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Abstract

We consider a quasi-static fluid-structure interaction problem where the fluid is modeled by the
Stokes equations and the structure is an active and elastic medium. More precisely, the displacement
of the structure verifies the equations of elasticity with an active stress, which models the presence
of internal biological motors in the structure. Under smallness assumptions on the data, we prove
the existence of a unique solution for this strongly coupled system.

Keywords: Fluid-structure interaction, active structure, strong solution, existence result.

1 Introduction

Many living beings move, breathe and reproduce themselves by means of thin active structures that
interact with fluids. Cilia and flagella are examples of such soft materials that deform themselves using
internal biological motors and thus, induce a flow within the surrounding fluid. Understanding the
underlying mechanisms of the coupling of such a fluid-structure system is of great interest for biological,
medical and even engineering applications. The problem we are interested in is the interaction between
an elastic medium, subjected to an internal time depending stress, and a viscous fluid, whose domain
depends on the displacement of the elastic medium. In this article, we prove the existence and the
uniqueness for small enough data of a regular solution to a quasi-static interaction problem involving an
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elastic structure subjected to an internal stress and a Newtonian viscous incompressible homogeneous
fluid, modeled by the Stokes equations.

Existence of solutions for fluid-structure interaction problems has been the subject of numerous
works in the last years. Concerning interaction problems involving a viscous incompressible homogeneous
fluid and a passive solid medium, several models have been studied. In the case of a 3D linear elastic
structure evolving in a 3D viscous incompressible Newtonian flow, we refer the reader to [17] and [8]
where the structure is described by a finite number of eigenmodes or to [5], [6] for an artificially damped
elastic structure. Both articles illustrate the use of a finite-dimensional approximation of the equation
of linearized elasticity or a damped structure in order to avoid the loss of regularity inherent to this
fluid-structure system.

For systems coupling the incompressible Navier-Stokes equations with the equations of linearized
elasticity, results have been successively obtained in [15], [21], [24] and more recently in [7], for the
existence and uniqueness of strong solutions locally in time. In [15], the authors consider the existence
of strong solutions for small enough data locally in time, requiring higher regularity assumptions on the
initial data than the one obtained on the solution, the uniqueness being obtained under even stronger
regularity assumptions. In [21], [24], the existence of local-in-time strong solutions is proven in the case
where the fluid structure interface is flat and for a zero initial displacement field, once again with a gap
between the regularity of the initial data and the one of the solution. One of the main difficulty is to
fill the gap between the fluid (parabolic) and structure (hyperbolic) regularities. This issue has been
partially solved in [7], in the case of an immersed structure with a zero initial displacement field, by
obtaining hidden regularity of the structure displacement.

Finally, when the structure is modeled with the Saint Venant-Kirchhoff law, very few results on the
well-posedness of the fluid-structure system are known. In [16], the Navier-Stokes equations coupled to
the equations of elastodynamics, are considered and the existence and uniqueness of strong solutions
are proven locally in time, under compatibility conditions on the initial data. In [19], a result of
existence of strong solutions is proven in the steady-state situation, considering either the Stokes or the
Navier-Stokes equations, if the data are sufficiently small.

Concerning the well-posedness of fluid-structure problems involving active structures and viscous
incompressible homogeneous fluid, few results are available. In [18], the steady self-propelled motion of
a constant shape solid in a non-inertial fluid, modeled by either the Stokes or steady state Navier-Stokes
equations, is studied. The velocity of the solid on its boundary is divided in two parts: the first one
is imposed and represents the self-propelled velocity of the solid, whereas the other one is due to the
interaction with the surrounding fluid. The existence of solutions is proven and conditions under which
a distribution of the self-propelled velocity on the boundary of the structure is able to propel the solid is
investigated. In [25], an initial and boundary value problem for the swimming of a fish-like deformable
structure is treated. In this model the movement of the structure is divided in two: the rigid part of
the displacement results from the interaction of the fluid and the solid, whereas the deformation part of
the displacement is imposed. The resulting coupled system between the Navier-Stokes equations for
the fluid and Newton’s laws for the structure is proven to be well-posed. For the same problem, the
existence and uniqueness of weak solutions is studied in [22]. The same system is studied in [14] in
three space dimensions and limiting the regularity of the imposed displacement of the structure (still a
datum of the problem). The author proves local existence in time for any data and global existence in
time under smallness assumptions on the data.

In all these works the strategy is the same: decompose the movements of the structures in two parts.
The first part is imposed and describes the internal activity of the structure, while the second part is
a rigid movement which satisfies Newton’s law and results from the interaction with the fluid. The
originality of the present work lies in the fact that the activity of the structure is modeled by a given
internal active stress, such that the whole movement of the structure results from the interaction with
the surrounding fluid. As we are interested in the modelling of active suspensions in viscous flows at
low Reynolds number we assume that the inertial effects can be neglected so that the coupled system is
a quasi-static one.

Let us now introduce more preciselly the fluid-structure problem we are considering. Let n be the
space dimension (2 or 3) and Ω be a regular open connected bounded subset of Rn, whose definition
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Figure 1: Two-dimensional examples of the geometry of the fluid-structure problem, where |Γs| = 0 (a)
and |Γs| 6= 0 (b).

will be made precise by hypotheses (H1)-(H4). The domain Ω is supposed to be the union of two
domains: Ω = Ωs ∪ Ωf , with Ωs ∩ Ωf = ∅, such that Ωs and Ωf .The interface between Ωs and Ωf is
denoted by Γ and we define the remaining frontiers of Ωs and Ωf by Γs = ∂Ωs \ Γ and Γf = ∂Ωf \ Γ.
Examples of such domains are given in Figure 1. Figure 1 (a) shows a spermcell embedded in a fluid
in the case where |Γs| = 0. On contrary, the case where |Γs| 6= 0 is illustrated in Figure 1 where cilia
attached to a wall are depicted.

The domain Ωs is filed with an active elastic medium. At time t, the behavior of the structure is
modeled by the non-inertial equations of elasticity, set in the reference configuration Ωs. Denoting by
ds the displacement of the structure, these equations write

−div(Πs(ds(t), t)) = fs(t) in Ωs,
ds(t) = 0 on Γs,

(1.1)

where fs denotes the exterior body forces applied on the structure. The tensor Πs represents the first
Piola-Kirchhoff stress tensor of the structure which, in the present study, includes the active component
and will now be defined. In the framework of continuum mechanics, two popular approaches are used
to model contractility in solid materials, namely the active-stress and active-strain methods (see [2]).
The former consists in adding an active component to the passive stress tensor, while in the later,
the activation is considered as a pre-strain in a multiplicative decomposition of the tensor gradient of
deformation. Both techniques have been studied for biological structures and particularly in a context
of myocardium and arteries studies but never to model cilia and flagella, to our knowledge. For more
information on models for active organs, we refer to [23, Chapter 2]. In this work, we choose the
active-stress formalism to model internal motors and denote by Σ∗ the active stress tensor added to the
passive component. Moreover, we do not suppose Σ∗ to have any particular shape, but we consider
the general case where this tensor depends on both the time t and the material position x. If we
consider the Saint Venant-Kirchhoff behavior law for the passive component of the elastic medium, its
constitutive equations at time t become

Πs(ds(t), t) = (I +∇ds(t))(Σs(ds(t))− Σ∗(t)),
Σs(ds) = 2µsE(ds(t)) + λstr(E(ds(t)))I,

E(ds) =
1

2
(∇ds(t) +∇ds(t)T +∇ds(t)T · ∇ds(t)),

(1.2)

where µs and λs are Lamé’s parameters (λs > 0, µs > 0) and I stands for the identity matrix of Rn.
Thus, with the present elasticity model, the activity of the structure is completely internal and enables
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to fully take into account the fluid-structure interaction, whereas imposing only one part of the velocity
or the deformation as in [18] or [25] does not.

