N
N

N

HAL

open science

Classification of Encrypted Internet Traffic Using
Kullback Leibler Divergence and Euclidean Distance

Vanice Canuto Cunha, Arturo Zavala, Pedro Inacio, Damien Magoni, Mario
M. Freire

» To cite this version:

Vanice Canuto Cunha, Arturo Zavala, Pedro Indcio, Damien Magoni, Mério M. Freire. Classification
of Encrypted Internet Traffic Using Kullback Leibler Divergence and Euclidean Distance. 34th In-
ternational Conference on Advanced Information Networking and Applications, Apr 2020, Caserta,
Italy. hal-02493390

HAL Id: hal-02493390
https://hal.science/hal-02493390
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02493390
https://hal.archives-ouvertes.fr

Classification of Encrypted Internet Traffic
Using Kullback Leibler Divergence and
Euclidean Distance

Vanice Canuto Cunha 12, Arturo A. Z. Zavala !, Pedro R. M. Indcio?,
Damien Magoni®, and Mario M. Freire?

!Universidade Federal de Mato Grosso, Cuiab4, Brasil
2Instituto de Telecomunicacdes, Universidade da Beira Interior, Covilha, Portugal
3LaBRI-CNRS, Université de Bordeaux, Talence, France

Abstract. The limitations of traditional classification methods based
on port number and payload inspection to classify encrypted or obfus-
cated Internet traffic, often with randomized port numbers, have lead to
significant research efforts focusing on classification approaches based on
Machine Learning techniques using Transport Layer statistical features.
However, these approaches also have their own limitations, leading to
the study of a set of other alternative approaches, including statistics-
based approaches. Statistical approaches can be an alternative to ma-
chine learning, because in real-time traffic classification with new types
of data, the entire traffic classifier has to be retrained in order to adapt to
the new change by combining the old training data with the new training
data. This article investigates the classification of encrypted traffic using
statistical methods applied to network traffic classification. We propose
two statistical classifiers for encrypted Internet traffic based on Kullback
Leibler divergence and Euclidean distance, which are computed using
the flow and packet size obtained from some of the protocols used by ap-
plications. In our experiments, we evaluate the two classifiers based on
statistical methods and compare them with a classifier based on Support
Vector Machine (SVM). During our study, we were able to classify the
traffic by using few features without compromising the performance of
the classifier. The experimental results illustrate the effectiveness of our
models used for traffic classification.

Keywords: traffic classification, encrypted Internet traffic, Kullback-
Leibler divergence, Euclidean distance

1 Introduction

Internet traffic classification has been the focus of significant research efforts in
the past two decades due to its importance for network management and security
defense, since it may provide valuable information about the traffic metadata and
the eventual underlying motivations [1], [2]. The study of statistical methods
to classify network traffic is justified by the fact that many machine learning

2 V. C. Cunha et al.

techniques are supervised and then limited to the real time approach, as they
require a new training model be created to a new classification each time new
data is presented [1].

One of the major problems in classifying encrypted traffic is that the payload
is encrypted, which makes difficult the analysis of the packet contents. Through
statistical methods we can estimate, by means of empirical distributions, the be-
havior of the protocols, and with the help of divergences that show the similarities
between two distributions, we can try to efficiently classify the applications that
generate the Internet traffic under evaluation. This article proposes and evaluates
the performance of two classifiers for encrypted Internet traffic using statistical
methods applied to traffic flows: the Kullback Leibler (KL) divergence and the
Euclidian distance. These two classifiers operate at a network flow level and
make use of the relative frequency of the packet size to identify applications.
KL divergence has previously been used for speaker identification/verification
and image classification [18] and for detection of low-rate Distributed Denial of
Service (DDoS) attacks [27]. Euclidean distance has previously been used for
optimizing an artificial immune system algorithm used for flow-based Internet
traffic classification [16]. Here, both KL divergence and Euclidean distance are
used to build classifiers without the need to combine them with other methods.

2 Related Work

Significant research efforts have been carried out on the subjects of identification
and classification of Internet traffic. Part of them rely on statistics, see, e.g, [5, 7].
Recent research still focuses on making improvements using machine learning,
such as [1]. In [2], a classification module focusing on video streaming traffic,
based on machine learning, is presented as a solution for networks that require
real-time traffic analysis. In our work, we use real-world traces of encrypted
traffic as well as Peer-to-Peer (P2P) applications such as edonkey, bittorrent, and
gnutella. Some research works propose classifiers based on learning methods and
corresponding signatures[13, 14]. A large number of research works, regardless of
the classification method, make use of traffic flows or packet sizes (e.g, [5], [12].

