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Abstract 28 

As a response to the worldwide challenge raised by soil degradation, Conservation 29 

Agriculture (CA) was proposed to help restoring the three main soil functions, i.e. carbon 30 

transformation, nutrient cycling and structure maintenance. However, there is still a lack of 31 

integrative studies that assess the overall impact of CA on soil health. To fill the gap, 32 

Biofunctool®, a set of in-field indicators, was developed to monitor changes in soil biological 33 

functioning. In this study, Biofunctool® was used to assess the impact of a conventional 34 

tillage (CT) and three CA annual-based cropping systems on soil health on a Cambodian 35 

Oxisol. Eight indicators related to the three soil functions were monitored and integrated 36 

into a Soil Quality index (SQI), i.e. the Biofunctool® Index. Overall, we found that soil health 37 

was twice higher under the CA treatments than under CT treatment. Although it was similar 38 

in the three CA treatments, the contribution of each soil function to the soil health diverged. 39 

An analysis of soil carbon dynamics also showed that CA support short-term soil organic 40 

carbon stabilization compared to CT. This study demonstrates that Biofunctool® is a robust, 41 

relevant, time-and cost-effective in-field assessment tool that can be used in multiple ways 42 

including cropping system management, capacity building of local stakeholders, and policy 43 

dialogue.    44 
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Introduction 45 

In agriculture, the soil system has historically been seen as a medium for food production, 46 

while it is also a source of further supporting, regulating and cultural services which are 47 

crucial for human well-being (Adhikari and Hartemink, 2016). However, this system is widely 48 

jeopardized and especially in Asia, where Montanarella et al. (2016) showed that soils are 49 

under pressure for commodities production (i.e., maize, cassava) generating soil erosion, soil 50 

organic carbon (SOC) depletion, and nutrient imbalance. These threats are confirmed in 51 

Cambodia where in 2008, 43% of the territory was estimated to be degraded due to 52 

intensification of agriculture after forest clearance, and that degradation affected almost 25 53 

% of the population living on degraded areas (Bai et al., 2008). Under this context, there is a 54 

need to promote sustainable agricultural management, to limit soil degradation and to 55 

improve soil functioning.  56 

As a response, it is recognized that Conservation Agriculture (CA) may strengthen a large set 57 

of soil ecosystem services (Palm et al., 2014). CA is based on three technical principles which 58 

are (i) minimum soil disturbance, (ii) retention of crop and cover crop residues and (iii) use of 59 

diversified cropping patterns (FAO, 2014; Séguy et al., 2006). CA was promoted for providing 60 

multiple beneficial effects on soil physical (Indoria et al., 2017; Patra et al., 2019), biological 61 

(Lienhard et al., 2013; Mathew et al., 2012; Souza et al., 2018) and chemical properties (Ivy 62 

et al., 2017; Parihar et al., 2018; Ranaivoson et al., 2017). Amongst soil chemical properties, 63 

soil organic carbon (SOC) was widely studied under CA, due to its potential to adapt farming 64 

systems to climate change and variability, and mitigate the effects of climate change through 65 

carbon sequestration (Lal, 2013). Globally, these studies allowed to provide process-based 66 

analysis of the soil physical, biological and/or chemical compartments, as affected by CA 67 
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practices. However, such analyses do not seem sufficient to propose consistent soil health 68 

assessments.  69 

Soil health was defined by Kibblewhite et al., (2008) as the capacity of a soil to produce a 70 

good quantity and quality food and fibre together with the delivery of other ecosystem 71 

services. However in most studies in the literature, all variables used to assess soil health are 72 

treated without proper consideration of their role along the soil health causal chain. Indeed, 73 

there is often no consideration of the cause/consequence relation between soil properties, 74 

soil functions and soil ecosystem services (Ivy et al., 2017; Lienhard et al., 2013; Thierfelder 75 

and Wall, 2012), while the realization of soil properties leads to the expression of soil 76 

functions which allows a soil to provide ecosystem services (Kibblewhite et al., 2008; Su et 77 

al., 2018). Also, many of the published studies do not, or weakly, consider the interactions 78 

between the different soil compartments (e.g. Das et al., 2014) , which should be at the 79 

heart of soil health assessments (Karlen et al., 1997; Kibblewhite et al., 2008; Rinot et al., 80 

2019). These classical approaches are also usually based on the accumulation of distinct soil 81 

properties measurements (e.g. soil organic carbon, soil biodiversity…). The lack of consensus 82 

on this causal chain, the different interaction between soil properties and the addition of 83 

separated soil health indicators lead to different considerations of the components of soil 84 

systems which may lead to misleading conclusions on soil functioning assessment. To fill this 85 

gap, integrative approaches based on the results of soil physical-biological-chemical 86 

interactions should be implemented (Kibblewhite et al., 2008; Vogel et al., 2018; Rinot et al., 87 

2019). Finally, assessments should be easily transferable to smallholder farmers, 88 

development practitioners and land managers who are the first beneficiaries of soil health 89 

(Idowu et al., 2008), but most studies rely on laboratory tools, protocols, and complicated 90 
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data-analysis interpretation which may limit the further dissemination of new practices 91 