At time t, the structure moves under the influence of its internal activity and the action of the
surrounding fluid on its boundary. Then, the deformation of the fluid domain at time t, denoted by
Φ(ds(t)), depends on the displacement of the structure on the interface Γ and satisfies

Φ(ds(t)) = I + ds(t) on Γ,

where I is the identity mapping in Rn. Moreover, let γΓ be the trace operator from Ωs onto Γ and R
be a continuous linear lifting from Γ to Ωf (in spaces made precise later on). Then, we define the fluid
domain deformation Φ(ds(t)) in the whole domain Ωf as follows:

Φ(ds(t)) = I +R(γΓ(ds(t))) in Ωf ,

such that the deformation is equal to the identity on the fluid boundary Γf . Thus the mapping Φ(ds(t))
maps the reference fluid domain Ωf into the deformed fluid domain at time t denoted by Φ(ds(t))(Ωf ).

The domain Ωf is filled with a Newtonian viscous fluid whose viscosity is denoted by µf . The
velocity uf and the pressure pf of the fluid satisfy, at each time t, the Stokes equations in the deformed
configuration Φ(ds(t))(Ωf ), which write

−div (σf (uf (t), pf (t))) = 0 in Φ(ds(t))(Ωf ),
div(uf (t)) = 0 in Φ(ds(t))(Ωf ),

uf (t) = 0 on Φ(ds(t))(Γf ) = Γf ,
(1.3)

where
σf (uf (t), pf (t)) = 2µfD(uf (t))− pf (t)I,

D(uf (t)) =
1

2

(
∇uf (t) +∇uf (t)T

)
.

The tensor σf (uf (t), pf (t)) is the fluid stress tensor written in the deformed configuration Φ(ds(t))(Ωf )
and D(uf (t)) is the symmetric part of the gradient of the fluid velocity. Moreover, we suppose that no
external force is applied to the fluid.

To complete the set of equations (1.1), (1.2) and (1.3), we add the usual coupling conditions on
the fluid-structure interface Γ, namely the continuity conditions on the velocities and on the normal
component of the stress tensors that traduce the action reaction principle:

∂ds
∂t

(t) = wf (t) on Γ, (1.4)

Πs(ds(t), t)nf = Πf (wf (t), qf (t))nf on Γ, (1.5)

where nf is the exterior unit normal vector of ∂Ωf and where wf and qf are respectively the fluid
velocity and fluid pressure written in the reference configuration, and Πf (wf (t), qf (t)) is the fluid stress
tensor also written in the reference configuration that will be made precise below. More precoselly, the
fluid velocity wf and the fluid pressure qf are defined at time t by

wf (t, ·) = uf (t,Φ(ds(t)(·)) and qf (t, ·) = pf (t,Φ(ds(t)(·)) in Ωf .

Even though the interaction problem we consider in the present study is non-inertial, it requires an
initial condition for the displacement of the structure on the interface Γ at t = 0, because of the
condition on the continuity of velocities in (1.4). For the sake of simplicity, as in [7] and [24] for instance,
we suppose that the interface is in its reference configuration initially, i.e. that

ds(0) = 0 on Γ, (1.6)

so that the kinematic boundary condition (1.4) writes

ds(t) =

∫ t

0
wf (s)ds on Γ. (1.7)
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Conditions (1.4) and (1.7) differ in the sense that condition (1.4) can be seen as a Dirichlet boundary
condition for the fluid problem whereas the condition (1.7) is a Dirichlet boundary condition for the
structure problem.

Moreover, we will at first suppose that the structure is at rest initially, i.e. that fs(0) = div (Σ∗(0))
which, combined with the initial condition (1.6), implies that ds(0) = 0 in Ωs. The more general case
where fs(0) 6= div (Σ∗(0)) is discussed in section 7.

In order to define the fluid stress tensor Πf we rewrite the Stokes system (1.3) in the reference
configuration. As it is usual it is on this system we will work since the original Stokes equations are set
in an unknown domain Φ(ds(t))(Ωf ).

To that aim, we introduce the mappings F , G and H defined (in Sobolev spaces that will be defined
later on) by

F (ds(t)) = (∇(Φ(ds(t))))
−1,

G(ds(t)) = cof(∇(Φ(ds(t)))),
H(ds(t)) = F (ds(t))G(ds(t)).

(1.8)

The matrix F (ds(t)) (and a fortiori the matrix H(ds(t))) is well defined whenever Φ(ds(t)) is, for
instance, a C1-diffeomorphism, which will be the case for small enough displacements in well chosen
spaces. Then, using the definitions of the mappings F , G and H, it follows from a change of variables
that the Stokes equations written in the reference configuration of the fluid is

−µfdiv
(
(H(ds(t))∇)wf (t) + F (ds(t))

T∇wf (t)TG(ds(t))
)

+G(ds(t))∇qf (t) = 0 in Ωf ,
div(G(ds(t))

Twf (t)) = 0 in Ωf ,
wf (t) = 0 on Γf ,

(1.9)

Moreover, the fluid stress tensor written in the reference configuration at time t is defined by

Πf (wf (t), qf (t)) = µf

(
(H(ds(t))∇)wf (t)

+F (ds(t))
T∇wf (t)TG(ds(t))

)
−qf (t)G(ds(t)).

(1.10)

Remark 1.1. The tensor Πf is the Piola transform of the fluid stress tensor σf .

We now briefly outline the content of the present article. In section 2 we introduce some notations and
prove some preliminary results. In particular, we show that, for sufficiently small displacements of the
structure, the mapping F , defined by (1.8), is well-defined, such that the fluid problem in the reference
configuration (1.9) is also well-defined. In section 3, we state our main result, namely the existence
and the uniqueness (locally in time) of a regular strong solution to equations (1.1), (1.2), (1.9), (1.4),
(1.5), (1.6) if the data are sufficiently small and if the structure is at rest initially. The proof is done
thanks to Banach’s fixed point Theorem, constructing a mapping that iterates between the resolution
of the structure problem and the fluid problem. The particularity of the present quasi-static problem
compared to steady problems (as in [19] for instance) relies on the kinematic condition (1.4) on the
interface Γ, which is an unsteady condition. So that, in order to prove the convergence of the iterative
process we have to split the fluid-structure problem by solving the structure problem with the Dirichlet
boundary condition (1.7) and the fluid problem with the Neumann boundary condition (1.5). By
doing so we ensure compactness in time, whereas if one solve the structure problem with the Neumann
boundary condition (1.5) and the fluid problem with the Dirichlet boundary condition (1.4), then we
loose time regularity in the iterative process. To that aim, we study in section 4 and in section 5, the
structure and fluid problems independently. In section 6, the actual fixed point procedure is conducted,
showing that the aforementioned mapping goes from a ball into itself and is a contraction. Finally,
in section 7, we extend our result to the case where the internal forcing does not counterbalance the
exterior load initially, i.e. fs(0) 6= div (Σ∗(0)).
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2 Notations and preliminaries

2.1 Technical lemma

In this subsection, Ω denotes an open connected bounded subset of Rn of class Ck−1,1, for k ≥ 1. For
r ≥ 0, the space Hr(Ω) denotes a standard Sobolev space associated to the L2-norm. Moreover, the
same notation is used whenever it is a space of real-valued functions or vector-valued functions.

If Γ is a part of the boundary of Ω, we say that Γ is a disjoint part of ∂Ω if Γ is non empty and
Γ ∩ (∂Ω \ Γ) = ∅. Then, if Γ is a disjoint part of ∂Ω, we denote by γΓ the trace operator on Γ, which is
continuous and surjective from Hr(Ω) onto Hr−1/2(Γ) for all 1

2 < r ≤ k (see [9, chap. 3, sec. 2.5.3]). In
particular, there exists a continuous lifting operator from Hr−1/2(Γ) into Hr(Ω). Using this notations,
we denote by H1

Γ(Ω) the space defined by

H1
Γ(Ω) =

{
u ∈ H1(Ω); γΓ(u) = 0

}
.

For s ≥ 0, the space Hs(0, T ;Hr(Ω)) denotes the space of Sobolev-valued functions in the time
interval (0, T ), with T > 0. For s = 0 we denote this space by L2(0, T ;Hr(Ω)).

The constant C that appears through the text always denotes a positive constant that can change
from line to line. However, its dependencies on domains, variables or parameters will always be made
clear.

We start by giving a technical lemma.