Statistical tests such as Chi-Squared and Kolmogorov-Smirnov were used
for traffic classification in [7], representing the classes through the corresponding
signatures and the empirical distributions. The entropy was also used to measure
and represent important differences regarding packet heterogeneity [8]. Exploring
the heterogeneity of the packet sizes was accomplished by using samples obtained
from a sliding window. For our work, we explored the characteristics of packet
size, but using all the relative frequency flows and not just samples of the flow.
Still in [8], Gomes et al proposed an online classifier to separate traffic generated
by P2P and non-P2P applications and a new method to identify VolIP sessions
[5].

Peng et. al propose in [12] a statistical classification approach that uses the
Message Size Distribution (MSDC), which aims to identify the network flows
precisely and the Message Size Sequence (MSSC) in real time. Such technique

Classification of Encrypted Internet Traffic 3

provided very good detection results, making a decision after inspecting less than
300 packets with a 99.98% precision, but do not display recall and F-Measure
values. In [15], Extreme Learning Machine (ELM) methods were used to classify
Internet traffic. The Extreme Kernel learning machine (EKLM) approach, an
ELM approach, was applied to the data. In particular, a Genetic Algorithm
(GA)-based software was implemented for selecting the parameters used in the
Extreme Kernel learning machine with Wavelet (WK-ELM) algorithm, where
the Wavelet function was used. A precision rate over 95% was reached.

3 Statistical Methods

3.1 Kullback-Leibler Divergence

The KL divergence or relative entropy is a distance measured between two prob-
ability distributions and was introduced by the mathematicians S. Kullback and
R.A. Leibler in 1951 [9], [10], [11], [26]. These researchers started with the as-
sumption that two probability distributions differ more or less according to the
possibility of discrimination between them by means of a statistical test.

The KL divergence is a special case of a wider class of divergences. By using
this method, we can infer a similar behavior, or divergence between two distribu-
tions [26]. Considering that Dy[p||q] is a function, p; and g; are two probability
distributions, we have:

Dulpllg) =) pilog <;Z> — pilog (qu) (1)

Then, it can be assumed that the Kullback-Leibler divergence is represented by

equation 2:
Duslill = vitos (%), 2)
i=1

where Dk Lp||g] >= 0 and D L[p||q] = 0 if and only if p;(z) = ¢;(z), N defines
the number of samples, i defines the number of the initial sample, pi defines the
relative frequencies of the known class, ¢¢ defines the class relative frequency to
be compared.

Note that, despite being also known as a divergence, it cannot be consid-
ered as a distance metric, since it does not meet the symmetry property, i.e.,
Dk Llpllq) # DkLlq|lp]. We mapped the behavior of some protocols through
distributions (relative frequency) and used this mapping to classify traffic, as-
suming that each known distribution is pi and each unknown distribution is qi.
KL divergence was used to implement one of the classifiers described in section
IV, more specifically the Statistical Analysis module.

3.2 Euclidean Distance

To calculate the distance between two traffic classes, one must consider the
probabilities of each traffic class, in our case, p; defines the relative frequencies for

4 V. C. Cunha et al.

all the discrete values i (possible packet sizes) of the traffic class 1, representing
the known traffic class, while g; defines the relative frequencies for all the discrete
values ¢ (for possible packet sizes) of traffic class 2, representing the unknown
traffic class. Therefore, the distance between both classes of traffic may be given
by the following equation:

DE[pv (J} =

In this work, we use Euclidean distance to compare its results with the ones
obtained with KL and to test the efficiency of this method, when mapping the
behavior of the relative frequency for each protocol. The Euclidean distance is
used to implement the second classifier described in section IV.

4 Traffic Classification Using Kullback-Leibler Divergence
and Euclidean Distance

This section details our approach to classify Internet traffic. We describe the
traffic features used for the classification, the classifier architecture incorporating
the divergences and system modules, as well as the rules implemented for traffic
classification.