(Bünemann et al., 2018).  92 

Thoumazeau et al. (2019a) proposed Biofunctool®, an operational framework to address soil 93 

health assessment and its quantification in a holistic manner, taking into consideration soil 94 

component interactions. Biofunctool® does not address nor evaluate soil mechanisms, but 95 

proposes a methodology to assess the impact of agricultural practices on soil health by 96 

studying three main soil functions identified by Kibblewhite et al. (2008), namely (i) carbon 97 

transformation, (ii) nutrient cycling and (iii) structure maintenance. Biofunctool® consists in 98 

a core-set of 10 integrative, in-field, and low-tech indicators that may easily be transferred 99 

to land managers. In previous studies, Biofunctool® was applied and validated over a 100 

gradient of soil disturbance in Thailand, on rubber plantations (Thoumazeau et al., 2019b). In 101 

addition, part of the Biofunctool® set, two indicators (i.e. POXC and SituResp®) may provide 102 

further indications on soil carbon dynamics (mineralisation vs. stabilization, see Hurisso et 103 

al., 2016) which have a particular interest under the current environmental context (Lal, 104 

2013).  105 

The aim of our study is to make an integrative and quantified assessment of several CA-106 

based cropping systems on soil health. To do so, the Biofunctool® set of indicators was used 107 

to assess the impact of contrasted agricultural practices  on soil health in a long-term 108 

experiment in Cambodia uplands. Biofunctool® indicators were grouped according to the 109 

three main soil functions and finally integrated into a Biofunctool® Index. The impact of CA 110 

vs. CT cropping system on soil functions, indexes and short-term SOC dynamics were 111 

analysed. The potential applications of the Biofunctool® set are finally discussed and further 112 

methodological perspectives are proposed.  113 

2) Materials and methods 114 
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2.1) Site description and experimental design 115 

The experiment is located at the Bos Khnor experimental station that belongs to the General 116 

Directorate of Agriculture (GDA), Bos Khnor Commune, Chamkar Leu District, Kampong 117 

Cham province, in Cambodia (latitude 12°12’30” N, longitude 105°19’07”E, 118m elevation, 118 

no slope). The history of the station was described in Hok et al. (2015). Soil is made of 68.2% 119 

clay, 30.3% silt and 1.5% sand at 0-10 cm depth, and is classified as a Ferralsol or Red Oxisol 120 

in the FAO and USDA soil classification, respectively. According to the Köppen classification, 121 

the climate at the experimental site is Aw with rainfall concentrated during the wet season 122 

(May to November). The mean annual precipitation (2009–2017) in the experimental site 123 

was 1577 mm. The mean annual minimum and maximum temperatures were 23 °C and 32 124 

°C respectively on the period 2009-2014 (NCEP, 2016). The experiment was implemented in 125 

2009 by the Conservation Agriculture Service Center (CASC), Department of Agricultural 126 

Land Resources Management (DALRM, GDA) under a partnership with the Centre de 127 

Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). A 128 

randomized block design experiment was established consisting in four treatments, three 129 

replicates with a plot dimension of 8 m × 37.5 m. The four treatments are (i) conventional 130 

tillage (CT) system in which soybean (Glycine mac (L) Merr.) is cropped in annual succession 131 

with sesame (Sesamum indicum), (ii) direct seeding mulch-based cropping system (CA) in 132 

which soybean is cropped as a monoculture (CA 1), and (iii) bi-annual rotation of soybean 133 

and maize (Zea Mays) under CA management (CA 2a and CA 2b). In 2017, due to inaccurate 134 

density of soybean, rice-bean (Vigna umbellata) was used (Table 1). The experiment was 135 

designed to compare the conventional tillage management represented by one cash crop 136 

per year (soybean) under plow-based management (CT), with cropping systems involving 137 

different cropping pattern and biomass-C inputs under no-tillage (CA 1, CA 2a and CA 2b). 138 
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2.2) Cropping systems management 139 

2.2.1) Agroecology and rotations engineering 140 

Soybean in conventional tillage (CT) represents the standard cropping system of smallholder 141 

farmers. Under CA 1, Stylosanthes guianensis (cv. CIAT 184) was used as cover crop and 142 

seeds are broadcasted 30 days before soybean (rice-bean in 2017) maturation. S. guianensis 143 

started growing at the end of the wet season, passed the dry season and was terminated at 144 

the end of June using a roller crimper with cutting discs. Soybean (rice-bean in 2017) was 145 

then sown mid-July. Under the bi-annual rotation (CA 2a and 2b), S. guianensis was 146 

associated with maize at sowing, and S. guianensis and Sorghum bicolor seeds were 147 

broadcasted 30 days before soybean maturation. All crops and cover crops used were grown 148 

under rainfed conditions. The cropping sequence is presented in Table 1. As a result of those 149 

cropping patterns, CA treatments receive annually from 2.5 to 3 times more biomass-C 150 

inputs (above-ground biomass resulting from main crops and cover crops) than CT (Table 1). 151 

2.2.2) Agricultural practices 152 

Tillage for CT treatment consists in disc ploughing to a 15–20 cm depth prior soybean 153 

cultivation. Soybean, rice-bean in 2017, and maize were sown with a no-till planter (Fitarelli 154 

or Vence Tudo). Under CA management, crop residues of the main crops and cover crops are 155 

left on the soil surface after the harvest. In case of poor development of the cover crops 156 

during the dry season, sorghum, pearl millet (Pennisetum typhoides) and/or sunn-hemp 157 

