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ABSTRACT

In the context of non-Gaussian polarimetric clutter models,
this paper presents an application of the recent advances in
the field of Spherically Invariant Random Vectors (SIRV)
modelling for coherency matrix estimation in heterogeneous
clutter. The complete description of the POLSAR data set
is achieved by estimating the span and the normalized co-
herency independently. The normalized coherency describes
the polarimetric diversity, while the span indicates the total
received power. Based on the SIRV model, a new maximum
likelihood distance measure is introduced for unsupervised
POLSAR segmentation. The proposed method is tested with
airborne POLSAR images provided by the RAMSES system.

Index Terms— POLSAR, estimation, segmentation

1. INTRODUCTION

In a particular frequency band, the wave-media interactions
over distributed areas are generally studied using the polari-
metric covariance matrix (called also coherency when vector-
izing in the Pauli basis). In general, POLSAR data are locally
modelled by the multivariate, zero mean, circular Gaussian
probability density function, which is completely determined
by the covariance matrix.

The recently launched POLSAR systems are now capable
of producing high quality images of the Earth’s surface with
meter resolution. The decrease of the resolution cell offers
the opportunity to observe much thinner spatial features than
the decametric resolution of the up-to-now available SAR im-
ages. Recent studies [1] show that the higher scene hetero-
geneity leads to non-Gaussian polarimetric clutter modelling,
especially for urban areas.

This paper presented a new estimation scheme for de-
riving normalized coherency matrices and the resulting esti-
mated span with high resolution POLSAR images. The pro-
posed Fixed Point estimator is independent on the span PDF
and represents an approximate ML estimator for a large class
of stochastic processes obeying the SIRV model. For SIRV
clutter, a new approximate ML distance measure is introduced
for unsupervised POLSAR classification.

2. CLUTTER MODELLING BY SIRV PROCESSES

For Gaussian polarimetric clutter model, the estimation of
the polarimetric coherency matrix is treated in the contextof
POLSAR speckle filtering. In the context of non-Gaussian
polarimetric clutter models, several studies tackled POLSAR
parameter estimation using the product model. Spherically
Invariant Random Vectors (SIRV) and their applications to es-
timation and detection in communication theory were firstly
introduced by Kung Yao [2]. In the context of POLSAR data,
the clutter is modelled as SIRV, a non-homogeneous Gaus-
sian process with random power: its randomness is induced
by variations in the radar backscattering over different polar-
ization channels. Consequently, the POLSAR target vector
k is defined as the product between the independent com-
plex Gaussian vectorz with zero mean and covariance matrix
[M ] = E{zz†} (representing the speckle) and the root of a
positive random variableτ (representing the texture):

k =
√

τz, (1)

where† denotes the conjugate transpose operator andE{...}
the mathematical expectation. In Eq. 1, the covariance ma-
trix is an unknown parameter which can be estimated from
Maximum Likelihood (ML) theory.

For a given[M ] the texture ML estimator is:

τ̂i =
k
†
i [M ]−1

ki

m
. (2)

The ML estimator of the normalized covariance matrix in
the deterministic texture case is obtained by cancelling the
gradient of the generalized likelihood with respect to[M ] as
the solution of the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
m

N

N∑

i=1

kik
†
i

k
†
i [M̂ ]−1

FPki

. (3)

This approach has been used in [3] by Conte et al. to derive
a recursive algorithm for estimating the matrix[M ]. This al-
gorithm consists in computing the Fixed Point off using the
sequence([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (4)
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This study has been completed by the work of Pascal et
al. [4], [5], which recently established the existence and the
uniqueness, up to a scalar factor, of the Fixed Point estimator
of the normalized covariance matrix, as well as the conver-
gence of the recursive algorithm whatever the initialization.
The algorithm can therefore be initialized with the identity
matrix [M ]0 = [Im].

It has also been shown in [6] and [3] that the recursive es-
timation scheme from Eq. 4 can be applied to derive an exact
ML estimator of the normalized covariance matrix:

[M̂ ]ML =
1

N

N∑

i=1

hm+1(k
†
i [M̂ ]−1

MLki)

hm(k†
i [M̂ ]−1

MLki)
kik

†
i , (5)

with

hm(q) =

∫ ∞

0

τp exp
( q

τ

)
p(τ)dτ. (6)

In Eq. 5, the exact ML estimator depends on the texture PDF
through the SIRV density generating functionhm(q). Chi-
tour and Pascal have been recently demonstrated that Eq. 5
admits a unique solution and that its corresponding iterative
algorithm converges to the Fixed Point solution for every ad-
missible initial condition [7]. Pascal et al. have also demon-
strated that normalized covariance ML estimator developed
under the deterministic texture case (Eq. 3), yields also anap-
proximate ML estimator under stochastic texture hypothesis
[4], [5].

