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Leading hadronic contribution to the muon magnetic anomaly
from lattice QCD

Letizia Parato
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

Abstract — Anomalous magnetic moments have guided the evolution of quantum field theory ever since
its earliest stages, serving both as a stringent test of the theory at increasingly higher levels of precision
and as a possible window to new physics. After decades of perfect agreement, the measured muon magnetic
moment (which is known to a precision of about 0.5 parts per million both from theory and experiment) now
deviates from the theoretical expectation by around 3.5σ. In order to accentuate or resolve this discrepancy,
an experiment at Fermilab is currently underway and is aiming to improve the precision of the measurement
to 0.14 ppm. But the theoretical calculation has to be improved as well. The largest source of error are low
energy hadronic contributions, that can be evaluated either via a phenomenological approach or ab initio, directly
from the standard model Lagrangian, using lattice QCD. We will see how lattice QCD can be used to compute
the leading hadronic contribution to the muon magnetic moment: the one induced by hadronic vacuum polarization.

Introduction
The anomalous magnetic moment of the muon, aµ, is
one of the most precisely measured quantities in parti-
cle physics. The comparison between its measurement
and theoretical expectation provides, at the same time,
a severe test of the mathematical framework underly-
ing the Standard Model (SM) and a possible path to
new physics.
Short history of aµ [1, 2, 3] – By definition, the

anomalous magnetic moment is a` = (g` − 2)/2, where
g` is the g-factor (or gyromagnetic ratio) of a lepton
` = e, µ, τ . The g factor appeared in physics around
19251. Earlier that year, Goudsmit and Uhlenbeck [4]
postulated that an electron has an intrinsic angular mo-
mentum S with Sz = ±~/2. In analogy with classical
electromagnetism where a circulating current due to
an orbiting particle of electric charge e and mass m
induces a magnetic dipole moment µL = e

2mcL, with
L = mr× v the orbital angular momentum, they asso-
ciated to the spin S an intrinsic angular momentum
µS = e

2mcS. However, some inconsistencies in the
experimental results led Back and Landé to question
whether µS couples to a magnetic field in the same
way as µL. In other words, rewriting µS = g e

2mcS,
the question was: does g actually equal 1 as for the
orbital gyromagnetic ratio or not? The experimental
analysis was inconclusive, so when Pauli formulated
his quantum mechanical treatment of the electron spin
in 1927, g was left as a free parameter. Just a year
later Dirac presented his quantum relativistic theory of
the electron, making the unexpected prediction g = 2.
The first unambiguous experimental confirmation of
Dirac’s prediction was given by Kinster and Houston
in 1934 [5]. Still, the error was quite large and it
took 20 more years to establish that g actually exceeds
Dirac’s expectation by about 0.12%. In 1948 Kusch

1The subscript e is implicit until 1936 (discovery of muons).

and Foley [6] published the first precision determina-
tion of the electron magnetic moment, ge = 2.00238(10)
(i.e. ae ' 0.00119). Meanwhile, with the develop-
ment of renormalization techniques, Dirac’s theory was
evolving into quantum electrodynamics (QED). In 1948
Schwinger showed [7] that the anomaly comes from
loop corrections to the QED-vertex and computed the
leading-order contribution to a`:

a
QED(1)
` =

α

2π
' 0.00116 (1)

The agreement between Schwinger’s evaluation and
Kusch and Foley’s result was a great success for QED
and a key step to establish QFT as the correct frame-
work on which to build a more comprehensive model of
fundamental interactions. Today, the whole structure
of the SM has to be taken into account in a predic-
tion of aµ in order to match the current experimental
precision.

The reason why ae and aµ are still drawing many
physicists’ attention is that – as theoretical and exper-
imental techniques improved – a tension between SM
prediction and measurement started to appear for both
ae and aµ. Today there is a −2.4σ discrepancy between
aSM
e and aexp

e and a 3.5σ discrepancy between aSM
µ and

aexp
µ . The latter is one of the most promising signals

for new physics and deserves to be investigated further.