(Crotalaria juncea) are intercropped for 60 to 75 days with S. guianensis to increase the 158 

biomass-C inputs early in the wet season.  159 

Since 2009, thermo phosphate (16% P2O5, 31% CaO and 16% MgO, 200 kg.ha-1) has been 160 

applied in March followed by potassium chloride (KCl, 0-0-60, 50 kg.ha-1) mid-May. From 161 
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2009 to 2013, inorganic fertilization was based on the use of urea (46-0-0, 50 kg.ha-1 at 162 

sowing on soybean and maize, and 100 kg.ha-1 for maize 25 days after sowing). N and P 163 

fertilization was modified in 2014. Since that, a basal fertilizer is applied at sowing on 164 

soybean (100 kg.ha-1 of 18-46-0) and maize (150 kg.ha-1 of 16-20-0) and a top-dressing with 165 

urea is added on maize (100 kg.ha-1). Fertiliser inputs are detailed in supplementary reading 166 

1. 167 

2.3) Soil sampling and analysis 168 

2.3.1) Biofunctool® indicators 169 

Biofunctool® consists in a core-set of ten functional indicators that directly assess three main 170 

soil functions: carbon transformation, nutrient cycling and soil structure maintenance 171 

(Thoumazeau et al., 2019a). However, due to on-field rodents destruction, two indicators of 172 

the core-set, based on in situ incubation could not be analysed i.e., bait lamina and anion 173 

exchange membranes. Also, even though earthworms were observed, cast could very hardly 174 

be differentiated to soil aggregates due to the soil type and colour. In order to avoid 175 

misleading measurements, cast indicator was not integrated in the set of measurements. 176 

Notwithstanding these experimental inconveniences, Biofunctool® was applied as i) the bait 177 

lamina is one of the less sensitive to land management and rather describe inter-plot spatial 178 

heterogeneity (Thoumazeau et al., 2019b), ii) nutrient cycling function was adapted by 179 

splitting the results of NH4
+ and NO3

- from soil extraction, and iii) earthworm activity was 180 

also indirectly integrated with other indicators such as water infiltration and aggregate 181 

stability. 182 

All in all, we analysed 8 indicators with (1) for the carbon transformation function: 183 

Permanganate oxidizable carbon (POXC, (Weil et al., 2003)) and basal soil respiration 184 
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(SituResp®, (Thoumazeau et al., 2017)), (2) for the nutrient cycling function, available 185 

ammonium (NH4
+) and nitrates (NO3

-) from soil extraction with 1M KCl, and (3) for the soil 186 

structure maintenance function: surface aggregates at 0-2 cm depth (AggSurf) and soil 187 

aggregates at 2-10 cm depth (AggSoil) (Herrick et al., 2001), water infiltration (Beerkan) 188 

(Lassabatère et al., 2006) and VESS at 0-30 cm depth (Guimarães et al., 2011). 189 

Soil samples were collected in November 2017 and the sampling was done at 0-10 cm depth 190 

(except for the VESS). Three sampling points (inner-replicates) were collected per plot 191 

representing 36 soil samples for the Biofunctool® analysis (except for the VESS indicator with 192 

only one replicate per plot collected). 193 

2.3.2) Soil physico-chemical analysis 194 

In addition to Biofunctool® indicators, further soil analysis were undertaken in the 195 

laboratory. Soil bulk density was sampled at each sampling points and measured by the core 196 

method (Blake and Hartge, 1986). Sub-samples of 2 mm sieved bulk soils were finely ground 197 

(<150 mm) and analysed for total C and N concentrations by dry combustion method (Van 198 

Moort and De Vries, 1970) using an elemental CHN analyser (Thermo Flash 2000). P 199 

concentrations were measured with the P Olsen method (Olsen et al., 1954), and finally pH 200 

was measured in water, using a 1:3 ratio (Table 2). All the analysis were implemented in 201 

Eco&Sols laboratory, Montpellier, France. 202 

2.4) Statistical analysis 203 

Statistical analysis were computed using R software (R Development Core Team, 2008). Each 204 

Biofunctool® indicator was first studied separately using a linear-mixed effects model 205 

(package lme4, (Bates et al., 2015)). Treatment was defined as fixed factor and replicates 206 

(plots and inner-replicates) as random factors. After checking the normality of the model’s 207 
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residuals and homoscedasticity of variances’ residuals,  ANOVAs were run using the car 208 

package (Fox and Weisberg, 2011). This was followed by  post-hoc mean comparisons, using 209 

Tukey with adjustment Bonferroni (Hothorn et al., 2008). As the VESS was sampled at 0-30 210 

cm, a weighted score average was calculated and based on 0-10 cm depth only. 211 

After studying each indicator separately, they were computed within a Principal Component 212 

Analysis (PCA) (FactomineR package, (Lê et al., 2008)) based on the mean of their three 213 

replicates (except for NO3
-, see Figure 2). The last step of analysis consisted in calculating the 214 

Biofunctool® index, for which the methodology was defined by Obriot et al. (2016) and 215 

Thoumazeau et al. (2019a). This indicators’ aggregation followed by scorings have already 216 

been handled by many authors (Armenise et al., 2013; Askari and Holden, 2015; Ngo-217 