Lemma 2.1. Let Ω be a Lipschitz open connected bounded subset of Rn, with n ≥ 1, and consider Γ, a
part of its boundary.

i) Let r > n
2 . If u and v belong to Hr(Ω), then the product uv belongs to Hr(Ω) and there exists a

constant C(Ω) which depends on the domain Ω such that,

‖uv‖Hr(Ω) ≤ C(Ω)‖u‖Hr(Ω)‖v‖Hr(Ω).

ii) Let r ≥ 0 and s > max(n2 , r). If u belongs to Hs(Ω) and v belongs to Hr(Ω), then the product uv
belongs to Hr(Ω) and there exists a constant C(Ω) which depends on the domain Ω such that,

‖uv‖Hr(Ω) ≤ C(Ω)‖u‖Hs(Ω)‖v‖Hr(Ω).

Moreover, we will call Hs(Ω) a multiplier space of Hr(Ω).

iii) Let r > 1
2 and T > 0. Moreover, suppose that Ω is of class Cr−1,1. If w belongs to L2(0, T ;Hr(Ω)),

then the function δ defined by

δ(t) =

∫ t

0
γΓ(w(s))ds, ∀t ∈ [0, T ],

belongs to H1(0, T ;Hr−1/2(Γ)), and there exists a constant C(Ω) which depends on the domain Ω
such that,

‖δ‖L∞(0,T ;Hr−1/2(Γ)) ≤ C(Ω)T 1/2‖w‖L2(0,T ;Hr(Ω)).

Proof. The proof of point i) relies on Sobolev injections and we refer to [1] for detailed information.
The essential point here is that the space Hr(Ω) is a Banach algebra, because 2r is greater than the
dimension n.

Point ii) is a consequence of [3, Theorem 7.5] and also relies on embedding theorems for Sobolev
spaces.

For the point iii), a straightforward computation gives us that, for all t in [0, T ],

‖δ(t)‖Hr−1/2(Γ) = ‖
∫ t

0
γΓ(ω(s))ds‖Hr−1/2(Γ) ≤ C(Ω)t1/2‖ω‖L2(0,T ;Hr(Ω)),

where C(Ω) is a constant coming from the continuity of the trace operator from Hr(Ω) onto Hr−1/2(Γ).
It follows that

‖δ‖L∞(0,T ;Hr−1/2(Γ)) ≤ C(Ω)T 1/2‖ω‖L2(0,T ;Hr(Ω)).

Moreover, because ∂δ
∂t = γΓ(ω) belongs to L2(0, T ;Hr−1/2(Γ)), we can conclude that δ belongs to

H1(0, T ;Hr−1/2(Γ)).
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2.2 Assumptions and preliminary results

In all that follows, we assume that the following assumptions hold true.

Domain Ω is an open connected bounded subset of Rn (n ∈ {2, 3}) divided in
two open connected bounded sets Ωf and Ωs by an interface Γ.(H1)

The interface Γ is of class C3,1, is non empty and does not encounter the
boundary of Ω, i.e. Γ ∩ ∂Ω = ∅.

(H2)

The remaining boundaries are denoted Γf = ∂Ωf \ Γ and Γs = ∂Ωs \ Γ and
are of class C2,1.

(H3)

The boundary Γf is such that |Γf | 6= 0, whereas the boundary Γs could be
such that |Γs| = 0.(H4)

Remark 2.1. Note that at many steps one could only assume a C2,1 regularity of the domains, yet the
required C3,1 regularity on Γ is used to prove the elliptic regularity of the solution of the fluid problem
with mixed Dirichlet and Neumann boundary conditions, which requires more regularity than when
considering only a Dirichlet boundary condition (see [9]).

Remark 2.2. Under assumptions (H1)-(H4), we see that boundaries Γ, Γf and Γs are all disjoint
parts of ∂Ωf and ∂Ωs. An example of such a domain is given in Figure 1.

Let T > 0. The fluid problem written in the reference configuration, defined by (1.9), is well-defined
if, for almost every t in (0, T ), the displacement of the structure at time t, ds(t), is sufficiently regular
and if the deformation Φ(ds(t)) is a C1-diffeomorphism that maps Ωf into Φ(ds(t))(Ωf ). In the next
lemma, we show that this is true if the displacement of the structure at time t belongs to the ball BSM0

of H3(Ωs), defined by
BSM0

= {b ∈ H3(Ωs); ‖b‖H3(Ωs) ≤M0}, (2.1)

if the constantM0 is sufficiently small.
Let R be a linear lifting operator from H5/2(Γ) to H3(Ωf ) ∩ H1

Γf
(Ωf ) and we recall that γΓ is

the trace operator on the interface Γ. Since the domains are of class C2,1, they are both continuous
operators. We have the following result

Lemma 2.2. There exists a constantM0 > 0 such that for all b in BSM0
, we have

i) ∇(I +R(γΓ(b))) = I +∇(R(γΓ(b))) is an invertible matrix in H2(Ωf ),

ii) Φ(b) = I +R(γΓ(b)) is one to one on Ω̄f ,

iii) Φ(b) is a C1-diffeomorphism from Ωf onto Φ(b)(Ωf ),

Proof. It is clear that Φ(b) = I +R(γΓ(b)) belongs to H3(Ωf ) for all b in H3(Ωs). From Lemma 2.1,
point i), we know that H2(Ωf ) is a Banach algebra. Thus, ifM0 is chosen such that

‖b‖H3(Ωs) ≤M0 =⇒ ‖∇(R(γΓ(b)))‖H2(Ωf ) <
1

C(Ωf )
,

where C(Ωf ) is defined in Lemma 2.1, then I +∇(R(γΓ(b))) is an invertible matrix in H2(Ωf ) and i)
is proven.

For point ii), we know from [13, Theorem 5.5-1] that there exists a constant C > 0 such that for all
φ in C1(Ω̄f ),

‖∇φ‖C0(Ω̄f ) ≤ C =⇒
{

det(∇(I + φ))(x) > 0, ∀x ∈ Ω̄f ,
I + φ is injective on Ω̄f .

Then, because of the continuous embedding of H3(Ωf ) into C1(Ω̄f ) (see [1, Theorem 6.3, part III]), and
ifM0 is chosen small enough, this result can be applied to R(γΓ(b)) and we obtain point i). Finally,
using the continuous embedding of H3(Ωf ) into C1(Ω̄f ), the fact that det(∇Φ(b))(x) > 0, ∀x ∈ Ω̄f and
point ii), we can apply the inverse function theorem and prove point iii).

7



With the previous lemma we know that F and H, defined by (1.8), are well-defined in H2(Ωf ) for
all ds in BSM0

. Now we state another lemma, dealing with the mappings F , G and H.

Lemma 2.3. The mapping G defined from H3(Ωs) into H2(Ωf ) is of class C∞. The mappings F
and H are defined from BSM0

into H2(Ωf ) and are infinitely differentiable everywhere in BSM0
.

Proof. Let b be in BSM0
, then G(b) belongs to H2(Ωf ) because H2(Ωf ) is a Banach algebra according

to Lemma 2.1. The fact that F (b) and H(d) belong to H2(Ωf ) is also due to the fact that H2(Ωf ) is a
Banach algebra, along with the invertible property of ∇Φ(b) in H2(Ωf ). The mapping G is of class
C∞ by composition of C∞ mappings (such as γ, R, ∇, det, cof). For the regularity of the mappings F
and H, it is sufficient to use the fact that the mapping

H2(Ωf ) → H2(Ωf )
M 7→ M−1

is infinitely differentiable for all invertible matrix in H2(Ωf ) (see [12, chap. I]).

Corollary 2.1. For all b1 and b2 in BSM0
, we have the following estimates,

‖F (b1)− F (b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs),

‖G(b1)−G(b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs),

‖H(b1)−H(b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs).

where C(M0) are positive constants which depend onM0.

Proof. This result is a straightforward application of Lemma 2.3 and the mean value inequality (see
[12, Thm. 3.3.2]). The constants appearing in these inequalities are in fact given by

sup
b∈BSM0

‖DF (b)‖L(H3(Ωs),H2(Ωf )),

sup
b∈BSM0

‖DG(b)‖L(H3(Ωs),H2(Ωf )),

sup
b∈BSM0

‖DH(b)‖L(H3(Ωs),H2(Ωf )).

For the sake of simplicity in the upcoming computations, we denote them all by C(M0).

3 Main result

In this section, we state the existence of a local (in time) solution for the fluid-structure interaction
system with an active stress term, for small enough applied forces and a small enough internal activity
of the structure.