Why is aµ special – e, µ, τ have identical proper-
ties, except for their masses and lifetimes. This poses
some experimental limitations. For example tau lep-
tons are too short-lived (ττ = 3× 10−15s) for aτ to be
measured with present technologies.
• Electrons have infinite lifetime and exist in atoms,
so ae can be measured via spectroscopy of atoms in
magnetic fields. An alternative approach, developed
by Crane et al. [8], inspired the method later used to
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measure aµ. The most recent measurement is [9]

aexp
e = 1159652180.73(28)× 10−12. (2)

• The muon’s lifetime is small (τµ = 2 × 10−6s), but
large enough to allow relativistic muons to be stored in
a magnetic ring for a sufficiently long time. Also, muons
are easy to polarize and it is easy to measure their
polarization at the moment they decay. So aµ can be
measured with high precision. The latest measurement
dates back to 2006 and was performed by experiment
Muon E821 at BNL[10]:

aexp
µ = 11659208.9(6.3)× 10−10 (3)

We see that ae is about 2200 times more precisely mea-
sured than aµ. However, as pointed out in [11], a` has a
m2
`/Λ

2 dependence on Λ characterizing the scale of new
physics. The masses of charged leptons are me = 0.511
MeV, mµ = 105.66 MeV, and mτ = 1776.86 MeV. This
implies that aµ is about m2

µ/m
2
e ∼ 4× 104 more sensi-

tive to new physics than ae. Ultimately, aµ turns out
to be a better monitor for new physics than ae.
Measuring aµ – The new Muon g-2 (E989) exper-

iment is currently taking data at Fermilab. It aims to
reduce the experimental uncertainty down to 140 ppb
(improving E821’s precision by a factor 4). A second
experiment is planned at J-PARC that aims to bring
uncertainty below 100 ppb. The former exploits the
same method used in BNL’s experiment (the magnetic
ring is actually the same) and it is expected to publish
first results in the next months. Muon g-2/EDM at J-
PARC will use a new method, with a ultra-cold muon
beam stored in a compact magnet. In the standard
method (Figure 1) a proton beam is directed on a target
to produce pions, which then decay as π+ → µ+ + νµ.
Because of parity violation and helicity conservation,
muons are highly polarized, with magnetic moment di-
rected along the direction of the flight axis. Muons are
then injected into a uniform magnetic field B where
they execute relativistic cyclotron motion with angu-
lar frequency ωc = eB

mµcγ
. At the same time, the

muons’ spins undergo Larmor precession with angular
frequency ωs. The observable we are interested in is

Figure 1: Sketch of BNL E821 experiment

ωa = ωs − ωc, that is

ωa =
e

mµc

[
aµB−

(
aµ −

1

γ2 − 1

)
v ×E

c2

]
(4)

The second term deflects muons from the horizontal
plane of the ring so it has to be eliminated. In Fermi-
lab’s experiment, the focusing system requires E 6= 0:
the solution is to take 1/(γ2 − 1) = aµ, i.e. γ = 29.3
or Emagic = 3.098GeV. In J-PARC’s experiment, the
cold beam doesn’t need any focusing system, so E can
be set to zero. After some time the muon decays as
µ+ → νe + ν̄µ + e+. Each positron keeps its parent-
muon’s polarization, which can be measured, along
with the positron’s energy, by calorimethers placed all
along the ring. The decay rate follows the model

N(E, t) = N0(E)e
− t
γτµ [1 +A(E) sin(ωat+ φ(E))]

where A(E) is a known energy-dependent asymmetry
factor and the desired ωa appears as a fit parameter.
Finally aµ =

ωamµc
eB .