Mbogba et al., 2015; Yu et al., 2018). In our case two adaptations to the original scoring 218 

methodology of Obriot et al. (2016) and Thoumazeau et al. (2019a) were computed. First, 219 

concerning the scoring function of the VESS indicator, it was rather considered as an 220 

optimum at a score of 2.5 than following “the less the better” response curve. According to 221 

expert opinion, it was agreed that a highly friable soil corresponded to a disaggregated soil 222 

and thus could not be associated to an optimum. Then, in the study, a statistical PCA variable 223 

weighting was implemented to provide the same weight to each soil function. This allowed 224 

to study the absolute contribution of each function to the total index, rather than focusing 225 

only on relative evolution along the treatment studied. After calculation of the index, a 226 

variance analysis of the contribution of each soil function to the final score was run using 227 

one-way ANOVA.  228 

The crossed-analysis of POXC and SituResp® was implemented following the conceptual 229 

framework proposed by Hurisso et al. (2016), based on the distribution of residuals of the 230 

linear regression (lm) between POXC and SituResp®. Repartition of model’s residuals 231 
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between treatments was assessed using one-way ANOVA followed by a post-hoc mean 232 

comparison test, using HSD function (de Mendiburu, 2017). In addition, several t-test were 233 

performed to assess if the mean value of residuals per treatment was statistically different 234 

than 0. The “0 baseline” representing a state of equilibrium between mineralization 235 

(negative values) and short-term SOC stabilization (positive values). 236 

3) Results 237 

3.1) Impact of Conservation Agriculture on soil functioning 238 

3.1.1) Impact of Conservation Agriculture on the three soil functions 239 

All the indicators were sensitive to the agricultural practices studied, except the visual 240 

structure evaluation (VESS) and nitrate concentration (NO3
-) (Table 3). The other six sensitive 241 

indicators showed significant higher values under CA compared to CT. 242 

For carbon transformation indicators, POXC (C labile) and SituResp® (basal soil respiration) 243 

values were three times higher in CA 1 when compared with CT. The evaluation of C 244 

dynamics (stabilization vs. mineralisation), using regression residuals between values of 245 

POXC and SituResp®, showed a gradual increase from CT to CA 1 (monoculture) to bi-annual 246 

rotation (CA 2a and CA 2b). CT showed a significant C mineralization pattern (on average -247 

292.72) (Figure 1; supplementary readings 2). By contrast, among CA treatments, soil under 248 

CA 2b exhibited a short-term SOC stabilization (p<0.05) when no significant impact was 249 

observed under CA 1 and CA 2a.  250 

For the structure maintenance function, results showed that soil of CT treatment tended to 251 

be less structured (score of VESS = 1.3), significantly less stable (AggSurf and AggSoil) and 252 

with a significant lower infiltration rate of water (2 times) compared to CA treatments. Also, 253 

for each treatment, an opposite pattern of aggregate stability with soil depth was observed. 254 



12 

 

It increased with depth for CT treatment (score increasing of 0.8) while it decreased for CA (-255 

0.7 score for CA 1 and CA 2a, -1.6 score for CA 2b).  256 

For the nutrient cycling function, only NH4
+ concentrations significantly differed between 257 

treatments. In CA treatments, NH4
+ was almost two times higher than in the CT treatment 258 

(on average 15 mg.kg-1 vs 8.3 mg.kg-1). 259 

3.1.2) Impact of Conservation Agriculture on global soil health 260 

In order to gather all the functional parameters, a principal component analysis (PCA) was 261 

undergone (Figure 2). The first and second PCA axes represented 45.7% and 19.5% of the 262 

total variability respectively. The PCA differentiated CA and CT and the difference was mainly 263 

related to three indicators linked to the soil functions studied with POXC (C transformation), 264 

NH4
+ (nutrient cycling), and AggSurf (soil structure). The Biofunctool® index values for CA 265 

treatments had average score of 0.64 (p<0.05), which is about twice the score of CT 266 

treatment (Figure 3). Carbon transformation function was the most contributing function 267 

explaining the differences in the index. Its contribution was more than two times higher in 268 

the CA treatments.  269 
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3.2) Impact of rotation on soil functioning 270 

3.2.1) Impact of rotation on the three soil functions 271 

The indicators of carbon transformation function, POXC (C labile) and SituResp® did not 272 

differ between the three CA treatments (Table 3). Only CA 2b showed a significant C 273 

stabilisation dynamic (p=0.049) (Figure 1). For the two other CA treatments, although the 274 

regression mean residuals were positive, they were not significant (p>0.05) (Figure 1). 275 

For the nutrient cycling function, NO3
- concentrations appeared higher in CA 2a and CA 2b 276 

(Table 3). However, due to high data variability, these differences were not significant. No 277 

difference was noted in the NH4
+ concentrations between the three CA treatments. 278 

For the structure maintenance, no difference was found between the three CA treatments 279 

for VESS and aggregate stability, except for water infiltration which was almost two times 280 

higher under CA 1 than under CA 2b (p<0.05) (Table 3). 281 

3.2.2) Impact of rotation on global soil health 282 

The Biofunctool® index values were not significantly different for the three CA, but the 283 

contribution of each function to the index differed (Figure 3). The analysis of relative 284 

contributions to the Biofunctool® index show that CA 1 and CA 2b have a rather similar 285 

structure with (i) carbon transformation function contributing the most to the index (41-286 

39%), (ii) soil structure maintenance (35-33%), and (iii) nutrient cycling function contributing 287 

the less (24-28%). Under CA 2a, functions were more evenly distributed, with relative 288 

contribution of the three functions reaching around one third of the final index.  289 

