N

N

Multi-Layer-Mesh: A Novel Topology and SDN-Based
Path Switching for Big Data Cluster Networks
Leandro Batista de Almeida, Damien Magoni, Philip Perry, Eduardo Cunha
de Almeida, John Murphy, Anthony Ventresque

» To cite this version:

Leandro Batista de Almeida, Damien Magoni, Philip Perry, Eduardo Cunha de Almeida, John Murphy,
et al.. Multi-Layer-Mesh: A Novel Topology and SDN-Based Path Switching for Big Data Cluster
Networks. IEEE International Conference on Communications, May 2019, Shanghai, China. pp.1-7,
10.1109/ICC.2019.8761785 . hal-02493442

HAL Id: hal-02493442
https://hal.science/hal-02493442
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02493442
https://hal.archives-ouvertes.fr

Multi-Layer-Mesh: A Novel Topology and
SDN-based Path Switching for
Big Data Cluster Networks

Leandro Batista de Almeida*’, Damien Magoni*, Philip Perry*,
Eduardo Cunha de Almeida®, John Murphy*, Anthony Ventresque*
*Lero, School of Computer Science, University College Dublin, Ireland
TUTFPR, Federal Technological University of Parana, Brazil
iLaBRI, University of Bordeaux, France
§UFPR, Federal University of Parana, Brazil

Abstract—Big Data technologies and tools have being used
for the past decade to solve several scientific and industry
problems, with Hadoop/YARN becoming the ”’de facto’” standard
for these applications, although other technologies run on top
of it. As any other distributed application, those big data
technologies rely heavily on the network infrastructure to read
and move data from hundreds or thousands of cluster nodes.
Although these technologies are based on reliable and efficient
distributed algorithms, there are scenarios and conditions that
can generate bottlenecks and inefficiencies, i.e., when a high
number of concurrent users creates data access contention. In
this paper, we propose a novel network topology called Multi-
Layer-Mesh and a path switching algorithm based on SDN,
that can increase the performance of a big data cluster while
reducing the amount of utilized resources (network equipment),
in turn reducing the energy and cooling consumption. A thorough
simulation-based evaluation of our algorithms shows an average
improvement in performance of 31.77% and an average decrease
in resource utilization of 36.03% compared to a traditional Spine-
Leaf topology, in the selected test scenarios.

Index Terms—Big data, Hadoop, network topology, SDN.

I. INTRODUCTION

The last decades have seen an exponential growth in the
volume of data to be analyzed by computational systems. From
Data Warehousing to IoT and Machine Learning systems, the
processing needs for large volumes of information has consis-
tently grown. To meet that demand, Big Data systems were
developed such as Google File System, MapReduce, Hadoop,
and several other tools in the following years. The Big Data
ecosystem is composed of several tools and frameworks, that
cooperate in order to provide the most appropriate solution for
each particular problem, creating a multi-product environment.

There are several components involved in the performance
metrics of a Big Data job execution, and the network is one
of them. As stated by its name, the data volume is big,
beyond the capabilities of a single server, or even a small
cluster. For this reason, almost all Big Data systems use some
form of distributed file system, in order to cope with both
the volume of data, and the need of reading the data at
fast pace. The Hadoop Distributed File System is generally
used not only by Hadoop, but also by other systems, such

| Hive / SparkSQL |

Spark Tez

p!
| YARN |

| HDFS |

Hadoop v1

Fig. 1. Common Hadoop stack.

as Spark and Impala. The usual Hadoop stack is composed
of HDFS at the bottom, the job engine (like Hadoop YARN
or MapReduce) over it, and the application layer on the top,
with Hive, Spark or MapReduce programs solving the user
queries. This stack is shown in Figure 1. In these huge systems,
there is a constant pursuit for performance, since the execution
time for jobs can take several hours, even days [1]. In this
environment, even a minor improvement in performance can
save a considerable amount of execution time. The energy
consumption and cooling costs are also directly influenced by
CPU processing required for running the jobs [2]. Although
Hadoop tries to run jobs locally (by reading data from local
storage),the total workload of concurrent jobs will eventually
have the jobs require chunks of data spread out on several
servers in different racks. This will create a bottleneck if the
interconnection network throughput is not able to handle the
large data transfers needed for job completion.