Computing aµ [1, 12] – We want to understand
how aµ naturally emerges from the SM lagrangian. In
particular, we are interested in the motion of a lepton
` = e, µ, τ in a static and homogeneous magnetic field,
Acl
µ = (0, ~Acl). The S-matrix element for the scattering

from Acl is

iM(2π)(q0) = −ieū(p′)Γµ(p′, p)u(p) · Ãcl(q) (5)

where q = p′ − p, and Ãcl
µ is the Fourier transform

of Acl
µ . Poincaré invariance and parity conservation in

electromagnetic interactions, and the Dirac equations
/pu(p) = mu(p) and ū(p)/p = mū(p) imply that Γµ takes
the form Γµ(p′, p) = Aγµ +B(p′µ + pµ) + C(p′µ − pµ),
with A,B, and C depending only on scalars (i.e. q2 and
masses). C must be zero or the Ward identity qνΓν = 0
wouldn’t apply. Finally, using the Gordon identity, Γµ

can be written as

Γµ(p, p′) = F1(q2)γµ +
iσµνqν

2m
F2(q2) (6)

where F1 and F2 are two form factors that depend on q2
and masses. Mind that (6) holds only when both sides
are sandwiched between ū(p′) and u(p). Replacing (6)
in (5) and taking the non relativistic limit in the spe-
cific case of a slowly varying (i.e. q → 0) electrostatic
field Acl(x) = (φ(x), 0), one can identify F1(0) with the
electric charge in units of e, therefore F1(0) = 1. A
similar calculation with a homogeneous magnetic field
Acl(x) = (0,Acl(x)) proves that

g` = 2[F1(0) + F2(0)] = 2F1(0) + 2 (7)

a` = F2(q2 = 0) (8)

At tree level, Γµ,(0) = γµ, meaning F
(0)
2 = 0. Thus

a` depends only on higher order contributions to Γµ.
Note that the conservation of electric charge implies
F1(0) = 1 at every order in perturbation theory.
State of the art of SM predictions – We split
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aSM
µ into three contributions:

aSM
µ = aQED

µ + aEW
µ + aHad

µ (9)

• aQED
µ includes all photonic and leptonic e, µ, τ loops;

it is given in perturbation theory by an expansion in α.
The coefficients have been computed up to 5 loops [14]:

aQED
µ = α

2π + 0.765857425(17)
(
α
π

)2
+ 24.05050996(32)

(
α
π

)3
+ 130.8796(63)

(
α
π

)4
+

+ 752.2(1.0)
(
α
π

)5
+ ...

= 116584718.92(0.03)× 10−11

(10)

The error is dominated by the uncertainty in α, whose
best estimate, α−1 = 137.035999046(27), was obtained
via the recoil frequency of Cs atoms [13].
• aEW

µ collects all loop contributions involving at least
one of W±, Z and the Higgs. At two loops, aEW

µ is
found to be [14].

aEW
µ = O

(
Gµm

2
µ

8
√
2π2

) (
1 +O

(
α
π

)
+ ...

)
= (194.81(.01)− 41.2(1.0) +O(.1))× 10−11

= 153.6(1.0)× 10−11

(11)

The 3-loops contribution to aEW
µ hasn’t been evaluated

completely yet, but we know that is of order O(10−12).
• aHad

µ can be separated into a leading-order (LO)
contribution and higher-order contributions. The first
corresponds to the LO hadronic vacuum polariza-
tion (HVP) contribution, the others include next-to-
leading-order (NLO) HVP contribution, the light-by-
light (LbL) contribution, NNLO-HVP, etc. Grouping
all higher-order contributions under the label N(N)LO
[14],

aHad
µ = aLO-HVP

µ + aN(N)LO-Had
µ

= [6939(40) + 19(26)]× 10−11
(12)

There are two ways to calculate the HVP contribu-
tion: from first principles via lattice QCD, or via dis-
persion relation, which requires the knowledge of the
R-ratio R = σ(e+e−→hadrons)

σ(e+e−→µ+µ−) from experimental data.
At the moment the latter (phenomenological method)
gives the most precise result for aLO-HVP

µ (the one listed
above), but lattice QCD is catching up rapidly.
• Summing all the SM contributions we get [14]

aSM
µ = 116591830(1)(40)(26)× 10−11 (13)

where the errors are due to the EW, Had-LO, and Had-
N(N)LO, respectively.
Tension between theory and experiment – The

difference between (3) and (13) amounts to

∆aµ = aexp
µ − aSM

µ = 261(63)exp(48)th (14)

Experimental and theoretical errors are comparable,
therefore the error on aSM

µ has to be reduced by a factor
4 in order to match the precision expected by E989 and

Figure 2: Representative diagrams contributing to aSM
µ .