4.1 Features

It is possible to create a new set of data from the original data, which contains
important information obtained through the new features found [17]. This new
set of data can present a smaller number of attributes than those found in
the original set, bringing us as a benefit a lower dimensionality. In order to
obtain this new set of data, we extract some features of the original database,
such as packet sequence numbers, IP source and destination, packet size, time
[19], where we apply a different view of the original data to reveal its important
characteristics. We call the original base, the trace of traffic that has been stored
after collection of network traffic. We consider each flow as a time series, which
generates a standard characteristic: the relative frequency of packet size per
application. We observe that the flow (source IP and destination IP) of the
application would give us a feature that could be extracted, the relative frequency
of packet size in each flow. We believe that the distribution of sizes is of great
importance to characterize the traffic, since it represents each protocol in a
unique way, forming a signature for each one of them. Figure 1 illustrates the
relative frequency distribution of packets for some available applications in our
new dataset. As we can see, each protocol behaves in a unique way and exhibits
a unique distribution, which we call a signature. We can use such behavior to
measure the divergences to known distributions and to start the classification.
The X-axis of fig. 1 represents the number of buckets. Buckets were defined with

Classification of Encrypted Internet Traffic 5

wom e e

—— HTTP Web browsing S5H

= o

RELATIVE FRECILEMCY

L R = T = T~ R ~ T~ T ~1

(=T T

28 37 46 55 64 73
TS

BUCKETS

[
-
=
=
=]

o
%]
o
=
-
=]
=]

Fig. 1: Relative frequency of packet size per application, extracted through the sam-
pling process, for SSH and HTTP Web Browsing.

the purpose of creating a histogram with intervals of 15 bytes. The maximum
size of the histogram interval is 100. Buckets are required to calculate the relative
frequencies of packets. The Y-axis represents the calculated relative frequency
of HTTP Web browsing and SSH.

4.2 Classification Approaches

Divergence or distance is the measure of separation between two distributions, it
indicates how similar or different two traces are. But for this we must insert some
parameters so that, with that there is the comparison. The architecture for our
classification system contains four modules, as shown in Fig. 2(a): packet capture
and pre-processing, statistical analysis and stored signatures, classification and
validation.

Packet Capture and Pre-Processing This step deals with the traffic cap-
ture and storage. Traffic generation was done in the laboratory in a controlled
environment, and the capture was performed with the tcpdump and windump
tools. The files were stored in the .pcap file format.

Then these file were converted to the .txt format. This conversion was done
via command line with the command tshark — rsrcfile.pcap — t. After the files
were separated into several files by application with the command tcpdump —
ettnnr file.pcaphost]I PorhostI P — w file.pcap.

First, we separated our dataset into individual trace files and collective trace
files. We classify as individual trace files those in which we know by which appli-
cations they were generated. We separated into flow. We consider the application
flow, source IP and destination IP, packet sequence and number of packets be-
longing to the same application and IP.

6 V. C. Cunha et al.

Initialize minRange = [...]
1

for each r in minRange and

each i from 6 to lenght(lista)

v

-—

Pre-processing

[——————
E Flow i | Empirical Model

Is the
‘ Generation v distance value N

between the accepted range
for each flow v
pix gl ?

\
|
|
|
|
|
|
|

‘ Internet Traffic Is the
~ minina and

Y ance <= m:
minima < r 2

dist:

i |
Stored pi as a F _ i Statistical Analysis i n
signature — ’
sccepted.append(a[1], pIL]) —— rejected.append(ali], pLi])

ALL M
combinations
exausted?
o L Y
Classification Decision | O
,,,,,,,,,,,,,,,,,,,,,,,,, 4
(a) (b)

Fig. 2: Proposed classifier: (a) Architeture; (b) Flowchart of rules process.

Empirical model generation In this step, relative frequency files are generated
that will feed the new base date. It was necessary to create file of relative fre-
quencies corresponding to the known traces. These file were created by means
of samples. To create the files with relative frequencies was developed a python
script. For the generation of relative frequencies, values taken into account are
the Maximum Transmission Unit (MTU), equivalent to 1514 bytes. This refer-
ence was crucial for the construction of the packet size histogram. Each byte
packet was allocated in a sort of bucket. We take into account the size of 16
bytes to construct the histogram, so if we take the 1514 bytes and divide by 16
bytes, we will have an approximate value of 100 buckets, or intervals. Applying
this logic to each flow, we are then able to calculate the empirical distributions
- in our case, the relative frequencies.

Samples generation In this step, the program reads files from collective and
individual folders and separate flows. The samples were generated from both in-
dividual and collective traces files. Each sample represents a relative frequency
file generated for each protocol. The relative frequencies of the individual traces
are stored in another dataset, as they will serve for signature identification pur-
poses during the trace comparison phase. For flow grouping and separation, an
application was built using the Python language, which allowed us to follow the
entire flow and extract, with the construction of the histogram, the distributions
of each flow. No feature was used to examine packages.