To address this issue, we have developed a novel network ar-
chitecture, based on a Multi-Layer-Mesh topology, and a SDN-
driven forwarding algorithm that can use information about the
job execution from the Hadoop main server to organize the
network traffic for optimizing the use of available network
paths. Our proposal can decrease the number of network
equipment used, and increase the network performance for Big
Data job execution. Thus, it reduces costs both in equipment
acquisition and maintenance, and in energy consumption and
cooling. The switches used in our topology must be SDN-
enabled and are configured by a SDN controller.

The rest of the paper is organized as follows. Section
IT presents the state of the art in Hadoop clusters, DCN

topologies and Hadoop simulators. Section III details our novel
network topology proposal. Section IV details the experimen-
tation that we have carried out for validating our proposal.

II. ReLatED WORK
A. Data Center Topologies and Hadoop Clusters

A Data Center (DC) concentrates a large amount of servers
in one physical place. Those servers need to be optimally
interconnected to ensure proper communications both intra-
DC and inter-DC. There exists more than 40 different types of
topologies for setting up a DC network (DCN) [2], [3]. These
topologies are usually characterized by the type of switches
used (i.e., electronic, optical or wireless) and whether they are
switch-centric (i.e., many links between switches) or server-
centric (i.e., many links between servers). They are usually
statically implemented in hardware. In 2017, a system for im-
plementing a convertible DCN architecture has been proposed
in [4] to overcome this issue. It can dynamically change the
network topology in order to setup architectures optimized
for diverse workloads. It requires the use of small port-count
converter-switches. Hybrid electro-optical systems have also
been recently proposed to improve performances, such as
the Hybrid Fat Tree (HFT) [5]. By introducing wavelength-
division multiplexing (WDM) and optical switches in Fat-
Tree like topologies, the authors find that these technologies
reduce the required number of switches by 45% in their
minimum hybrid networks. Inter-rack optical rings have also
been proposed for improving the overall throughput of the
DCN, by using flexible spectrum allocation with ROADMs [6].

Software-Defined Networking (SDN) is increasingly being
deployed in modern DCs and can benefit big data applications
in many ways [7], including big data processing, data delivery,
programming at runtime for optimizing big data applications,
scientific big data architectures, and more specifically for
Hadoop scheduling as shown in [8]. By measuring and an-
alyzing the DC traffic, such as presented in [9], topologies
and flows can be optimized through dynamic network recon-
figuration, thanks to SDN technology. A Hadoop cluster is
a computational cluster designed for storing and analyzing
huge amounts of unstructured data. These clusters are usu-
ally hosted in data centers, and thus have similar network
topologies, although their traffic patterns may be different
from other applications. Several solutions based on SDN
technology have been recently proposed to improve Hadoop
performance. Narayan et al. use OpenFlow to provide better
link bandwidth utilization for traffic exchanged during the
shuffle phase of MapReduce [10]. This, in turn, decreases the
time that Reducers have to wait to gather data from Mappers,
and therefore shorten the completion time of Hadoop jobs.
Similarly, Nejad and Majma have proposed a method based
on alpha-beta filter to improve the efficiency of MapReduce
in Hadoop clusters by leveraging SDN [11]. Ghalwash et
al. investigate the throughput and execution time of Hadoop
read/write and sorting operations [12]. They evaluate different
network sizes of a Fat-tree topology of OpenFlow switches and
they observe improvements for some of their topologies when

using OpenFlow rather than regular L2 switching. Our work
is different from these works as we propose a new physical
topology as well as a SDN-driven forwarding algorithm over
it. We aim at reducing the number of network components as
much as improving the Hadoop job completion times.

