝑆𝑎(𝑡) =
𝜂𝑆𝑎

𝑚𝑎𝑥

1 + 𝑒𝑥𝑝(𝑑 ∗ 𝑁(𝑡 − 2 𝑦𝑒𝑎𝑟𝑠) − 𝑑 ∗ 𝐾)
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