Statistical Analysis and Stored Signatures In this step the distance and
divergence based on the relative frequencies of each flow are calculated. In order
to know if two traffic traces belong to the same class, we use the empirical
distribution, in our case the relative frequency that each trace has, and compare
the two frequencies by applying the KL or Euclidean calculation, and obtaining

Classification of Encrypted Internet Traffic 7

a distance as output. We begin the comparison phase between the distributions,
where in this phase, the divergences are used, as shown in figure 2(a). In this step
we consider the generated and separated files in the pre-processing module and
rename these files in samples pi and ¢i. Now, pi for individual flow files and qi
for collective flow files. Relative frequencies individual are stored as a signature
and compared to Relative Frequencies collective using the distances of KL and
Euclidean. For calculating distances, we choose which method we will apply,
either Kullback-Leibler or Euclidean, and compare the relative frequency lists
pi and qi generated. After this comparison, we have the values of the distances
found between the two lists. This distance alone does not represent anything,
therefore, in the classification step it is necessary to make use of heuristics. Note
that, individual relative frequencies are stored as a signature and compared to
collective relative frequencies using the KL and Euclidean distances.

Classification and Validation The classification of flows based on rules is
made in this step. Note that, at this stage, we already have all the distances
calculated between the flows. For divergences, the closer to 0 the most similar the
two protocols are, the closer to 1, the most different the two protocols are likely
to be. After the calculation, and having the values of the obtained distances,
classification rules have to be created so that the classifier can make a decision.
These rules are based on statistical heuristics after several iterations of distance
calculation.

Initially, the rules for classification were based on dissimilarity values, where
dissimilarity can be defined as follows: 0 if the attribute values match and 1 if
they do not match. Since we will not always have distances equal to 0, or equal
to 1, we need to find a cut-off threshold for the classification to be done more
efficiently. For the cut-off, after debiting all distances, we created two lists to
insert accepted and rejected flows according to established rules.

As we mentioned earlier, we need a threshold to know when the flow could
be accepted or rejected. At first, we used a heuristic where we applied a range of
intervals so that flow distances could be accepted if they were within the interval
or rejected otherwise. After several tests, we found that in the rejected list there
were flows that could have been accepted, but given the cut-off threshold, had
been rejected. So we found that this methodology to accept or reject the flow
would not work in our case.

Next, we defined another rule, this time making use of the average packet size
found in each flow and also adding their standard deviation. Unfortunately, the
values on the rejected list remained high. It is worth mentioning that when we
checked the rejected lists, there were many flows that should have been accepted
instead.

After several analysis, we chose to use all the distances after the calculation
of all distances to calculate the distance between the calculated distances to
insert in our list of accepted flows the distances were smaller, compared to the
others.

8 V. C. Cunha et al.

We also decided to use the standard deviation (SD) of the distances calculated
by the samples as the cut-off threshold, inserting in our distance list all flows
that were in the interval [average, SD]. Using this technique, we were able to
significantly reduce cases of false positives and false negatives, but it was not
enough to deliver satisfactory results.

In order to create an efficient rule, we calculate the relative frequency of a
given known protocol that is in our signature database, and compare it with
all relative frequencies of unknown protocols. After this comparison, several dis-
tances will be generated. The first step is to select the minimum distance among
the calculations to apply the classification rule.

The second step, after several and continuous tests with each protocol, was
defining acceptance baseline values that would define five different minimum
ranges. For each range value, the pre-calculated minimum distance of each pro-
tocol must necessarily be within 0 and the current range of the loop. Once the
classification is over, the one yielding the best F-measure will be returned, as
per auxiliary variables within the classification loop.

The MaxR variable was created to store the minimum range of the best
result, while MAxMatrix variable was created to store its confusion matrix. The
maxFmeasure variable, initially set as -1, will then store the best f-measure
among the results. Classification rules are illustrated in the flowchart shown in
Figure 2(b) .

5 Performance Evaluation

After the classification process of the samples, we checked and validated the
results of the classification using the ground truth. For this, we created two new
lists: in the first list we have the number of items classified as accepted and that
were actually found in the mapping dictionary according to the IP source and
IP destination corresponding to each protocol, and in the second list we have the
number of items classified as rejected. Note that even though a distance is in the
accepted list, the flow may not actually belong to the corresponding protocol,
and even though it is in the rejected list, the flow might actually belong to the
corresponding protocol.