B. Big Data Simulators

Most of the Big Data software and frameworks are designed
to run in clusters with hundreds or even thousands of nodes.
Testing new technologies can be a difficult and time costly
process, and usually those resources are not available, or their
use could be more expensive than the available budget. This is
the case of this research, when we need to test how the data
movement will behave in a multi-rack cluster environment,
with different cluster sizes, and with a novel network topology
and switching protocol.

And in order to execute our experiments and test the
presented hypothesis, we need set several parameters for the
scenarios to be simulated, and the simulator should be capable
of providing data about the network behavior in the jobs’
reading phase, and the related actions, like the distribution
of blocks and task placement.

Based on these premises, we developed a simulator to
help on researching on Big Data systems performance, the
BigDataNetSim [13], tested against physical cluster to assess
the accuracy, with published results. This simulator was used
for the experiments on this research.

III. TuE Murri-LAYER-MEsH ToPoLOGY

The main contribution of this research is a novel network
topology based on a collection of layer-1 (L1) full meshes
interconnected via a layer-2 (L2) mesh. Theoretically, we
could have any number of layers, but in this paper we limit
the topology to two layers. All switches are located at layer 1.
They are partitioned in m groups of n switches. In each group,
the n switches form a full mesh: each switch is connected
to all the others in the group.The links used inside this full
mesh are called intralinks. Then, meshes are interconnected
by using links connecting some or all switches from one
mesh to some or all switches in all other meshes. These links
are called interlinks and they form the layer-2 mesh. Their
number is a parameter of the topology. There are no switches
at this second layer. We could add a third layer by partitioning
the layer-1 groups into p layer-2 supergroups of g groups.
Layer-2 interlinks would interconnect groups in a supergroup,
while layer-3 interlinks would interconnect the supergroups
themselves. This topology is oriented to Big Data clusters with
data intensive applications, such as data analysis and machine
learning.

On top of the physical topology, a SDN enabled forward
algorithm is used, obtaining information about the big data
application running in the cluster and setting up the most
appropriate paths for each communication link between the
nodes.

/ u

. LOCAL
i

(]
¥
g ; EXTERNAL -
= Rack. b Rack

Fig. 2. Example of local (1), same rack (2) and external (3) tasks.

A. Problem Definition

Nowadays, the general scenario for Big Data clusters shows
clusters being used for several applications at the same time,
due to the involved costs to build and maintain such a
large installation. It is common to have several tools and
frameworks sharing the same cluster infrastructure, in a multi-
tenant configuration. The data sources are also shared by many
applications, and the job results are used as inputs for new jobs
as well [1]. This causes a high level of data reuse, creating
zones of the data space labeled as “hot data”, shared by many
possible concurrent jobs.

In a general way, the data is stored in a distributed fashion in
a big data cluster. As the data volume is large, the information
is divided into smaller portions and stored in a large array
of nodes. This is how the Hadoop Distributed File System
(HDFS) works [14], by dividing the files in blocks of 128 MB
(default value), and by distributing the blocks in the cluster.
Besides, HDFS creates replicas of each block (3 replicas, by
default) to ensure data availability and fault recovery. When
some job requests a file, the HDFS master node sends to the
Application Master, the location of all blocks and replicas of
that particular file, and the processing manager decides which
block/replica to read.

Hadoop vl used MapReduce as the main processing man-
ager, and starting with Hadoop v2, YARN (Yet Another
Resource Negotiator) is used to manage how a job will be
executed, how a job will be divided into smaller tasks, and
how to read information from the distributed file system. In
general, YARN tries to start a task (a subdivision of a job)
on the same node where the information about to be read is
located, avoiding any loss of time due to network transfers. As
the number of possible tasks running in each node is limited
(based on how many concurrent threads can be started, related
to the number of CPU cores), this strategy works well when
the cluster has a lower number of users and concurrent jobs.

