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ABSTRACT 2. CLUTTER MODELLING BY SIRV PROCESSES

In the context of non-Gaussian polarimetric clutter models . . . L
. L For Gaussian polarimetric clutter model, the estimation of
this paper presents an application of the recent advances |

the field of Spherically Invariant Random Vectors (SIRV) the polarimetric coherency matrix is treated in the contéxt

. . S POLSAR speckle filtering. In the context of non-Gaussian
modelling for coherency matrix estimation in heterogerseou

clutter. The complete description of the POLSAR data sePOIa”memC cIl_Jtter_mode!s, several studies tackled PNR_S
arameter estimation using the product model. Spherically

IS achleyed by estimating the shan and the normalized .C(Fhvariant Random Vectors (SIRV) and their applicationsto e
herency independently. The normalized coherency describ

the polarimetric diversity. while the span indicates thealto fimation and detection in communication theory were firstly
P Y P . introduced by Kung Yad2]. In the context of POLSAR data,
received power. Based on the SIRV model, a new maximu .
S . - . e clutter is modelled as SIRV, a non-homogeneous Gaus-
likelihood distance measure is introduced for unsupedvise _. . O o
$ian process with random power: its randomness is induced

POLSAR segmentation. The proposed method is tested Wltby variations in the radar backscattering over differefapo

airborne POLSAR images provided by the RAMSES Systemi'zation channels. Consequently, the POLSAR target vector

Index Terms— POLSAR, estimation, segmentation k is defined as the product between the independent com-
plex Gaussian vecterwith zero mean and covariance matrix
1. INTRODUCTION [M] = E{zz'} (representing the speckle) and the root of a
positive random variable (representing the texture):
In a particular frequency band, the wave-media interastion Kk = /72, L

over distributed areas are generally studied using theripola

metric covariance matrix (called also coherency when vecto wheref denotes the conjugate transpose operatorfahd }

izing in the Pauli basis). In general, POLSAR data are lgcall the mathematical expectation. In Eq. 1, the covariance ma-
modelled by the multivariate, zero mean, circular Gaussiafrix is an unknown parameter which can be estimated from
probability density function, which is completely detenmad ~ Maximum Likelihood (ML) theory.

by the covariance matrix. For a given M| the texture ML estimator is:

The recently launched POLSAR systems are now capable fra 11
of producing high quality images of the Earth’s surface with 7= M 2)
meter resolution. The decrease of the resolution cell sffer m

the opportunity to observe much thinner spatial featuras th The ML estimator of the normalized covariance matrix in
the decametric resolution of the up-to-now available SAR imthe deterministic texture case is obtained by cancellirgg th
ages. Recent studies [1] show that the higher scene hetergradient of the generalized likelihood with respecfid| as
geneity leads to non-Gaussian polarimetric clutter maugll  the solution of the following recursive equation:

especially for urban areas. N ;
This paper presented a new estimation scheme for de- [Mlrp = f(M]rp) = 3 kik; 3)
riving normalized coherency matrices and the resulting est N = k! [M] 7 pk;

mated span with high resolution POLSAR images. The pro:ll.qus approach has been used[ih [3] by Conte et al. to derive

posed Fixed Point estimator is independent on the span PDa recursive algorithm for estimating the matid]. This al-

and represents an approximate ML estimator for a large class

of stochastic processes obeying the SIRV model. For SIR\%’Orlthm consists in Comp”“”g_ the Fixed Pointfolising the
sequencé[M];);>o defined by:

clutter, a new approximate ML distance measure is introduce
for unsupervised POLSAR classification. [Mlit1 = f([M],). (4)
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This study has been completed by the work of Pascal dteadquarters) with a mean incidence anglé@f It repre-
al. [4], [5], which recently established the existence amel t sents a fully polarimetric (monostatic mode) X-band adguis
uniqueness, up to a scalar factor, of the Fixed Point estimat tion with a spatial resolution of approximately cm in range
of the normalized covariance matrix, as well as the converand azimuth. The effectiveness of the Fixed Point estima-
gence of the recursive algorithm whatever the initial@ati tor in compound Gaussian clutter can be observed in[Fig. 1-
The algorithm can therefore be initialized with the identit (a) with the color composition of the normalized coherency
matrix [M]o = [I]. (Eq.[3) diagonal elementd/|,;-|1/];;-[M]22. The selected
It has also been shown inl[6] arid [3] that the recursive esscene is composed of both Gaussian (streets and fields) and
timation scheme from E@J 4 can be applied to derive an exacton-Gaussian (urban) areas. Finally, the conventionairpol
ML estimator of the normalized covariance matrix: metric coherency matrix illustrated in Figl 1-(b) is obin
— 1 al herl(kI (M]3 ki) 1t according to EqLI8.
[]\/[]ML—NZ O] kik (5)
=1 P (& (M]3 ki)