5.1 Dataset and Ground Truth

For the study and analysis of the traffic, it was necessary to collect traffic traces
and to build a database containing the traces to be analyzed. The dataset is
composed by traces, generated by different Internet applications and services.
Network traffic used in this analysis was captured next to the source where it
was generated, obtained in a controlled environment, where only one application
was running in a certain computer. All of the traces were collected by using
the TCPDUMP and WINDUMP tools, implemented by the capture libraries:
libpcap in the Linux platform, and Winpcap in the Windows platform. This
way, we observed the properties both scenarios and established the ground truth

Classification of Encrypted Internet Traffic 9

of the traffic records. In order to analyze the empirical distribution of the traffic
packet size, an application was built to create the relative frequency distribution
for each collected traffic. In this study, we chose services or applications that
are widely used, heavy bandwidth consumers or raise more challenges from the
perspective of traffic and network management, ending up with a set of services
with varied characteristics. The classes considered for the traffic analysis were
commonly used in the Internet, as listed below:

— Web browsing: browsing of general web pages, excluding media streaming.
— On-demand and live streaming: HTTP and Flash-based, RTSP, MMS, etc.
P2P streaming: PPStream, TVUPlayer and SopCast.

— P2P file-sharing: BitTorrent, e-Donkey, and Gnutella.

— VoIP: Skype, Google Talk, Session Initiation Protocol (SIP) traffic.

File transfer: FTP and SFTP transfers.

Remote session: Telnet and SSH sessions.

Table 1: Dataset Characteristics.

Dataset Volume (GB) TCP (%) UDP (%)

Dataset 1 8.80 78.35 21.59
Dataset 2 8.60 82.77 17.18
Dataset 3 7.97 77.13 22.84

In this work, “HTTP download” is used to refer to a long and continuous
download of a large file using HTTP, while “Web navigation” is used to refer
to the common activity of visiting Web pages through a Web Browser. The
used dataset includes a total number of 92.317 traffic flows, corresponding to
35.317.091 packets and approximately 27.37 GB of traffic. The time to acquire
all the datasets is 61h. Datasets were divided in three as described in table 1.

Ground truth is widely used by researchers who collect their own traffic traces
to test the accuracy of their solutions. In our work it is possible to establish
ground truth because traffic was collected in a controlled environment where
each computer was running only one application. With this, we can map exactly
the trace for a given application, calculate the relative frequency of the trace and
compare it with the output of the classifier. The individual traces were used for
the generation of our ground truth and the files with the collective traces were
used for our tests.

5.2 Performance of the classifier

To address these issues, we used the confusion matrix, which allows us to obtain
the performance and prediction of the classifier, based on the values of TP, TN,
FP and FN. For the values of TP, the classifier added them to the list of accepted
flows which, after the analysis and classification, are considered to belong to that
flow. For FP values, we have the protocols erroneously classified as belonging

10 V. C. Cunha et al.

to the flow. For the values of TN, the classifier correctly understood that the
protocol did not belong to the flow, inserting it in the accepted list. Finally,
for FN, the classifier erroneously understood that the current protocol did not
actually belong to the flow, inserting it in the rejected list. For performance
evaluation, we use the classical performance metrics defined in machine learning
textbooks: accuracy, precision, recall and F-measure.

Table 2 presents the accuracy, precision, recall and F-Measure for the Kullback-
Leibler and Euclidean methods for all 8 classes tested. After evaluating the
performance of the classification proposing the use of Kullback-Leibler diver-
gence, we compared the performance with methods already found and tested
in the literature[16], [22],[23]. For our comparison, we use of the Euclidian dis-
tance and Support Vector Machine (SVM). For testing with SVM we use the
sklearn—import — svm [24] function provided by the Python library and applied
it to our dataset with the default parameters, except for the Self parameter,
which for our case we use C = 50. The largest problems encountered in setting up
the SVM model were how to select the kernel function and its parameter values.
When there are large values of C, the optimization will choose a smaller-margin
hyperplane if that hyperplane does a better job of getting all the training points
classified correctly. We use four different kernels, which are linear, polynomial,
sigmoid, and RBF kernels. For testing using SVM, we use the training module
and change the Statistical Analysis KL, module to Classification-SVM.