When YARN needs to read a particular block of information
to process the data, and all the available cores of all nodes
containing that data are depleted, the system starts the task on
another node, and reads the information across the network.
Initially, YARN tries to start those tasks at least in the same
rack where the information is stored, but eventually - as the
load increases - tasks will be started in another rack, increasing
the network transfer delay. This is shown in Figure 2, with a

Local task (reading from the local storage) is shown, compared
with a Rack task (reading from the storage of another node
in the same rack) and a External task (reading from another
node in another rack), with the increased delays for each step.

In the end, as the load increases, the network is put under
pressure, and regardless of the used application framework
(Spark, MapReduce, Hive, Impala), the completion time for
the jobs will increase. The worst case scenario is when the
cluster receives multiple concurrent jobs accessing the same
data sources (hot data), thereby increasing the chances of
reading tasks having to use the network to read the files.

There are several network topologies designed for data cen-
ter and cluster environments [3], and some of these topologies
are adequate for clusters, like Fat Tree or Spine-Leaf, however,
those topologies don’t scale well as the number of nodes
increases. In Big Data clusters, the number of nodes can easily
reach a few thousands of nodes for some scenarios. Then,
the related network infrastructure must be designed properly.
For a hypothetical cluster with 1000 nodes divided in 50
racks containing 20 nodes each, a regular Spine-Leaf topology
requires a number of spine switches up to half the number of
racks, in order to maintain the traffic at fair levels, even under
high load conditions.

B. The Multi-Layer-Mesh Topology

To solve the described problem, a novel network topology
is proposed - the Multi-Layer-Mesh (MLM) topology - along
with a switching protocol that uses information from the
application (big data application manager). The main goal is to
reduce the amount of resources used (equipment and energy)
and increase performance.

As described earlier, the physical network topology is based
on a partitioning of all the switches in the network into a given
number of L1 full meshes. Additional links, called interlinks,
interconnecting those L1 meshes together form a global L2
mesh.It is a full mesh for the L1 meshes in the sense that
each L1 mesh has at least one link connecting it to each other
L1 mesh. The actual racks with the cluster nodes are connected
to switches belonging to L1 meshes. An example network can
be seen in Figure 3 with every L1 mesh containing 5 switches.
In this case, only one interlink between each L1 mesh pair is
presented, for the sake of clarity.

There are two parameters to be configured, in order to
increase the number of available paths and reduce the bot-
tlenecks: (1) the number of switches in each L1 mesh, and (2)
the total number of interlinks between any pair of L1 meshes.

On this example network, the number of intralinks in each
L1 mesh is 10 and the total number of interlinks from each
mesh to each other is 6, effectively creating a full mesh
of meshes. It should be noted that the number of interlinks
between a given pair of L1 meshes can be much more than
1 thus leading to more interlinks than just n(n — 1)/2 (with
n the number of L1 meshes). As links are cheaper than
equipment - considering copper connections - this topology
reduces the amount of used resources, while keeping the traffic

M1S3

M1S54

M4S5
B M251
intralinks
M2S5

Fig. 3. Example of a Multi-Layer-Mesh topology with full L1 meshes

interconnected by interlinks.

Tepology Controller

Hadoop Master

Fig. 4. System architecture overview.

at acceptable levels, eventually surpassing a regular Spine-Leaf
topology.

To determine the paths to be used, a switching protocol
was designed, based on information from the big data cluster
controller, in order to prepare the traffic for the upcoming
transfer tasks. The topology is independent from the big data
underlying technology, by the use of drivers designed to cope
with the singular properties of each used technology. In the
experiments of this research, the system was connected to a
Hadoop installation, using HDFS as storage, and YARN as
the application manager. With the proper driver developed, this
system is able to use different storage technologies (Cassandra,
S3) and application managers (Spark, Tez) as well. The
proposed system reads information about the jobs submitted
to the Hadoop cluster, and prepare the paths accordingly. This
architecture is shown in Figure 4.