4) Discussion 290 

This study allowed to assess soil health under conservation agriculture, following a multi-291 

functional approach, taking into account the interactions between the different soil 292 
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compartments based on a consistent set of soil indicators previously selected. The 293 

integration of all indicators in a multivariate analysis enabled to understand how soil 294 

functions are impacted by contrasted agricultural practices under a tropical climate on a 295 

clayey Oxisol. 296 

4.1) Impact of Conservation Agriculture on soil health 297 

4.1.1) Impact of CA on carbon transformation function 298 

The increase of POXC confirms the measurements of Hok et al. (2018) on the same 299 

experimental trial, who found more labile carbon under CA systems at 0-10 cm depth. On a 300 

similar experiment in Brazil, Sá et al. (2014) also observed on average two times more POXC 301 

under the no-till system up to 20 cm when compared with plough-based management. For 302 

soil respiration measurements, SituResp® values tended, or were significantly higher under 303 

CA, thus showing an higher soil microbial activity linked to the improvement of 304 

microorganisms habitat and the increase in soil labile carbon (Balota et al., 2004; Wang et 305 

al., 2003). When integrating POXC and SituResp®, CT and CA treatments follow a dynamic in 306 

line with the results of Hurisso et al. (2016) i.e. CT tends to mineralize fresh organic carbon, 307 

when CA treatments tend to stabilize C inputs. Also, the results follow the trends of the 308 

current literature highlighting the potential for carbon accumulation under CA management 309 

systems (Lal, 2015; Powlson et al., 2016), mainly due to increased carbon inputs on 310 

superficial horizons (Fujisaki et al., 2018; Virto et al., 2012). 311 

4.1.2) Impact of CA on the nutrient cycling function 312 

Soil total nitrogen is higher under CA systems than CT with significant difference when 313 

comparing CT with CA 2a and CA 2b (Table 2). This trend is also observed for available NH4
+ 314 

and NO3
-. This result may be linked to the higher activities of decomposers and microbial 315 
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communities under CA when compared with CT (Baudoin et al., 2009). Hok et al. (2018), on 316 

the same experiment, emphasized that the β-glucosidase and aryl-sulfatase activities are 317 

significantly higher under CA 2a and CA 2b when compared with CT at 0-5 cm depth. Indeed 318 

no till practices stimulate the microbial biomass, enzyme activities and denitrification 319 

processes especially in the upper soil surface (Baudoin et al., 2009; Bergstrom et al., 1998; 320 

Rabary et al., 2008). The increase in NH4
+ and in some extend NO3

-, may be related to several 321 

factors including (i) the increase N inputs through symbiotic N2-fixing pathways, (ii)  diversity 322 

and amount of organic inputs that may enhance soil decomposers and microbial 323 

communities activities (iii) no tillage practices that affect microbiota activities linked to the N 324 

cycle (nitrifiers and denitrifiers) in the top soil (Krauss et al., 2017).  In a study conducted in 325 

middle-west region of Madagascar, Zemek et al. (2018) observed under low inputs rice-326 

based cropping systems incorporating one-year long Stylosanthes guianensis fallow, a total N 327 

uptake of 225 kg.ha-1, with 55% originating from the soil and 45% from the atmosphere.  328 

4.1.3) Impact of CA on the structure maintenance function 329 

The absence of tillage combined with presence of soil surface residues, living root systems of 330 

the cover crops during the dry season globally improved the structure maintenance function, 331 

which confirms the conclusions made on the improvement of soil structure under CA 332 

cropping systems (Hobbs et al., 2008; Indoria et al., 2017; Tivet et al., 2013). By contrast with 333 

the study conducted by Castioni et al. (2018) on a Brazilian Oxisol (55% clay), VESS was less 334 

sensitive to detect soil structure changes compared with aggregate stability. Thoumazeau et 335 

al. (2019b) also found that VESS was not sensitive to land management based on a 336 

perturbation gradient with very contrasted land uses. In our system, the superficial layer (0-5 337 

cm) seemed to be the main part affected by CA practices. This soil layer may not have been 338 
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studied precisely enough with the VESS method to raise differences between systems. In 339 

order to answer this issue, methodological improvements should be proposed to refine the 340 

scoring methods and to readapt it to the studied system (Emmet-Booth et al., 2018). Then, 341 

the better aggregate stability under CA is in agreement with several studies including those 342 

by Nascente et al. (2015) and Ivy et al. (2017) under similar pedo-climatic conditions. Also, It 343 

is recognized that CA-based cropping systems lead to stratification of soil aggregates and C 344 

content (Mrabet, 2002; Patra et al., 2019; Tivet et al., 2013), with the highest accumulation 345 

and aggregation on the surface layer. On the opposite, tillage disrupts top soil aggregates 346 

which leads to a uniform aggregates and carbon distribution. The stratification ratio, 347 

calculated as AggSurf/AggSoil (Franzluebbers, 2002) ranged from 0.76 under CT to 1.42 348 

under CA 2b. This stratification under CA can be directly attributed to the absence of soil 349 

disturbance combined with higher biomass-C inputs from aboveground residues, root 350 

systems that strengthen soil aggregation in surface layers and contribute to build up a more 351 

stable aggregated soil matrix (de Oliveira Ferreira et al., 2018; Indoria et al., 2017; Six et al., 352 