Theorem 3.1. Let the domains and frontiers Ωf , Ωs, Γf , Γs and Γ be defined by (H1)-(H4) and let
T > 0. Consider the force fs in L∞(0, T ;H1(Ωs)) and the internal activity Σ∗ in L∞(0, T ;H2(Ωs)),
the data of the problem, such that fs(0) = div (Σ∗(0)). Let us introduce the solution of a Stokes problem,
denoted by (w0

f , q
0
f ), which satisfies the equations

−div
(
σf (w0

f , q
0
f )
)

= 0 in Ωf ,

div(w0
f ) = 0 in Ωf ,

w0
f = 0 on Γf ,

σf (w0
f , q

0
f ) · nf = −Σ∗(0) · nf on Γ.

(3.1)

LetM1 > 0 and consider the ball BFM1
defined by

BFM1
=
{

(ω, π) ∈ L2(0, T ;H3(Ωf ) ∩H1
Γf

(Ωf ))× L2(0, T ;H2(Ωf ));

‖ω − w0
f‖L2(0,T,H3(Ωf )) + ‖π − q0

f‖L2(0,T,H2(Ωf )) ≤M1

}
.

(3.2)
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If the data fs and Σ∗, the time T and the constant M1 are sufficiently small, then there exists a
unique solution (wf , qf , ds) of (1.1), (1.2), (1.9), (1.4) and (1.5), with (wf , qf ) in BFM1

and ds in
L∞(0, T ;BSM0

∩H1
Γs

(Ωs)).

Remark 3.1. To be precise, the data fs and Σ∗, the time T and the constantM1 are considered to
be sufficiently small in order to apply the previous theorem, if they satisfy the following conditions,
that will appear in the proof of Theorem 3.1, detailed in section 6:

‖fs − div (Σ∗) ‖L∞(0,T,H1(Ωs))

+R0‖Σ∗‖L∞(0,T,H2(Ωs)) + C1M1T
1/2 ≤ R1,

(3.3)

C1
s‖Σ∗‖L∞(0,T,H2(Ωs)) < 1, (3.4)

‖fs − div (Σ∗) ‖L∞(0,T,H1(Ωs))

+(R0 + C1CfT )‖Σ∗‖L∞(0,T,H2(Ωs)) + C1M1T
1/2 ≤ M0

C2
s

,
(3.5)

C2

(
(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
≤M1,

(3.6)

C3

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (1 + T )‖Σ∗‖L∞(0,T ;H2(Ωs))

+M1T
1/2 +

T +M1T
1/2 + T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

)
< 1.

(3.7)

where R0, R1,M0, C1
s , C2

s , Cf , C1, C2 and C3 are positive constants which only depend on the domains
Ωf and Ωs, the viscosity of the fluid µf and the elasticity parameters µs and λs of the structure.

The proof of Theorem 3.1 is based on Banach’s fixed point theorem (see [10, Theorem V.7]). In this
scope, we construct a mapping S defined from BFM1

, the ball defined by equation (3.2), into the space
for the velocity and pressure of the fluid L2(0, T ;H3(Ωf ))× L2(0, T ;H2(Ωf )). This mapping is defined
through a composition of mappings that takes a couple (ω, π) in BFM1

, constructs a boundary condition
δ in H1(0, T ;H5/2(Γ)), solves an elasticity problem with Dirichlet boundary conditions associated to
the data (fs,Σ

∗, δ) and, finally, solves a fluid problem with mixed Dirichlet and Neumann boundary
conditions. In fact, S can be represented as the following composition of mappings:

S = O3 ◦ O2 ◦ O1, (3.8)

where each mapping writes

O1 :
BFM1

→ H1(0, T ;H5/2(Γ))

(ω, π) 7→ δ
,

O2 :
H1(0, T ;H5/2(Γ)) → L∞(0, T ;H3(Ωs))

δ 7→ ds
,

O3 :
L∞(0, T ;H3(Ωs)) → L2(0, T ;H3(Ωf ))× L2(0, T ;H2(Ωf ))

ds 7→ (wf , qf )
,

and will now be defined.
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Given a couple (ω, π) in BFM1
, the boundary condition δ is constructed, for all t ∈ [0, T ], by

δ(t) =

∫ t

0
γΓ(ω(s))ds,

which, according to Lemma 2.1, belongs to H1(0, T ;H5/2(Γ)). This defines the mapping O1.
Then, with this boundary condition, we consider the following problem, to obtain an elastic

displacement ds such that, for almost every t in (0, T ),
−div (Πs(ds(t), t)) = fs(t) in Ωs,

ds(t) = δ(t) on Γ,
ds(t) = 0 on Γs.

(3.9)

This elasticity problem with internal activity is studied in section 4. As we will see, it admits a unique
solution if the data (fs,Σ

∗, δ) are small enough, namely if conditions (3.3) and (3.4) are satisfied. This
step defines the mapping O2.

Next, to define the mapping O3, we consider a fluid problem, obtained from the fluid equations
written in the reference configuration (1.9) through a perturbation argument, which writes: find (wf , qf )
such that, for almost every t in (0, T ),

−div (σf (wf (t), qf (t))) = −µfdiv (((I −H(ds(t))∇)ω(t))
−µfdiv

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t) in Ωf ,

div (wf (t)) = −div
(
(I −G(ds(t))

T )ω(t)
)

in Ωf ,

wf (t) = 0 on Γf ,

σf (wf (t), qf (t))nf = Πs(ds(t), t)nf
+µf ((I −H(ds(t))∇)ω(t))nf

+µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

− (π(t)(I −G(ds(t))))nf on Γ.

(3.10)

This is a Stokes problem with mixed Dirichlet and Neumann boundary conditions, which is studied
in section 5. Moreover, condition (3.5) ensures that, for almost all t in (0, T ), the displacement ds(t)
belongs to the ball BSM0

(defined by (2.1)), such that problem (3.10) is well-defined.
Finally, under condition (3.6) the image by S of the ball BFM1

is included in BFM1
(i.e. S(BFM1

) ⊂ BFM1
)

and under condition (3.7), S is a contraction mapping such that we can apply Banach’s fixed point
theorem.

Therefore, this is a solution of the fluid-structure interaction problem since each fixed point of S
in BFM1

is a solution of (1.1), (1.2), (1.9), (1.4) and (1.5).

Remark 3.2. In the stationary case studied in [19], the fixed point procedure is done by solving the
fluid problem in a given geometry with Dirichlet boundary conditions and the solid problem with
Neumann boundary conditions and performing the fixed point on the geometry. However, in the present
study, where we consider a quasi-static time dependent model, the fixed point is conducted on the
velocity and the pressure of the fluid by solving the structure with Dirichlet boundary conditions and the
fluid problem with mixed Dirichlet and Neumann boundary conditions. Our choice on fluid-structure
splitting is due to the fact that we need time regularity on the solution. Indeed, because of the kinematic
coupling condition (1.4), we instantly lose time regularity in the decoupling process if the Dirichlet
boundary conditions are applied to the fluid.

Remark 3.3. The condition fs(0) = div (Σ∗(0)) appearing in Theorem 3.1 along with the hypothesis
that the displacement of the structure is null on the interface Γ at t = 0, ensures that the structure is
at rest initially. Indeed this implies that ds(0) = 0. Moreover if γ(ds(0)) 6= 0, the linearization of the
fluid problem in the reference configuration (1.9), that we considered in problem (3.10), has to be done
around the initial geometrical configuration given by ds(0), instead of the reference one.
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The remaining of this article is the following. In section 4, we consider system (3.9) and prove its
well-posedness and the regularity of its solution. In section 5, we study equations (3.10) and prove
existence, uniqueness and regularity results. In section 6, the proof of Theorem 3.1 is done using a
fixed point procedure on the mapping S. Finally, in section 7, an extension of Theorem 3.1 with more
general data is given.

4 Structure equations

In this section we study the two or three-dimensional elasticity equations with non-homogeneous
Dirichlet boundary conditions, where the solid is described by the nonlinear Saint Venant-Kirchhoff
law, and with an additional active stress. The domain Ωs satisfies (H1)-(H4). For a given body force
fs, a given Dirichlet boundary condition δ on Γ and a given active stress tensor Σ∗, the considered
structure problem writes:

−div((I +∇d)(Σs(d)− Σ∗)) = fs in Ωs,
d = δ on Γ,
d = 0 on Γs,

(4.1)

with the passive stress tensor Σs defined by (1.2). Then, the following lemma states that problem (4.1)
admits a unique solution d in H3(Ωs), for small enough data.