We propose to apply these results in estimating normal-
ized coherency matrices for high resolution POLSAR data.
The main advantage of this approach is that the local ”scene
heterogeneity” can be taken into account without any ”a pri-
ori” hypothesis regarding the texture random variableτ (Eq. 4
does not depend onτ ). The obtained Fixed Point is the ap-
proximate ML estimate under the stochasticτ assumption and
the exact ML under deterministicτ assumption. Moreover,
the normalized polarimetric coherency matrix estimated us-
ing the Fixed Point method is unbiased and asymptotically
Gaussian distributed [4], [5].

Note also that the texture estimator from Eq. 2 can be di-
rectly linked to the total scattered power (span). By estimat-
ing the normalized coherency as the Fixed Point solution of
Eq. 3, the derived estimate is independent of the total power
and it contains polarimetric information only. Using this ma-
trix, it is possible to compute the SIRV span ML estimator for
unknown deterministicτ as:

P̂PWF = k
†[M̂ ]−1

FPk. (7)

Finally, it is possible to derive an estimate of the conventional
polarimetric coherency matrix according to Eq. 1:

[T̂ ]FP =
P̂PWF

m
[M̂ ]FP . (8)

The proposed method is applied on airborne POLSAR im-
ages provided by the ONERA RAMSES system. The POL-
SAR data set was acquired over Toulouse, France (CNES

headquarters) with a mean incidence angle of500. It repre-
sents a fully polarimetric (monostatic mode) X-band acquisi-
tion with a spatial resolution of approximately50 cm in range
and azimuth. The effectiveness of the Fixed Point estima-
tor in compound Gaussian clutter can be observed in Fig. 1-
(a) with the color composition of the normalized coherency
(Eq. 3) diagonal elements[M ]11-[M ]33-[M ]22. The selected
scene is composed of both Gaussian (streets and fields) and
non-Gaussian (urban) areas. Finally, the conventional polari-
metric coherency matrix illustrated in Fig. 1-(b) is obtained
according to Eq. 8.

3. GLRT SIMILARITY MEASURE

Ground cover segmentation with POLSAR data is an impor-
tant application. Generally, one has to find a similarity mea-
sure between the pixel covariance matrix[M ] and the class
center[Mω]. We propose the following general binary hy-
pothesis test for a given segmentω:

{
H0 : [M ] = [Mω]
H1 : [M ] 6= [Mω]

(9)

According to the Neyman-Pearson Lemma, the LRT
(Likelihood Ratio Test) provides the most powerful test:

Λ =
pm(k1, ...,kN/H1)

pm(k1, ...,kN/H0)
. (10)

In the case of the SIRV model, one can rewrite the hy-
pothesis test as:

{
H0 : k =

√
τz, with z ∼ N (0, [M ])

H1 : k =
√

τz, with z ∼ N (0, [Mω])
(11)

whereτ is the unknown deterministic texture.
For a given segment[Mω], the LRT with respect to the

textureτ and the normalized coherency matrix[M ] is given
by:

ΛSIRV =

N∏

n=1

1

πmτm
n det{[Mω]}exp

{
−k

†
n[Mω]−1

kn

τn

}

N∏

n=1

1

πmτm
n det{[M ]}exp

{
−k

†
n[M ]−1

kn

τn

} .

(12)
Notice the likelihood function in Eq. 12 does not use the
stochastic texture description as the PDFp(τ) is supposed
unknown in the SIRV model. Thus, the texture parameterτ
can be considered either as a random variable with unknown
PDF p(τ) or as an unknown deterministic parameter with
PDF p(τ) = δ(τ − τn) which characterizes yet a particular
SIRV process. It can be shown that the ML estimation of the
coherency matrix yields a good approximate ML estimate in
the first case and the true ML estimate in the second case [6],



[3] . The general PDF being unknown, it is therefore impos-
sible to derive a texture independant closed-form expression
for the Likelihood Ratio of the test given by Eq. 11. This
procedure is here simplified, considering a particular SIRV
process with a texture characterized by an unknown deter-
ministic parameter. Consequently, each resolution cell isnow
associated with its ownp(τ) = δ(τ − τn), whereτn are the
unknown deterministic texture variables. This way the texture
descriptor can be discarded for each pixel independently.

By taking the natural logarithm, one obtains:

ln(ΛSIRV ) = −N ln det{[Mω]}

det{[M ]}
−

−
N∑

n=1

−→
k †

n

(
[Mω]−1 − [M ]−1

)−→
k n

τn

.

(13)
Now, since theτn’s and[M ] are unknown, they are replaced
by their ML estimates from Eq. 2 and Eq. 3. The resulting
Generalized Likelihood Ratio TestΛ′

SIRV is given by:

ln(Λ′
SIRV ) = −N ln det{[Mω ]}

det{[cM ]F P}−

− m

N∑

n=1

−→
k †

n[Mω]−1−→k n
−→
k †

n[M̂ ]−1
FP

−→
k n

+ Nm.
(14)

Maximizing the GLRT over all segments is equivalent to min-
imizing the following similarity measure:

DSIRV = ln
det{[Mω]}

det
{
[M̂ ]FP

} +
m

N

N∑

n=1

−→
k †

n[Mω]−1−→k n

−→
k †

n[M̂ ]−1
FP

−→
k n

.