3. GLRT SIMILARITY MEASURE
with -
hon(q) = / 2 exp (g) p(r)dr. ©6) Ground cover segmentation with POLSAR datf';l is an impor-
0 T tant application. Generally, one has to find a similarity mea
In Eq.[B, the exact ML estimator depends on the texture PDBuUre between the pixel covariance mafi{] and the class
through the SIRV density generating functibp, (¢). Chi-  center[M,]. We propose the following general binary hy-
tour and Pascal have been recently demonstrated th&fl Eq8thesis test for a given segment
admits a unique solution and that its corresponding itezati
algorithm converges to the Fixed Point solution for every ad { Ho : [M] = [M,] )
missible initial condition[[7]. Pascal et al. have also demo Hy = [M] # [M.)]
strated that normalized covariance ML estimator developed
under the deterministic texture case (Eg. 3), yields alsapan
proximate ML estimator under stochastic texture hypothesi
[41. [&l. . o _ pm(ky, ..., ky/Hy)
We propose to apply these results in estimating normal- A= (k v/ Ho)
ized coherency matrices for high resolution POLSAR data. P, KN/ Ho
The main advantage of this approach is that the local "scene |n the case of the SIRV model, one can rewrite the hy-
heterogeneity” can be taken into account without any "a pripothesis test as:
ori” hypothesis regarding the texture random variab{&q.[4
does not depend or). The obtained Fixed Point is the ap- Hy: k = /72, withz ~ N (0, [M])
proximate ML estimate under the stochastessumption and { H; : k = \/Tz, withz ~ N (0, [M,,])
the exact ML under deterministic assumption. Moreover,
the normalized polarimetric coherency matrix estimated uswherer is the unknown deterministic texture.
ing the Fixed Point method is unbiased and asymptotically For a given segmerit\/, ], the LRT with respect to the
Gaussian distributed][4].[5]. textureT and the normalized coherency matfiX] is given
Note also that the texture estimator from El. 2 can be diby:
rectly linked to the total scattered power (span). By estima N
ing the normalized coherency as the Fixed Point solution of 1 ki [M,] 'k,
Eq.[3, the derived estimate is independent of the total power H merq@det{[Mw]}eXp{_ T }
and it contains polarimetric information only. Using thism  Asiry = it

According to the Neyman-Pearson Lemma, the LRT
(Likelihood Ratio Test) provides the most powerful test:

(10)

(11)

trix, it is possible to compute the SIRV span ML estimator for - 1 ki [M] "'k, .
! S H ——exp L S R
unknown deterministie as: 4 wmrrdet{[M]} { Tn }
N o (12)
Prwr = K [M]ppk. (") Notice the likelihood function in Ed_12 does not use the
Finally, it is possible to derive an estimate of the convamal  stochastic texture description as the PPF) is supposed
polarimetric coherency matrix according to Ef. 1: unknown in the SIRV model. Thus, the texture parameter
~ can be considered either as a random variable with unknown
[T)pp = Ppwr []T/[\]FP. (8) PDFp(r) or as an unknown deterministic parameter with
m PDFp(7) = 6(r — 1,) which characterizes yet a particular

The proposed method is applied on airborne POLSAR imSIRV process. It can be shown that the ML estimation of the
ages provided by the ONERA RAMSES system. The POL-coherency matrix yields a good approximate ML estimate in
SAR data set was acquired over Toulouse, France (CNE®e first case and the true ML estimate in the second Case [6],



[3] . The general PDF being unknown, it is therefore impos-  In multiple composite hypothesis test, the likelihood ra-
sible to derive a texture independant closed-form expoassi tios are sufficient for optimal segmentation problem. The us
for the Likelihood Ratio of the test given by Hqg.]11. This of likelihood ratios referenced to a "dummy” hypothesis has
procedure is here simplified, considering a particular SIRVbeen introduced i [8]. In consequence, the secondary data
process with a texture characterized by an unknown detepbserved at instance+ 1 are assigned to the segment
ministic parameter. Consequently, each resolution celbvs  which maximizes the extended GLRT over all classes char-
associated with its owp(r) = 6(r — 7,,), wherer,, are the  acterized by their normalized covariance matrices estithat
unknown deterministic texture variables. This way theuext at instance:
descriptor can be discarded for each pixel independently.