Table 2: Performance results with Kullback-Leibler divergence and Euclidean Distance.

Traffic Category\Protocol Methods
Kullback-Leibler Euclidean

Acc.| Rec.|Prec.| F-M.| Acc.| Rec. |Prec.| F-M.
Web browsing 99% | 74% |100%| 85% | 99% | 67% |100%| 80%
HTTP download 99% | 83% |100%| 90% | 99% | 66% |100%| 80%
Streaming On-demand and live|100%|100%|100%|100% |100%|100%|100%| 100%
P2P streaming 99% | 86% |100%| 92% | 99% | 85% |100%| 91%
P2P file-sharing 99% | 76% |100%| 86% | 99% | 73% |100%| 84%
VoIP 100%]100%|100% |100% [100%|100%|100% | 100%
File Transfer 100%{100%|100%|100% [100%|100%|100%| 100%
Remote session 100%100%]|100%|100% [100%|100%|100%| 100%

Legend: Acc: Accuracy, Rec: Recall, Prec:Precision, F-M: F-Measure

A summary of the results obtained from the classification using SVM is
shown in table 3. The method using the SVM RBF kernel and the sigmoid
kernel could not classify the dataset relative frequencies used in this article.
Results achieved were too low or close to 0. For the category of Web browsing
traffic, the SVM method has a classification capability, the Euclidean and KL
methods presented very similar results, Kullback-Leibler having higher Recall
and F- Measure values.

Classification of Encrypted Internet Traffic 11

Table 3: Performance results with SVM Linear and Polynomial kernels.

Traffic Category\Protocol Support Vector Machine - SVM
Linear Polynomial

Acc.| Rec.|Prec.| F-M.| Acc. Rec.|Prec.| F-M.
Web browsing 4% | 74% | 4% | 4% | 0% 0% | 0% | 0%
HTTP download 81% | 82% | 35% [4,9% | 0% [25%|10% | 15%
Streaming On-demand and live| 57% | 58% | 57% | 57% | 0,90% | 1% | 9% | 2%
P2P streaming 99% | 99% | 99% | 99% | 0,57% |10% | 97% | 10%
P2P file-sharing 98% | 98% | 97% | 98% [0,0005%| 0% [100%| 0%
VoIP 100%|100%|100%|100% | 0,22% | 2% [100%| 4%
File Transfer 0% | 0% | 0% | 0% 0% 0% | 0% | 0%
Remote session 0% | 0% | 0% | 0% 0% 0% | 0% | 0%

Legend: Acc: Accuracy, Rec: Recall, Prec:Precision, F-M: F-Measure

For the HTTP download category, the SVM method was unclear. Although
the KL method had higher values than the SVM method, the values of Recall
and F-Measure are still below acceptable values to state that for this type of
application the method can classify this traffic category efficiently.

For on-demand and live streaming, the SVM method obtained results below
the values found for the statistical methods. Analyzing the results, we realized
that for this type of traffic, both KL and Euclidean methods, can classify effi-
ciently and effectively. The results show that both methods are far superior than
any of the SVM kernels.

For P2P streaming, linear, polynomial, and sigmoid SVM kernels have at
least one metric considered reasonable for classification, but overall they are
insufficient. This leads us to conclude that for video and video streaming traffic,
the KL and Euclidean methods are efficient for identification and classification
of these applications.

For P2P file-sharing, the KL and Euclidean methods gave excellent results
for the precision and F-Measure metrics and good results for the Recall metric.
The SVM linear kernel yielded results that are considered excellent.

For VoIP classification, the linear kernel SVM method presents significant
results. KL and Euclidean methods gave excellent results for this type of traffic,
reaching 100 % precision, Recall and F-measure results, which means that for
this application the KL and Euclidean methods were very promising.

For the File Transfer traffic category the KL and Euclidean methods can also,
given the obtained values, present an excellent classification capacity. For Remote
session applications, the values achieved by the KL and Euclidean methods were
100% for the Accuracy because, although we have it mapped in our individual
database, there are no corresponding files in the collective test database. The
classifier states that all tested files do not contain Remote sessions, which in our
analysis is correct, since we do not have any.

By making a comparative analysis between the statistical methods, we con-
clude that KL and Euclidean methods obtain the same results for most cases.