C. Proposed Construction Algorithm

The path table construction algorithm is based on Dijkstra’s
shortest path algorithm, in a tracing algorithm to generate
unique and balanced paths between a given pair of nodes,
using one of the available interconnections between the layer-
1 meshes. This is based on the fact that racks connected
to the same mesh have always a shortest path of distance
I, and the maximum path distance in interconnections is 3,

and the minimum is 1. The algorithm goal is the keep the
actual distance as close as possible to the minimum, based on
the features of a particular set of parameters. There are two
algorithms used in the research, one to create the paths table,
and another to select the proper path for each communication
flow. Those algorithms are described below.

1) Path Table Creation Algorithm: The initial flow table
will be created by the Topology Controller based on the
shortest paths between each pair of switches in the cluster.
As the maximum path is 3, there are potentially more than
one path with cost over 1 for a particular pair of switches. For
this situation, a list with all the paths with same cost for each
pair is generated to help in the path selection algorithm.

A list with all possible hops in the paths is also created.
This list contains all possible segments in the network, and
counters to keep track of the traffic in each hop.

2) Path Selection Algorithm: When the jobs starts to run,
the Topology controller obtains the data about each task
in the job (which node is processing the data and which
node is storing the data) from the Hadoop controller, and
orders the SDN controller to setup a flow for that particular
communication pair using the most appropriate available path.
Although this setup process take some time to happen, the start
of a Hadoop task is also time consuming, so, when the actual
task is starting, the corresponding flow is already configured.

The algorithm is based on the following steps, as shown in
Algorithm 1. As the local and rack tasks are treated by the
same switch or no switch at all, the algorithm focus only on
the external tasks, when communication between the racks is
needed. For each new external reading task from a Hadoop
job, obtain the information about the processing node and the
data node from Hadoop controller. Verify if there is a path with
cost 1 between the racks containing the two nodes, and select
it. If there is no direct connection between the two switches,
select the least used least cost path from the list of unique
paths between the top of rack switches containing the pair of
nodes.

IV. EXPERIMENTS

Using our simulator, three cluster sizes were tested, using
a configuration commonly found in real clusters.

A. Usage of BigDataNetSim Simulator

The common use case for our simulator in this research
is to generate a cluster of a particular size, with a particular
network topology, create the file system in it, populate the file
system with files of a specific size, submit a given number of
concurrent jobs, generate the metrics for the network usage
and generate the reports about the simulation.

This research focuses on the reading phase of Big Data jobs
because it is a time consuming one, and it is generally the only
common phase regarding the Big Data technology running
on top of it (e.g., Hadoop, Hive, Spark, Impala, etc). The
subsequent phases of data processing could vary depending
upon the chosen framework and make the simulation task
complex or not feasible. In addition, the reading phase is the

Algorithm 1: Path Selection Algorithm

// considering i,j as processNode and
dataNode

input : jobTasks: List< task >, uniquePaths; j:

List< path >, steps: List< path; ; >

output: selectedPathsg; ;: List< steps >

for task € jobTasks do

// get processing and data node from task

processNode, dataNode — getNodePair(task)

if CUSZ(MniquePathsprocessNode,damNode) =1 then

// get the path between the nodes using
switches inside same layer-1 mesh or
with direct connection

path < directPath(processNode, dataNode)
else

// find path with less cost
cost «— minimunCost(processNode,dataNode)
path «
lessU sedPath(processNode, dataNode, cost)
// add select path to list of used paths
selectedPaths «— path // increases the usage
counter of each hop in path
| hops « increaseHopCount(path)
return selectedPaths

most demanding in terms of network usage, as the subsequent
phases generally only transmit results (partial or full), with
much less volume. As the simulator supports different network
topologies and protocols, it is possible to obtain the network
metrics from the reading phase in a faster way.

The main parameters used on this research are:

o Number of layer-1 meshes: number of first level fully
meshed groups of access switches in the topology.

« Number of access switches per layer-1 mesh: number of
Top of Rack (ToR) switches, each one connected to the
full mesh (there is one access switch per rack).

« Number of nodes per rack: number of nodes (i.e., servers)
per rack.