Lemma 4.1. Let Ωs, Γs and Γ be defined by (H1)-(H4) and suppose that fs belongs to H1(Ωs), δ
belongs to H5/2(Γ) and Σ∗ belongs to H2(Ωs). There exist three real positive constants R0, R1 and C1

s ,
that only depend on the domain Ωs and the elasticity parameters µs and λs such that, if the data satisfy
the conditions

‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ) ≤ R1, (4.2)

C1
s‖Σ∗‖H2(Ωs) < 1, (4.3)

then there exists a unique solution d of (4.1) in a neighborhood of 0 in the space H3(Ωs) ∩H1
Γs

(Ωs).
Moreover, there exists a positive constant C2

s that only depends on Ωs, µs and λs such that the solution
can be estimated with respect to the data:

‖d‖H3(Ωs) ≤ C2
s (‖fs − div(Σ∗)‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ)). (4.4)

Proof. The proof is based on Banach’s fixed point Theorem. We construct a mapping T defined
from H3(Ωs) ∩H1

Γs
(Ωs) into itself which, to all u in H3(Ωs) ∩H1

Γs
(Ωs), associates the solution of the

following passive elasticity problem: find a structure displacement d such that
−div((I +∇d)Σs(d)) = fs − div (Σ∗)− div (∇uΣ∗) in Ωs,

d = δ on Γ,
d = 0 on Γs.

(4.5)

More precisely, T is the following mapping:

T : H3(Ωs) ∩H1
Γs

(Ωs) → H3(Ωs) ∩H1
Γs

(Ωs)

u 7→ d.

The objective is to show that the mapping T has a fixed point d in the space H3(Ωs)∩H1
Γs

(Ωs), which
in turns solves problem (4.1).

The rest of the proof is divided in three parts. Firstly, we prove that, under condition (4.2) on
the data, the mapping T is well-defined, i.e. that problem (4.5) admits a unique solution in the
space H3(Ωs)∩H1

Γs
(Ωs). Secondly, we show that, under condition (4.3) on the data, T is a contraction

from a ball in H3(Ωs)∩H1
Γs

(Ωs) into itself. Finally, we apply Banach’s fixed point Theorem and obtain
the desired estimate.
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Let us show that (4.5) admits a unique solution in a neighborhood of 0 in H3(Ωs) ∩H1
Γs

(Ωs) if the
data are sufficiently small. A study of elasticity problems similar to problem (4.5) has been conducted
in [13] in Sobolev spaces W 2,p with p > n and considering homogeneous Dirichlet boundary conditions;
our proof essentially uses the same arguments. We introduce the following nonlinear operator of passive
elasticity:

A : H3(Ωs) ∩H1
Γs

(Ωs) → H1(Ωs)×H5/2(Γ),

d 7→ (−div((I +∇d)Σs(d)), γΓ(d)) ,

where we recall that γΓ is the trace operator on Γ. The mapping A is defined since H2(Ωs) is an
algebra in both two or three space dimensions (see Lemma 2.1) and is infinitely differentiable since it is
a sum of continuous multilinear mappings. As a consequence, problem (4.5) can be written in term of
operator: find d such that

A(d) = (f̃s, δ),

where
f̃s := fs − div(Σ∗)− div (∇uΣ∗) .

We can observe that d = 0 is a particular solution corresponding to the data (f̃s, δ) = (0, 0). Thus,
a natural idea consists in showing that the mapping A is locally invertible in a neighborhood of this
particular solution. In order to prove it, we need to check that the differential of A at 0 is an isomorphism
between H3(Ωs) ∩H1

Γs
(Ωs) and H1(Ωs)×H5/2(Γ), to be able to use the implicit function Theorem.

This differential at point 0 is given by

DA(0) · d = (−div (2µsD(d) + λsdiv (d) I) , γΓ(d)) ,

where D(d) = 1
2(∇d + ∇dT ) is the symmetric gradient of d. The operator DA(0) is the linearized

elasticity operator and is an isomorphism if for all f̃s in H1(Ωs) and for all δ in H5/2(Γ), there exists a
unique solution d in H3(Ωs) ∩H1

Γs
(Ωs) to the problem: find d such that −div (2µsD(d) + λsdiv(d)I) = f̃s in Ωs,

d = δ on Γ,
d = 0 on Γs.

(4.6)

Because δ belongs to H5/2(Γ) and Ωs is of class C2,1, there exists a lifting of δ in H3(Ωs) ∩H1
Γs

(Ωs),
denoted by δ̃, such that γΓ(δ̃) = δ. Then, the function d̃ defined by

d̃ = d− δ̃

is solution of the linearized elasticity problem with homogeneous Dirichlet boundary conditions: find d̃
such that, 

−div
(

2µsD(d̃) + λsdiv(d̃)I
)

=

f̃s + div
(

2µsD(δ̃) + λsdiv(δ̃)I
)

in Ωs,

d̃ = 0 on ∂Ωs.

(4.7)

Problem (4.7) is known as the linearized pure displacement problem and has been studied for instance
in [13, Theorem 6.3-6]. Because the boundary of Ωs is of class C2,1 and the right-hand side in the
first equation of (4.7) belongs to H1(Ωs), it follows that problem (4.7) admits a unique solution in the
space H3(Ωs) ∩H1

0 (Ωs) (see [20, Theorem 2.5.1.1]), with the estimate

‖d̃‖H3(Ωs) ≤ C(Ωs, µs, λs)(‖f̃s‖H1(Ωs) + ‖δ̃‖H3(Ωs)).

Furthermore, problem (4.6) admits d̃+ δ̃ as unique solution.
Hence, the linear continuous operator

DA(0) : H3(Ωs) ∩H1
Γs

(Ωs)→ H1(Ωs)×H5/2(Γ))

is bijective and its inverse is also continuous, by the closed graph Theorem. Thus, we can apply the
implicit function Theorem. Consequently, there exists V0 a neighborhood of 0 in H3(Ωs) ∩H1

Γs
(Ωs)
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and V1 a neighborhood of (0, 0) in H1(Ωs)×H5/2(Γ) such that the mapping A is a C1-diffeomorphism
from V0 to V1. In particular, there exist two positive constants R0 and R1 such that the ball

BSR0
=

{
u ∈ H3(Ωs) ∩H1

Γs
(Ωs); ‖u‖H3(Ωs) ≤ R0

}
,

satisfies
A−1

({
(f, δ) ∈ H1(Ωs)×H3/2(Γ); ‖f‖H1(Ωs) + ‖δ‖H5/2(Γ) ≤ R1

})
⊂ BSR0

.

Going back to the nonlinear problem (4.5), for all u in BSR0
, if the couple (f̃s, δ) belongs to the space{

(f, δ) ∈ H1(Ωs)×H3/2(Γ); ‖f‖H1(Ωs) + ‖δ‖H5/2(Γ) ≤ R1

}
,

i.e. if the inequality (4.2) is satisfied, there exists a unique solution d in BSR0
of problem (4.5). Moreover,

this solution can be estimated with respect to the data:

‖d‖H3(Ωs) ≤ C2
s

(
‖fs − div ((I +∇u)Σ∗) ‖H1(Ωs) + ‖δ‖H5/2(Γ)

)
, (4.8)

where the constant C2
s is defined by

C2
s = sup

‖(f,δ)‖≤R1

‖DA−1(f, δ)‖L(H1(Ωs)×H5/2(Γ),H3(Ωs)).

Thus, we just proved that the mapping T is well-defined from BSR0
into itself, if the data satisfy condition

(4.2).
Now, let us show that, under condition (4.3), T is a contraction from BSR0

into itself. Under condition
(4.2) on the data, we have that, for all u1 and u2 in BSR0

,

T (u1) = A−1(fs − div ((I +∇u1)Σ∗) , δ),
T (u2) = A−1(fs − div ((I +∇u2)Σ∗) , δ).