12 V. C. Cunha et al.

When comparing the F-Measure results obtained in both, we see that for the
HTTP Download and Web Browsing traffic only, the values obtained by the
KL method were higher, but we cannot say that this method is superior to the
Euclidean one, given that for the other results, the values were the same or
relatively similar. It is interesting to note that SVM is considered an excellent
classifier in the literature, but when we do not have many features, we notice
from the results that SVM does provide satisfying results. Therefore, building
network traffic classifiers using statistical methods can still be considered a viable
alternative for encrypted traffic.

5.3 Resource Usage

The experiments were executed on a 64-bit Linux desktop computer, equipped
with an Intel (R) Core (TM) i7 CPU 2.93GHz, 6GiB system memory and a PCI
Express Gigabit Ethernet Controller based on the RTL8111 chipset.

For computational analysis, the psrecord [25] tool is used. This tool records
the core and memory activities of a process. In order to measure the computa-
tional performance of each method, we used the activity of the process that the
method refers to. We did not use packet number or host/port, as this data was
used only as information to convert the raw database into relative frequencies.
When we look at fig. 3(a) and fig. 3(b), we find that memory usage remains
stable whatever the processing consumption of the chosen classifier.

When the classifier is started, the CPU and memory time start at 0. If we
observe the CPU usage over time, we see that KL. and Euclidean classifiers
both use a similar CPU percentage to process the information and compare the
relative frequencies. Although not shown, the SVM classifier requires more CPU
especially at the beginning of the process. Regarding the memory usage over
time for each statistical classifier, they are very close, being slightly larger for
the KL classifier, because KL is more demanded.

Euclidean Kullback-Leibler

100 250 100

80 200 80

Real Memory (MB)
CPU (%)
Real Memory (MB)

4 50 100 150 200 250 0 100 200 300 400 500 600 700 800
time (s) time (s)

(a) (b)

Fig.3: CPU and memory consumption from the beginning of the analysis of the trace
to end of the classification (execution time) for the classifiers based on: (a) Euclidean
distance; (b) Kullback-Leibler divergence.

Classification of Encrypted Internet Traffic 13

6 Conclusion

Our results for Internet traffic classification were presented using Kullback-
Leibler (KL) divergence, Euclidean distance and SVM. According to the results
obtained, we can conclude that the SVM method with kernel set to default pa-
rameters is not effective to classify flows based only on packet size. SVM RBF
was not efficient in any classification. Linear SVM was only efficient for classify-
ing P2P streaming. The SVM sigmoid was efficient for classifying P2P streaming
and VoIP. The SVM polynomial was efficient for classifying P2P streaming, P2P
file sharing, and VoIP.

In contrast, the KL and Euclidian methods were able to classify all tested
applications, standing out in the streaming and P2P classification, where for
almost all cases it was efficient to identify them with a high precision.

We conclude that both the KL divergence and the Euclidean distance were
efficient and that, in cases where the KL divergence was superior, it was not sig-
nificantly better than the Euclidean distance. The performance of the statistical
method is considered good as long as CPU usage remains almost constant when
packets are being processed and analyzed. As for memory usage, it fluctuates
according to the requests of each method.

Because these results are based on an approach that uses only packet sizes, it
can be integrated with other methods to improve overall classification as it is a
very promising classifier for high-speed network taps where traffic is encrypted.
For future work, we intend to evaluate other statistical divergences indicators
by performing new tests on encrypted traffic.

References

1. G. Sun, T. Chen, Y. Su, and C. Li, “Internet Traffic Classification Based on Incre-
mental Support Vector Machines,” Mob. Networks Appl., 23(4):789-796, 2018.

2. K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L. de Errico, “An innovative ap-
proach for real-time network traffic classification,” Comput. Networks, 158:143-157,
2019.

3. N. Cascarano, L. Ciminiera, and F. Risso, “Optimizing deep packet inspection for
high-speed traffic analysis,” J. Netw. Syst. Manag., 19(1):7-31, 2011.

4. J. Zhang, Z. Li, Z. Pu, and C. Xu, “Comparing prediction performance for crash
injury severity among various machine learning and statistical methods,” IEEE
Access, 6:60079-60087, 2018.

5. J. V. Gomes, P. R. M. Indcio, M. Pereira, M. M. Freire, and P. P. Monteiro, “Iden-
tification of peer-to-peer VoIP sessions using entropy and codec properties,” IEEE
Trans. Parallel Distrib. Syst.,24(10):2004-2014, 2013.