2004). Despite a high variability among CA results, soil water infiltration tends to increase 353 

under CA cropping systems. It is commonly recognized that water infiltration is improved 354 

under no-tillage and residue cover (Powlson et al., 2011).  355 

4.1.4) Global impact of CA on the soil functions 356 

The main difference observed in terms of soil functioning was observed between 357 

conventional tillage (CT) and CA systems (CA 1, 2a and 2b). The Biofunctool® index showed a 358 

better soil health under CA than under CT. Therefore, in addition to the positive impact on 359 

numerous individual soil properties (Das et al., 2014; Hobbs et al., 2008; Kumar and Goh, 360 
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2000; Thierfelder and Wall, 2012), the multi-functional assessment of soil functions showed 361 

an improvement of soil health under CA. 362 

4.2) Impact of rotation on soil health 363 

4.2.1) Impact of rotation on the three soil functions 364 

Part of the carbon transformation function, POXC, although defined as a “soil fraction that is 365 

sensitive to management” (Bongiorno et al., 2019; Culman et al., 2012), was not sensitive to 366 

the crop rotation under CA in our case. This confirms the results of Hok et al. (2018) who 367 

found similar POXC stocks in the three CA treatments in 2013 (2.5 Mg.ha-1 for CA 1, 2.5 368 

Mg.ha-1 for CA 2a and 2.6 Mg.ha-1 for CA 2b). Similarly, basal soil respiration did not allow to 369 

distinguish CA treatments. Thus, even though these indicators (POXC and SituResp®) are 370 

recognized to be sensitive to land management, the rotation effect was not highlighted. This 371 

result emphasized that high biomass-C inputs under CA management, root systems 372 

deposition and rhizodeposites of crops and cover crops are predominant over the rotational 373 

pattern. Despite no difference among individual indicators, when crossing POXC and 374 

SituResp®, the CA treatments seemed to reach an equilibrium between short-term SOC 375 

mineralization and stabilization. Within the CA treatments, CA 2b was the only that showed 376 

a significant carbon stabilization. These information on carbon dynamics followed the 377 

observation of Hok et al. (2015), who noted a higher increase in CA 2b SOC stock in 0-5 cm 378 

depth in comparison with the other treatments.  379 

No difference could be assessed between the three CA treatments for the nutrient cycling 380 

function, despite nutrient cycling is usually significantly impacted by the nature of the 381 

organic inputs and the long-term diversity of the cropping systems (Franchini et al., 2001; 382 

Pavinato and Rosolem, 2008). At the time of the soil sampling in November 2017, residues 383 
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on the top soil of each cropping system were at different stages of decomposition and 384 

mineralization. Under CA 2b, maize was harvested almost 4 weeks before the soil sampling. 385 

Therefore, the decomposition process had started and, in addition, a new mix of cover crops 386 

was sown (i.e., sorghum and sunnhemp) potentially leading to new rhizodeposites. By 387 

contrast, under CA 1 and CA 2a, rice-bean was still under vegetative development and the 388 

residues of former cover crops were already decomposed. Although this could not be 389 

highlighted by our measurements, the residues’ diversity  (i.e., crops and mix of cover crops) 390 

may have provided organic inputs with different characteristics that may have impacted 391 

microbial communities build-up and turnover rate, thus differentiating kinetics of 392 

decomposition processes and nutrients releases (Giacomini et al., 2003).  Further 393 

investigation on nutrient dynamics, as affected by rotations, should further be handled to 394 

better understand the cycles. Also, the ion exchange membrane indicator could not be 395 

measured in this study and prevented us to conduct a complete assessment of the nutrient 396 

cycling function. 397 

The Beerkan indicator differentiated CA 1 and CA 2b, and the rice-bean cultivated in both 398 

plots in 2017 (CA 1 and CA 2a) may have a positive impact on water infiltration. The other 399 

indicators of structure maintenance and nutrient cycling were hardly sensitive to the 400 

rotation, therefore showing the importance of no-tillage and biomass–C inputs rather than 401 

the rotation itself.  402 

Eventually we noted an improvement of inter-connected functions like C transformation, soil 403 

structure maintenance, and nutrient cycling. This strengthens adaptive capacities under CA 404 

systems.  405 

4.2.2) Global impact of rotation on soil health 406 
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Even if the Biofunctool® index did not differ significantly under CA, contrasted patterns were 407 

observed. Rotation seemed to induce differences in the balance between soil functions. The 408 

contributions of each function to the index were more balanced under CA 2a, with a higher 409 

contribution of nutrient cycling than the others. However, the absence of significant 410 

difference on this soil function in the index could be explained by an insufficient complexity 411 

of the bi-annual rotation when compared with CA 1 where globally similar cover crops were 412 

used. To answer this hypothesis, further studies with more complex cropping patterns 413 

should be implemented. Also, CA 2a and CA 2b showed different patterns despite being a bi-414 

annual rotation since 2009. Similar differences among a bi-annual rotation under CA systems 415 

were observed on an alkaline soil in the Battambang province, Cambodia (Tivet, pers. com.). 416 

The differences observed between CA 2a and CA 2b could be linked to the number of years 417 

of the cropping pattern that has a significant impact on soil functioning despite being a bi-418 

annual rotation since 2009, and/or to a legacy effect from the past use of the plots.   419 

4.3) Is Biofunctool® adapted to annual cropping system? 420 

Until now, the only published data on Biofunctool® came from a study in Thailand, 421 

implemented over a contrasted gradient of disturbance in perennial cropping systems 422 

(rubber plantations) and sandy soils (65 to 77% of sand) (Thoumazeau et al., 2019a; 2019b). 423 