Top: first order QED (Schwinger term), lowest-order
hadronic vacuum polarization, hadronic light-by-light.
Bottom: the three lowest-order weak contributions.

Muon g-2/EDM. In particular this means reducing the
error on aHad

µ which accounts for more than 98% of the
total theoretical error. We will see in next section how
alo-hvp
µ can be computed using lattice QCD.

LO-HVP on the lattice

Lattice QCD is a regularization of QCD. The regu-
larization is performed by enclosing spacetime in a fi-
nite and discrete four-dimensional euclidean box of size
L3 × T and elementary step (lattice spacing) a, thus
getting rid of IR and UV divergences. The euclidean
action, SE , has to be discretized as well. There is no
unique way to do so. The important thing is that SE is
recovered when taking the limit for a → 0. The QCD
partition function on the lattice looks like

Z =

∫ ∏
µ,x

dUµ(x) det(D[M ])e−
β
3

∑
P <Tr(1−UP ) (15)

where Uµ(x) is the gauge field, det(Dx[M ]) contains all
the information about fermions, β3

∑
P <Tr(1−UP ) is

the Wilson gauge action (a lattice version of the Yang-
Mills gauge action), and the parameter β is connected
to the strong coupling, αs = g2/4π by β = 6/g2. Z in
(15) is similar to the partition function of a statistical,
discrete system in the canonical ensemble. Therefore,
to compute it we can use all the methods available in
statistical mechanics, included Monte-Carlo (MC) sim-
ulations. The key point of this approach and the reason
it works for QCD, is that – as known from asymptotic
freedom – the strong coupling runs to a fixed point
where g2 = 0 as the energy scale is increased: picking
1/a as our energy scale, it means lima→0 g

2 = 0, but
also, conversely, limg2→0 a = 0. In short, there is a way
to recover the continuum limit a→ 0 by simply tuning
β →∞ in the MC simulation. Since it is not possible to
perform a simulation at β =∞↔ g2 = 0 (it would be
like expecting a statistical system to evolve at zero tem-
perature), the procedure is to measure a chosen observ-
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able O at different values of β (as big as possible in the
limit of available CPU time), link each β to its respec-
tive value of a, fitting the data Oi(ai) to a polynomial
Oi = c0 + c1 · a2 + O(a4) (this behaviour is suggested
by the renormalization group), and extracting the con-
tinuum limit c0. To fully recover QCD, finite-volume
corrections have to be added to the continuum extrap-
olation c0. A final remark: in order to give a physical
meaning to lattice prediction, we have to fix the param-
eters of QCD to their physical value. In our case, all the
observables depend on four parameters: a (which is a
stand-in for αs),mud = mu = md (we work in the chiral
limit), ms and mc (3rd generation quarks are not in-
cluded: their contribution is much smaller than our sta-
tistical error). a is set by w0 [15], i.e a = wφ0 /(w

lat
0 /a)

where wφ0 is the physical value in fm and (wlat
0 /a) is

the corresponding lattice value expressed in units of a.
The quark masses are set such that the meson masses,
mπ,mK and mηc take their physical value.