Since the mapping A−1 is a C1-diffeomorphism from V1 to V0, the mean value inequality can be applied.
From the mean value inequality and Lemma 2.1, we obtain the inequality

‖T (u1)− T (u2)‖H3(Ωs) ≤ C2
s‖(div ((∇u1 −∇u2)Σ∗) , 0)‖H1(Ωs)×H5/2(Γ),

≤ C1
s‖Σ∗‖H2(Ωs)‖u1 − u2‖H3(Ωs),

where C1
s = C2

sC(Ωs). It follows that T is a contraction from BSR0
into itself if the active stress Σ∗

satisfies inequality (4.3).
So, under conditions (4.2) and (4.3) on the data, the mapping T is a contraction from BSR0

into
itself. Thus, Banach’s fixed point theorem implies that T has a unique fixed point d in BSR0

, which
proves that there exists a unique solution d ∈ H3(Ωs) ∩H1

Γs
(Ωs) of (4.1), under smallness assumptions

on the data. Moreover, replacing the fixed point d in (4.8) and using the fact that d belongs to BSR0
we

obtain the estimate

‖d‖H3(Ωs) ≤ C2
s (‖fs − div(Σ∗)‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ)).

Remark 4.1. In the particular case where fs = div (Σ∗) and δ = 0, if Σ∗ satisfies conditions (4.2) and
(4.3), then Lemma 4.1 implies that ds = 0 is the unique solution of problem (4.1).

Using the notation introduced in the proof of Lemma 4.1, we also state the following corollary,
which gives a continuity estimate of the solutions of (4.1) with respect to the boundary data.

13



Corollary 4.1. Let fs be in H1(Ωs), Σ∗ be in H2(Ωs), and δ1 and δ2 be in H5/2(Γ). Moreover, suppose
that these data satisfy the following conditions:

‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ1‖H5/2(Γ) ≤ R1,

‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ2‖H5/2(Γ) ≤ R1,

C1
s‖Σ∗‖H2(Ωs) < 1,

where R0, R1 and C1
s have been defined in Lemma 4.1. Then there exists a unique solution d1 of (4.1)

in a neighborhood of 0 in H3(Ωs)∩H1
Γs

(Ωs), associated to the data (fs,Σ
∗, δ1) and there exists a unique

solution d2 to the same problem associated to the data (fs,Σ
∗, δ2). Furthermore, we have the following

estimate:
(1− C1

s‖Σ∗‖H2(Ωs))‖d1 − d2‖H3(Ωs) ≤ C2
s‖δ1 − δ2‖H5/2(Γ),

where C1
s and C2

s have been defined in Lemma 4.1.

Proof. The existence and uniqueness of d1 and d2 is a direct consequence of Lemma 4.1. Moreover,
using the fact that the mapping A−1 is everywhere differentiable in V1 and according to Lemma 2.1, we
have that

‖d1 − d2‖H3(Ωs)

=
∥∥∥A−1(f − div (Σ∗)− div (∇d1Σ∗) , δ1)

−A−1(f − div (Σ∗)− div (∇d2Σ∗) , δ2)
∥∥∥
H3(Ωs)

,

≤ C2
s‖(div ((∇d1 −∇d2)Σ∗) , δ1 − δ2)‖H1(Ωs)×H5/2(Γ),

≤ C1
s‖Σ∗‖H2(Ωs)‖d1 − d2‖H3(Ωs) + C2

s‖δ1 − δ2‖H5/2(Γ).

Then, condition (4.3) enables us to obtain the inequality

0 ≤ (1− C1
s‖Σ∗‖H2(Ωs))‖d1 − d2‖H3(Ωs) ≤ C2

s‖δ1 − δ2‖H5/2(Γ).

5 Fluid equations

In this section, we study the two or three-dimensional Stokes equations with mixed non-homogeneous
Dirichlet and Neumann boundary conditions, where the domain Ωf is defined by (H1)-(H4). The cases
of pure Dirichlet or Neumann boundary conditions have been, for example, treated in [9], where existence,
uniqueness and regularity have been obtained for the solution of the Stokes problem, depending on the
regularity of the domain and the data.

Let f be a given body force, g be a given divergence constraint and h be a given Neumann boundary
condition. We consider the Stokes problem: find (u, p) such that

−div (σf (u, p)) = f in Ωf ,
div(u) = g in Ωf ,

u = 0 on Γf ,
σf (u, p)nf = h on Γ,

(5.1)

where σf (u, p) is the fluid stress tensor defined by

σf (u, p) = 2µfD(u)− pI,
D(u) =

1

2
(∇u+∇uT ).

In the following lemma, we state an existence, uniqueness and regularity result for the solution
of problem (5.1). The key argument here is the fact that the boundary Γf , where the homogeneous
Dirichlet boundary condition is applied, and the boundary Γ, where the Neumann boundary condition
is applied, are disjoint parts of ∂Ωf , i.e. Γf ∩ Γ = ∅. Actually, this assumption on the domain Ωf

enables us to easily obtain the regularity of the solution, using existing regularity results on the solution
of the pure Dirichlet boundary problem and the pure Neumann boundary problem, that can be found
in [9].
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Lemma 5.1. Let Ωf , Γf and Γ be defined by (H1)-(H4) and suppose that f belongs to H1(Ωf ), g
to H2(Ωf ) and h to H3/2(Γ). Then, the Stokes problem (5.1) admits a unique solution in (H3(Ωf ) ∩
H1

Γf
(Ωf ))×H2(Ωf ). Moreover, there exists a positive constant Cf depending only on Ωf and µf such

that
‖u‖H3(Ωf ) + ‖p‖H2(Ωf ) ≤ Cf (‖f‖H1(Ωf ) + ‖g‖H2(Ωf ) + ‖h‖H3/2(Γ)).

To prove this lemma, we start by giving a preliminary result concerning the divergence operator,
which is based on Bogovskii’s result in [4].

Lemma 5.2. Let Ωf and Γf be defined by (H1)-(H4) and suppose that g is a function in L2(Ωf ).
Then, there exists a function u in H1

Γf
(Ωf ) such that div(u) = g. Moreover, there exists a constant

C(Ωf ) which depends on Ωf such that,

‖u‖H1(Ωf ) ≤ C(Ωf )‖g‖L2(Ωf ).

Proof. We consider an extension of Ωf , denoted by Ω∗, which strictly contains Ωf and whose part of
its boundary coincides with Γf . We define the function g∗ by

g∗(x) =


g(x) if x ∈ Ωf ,

|Ωf |
|Ω∗ \ Ωf |

∫
Ωf

g if x ∈ Ω∗ \ Ωf ,

where |Ωf | (resp. |Ω∗ \ Ωf |) is the volume of the domain Ωf (resp. Ω∗ \ Ωf ). Then, g∗ belongs
to L2(Ω∗) and has zero mean value over Ω∗, thus we can apply Bogovskii’s result [4], which states that
there exists a function u∗ in H1

0 (Ω∗) such that div(u∗) = g∗. Moreover, there exists a constant that
only depends on the domain Ω∗ (then depends on Ωf ) such that

‖u∗‖H1(Ω∗) ≤ C(Ωf )‖g∗‖L2(Ω∗).

Now, defining u as the restriction of u∗ over Ωf , we obtain that div (u) = g in Ωf . Moreover, we have
the following estimate:

‖u‖H1(Ωf ) ≤ C(Ωf )‖g‖L2(Ωf ).

We are now able to prove Lemma 5.1.

Proof of Lemma 5.1. We define the saddle-point formulation of problem (5.1) to be the following
problem: 

find (u, p) in H1
Γf

(Ωf )× L2(Ωf ) such that,
a(u, v) + (p,Bv)L2(Ωf ) = l(v) ∀v ∈ H1

Γf
(Ωf ),

(q,Bu)L2(Ωf ) = (q, g)L2(Ωf ) ∀q ∈ L2(Ωf ),

(5.2)

where (·, ·) denotes the scalar product in L2(Ωf ). The bilinear and linear forms a and l are defined by

a(u, v) = µf

∫
Ωf

D(u) : D(v),

l(v) =

∫
Ωf

f · v +

∫
Γ
h · v.

Moreover, B is the divergence operator defined by

B : H1
Γf

(Ωf ) → L2(Ωf )

u 7→ div (u) .