« Number of cores: number of available processing slots
(CPU cores) in each node, this number represents how
many simultaneous tasks a node can run.

« Number of links between two layer-1 meshes: how many
inter- (layer-1) mesh connections (i.e., interlinks) from
switches in one mesh to the switches in another mesh.

« Spine-Leaf network parameters: how many spine switches
are in the spine-leaf topology.

B. Experimental Setup

In the experiments, we used the simulator to assemble 3
different cluster configurations, and executed the tests consid-
ering the file distribution and number of concurrent jobs for
each case. We are considering that some portion of the input
data is used more often than the rest. This is the common
scenario in big data processing [15], where most of the time,

the jobs are reusing the same data in several executions, or
reusing output from previous jobs. In the experiments, this is
a configurable parameter, and the jobs concentrate in reading
from the hot data. For the majority of concurrent jobs in a
multi-tenant cluster [15], this is the common situation, and
our topology and algorithms are designed to improve the
performance and decrease the delay for this type of scenario.
All the experiments used the HDFS default values of 128 MB
for the block size and 3 for the replication factor. Those are
the values usually found in real clusters, and used for general
data.

The network connecting the nodes and the racks is a Gigabit
Ethernet, with delays of 1 ms per switch, frame size of 1518
bytes and not considering the delays caused by the TCP
receiving buffers (usually with 64 KB) due to the dynamic
buffering option found in modern Linux operating system
kernels.

Three sizes of clusters were used in the tests:

« 500 nodes (25 racks with 20 nodes each)
« 1000 nodes (50 racks with 20 nodes each)
« 2000 nodes (100 racks with 20 nodes each)

For these clusters, the following graph configurations were
used in the tests:

« 500 nodes: 5 layer-1 meshes with 5 racks in each.
« 1000 nodes: 5 layer-1 meshes with 10 racks in each.
« 2000 nodes: 5 layer-1 meshes with 20 racks each.

The number of nodes per rack were chosen based on the
regular size of a network cabinet and the conventional number
of ports found in Ethernet switches.

The maximum number of concurrent jobs was set to 64 for
the tests, with values set to 1, 16, 32, 48 and 64 for the tests.
The one single running job case was considered, as specific
clusters are sometimes used to solve one job at a time, using
all the available resources.

In the spine-leaf topology, the number of switches in the
spine is set to half of the number of available racks, ensuring
enough parallel paths to keep traffic in adequate conditions. In
Multi-Layer-Mesh topology, the number of switches is equal
to the number of access switches used in spine-leaf topology.
There are no core or spine switches, then, the number of
required equipments is less than a regular spine-leaf.

All the results are average values from 100 consecutive runs,
to avoid bias due to the utilisation of random variables used
to define data placement and so on.

The dataset size used in the experiments is calculated to
use all the available resources in the cluster, and is equal
to the block size multiplied by the total number of available
processing slots in all the nodes. In that way, all the cluster
processing resources are used in all the tests, with resulting
dataset sizes of approximately 0.5 GB (500 nodes), 1 TB (1000
nodes) and 2 TB (2000 nodes) per concurrent job.

C. Results

The results are shown in Figures 5, 6 and 7 for the three
cluster configurations. The plots show the comparison between

45
- SL
40— MLM5
35 MLM 10
—— MLM 15
30 =—b—MLM20
MLM 25

25

20

time (s)

15

10

5 -
//
o
1 16 32 48 64
concurrent jobs
Fig. 5. Jobs completion time (500-node cluster).
40
=& SL
35 = MLM 20
== MLM 40
30 MLM 60

MLM 80

25 MLM 100

20

time (s)

15

10

1 16 32 48 64
concurrent jobs

Fig. 6. Jobs completion time (1000-node cluster).

the average reading phase duration of the baseline (Spine-
Leaf, represented by SL, in Blue) with the different number
of interlinks of Multi-Layer-Mesh topology (represented by
MLM, in color). The number of interlinks (links between each
pair of layer-1 mesh) is shown in the legends.