6. M. Zhang, W. John, K. C. Claffy, N. Brownlee, and U. C. S. Diego, “State of the
Art in Traffic Classification : A Research Review,” PAM 09 10th Int. Conf. Passiv.
Act. Meas. Student Work., pp. 3-4, 2009.

7. M. Neto, J. V. Gomes, Mario M. Freire, and P. R. M. Inacio, Real-time traffic
classification based on statistical tests for matching signatures with packet length
distributions, 19th IEEE Workshop on in Local and Metropolitan Area Networks
(LANMAN), 2013. IEEE, 2013, pp. 1-6.

14 V. C. Cunha et al.

8. V. P. Gomes et al., “Analysis of Peer-to-Peer traffic using a behavioural method
based on entropy,” Conf. Proc. IEEE Int. Performance, Comput. Commun. Conf.,
pp- 201-208, 2008.

9. T. M. Cover and J. A. Thomas, “Elements Of Information Theory”, John Wiley
and Sons, 2012.

10. C. Delpha, D. Diallo, and A. Youssef, “Kullback-Leibler Divergence for fault esti-
mation and isolation: Application to Gamma distributed data,” Mech. Syst. Signal
Process., 93:118-135, 2017.

11. D. J. Galas, G. Dewey, J. Kunert-, N. A. Sakhanenko, B. Seattle, and H. Sciences,
Expansion Of The Kullback-Leibler Divergence a New Class of Information Metrics,
Axioms, 6(2):8, 2017.

12. L. Peng, H. Zhang, Y. Chen, and B. Yang, “Imbalanced Traffic Identification Using
An Imbalanced Data Gravitation-Based Classification Model”, Computer Commu-
nications, 102:177-189, 2017.

13. A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci, “Towards
self adaptive network traffic classification,” Comput. Commun.,56:35-46, 2015.

14. D. Li, G. Hu, Y. Wang, and Z. Pan, “Network traffic classification via non-convex
multi-task feature learning,” Neurocomputing, 152:322-332, 2015.

15. F. Ertam and E. Avci, “A new approach for internet traffic classification: GA-WK-
ELM,” Meas. J. Int. Meas. Confed.,95:135-142, 2017.

16. B. Schmidt, A. Al-fuqaha, A. Gupta, and D. Kountanis, “Optimizing an artificial
immune system algorithm in support of flow-Based internet traffic classification,”
Appl. Soft Comput. J.,54:1-22, 2017.

17. H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust feature ex-
traction and selection for traffic classification,” Comput. Networks, 119:1-16, 2017.

18. M., Pedro J and Ho, Purdy P and V., Nuno, A Kullback-Leibler Divergence Based
Kernel For SVM Classification In Multimedia Applications, Advances in neural
information processing systems, 1385-1392, 2004.

19. T, Pang-Ning; S, Michael; K, Vipin, Introduction To Data Mining, Person, Addison
Wesley, Pearson Education, 2006. ISBN 0-321-420.

20. J. V. Gomes, P. R. M. Indcio, M. Pereira, M. M. Freire, and P. P. Monteiro,
“Exploring behavioral patterns through entropy in multimedia peer-to-peer traffic,”
Comput. J., 55(6):740-755, 2012.

21. 1. Syarif, A. Prugel-Bennett, and G. Wills, SVM parameter optimization using
grid search and genetic algorithm to improve classification performance, Telkomnika
(Telecommunication Comput. Electron. Control)., 14(4):1502-1509, 2016.

22. S. Tavara, Parallel computing of support vector machines: A survey, ACM Com-
puting Surveys. 2019.

23. T. Marwala, Support Vector Machines. In Handbook of Machine Learning, Wold
Scientific, pp. 97-112, 2018.

24. scikit-learn user guide Release 0.21.2. Available in https://scikit-
learn.org/stable/modules/svm.html. Accessed in 06/05/2019.

25. Library PSrecord 1.1. Available in https://pypi.org/project/psrecord/ . Accessed
in 06/05/2019.

26. S. Parveen, S. K. Singh, U. Singh, and D. Kumar, A Comparative Study of Tra-
ditional and Kullback-Leibler Divergence of Survival Functions Estimators for the
Parameter of Lindley Distribution, Austrian J. Stat., 48(5):45-53, Jul. 2019.

27. Y. Xiang, K. Li, and W. Zhou, Low-rate DDoS attacks detection and traceback
by using new information metrics, IEEE Transactions on Information Forensics and
Security, 6(2):426-437, Jun. 2011.