It is easy to check that a is a symmetric coercive continuous bilinear form on H1
Γf

(Ωf ) × H1
Γf

(Ωf )

and that l is a continuous linear form on H1
Γf

(Ωf ). Moreover, the operator B is a linear continuous
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operator from H1
Γf

(Ωf ) into L2(Ω) and Lemma 5.2 ensures that B is surjective. Thus, according to
Brezzi’s result on saddle-point problems (see [11]), there exists a unique solution (u, p) of problem (5.2).
Moreover, there exists a constant which depends on Ωf such that

‖u‖H1(Ωf ) + ‖p‖L2(Ωf ) ≤ C(Ωf )(‖f‖H1(Ωf ) + ‖g‖H2(Ωf ) + ‖h‖H3/2(Γ)).

Hence, since the boundaries Γf and Γ are disjoint and because Γf is of class C2,1 and Γ is of class C3,1,
the rest of the proof, i.e. the regularity of the solution, follows from the method of translations. For local
(interior) regularity we refer to Theorem IV.6.1 in [9]. For tangential regularity on the boundary Γf ,
where Dirichlet boundary conditions are applied, we refer to the proof of Theorem IV.5.8 in [9]. For
the tangential regularity on the boundary Γ, where Neumann boundary conditions are applied, we refer
to the proof of Theorem IV.7.4 in [9], which is presented in three space dimension but is still true in
two space dimension. Then, we use the tangential and normal coordinates in a tubular neighborhood
of ∂Ωf in Ωf , to deduce the regularity up to the boundary of the solution from the tangential regularity.
The desired estimate follows from these results.

Remark 5.1. On one hand, in [9], no assumption on the regularity of the domain is necessary to
apply the result on the interior regularity of the solution, stated in Theorem IV.6.1, which is also
independent of the chosen boundary conditions. On the other hand, Theorem IV.5.8, dealing with pure
Dirichlet boundary conditions, and Theorem IV.7.4, dealing with pure Neumann boundary conditions,
require hypotheses on the regularity of the domain and compatibility conditions on the data due to the
particular choice of boundary conditions. Yet, these compatibility conditions only appear in the case of
pure Dirichlet or pure Neumann boundary conditions, which is not the case here. Nevertheless, the
proofs for the regularity of the solution apply in the same way, since the boundaries where Dirichlet
and Neumann boundary conditions are applied are disjoint.

6 Fixed point procedure. Proof of Theorem 3.1

In this section, we go back to the coupled fluid-structure problem and apply the results of sections 4
and 5 to prove Theorem 3.1.

We recall that we consider T > 0, a positive constantM1, a force fs in the space L∞(0, T ;H1(Ωs))
and an internal activity of the structure Σ∗ in the space L∞(0, T ;H2(Ωs)), that satisfy conditions (3.3),
(3.4), (3.5), (3.6) and (3.7). Moreover, the structure is supposed to be at equilibrium initially, i.e. we
suppose that fs(0) = div (Σ∗(0)) and that d0 = 0, which implies that ds(0) = 0 (see Remark 4.1).
However, because the active stress tensor Σ∗ is not necessarily zero at t = 0, neither are the velocity
and pressure of the fluid. That is why we introduce the initial solution of the fluid problem (3.10),
denoted by (w0

f , q
0
f ), which satisfies equations (3.1), that we recall:

−div
(
σf (w0

f , q
0
f )
)

= 0 in Ωf ,

div
(
w0
f

)
= 0 in Ωf ,

w0
f = 0 on Γf ,

σf (w0
f , q

0
f )nf = −Σ∗(0)nf on Γ.

This Stokes problem is similar to the one studied in Lemma 5.1. Then, because the domain Ωf is
of class C3,1 and Σ∗(0) · nf is in H3/2(Γ), it follows that equations (3.1) admit a unique solution
denoted (w0

f , q
0
f ) in the space (H3(Ωf ) ∩H1

Γf
(Ωf ))×H2(Ωf ), which satisfies the following inequality:

‖w0
f‖H3(Ωf ) + ‖q0

f‖H2(Ωf ) ≤ Cf‖Σ∗(0)‖H2(Ωs).

Furthermore, by taking the L2-norm in time between 0 and T we obtain:

‖w0
f‖L2(0,T ;H3(Ωf )) + ‖q0

f‖L2(0,T ;H2(Ωf )) ≤ CfT 1/2‖Σ∗‖L∞(0,T ;H2(Ωs)). (6.1)
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As explained in section 3, the fixed-point procedure will be done on the fluid velocity and pressure,
in a neighborhood of the initial fluid state (w0

f , q
0
f ). That is why we introduced the ball BFM1

, defined
in (3.2), for which we recall the definition:

BFM1
=
{

(ω, π) ∈ L2(0, T ;H3(Ωf ) ∩H1
Γf

(Ωf ))× L2(0, T ;H2(Ωf ));

‖ω − w0
f‖L2(0,T,H3(Ωf )) + ‖π − q0

f‖L2(0,T,H2(Ωf )) ≤M1

}
.

Remark 6.1. From (6.1), we deduce that a given couple (ω, π) in BFM1
can be estimated with respect

to the constantM1, the time T and the norm of Σ∗:

‖ω‖L2(0,T ;H3(Ωf )) + ‖π‖L2(0,T ;H2(Ωf ))

≤M1 + CfT
1/2‖Σ∗‖L∞(0,T ;H2(Ωs)).

(6.2)

The remaining of the proof is divided in three steps. First, we show that the mapping S, defined in
(3.8), is well-defined from BFM1

into itself under condition (3.6). Then, we prove that S is a contraction
mapping if the data satisfy condition (3.7). Finally, we conclude using Banach’s fixed point theorem.

Step 1. Let us show that the mapping S is well-defined from BFM1
into itself under conditions (3.6).

We consider a couple (ω, π) in BFM1
and we construct, for all t ∈ [0, T ],

δ(t) =

∫ t

0
γΓ(ω(s))ds.

According to Lemma 2.1, δ belongs to H1(0, T ;H5/2(Γ)), with the following estimate,

‖δ‖L∞(0,T ;H5/2(Γ)) ≤ C1T
1/2‖ω‖L2(0,T ;H3(Ωf )), (6.3)

where C1 = C(Ωf ).
Now, we consider the elasticity problem (3.9) associated to the data δ, that writes: find ds such

that, for almost every t ∈ (0, T ),
−div (Πs(ds(t), t)) = fs(t) in Ωs,

ds(t) = δ(t) on Γ,
ds(t) = 0 on Γs.

Conditions (3.3) and (3.4) guarantee that fs, Σ∗ and δ satisfy conditions (4.2) and (4.3) for almost
every t in (0, T ):

‖fs(t)− div (Σ∗(t)) ‖H1(Ωs) +R0‖Σ∗(t)‖H2(Ωs) + ‖δ(t)‖H5/2(Γ) ≤ R1,

C1
s‖Σ∗(t)‖H2(Ωs) < 1,

where R0, R1 and C1
s have been introduced in Lemma 4.1. Then, for almost every t in (0, T ), Lemma 4.1

ensures the existence of a unique solution ds in BSR0
of problem (3.9). Moreover, it can be estimated

with respect to the data:

‖ds(t)‖H3(Ωs) ≤ C2
s

(
‖fs(t)− div (Σ∗(t)) ‖H1(Ωs)

+R0‖Σ∗(t)‖H2(Ωs) + ‖δ(t)‖H5/2(Γ)

)
,

where C2
s has been introduced in Lemma 4.1. It follows, using (6.3) and (6.2), that

‖ds‖L∞(0,T ;H3(Ωs)) ≤C2
s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+R0‖Σ∗‖L∞(0,T ;H2(Ωs))

+ C1T
1/2‖ω‖L2(0,T ;H3(Ωf ))

)
,

≤C2
s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+ (R0 + C1CfT )‖Σ∗‖L∞(0,T ;H2(Ωs)) (6.4)

+ C1T
1/2M1

)
.
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The next step is the study of the fluid problem (3.10), that we recall:

−div (σf (wf (t), qf (t))) = −µfdiv (((I −H(ds(t)))∇)ω(t))
−µfdiv

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t) in Ωf ,

div (wf (t)) = −div
(
(I −G(ds(t))

t)ω(t)
)

in Ωf ,

wf (t) = 0 on Γf ,

σf (wf (t), qf (t))nf = Πs(ds(t), t)nf
+µf ((I −H(ds(t)))∇)ω(t))nf

+µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

− (π(t)(I −G(ds(t))))nf on Γ.