The observed gain in performance is related to the number
of interlinks, and this is also related to the overall cost to
assemble the particular topology. This can be also viewed in
Figure 8, that compares the performance gain over Spine-Leaf
baseline, using the maximum number of interlinks in all cases.

For the 500-node cluster, this gain is from 14.31% for 5
interlinks, up to 40.29% with 25 interlinks, for 64 concur-
rent tasks. The maximum gain (with maximum number of
interlinks) values are 32.72% for the 1000-node cluster, and
22.32% for the 2000-node cluster. The maximum number of
interlinks was kept below the limit imposed by the number of
ports per switch. It’s worth noting that for just one running
task, the performance gain is around 63% for all MLM
configurations, showing that our proposed topology can be
quite useful for this particular use case.

Figure 9 shows the number of switches and links used. The
first two bars show the number of switches in Spine-Leaf and
Multi-Layer-Mesh topology for a given number of nodes, and
the last two bars show the number of links needed for the same
topologies (SL and MLM). The number of links are shown
divided by ten, for comparison purposes. We can observe
that MLM uses less switches than SL, but more links in the
network. As the cost of links are usually cheap (especially
copper ones), the overall costs are lower for MLM.

time (s)

1 16 32 48 64
concurrent jobs

Fig. 7. Jobs completion time (2000-node cluster).

80
m500
70 1000
2000
60

50

40

30

20

10

0
16 32 48 64

concurrent jobs

gain (%)

Fig. 8. Performance gain of the MLM topology over the Spine-Leaf topology.

The estimated monetary costs are shown in Figure 10. For
this estimate, it was considered a monetary value (in February,
2019) of €2600 per switch !, and €60 ? per copper link. The
switch model was chosen because it is a conventional one, but
still supporting advanced features (like SDN), and the cable
link was chosen because CATS5E is still very common in data
centers and suits most of the existing architectures.

The chart compares the estimated cost for a SL topology to
an equivalent MLM topology that has the same performance,
and another with the maximum performance as shown in
Figure 8. The average reduction in costs for MLM is 39.02%
for the same performance of a SL installation, and 22.91% for
maximum performance.

The relationship between gain in performance and reduction
in cost is shown in Figure 11, for a 500-node cluster. In this
chart, as the gain in performance increases, the reduction in
cost decreases. The same trend occurs in the other cluster
configurations.

V. CONCLUSION

As shown in the results section, our novel Multi-Layer-Mesh
topology and SDN-based path switching protocol can achieve
the same level of performance of an Spine-Leaf topology
with an average of 36.03% reduction in network infrastructure
costs, or increase performances by an average of 31.77%
(from 22.32% up to 40.29%) using the maximum level of

l48—p0rt SDN switch, in https://www.fs.com/products/69226.html
2Stranded copper F/UTP CAT5E 100m cable, in https://www.maison-du-
cable.com/prix/cable-multibrins-f-utp-catSe-16291.html

W # switches SL

W # switches MLM
#links SL (x10)

w#1inks MEM (x10)

, M
500

1000 2000

= N N
@ o a
s o S

switches / # links (x10)
=
[=}
38

nodes

Fig. 9. Number of switches and links vs cluster topology and size.

2000

Fig. 10. Estimated cost (€) vs cluster topology and size.

600000
mSL

MLM equal perf
® MLM max perf

500000
400000

300000

200000
100000 .
| H
500

nodes

estimated cost

1000

interlinks. It should be noted however that the savings in
equipment are as high as the performance gains, and although
the number of connections is increased compared to a Spine-
Leaf topology, connections (especially copper ones) are much
cheaper than equipment, thus the overall cost is still reduced.
Even more significant is the potential cut in costs, related with
the energy consumption from the switches and the related
cooling systems. If a system achieves the same level of
performance with less equipment used, the energy and cooling
for those equipments are not needed anymore. Based on the
data from a survey [2], network devices are responsible for
20%-30% of the energy consumption of a data center and for
each watt consumed by a network device or a server, one watt
is consumed for cooling the same equipments. In short, either
from the viewpoint of performance gain, or energy and cost
savings, the Multi-Layer-Mesh topology and path switching
protocol shows positive preliminary results.