In our study, Biofunctool® was used on annual-based cropping systems in a very different 424 

soil context (highly clayey red Oxisol). Globally, the Biofunctool® index was sensitive to 425 

contrasted agricultural practices (perennial/annual, till/no-till) and the conclusions were 426 

consistent with other studies from the literature. This confirms the tools’ robustness and the 427 

relevance.  428 
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However, the Biofunctool® index did not raise difference between the monoculture and 429 

rotations under CA systems. The impact of rotation on soil health is thus rather low 430 

emphasizing that the biomass-C inputs (above-ground and below-ground) from the cover 431 

crops are predominant over the rotational pattern. The indicators that could not be 432 

implemented (Ion exchange membrane, Lamina and Cast) may have provided important 433 

information on carbon transformation or nutrient cycling function among the index. In the 434 

future, and in such contexts, those Biofunctool® indicators should be modified, or better 435 

protected to avoid on-field destruction.  436 
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Conclusion 437 

The study was a first application of Biofunctool® under contrasted annual cropping systems 438 

and showed to be well-adapted to an annual cropping system under tropical climate 439 

conditions. The multi-functional study of soil health globally raised large differences 440 

between tillage-based management and CA management on soil functioning. All tested 441 

indicators improved under CA compared with CT (except VESS that was less sensitive to soil 442 

management), with a soil quality index twice higher under CA. These conclusions globally 443 

confirm the trends in literature on the improvement of soil health under CA. Also, although 444 

biomass-C inputs and tillage were more important than the rotation pattern in the 445 

improvement of soil health, the presence of rotation in the management pattern seemed to 446 

induce a better balance between soil functions.  447 

Further, Biofunctool® supports awareness raising of development practitioners and policy-448 

makers on the negative impacts of current cultivation practices and demonstrates the 449 

positive impacts of alternatives cultivation methods such as CA on soil health. After the 450 

methodological development and the first applications in Thailand, Cambodia was another 451 

pilot country for Biofunctool® implementation. The Biofunctool® index was a good 452 

communication tool, easy to explain to a range of stakeholders (i.e., smallholder farmers, 453 

development practitioners, and policy-makers), and thus appears to be an accurate pathway 454 

to guide decision-making to improve cropping systems management, performances and 455 

efficiency.  456 
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Figure 1. Mean values of regression residuals per treatment (n=9). (CT) Monoculture of 

soybean under conventional tillage, (CA 1) Monoculture of soybean under permanent cover 

crops, (CA 2a) Bi-annual rotation soybean-maize under conservation agriculture, and (CA 2b) 

Inversed bi-annual rotation maize-soybean under conservation agriculture. Regression was 

made between values of POXC and SituResp® (see supplementary readings 2). Residuals mean 

values below zero represent a trend of mineralizable soil organic C, the above-zero values 

reflect a trend of short-term SOC stabilization. Vertical line represents the standard error per 

treatment. The p-values correspond to t-test analysis of divergence from 0 (α=0.05).  
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Figure 2. Principal component analysis for the impacts of contrasted cropping systems on 

soil health.  

Top– Correlation circle. Values in blue are supplementary values, they are not used in the 

calculation of the PCA.  

Bottom – Graph of individuals. (CT) Monoculture of soybean under conventional tillage, (CA 

1) Monoculture of soybean under permanent cover crops, (CA 2a) Bi-annual rotation soybean-

maize under conservation agriculture, and (CA 2b) Inversed bi-annual rotation maize-soybean 

under conservation agriculture.  

Note: NO3
- showed extreme values probably due to the unequal repartition of residues 

between the different treatments. Therefore, we chose to keep them in the analysis, but as the 

variability was high (CV=95% and 186% for CA 2a and CA 2b respectively), the median was 

used to run the PCA. 
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Figure 3. Biofunctool Index per treatment. (CT) Monoculture of soybean under conventional 

tillage, (CA 1) Monoculture of soybean under permanent cover crops, (CA 2a) Bi-annual 

rotation soybean-maize under conservation agriculture, and (CA 2b) Inversed bi-annual 

rotation maize-soybean under conservation agriculture. Standard error of the index is 

represented for each treatment. Below are shown the relative contribution of each of the 

three soil functions studied. Different letters mention significant differences at p <0.05 for 

Carbon Transformation and Nutrient cycling. *p<0.1 for Structure maintenance.  

 

 

 

 



Table 1. Cropping system per treatment, cumulative and annual biomass-C inputs from 2009 to 2017. Adapted from Hok et al., (2018) 

 

(CT) Monoculture of soybean under conventional tillage, (CA 1) Monoculture of soybean under permanent cover crops, (CA 2a) Bi-annual rotation 

soybean-maize under conservation agriculture, and (CA 2b) Inversed bi-annual rotation maize-soybean under conservation agriculture.  

Cr: Crotolaria juncea; Mt: millet (Pennisetum typhoides Burm); St: Stylosanthes guianensis; Mz: maize (Zea mays L.); Se: sesame (Sesamum 

indicum); Sb: soybean (Glycine mac (L) Merr.); Brz: Brachiaria ruziziensis cv. Ruzi; Rb: rice-bean (Vigna umbellata); Sg: sorghum (Sorghum bicolor 

L.) left from the year in brackets. “/” indicates relay cropping with varying planting dates; “+” indicates crops planted in association (same or 

staggered sowing dates). * In 2017, due to inaccurate density of soybean, rice-bean (Vigna umbellata) was used. 