By taking the natural logarithm, one obtains: w = arg max Pm((llzl, ...71121\/;?%
1<i<C pm (K1, ..., KN /Lo

= arglrgiagc A, (A7)

In(Asirv) = —Nln detia. )

LE wherep,, (ki1, ..., kn/Hp) is the PDF undef, and
N ([M,)~t = [M]7Y) s pm(k1, ..., kn/H,) is the PDF undef; from the setup of
Z - : Eq.[11 in Sect.3.
n=1 " (13) Using the results obtained in Selct. 3, the condition from

Now, since ther,,’s and[M] are unknown, they are replaced Eq.[17 is equivalent to minimizing:

by their ML estimates from Ed.] 2 and Hd. 3. The resulting

Generalized Likelihood Ratio Tedt, ,, is given by: - ar o Jn GeH M} |
eneralized Likelihood Ratio Tedty, ., is given by: w = argmaxi<i<c{lIn ST r}
N —>T —. 1 (18)
ln(A’ ) — _NIn def{[rr,]} o L om Z kn[Mi]Fpkn
STRV ey [M]rr} N Tl [
N -7 173 14 n=1 n[ ]FP n
mz kL[Miw] Fn Nm 4
ot ?L[j/\/[\];})?n ' where[J/VE]Fp at the instanceis estimated from the segment

1 at instance — 1 using the Fixed Point estimator. The seg-
Maximizing the GLRT over all segments is equivalent to min-mentation algorithm is given in Algorithm 1.

imizing the following similarity measure:

det{{M,]} = m = kL[My)] "'k, Algorithm 1 : Extended GLRT segmentation
Dsmvzlnf+—z:_> "
det{[M] } N = KHML '
rp n=1 FnlEirp Bn 1. Give initial segmentation map (e.§. — « clustering).
(15) 2. For eac/h\segmen‘t estimate the its normalized covariance
matrix [M;] 7 p using the Fixed Point estimator from Hg. 3
4. OPTIMAL GLRT SEGMENTATION (¢ iteration number).
) ) ) 3. Within a local neighborhood?(m, y), compute the extended
tiple composite hypothesis test: w verifying Eq[I8.
. 4. Check if the termination criterion is met. If not, et ¢ + 1
Hy : k = /72, withz ~ N (0, [M]) L
H : k = /72, withz ~ A (0, [M],) and return to step 2. Termination criterion:
(16) e pre-specified number of pixels switching classes,
H; :k = /T2, withz ~ N (0, [M];) e pre-specified number of iterations.

He : k= /72, withz NN(O, [M]e)
Fig.[-(c) illustrates the POLSAR unsupervised segmen-
wherer is the unknown deterministic textur@js the number tation results using the normalized coherency matrix digscr
of segments anfl\/] is the normalized covariance matrix of tor. One key issue to be discussed is weather the normalized
the observed independentidentically distributdédecondary  coherency matrix (NC) and the span should be aggregated in
data. Notice that the segmentatiorfisegments is equivalent the final estimation step or not. Most of the existing proeess
to testingC + 1 hypotheses. ing chains use the conventional coherency matrix for repre-
In this paper we suppose that the multiple hypothesesenting POLSAR data for unsupervised land cover classifica-
from Eq.[I6 are not nested, i.e. there is a unique normalizetion and for target detection applications. Due to the SIRV
covariance matrix characterizing each class. This impiias  model identification problem, the complete descriptiorhef t
each class is described by a different SIRV, and hence tHeOLSAR data set is achieved by estimating the span and the
extended GLRT can be applied. normalized coherency independently. The joint analysis of



the span and the normalized coherency presents several ad-
vantages with respect to the coherency matrix descripépe: s
aration between the total received power and the polarimetr
information, estimation of the NC independently of the span
and the existence of the SIRV distance measure for unsuper
vised ML segmentation of normalized coherencies. However,
the span-NC description of POLSAR images raises new prob- |
lems which still remain under investigation. Although all ;
statistical requirements employed for unsupervised sagme
tation are met, the polarimetric information is quite difilic

to extract. As it can be noticed in Figl 1-(c), the polarimet-
ric signatures are strongly mixed and the class boundanées a
smoothed within high resolution POLSAR images (even for
highly heterogeneous target areas).

5. CONCLUSION T T @

neous clutter in POLSAR data was described by the SIRV {5 v
model. The Fixed Point estimation is independent on the span | gg*
PDF and represents an approximate ML estimator for a large [ii§ _
class of stochastic processes obeying the SIRV model. For
SIRV clutter, a new ML distance measure was also introduced g B
for optimal unsupervised POLSAR segmentation.
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Fig. 1. RAMSES data 1500 x 2000 pixels): (a) color composi-
tion of the normalized coherency (Ed. 3) diagonal eleméhts ; -
[M]33-[M]a22, (b) color composition of the coherency (EE4. 8) diago-
nal element$7711-[7"33-[T]22, (c) unsupervised ML segmentation
of the normalized coherency (8-segméht— « initialization).
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