Defining LO-HVP on the lattice [19] –. The
lowest-order HVP contribution to the anomalous mag-
netic moment of the muon can be written as [16, 17]

aLO-HVP
µ = α2

∫ ∞
0

dQ2

Q2
w

(
Q2

m2
µ

)
Π̂(Q2) (16)

where w(r) = (r + 2 −
√
r(r + 4))2/

√
r(r + 4) and

Π̂(Q2) = Π(Q2) − Π(0) is the renormalized scalar po-
larization function. We define

Cµν(t) =
1

e2

∫
d3x〈jµ(x)jν(0)〉 (17)

= Cudµν (t) + Csµν(t) + Ccµν(t) + Cdisc
µν (t) (18)

where jµ/e = 2
3 ūγµu −

1
3 d̄γµd −

1
3 s̄γµs + 2

3 c̄γµc. The
four terms in (18) correspond to different observables
on the lattice. Cfii(t) allows us to compute Π̂(Q2); the
two are related by (see [18])

Π̂f (Q2) =

∫ ∞
0

dt

[
t2 − 4

Q2
sin2

(
Qt

2

)] ∑3
i=1<C

f
ii(t)

3
(19)

where f = ud, s, c, disc. Inserting (19) to (16), per-
forming the integral over Q2 up to Q2

max � 2π/T ,
replacing the integral in t with a sum in steps of
a from t = 0 to t = T/2, replacing 1

3

∑
i C

f
ii(t)

with its discretized, finite-volume version CfL(t) =

(a3/3)
∑
i

∑
~x〈ji(x)ji(0)〉, and averaging CfL(t) with

CfL(T − t) (the lattice has periodic boundary condi-
tions), we get to

aLO-HVP
µ,f [Q < Q2

max] = lim
a→0

lim
L,T→∞

×

× α2 a

m2
µ

T/2∑
t=0

W
(
tmµ, Q

2
max/m

2
µ

)
<CfL(t)

(20)

where W (τ, xmax) =
∫ xmax

0
dxw(x)

(
τ2 − 4

x sin2 τ
√
x

2

)
.

For each f = ud, s, c, disc, (20) has to be completed by
alo-hvp
µ,f [Q ≥ Q2

max], evaluated in perturbative QCD.

Analysis and results

Fitting procedure – After computing (20) on a
number N of different ensembles (lattices with differ-
ent a, L, T,mud,ms,mc), one has to fit the N measure-
ments and pick the value corresponding to a = 0 and
physical meson masses mπ,mK ,mηC . There are many
adjustments that can be implemented in the fit model:
• Q-cuts (Q2

max above which pQCD is used),
• a-cuts (minimum a that an ensemble must have to be
included in the fit),
• t-cuts (CfL becomes noisy as t increases: the sum of
data over t in (20) can be replaced by the average be-
tween an upper and a lower bound above a certain tc),
• choice of functional form for over a-dependence,
• interpolation of results to physical values of the quark
masses.
The final result is a weighted average of the ex-
trapolation resulting from all the different procedures
(weighted by the procedure’s χ2 via the AIC method).

Additional challenges – The scale setting method
has to be carefully developed because the error on the
determination of a propagates with a factor ∼ 2 in aµ.
Strong-isospin breaking effects have to included. Stan-
dard methods to evaluate finite-volume corrections help
but are not sufficient to reach the envisaged precision.

Results – Our collaboration (BMW) is now updat-
ing the results obtained in [19]. Since the analysis is
still still being finalized, only the last published results
will be showed. BMW-17 [19] is consistent with both
phenomenology and the “no new physics” scenario. To-
day, the picture from lattice QCD is still not conclusive.
Whatever lattice will tell us in the future, the question
remains why the alo-hvp

µ obtained via phenomenology
is inconsistent with “no new physics”, supposing that
the upcoming E989 result confirms the previous mea-
surements. In summary, we have to wait just few more
months to know if aµ will be a confirmed hint of new
physics or just the umpteenth validation of the SM.

 640  660  680  700  720  740

ETM 14
HPQCD 17
BMWc 17
RBC/UKQCD 18
ETM 18
PACS 19
FHM 19
Mainz 19

Jegerlehner 17
DHMZ 17
KNT 18

RBC/UKQCD 18

No new physics

aµ

LO-HVP
 . 10

10

LQCD (Nf ≥2+1)
Pheno.

Pheno+LQCD

Figure 3: Comparison between lattice and phenomenol-
ogy predictions of alo-hvp

µ by various collaborations.
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