  

 Biomass-C inputs 

(Mg.ha-1) 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 Cumulative Annual 

CT Se/Sb Se/Sb Se/Sb Se/Sb Se/Sb Se/Sb Se/Sb Se/Sb Rb 29.66 3.29 

CA 1 
Mt 

/Sb+Brz 

Brz(2009) 

/Sb+St 

Mt 

/Sb+St+Sg 

Mt 

/Sb+St 

Sg+St(2012) 

/Sb+St+Sg 

St+Sg(2013) 

/Sb+St+Sg 

St+Sg(2014) 

/Sb+St+Sg 

St+Sg(2015) 

/Sb+St+Sg 

St+Sg(2016) 

/Rb* 
73.45 8.16 

CA 2a 
Mt+Cr+St/ 

Sb+St 

Mt+Cr+St(2009) 

/Mz+St 

Mt 

/Sb+St 

Mt+Cr 

/Mz+St 

Sg+St(2012) 

/Sb+St 

St(2013) 

/Mz+St 

St(2014) 

/Sb+St+Sg 

St+Sg(2015) 

/Mz+St 

St(2016) 

/Rb* 
87.04 9.67 

CA 2b 
Mt 

/Mz+Brz 
Mt/Sb+St 

Mt+Cr 

/Mz+St 

St(2011) 

/Sb+St 

Sg+Cr+St(2012) 

/Mz+St 

St(2013) 

/Sb+St+Sg 

St+Sg(2014) 

/Mz+St 

St(2015) 

/Sb+St+Sg 

St+Sg(2016) 

/Mz+Sg+Cr 
90.04 10.01 



 

Table 2. Soil characteristics per treatment. (CT) Monoculture of soybean under conventional tillage, (CA 1) Monoculture of soybean under 

permanent cover crops, (CA 2a) Bi-annual rotation soybean-maize under conservation agriculture, and (CA 2b) Inversed bi-annual rotation maize-

soybean under conservation agriculture. Letters indicate significant differences according to Tuckey test. S.E stands for standard error, n=9 per 

treatment.  

 Total Carbon* 

(g.kg-1) 

Total Nitrogen 

(g.kg-1) 
C/N 

Inorganic Phosphorus 

(g.kg-1) 

Bulk Density  

(g.cm-3) 
pHwater 

Treatment mean S.E mean S.E mean S.E mean S.E mean S.E mean S.E 

CT 21.3 a 0.7 1.68 a 5.4.10-2 12.7 bc 0.2 7.5.10-2 ab 4.3.10-3 1.27 ns 2.9.10-2 6.02 ns 0.07 

CA 1 22.6 a 0.6 1.74 a 4.8.10-2 13.0 c 0.1 8.2.10-2 b 4.3.10-3 1.22 ns 2.0.10-2 6.01 ns 0.10 

CA 2a 23.7 b 0.6 1.92 b 5.0.10-2 12.4 ab 0.1 7.2.10-2 ab 4.7.10-3 1.18 ns 2.3.10-2 6.02 ns 0.12 

CA 2b 23.6 b 0.4 1.94 b 3.7.10-2 12.2 a 0.1 6.2.10-2 a 2.6.10-3 1.19 ns 3.2.10-2 5.89 ns 0.06 

ANOVA p<0.01 p<0.001 p<0.001 p<0.01 p=0.1 p=0.6 

* The statistical analysis was made using log(Total Carbon) in order to gather all the hypothesis needed to run the ANOVA. 

 

  



Table 3. Biofunctool® indicators per treatment. (CT) Monoculture of soybean under conventional tillage, (CA 1) Monoculture of soybean under 

permanent cover crops, (CA 2a) Bi-annual rotation soybean-maize under conservation agriculture, and (CA 2b) Inversed bi-annual rotation maize-

soybean under conservation agriculture. The analysis was made in 0-10 cm depth, except for AggSurf (0-2 cm) and AggSoil (2-10 cm). n=9 for 

each treatment except for VESS where n=3 per treatment (no inner-replicate). Due to the loss of one sample, n=8 instead for CT of NO3
- and 

NH4
+. Letters indicate significant differences according to Tuckey test. 

 Carbon transformation Structure maintenance Nutrient cycling 

Treatment 

POXC 

(mgC.kgsoil-1) 

SituResp® 

(Absorbance 

difference) 

VESS 

(Score) 

Beerkan 

(ml.min-1) 

AggSurf 

(Score) 

AggSoil 

(Score) 

NO3  

(mg.kg-1) 

NH4 

(mg.kg-1) 

mean S.E mean S.E mean S.E mean S.E mean S.E mean S.E mean S.E 
mean S.E 

CT 272.1 a 51.3 0.12 a 3.2.10-2 2.1 ns 0.3 124.7 a 19.3 2.5 a 0.4 3.3 a 0.4 0.5 ns 5.7.10-2 8.3 a 0.6 

CA 1 723.5 b 112.2 0.43 b 9.3.10-2 2.3 ns 0.2 263.7 b 25.6 5.4 b 0.3 4.7 b 0.5 0.5 ns 5.5.10-2 13.0 b 1.1 

CA 2a 704.9 b 63.7 0.26 ab 5.5.10-2 2.5 ns 0.1 214.7 ab 40.7 5.5 b 0.2 4.8 b 0.2 2.6 ns 0.8 15.8 b 0.9 

CA 2b 762.1 b 78.5 0.29 ab 6.3.10-2 2.4 ns 0.1 140.9 a 33.5 5.5 b 0.2 3.9 b 0.4 2.1 ns 1.3 14.9 b 0.8 

ANOVA p<0.001 p=0.01 p=0.4 p<0.001 p<0.001 p<0.001 p=0.1* p<0.001 

*Based on the assumption that ANOVA is rather resistant to non-normality, an ANOVA was run for NO3 without normality of residuals (p-value 

of shapiro test < 0.05) 