For future work, we plan to integrate the topology with
data and task placement strategies, improving the level of
information that the network has about running applications,
in order to better configure the communications’ flows. As
this research was conducted assuming that regular switches
were used, we will adapt the topology and simulator to test
optical switches and connections as well. We also plan to
improve the way the path/traffic analysis is executed, allowing
the controller to react to changes in the network during the
jobs’ execution.

ACKNOWLEDGMENTS

This work was supported with the financial support of the Sci-

48
MLM'5

46

42
40
38

cost reduction (%)

36

32

10 15 20 25 30 35 40 45
performance gain (%)

Fig. 11. Cost vs performance (500-node cluster with 64 concurrent jobs).

ence Foundation Ireland grant 13/RC/2094 and co-funded under
the European Regional Development Fund through the Southern &
Eastern Regional Operational Programme to Lero - the Irish Software
Research Centre (www.lero.ie).

REFERENCES

[1] F. G. Villanustre, “Big data trends and evolution: A human perspective,”
in Proceedings of the 3rd Annual Conference on Research in Information
Technology, 2014, pp. 1-2.

[2] A. Hammadi and L. Mhamdi, “A survey on architectures and energy
efficiency in data center networks,” Computer Communications, vol. 40,
pp. 1 - 21, 2014.

[3] T. Chen, X. Gao, and G. Chen, “The features, hardware, and archi-
tectures of data center networks: A survey,” Journal of Parallel and
Distributed Computing, vol. 96, pp. 45 — 74, 2016.

[4] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E.
Ng, “A tale of two topologies: Exploring convertible data center network
architectures with flat-tree,” in Proceedings of the Conference of the
ACM SIG on Data Communications, 2017, pp. 295-308.

[5] G. Guelbenzu, N. Calabretta, and O. Raz, “Hybrid fat-tree: Extending
fat-tree to exploit optical switch transparency with wdm,” Optical Fiber
Technology, 2018.

[6] Z. Zhang, W. hu, W. Sun, L. Zhao, and K. Zhang, “Elastic optical ring
with flexible spectrum roadms: An optical switching architecture for
future data center networks,” Optical Switching and Networking, vol. 19,
pp. 1 -9, 2016.

[71 L. Cui, R. Yu, and Q. Yan, “When big data meets software-defined
networking: Sdn for big data and big data for sdn,” IEEE Network,
vol. 30, pp. 58-65, January 2016.

[8] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-aware scheduling
with sdn in hadoop: A new trend for big data,” IEEE Systems Journal,
vol. 11, pp. 2337 — 2344, 2017.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in 9th ACM
Internet Measurement Conference, 2009, pp. 202-208.

[10] S. Narayan, S. Bailey, and A. Daga, “Hadoop acceleration in an
openflow-based cluster,” in SC Companion: High Performance Com-
puting, Networking Storage and Analysis, 2012, pp. 535-538.

[11] E.S. Nejad and M. R. Majma, “A modern method to improve efficiency
of hadoop and mapreduce cluster using software-defined networks
technology,” in 2017 Iranian Conference on Electrical Engineering
(ICEE), 2017, pp. 1497-1502.

[12] H. Ghalwash and C. H. Huang, “Software-defined extreme scale net-
works for bigdata applications,” in IEEE High Performance Extreme
Computing Conference, 2017, pp. 1-7.

[13] L. B. de Almeida, E. C. de Almeida, J. Murphy, R. de Grande,
and A. Ventresque, “Bigdatanetsim: A simulator for data and process
placement in large big data platforms,” in IEEE/JACM 22nd International
Symposium on Distributed Simulation and Real Time Applications, 2018.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in IEEE 26th Symposium on Mass Storage
Systems and Technologies, 2010, pp. 1-10.

[15] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802-1813, 2012.