(15)

4. OPTIMAL GLRT SEGMENTATION

We consider the POLSAR segmentation as the following mul-
tiple composite hypothesis test:






H0 : k =
√

τz, with z ∼ N (0, [M ])
H1 : k =

√
τz, with z ∼ N (0, [M ]1)

...
Hi : k =

√
τz, with z ∼ N (0, [M ]i)

...
HC : k =

√
τz, with z ∼ N (0, [M ]C)

(16)

whereτ is the unknown deterministic texture,C is the number
of segments and[M ] is the normalized covariance matrix of
the observed independent identically distributedN secondary
data. Notice that the segmentation inC segments is equivalent
to testingC + 1 hypotheses.

In this paper we suppose that the multiple hypotheses
from Eq. 16 are not nested, i.e. there is a unique normalized
covariance matrix characterizing each class. This impliesthat
each class is described by a different SIRV, and hence the
extended GLRT can be applied.

In multiple composite hypothesis test, the likelihood ra-
tios are sufficient for optimal segmentation problem. The use
of likelihood ratios referenced to a ”dummy” hypothesis has
been introduced in [8]. In consequence, the secondary data
observed at instancet + 1 are assigned to the segmentω,
which maximizes the extended GLRT over all classes char-
acterized by their normalized covariance matrices estimated
at instancet:

ω = arg max
1≤i≤C

pm(k1, ...,kN/Hi)

pm(k1, ...,kN/H0)
= arg max

1≤i≤C
Λi (17)

wherepm(k1, ...,kN/H0) is the PDF underH0 and
pm(k1, ...,kN/Hω) is the PDF underH1 from the setup of
Eq. 11 in Sect. 3.

Using the results obtained in Sect. 3, the condition from
Eq. 17 is equivalent to minimizing:

ω = argmax1≤i≤C

{
ln

det{[cMi]F P}
det{[cM ]F P} +

+ m
N

N∑

n=1

−→
k †

n[M̂i]
−1
FP

−→
k n

−→
k †

n[M̂ ]−1
FP

−→
k n

}
,

(18)

where[M̂i]FP at the instancet is estimated from the segment
i at instancet − 1 using the Fixed Point estimator. The seg-
mentation algorithm is given in Algorithm 1.

Algorithm 1 : Extended GLRT segmentation

1. Give initial segmentation map (e.g.H − α clustering).

2. For each segmenti, estimate the its normalized covariance
matrix [cMi]F P using the Fixed Point estimator from Eq. 3
(t iteration number).

3. Within a local neighborhoodbN(x, y), compute the extended
GLRT for each pixel(x, y) and assign the pixel to the segment
ω verifying Eq. 18.

4. Check if the termination criterion is met. If not, sett = t + 1
and return to step 2. Termination criterion:

• pre-specified number of pixels switching classes,

• pre-specified number of iterations.

Fig. 1-(c) illustrates the POLSAR unsupervised segmen-
tation results using the normalized coherency matrix descrip-
tor. One key issue to be discussed is weather the normalized
coherency matrix (NC) and the span should be aggregated in
the final estimation step or not. Most of the existing process-
ing chains use the conventional coherency matrix for repre-
senting POLSAR data for unsupervised land cover classifica-
tion and for target detection applications. Due to the SIRV
model identification problem, the complete description of the
POLSAR data set is achieved by estimating the span and the
normalized coherency independently. The joint analysis of



the span and the normalized coherency presents several ad-
vantages with respect to the coherency matrix descriptor: sep-
aration between the total received power and the polarimetric
information, estimation of the NC independently of the span
and the existence of the SIRV distance measure for unsuper-
vised ML segmentation of normalized coherencies. However,
the span-NC description of POLSAR images raises new prob-
lems which still remain under investigation. Although all
statistical requirements employed for unsupervised segmen-
tation are met, the polarimetric information is quite difficult
to extract. As it can be noticed in Fig. 1-(c), the polarimet-
ric signatures are strongly mixed and the class boundaries are
smoothed within high resolution POLSAR images (even for
highly heterogeneous target areas).

5. CONCLUSION

This paper presented a new estimation scheme for deriving
normalized coherency matrices and the resulting estimated
span with high resolution POLSAR images. The heteroge-
neous clutter in POLSAR data was described by the SIRV
model. The Fixed Point estimation is independent on the span
PDF and represents an approximate ML estimator for a large
class of stochastic processes obeying the SIRV model. For
SIRV clutter, a new ML distance measure was also introduced
for optimal unsupervised POLSAR segmentation.
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Fig. 1. RAMSES data (1500 × 2000 pixels): (a) color composi-
tion of the normalized coherency (Eq. 3) diagonal elements[M ]11-
[M ]33-[M ]22, (b) color composition of the coherency (Eq. 8) diago-
nal elements[T ]11-[T ]33-[T ]22, (c) unsupervised ML segmentation
of the normalized coherency (8-segmentH − α initialization).
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