Problem (3.10) is well-defined if ds(t) belongs to the ball BSM0
(defined by (2.1)) for almost every t.

Indeed, the matrix F (ds(t)) is well-defined under this condition (see Lemma 2.3). From estimate (6.4),
we see that condition (3.5) ensures that ds(t) belongs to BSM0

, hence that problem (3.10) is well-defined.
Moreover, in order to apply Lemma 5.1, we must show that every term in the right-hand side of problem
(3.10) is regular enough. The term

f(t) = −µfdiv (((I −H(ds(t)))∇)ω(t))
−µfdiv

(
∇wf (t)T − F (ds(t))

T∇wf (t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t),

belongs to H1(Ωf ) because F (ds(t)), G(ds(t)) and H(ds(t)) are in H2(Ωf ) and because H2(Ωf ) is a
Banach algebra and a multiplier space of H1(Ωf ) (see Lemma 2.1). Moreover f ∈ L2(0, T ;H1(Ωf )).
For the same reasons and because of the H2(Ωf ) regularity of Σ∗(t) a. e. in t, the term

h(t) = Πs(ds(t), t)nf + µf ((I −H(ds(t)))∇)ω(t)nf
+µf

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

−(π(t)(I −G(ds(t))))nf

belongs to H3/2(Γ), a. e in t and h ∈ L2(0, T ;H3/2(Γ)). In addition, because G(ds(t)) = cof(∇Φ(ds(t))),
the Piola identity (see [13, Chapter I, p 39]) implies that the term

g(t) = −div
(
(I −G(ds(t))

t)ω(t)
)

= (I −G(ds(t))
t) : ∇ω(t)

belongs to H2(Ωf ) a.e. in t and g ∈ L2(0, T ;H2(Ωf )). Moreover, the domain Ωf satisfies assumptions
(H1)-(H4). As a consequence, using Lemma 5.1, problem (3.10) admits a unique solution (wf (t), qf (t))
in (H3(Ωf ) ∩H1

Γf
(Ωf ))×H2(Ωf ) for almost every t in (0, T ). Therefore, due to the linearity of the

Stokes equations (3.10), the couple (wf (t)−w0
f , qf (t)− q0

f ), is also solution of a Stokes problem. Using
once more time Lemma 5.1, we have the following estimate for almost every t in (0, T ):

‖wf (t)− w0
f‖H3(Ωf ) + ‖qf (t)− q0

f‖H2(Ωf )

≤ Cf
(
‖µfdiv (((I −H(ds(t)))∇)ω(t)) ‖H1(Ωf )

+‖µfdiv
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
‖H1(Ωf )

+‖(I −G(ds(t)))∇π(t)‖H1(Ωf )

+‖(I −G(ds(t))
t) : ∇ω(t)‖H2(Ωf )

+‖(Πs(ds(t), t) + Σ∗(0))nf‖H3/2(Γ)

+‖µf (((I −H(ds(t)))∇)ω(t))nf‖H3/2(Γ)

+‖µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf‖H3/2(Ωf )

+‖(π(t)(I −G(ds(t))))nf‖H3/2(Γ)

)
.

(6.5)

Now, we estimate each term appearing in the right-hand side of the previous inequality. For the first
term of the right-hand side of estimate (6.5), using Lemma 2.1 and Corollary 2.1, since ds(t) belongs to
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BSM0
, we have

‖µfdiv (((I −H(ds(t)))∇)ω(t)) ‖H1(Ωf )

≤ C(Ωf , µf )‖∇ω(t)‖H2(Ωf )‖I −H(ds(t))‖H2(Ωf ),

≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ).

For the second term of the right-hand side of estimate (6.5), we remark that

∇ω(t)T − F (ds(t))
T∇ω(t)TG(ds(t))

= (I − F (ds(t))
T )∇ω(t)TG(ds(t))−∇ω(t)T (G(ds(t))− I).

(6.6)

Then, using (6.6), Lemma 2.1, Corollary 2.1 and the fact that G(ds(t)) is bounded because ds(t) belongs
to BSM0

, it follows that

‖µfdiv
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
‖H1(Ωf )

≤ C(Ωf ,M0, µf )
(
‖(I − F (ds(t))

T )∇ω(t)T ‖H2(Ωf )

+‖∇ω(t)T (I −G(ds(t)))‖H2(Ωf )

)
≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ).

Similarly, for the third, fourth, sixth, seventh and eighth terms of the right-hand side of estimate (6.5),
using Lemma 2.1, Corollary 2.1 and equation (6.6) (for the seventh term) leads to

‖(I −G(ds(t)))∇π(t)‖H1(Ωf ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖π(t)‖H2(Ωf ),

‖(I −G(ds(t)
t)) : ∇ω(t)‖H2(Ωf ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ).

‖µf∇ω(t)(I − F (ds(t)))nf‖H3/2(Γ) ≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ),

‖µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf‖H3/2(Ωf )

≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ),

‖(π(t)(I −G(ds(t))))nf‖H3/2(Γ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖π(t)‖H2(Ωf ).

Finally, for the fifth term of the right-hand side of estimate (6.5), we use the continuity of the trace
operator from H2(Ωs) to H3/2(Γ), the multilinearity property of the operator A, defined in the proof
of Lemma 4.1, and Lemma 2.1. We obtain

‖(Πs(ds(t), t) + Σ∗(0))nf‖H3/2(Γ)

≤ C(Ωs)‖Πs(ds(t), t) + Σ∗(0)‖H2(Ωs),

≤ C(Ωs)
(
‖(I +∇ds(t))Σs(ds(t))‖H2(Ωs) + ‖∇ds(t)Σ∗(t)‖H2(Ωs)

+‖Σ∗(t)− Σ∗(0)‖H2(Ωs)

)
,

≤ C(Ωs, R0, µs, λs)‖ds(t)‖H3(Ωs) + C(Ωs)‖∇ds(t)‖H2(Ωs)‖Σ∗(t)‖H2(Ωs)

+C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs)),

≤ C(Ωs, R0, µs, λs)‖ds(t)‖H3(Ωs) + C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs))‖ds(t)‖H3(Ωs)

+C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs)).

Then, replacing each term in (6.5), yields

‖wf (t)− w0
f‖H3(Ωf ) + ‖qf (t)− q0

f‖H2(Ωf )

≤ C
((
‖ω(t)‖H3(Ωf ) + ‖π(t)‖H2(Ωf )

)
‖ds(t)‖H3(Ωs)

+
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds(t)‖H3(Ωs)

+‖Σ∗‖L∞(0,T ;H2(Ωs))

)
,

where C = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Then, taking the L2-norm in time leads to

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C
((
‖ω‖L2(0,T ;H3(Ωf )) + ‖π‖L2(0,T ;H2(Ωf ))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
.
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Moreover, using estimate (6.2), we obtain

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C
((
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
.

(6.7)

Now, we estimate the first term in the right-hand side of (6.7), using (6.4):(
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

≤ C2
s

(
(1 + Cf )(R0 + C1CfT )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+(1 + Cf )T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+
(
C1CfT

3/2 + C1(1 + 2Cf )M1T +R0T
1/2 +R0M1

)
‖Σ∗‖L∞(0,T ;H2(Ωs))

+C1(T 1/2 +M1)M1T
1/2
)
,

which rewrites (
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

≤ C ′
(

(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
,

(6.8)

where C ′ = C(R0, C1, Cf , C
2
s ). Replacing (6.8) in (6.7) we find that

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C2

(
(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
,

where C2 = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Therefore, condition (3.6) guarantees that the solution
(wf , qf ) of the fluid problem belongs to BFM1

. Hence, the mapping S is well-defined from BFM1
into BFM1

if the data fs and Σ∗, the time T and the constantM1 satisfy condition (3.6).

Step 2. Now, let us show that S is a contraction mapping. Let (ω1, π1) and (ω2, π2) be given in
BFM1

. We built δ1 and δ2 such that, for all t ∈ [0, T ],

δ1(t) =

∫ t

0
γΓ(ω1(s))ds,

δ2(t) =

∫ t

0
γΓ(ω2(s))ds.

Applying Lemma 2.1 to the difference δ1 − δ2, it comes

‖δ1 − δ2‖L∞(0,T ;H5/2(Γ)) ≤ C1T
1/2‖ω1 − ω2‖L2(0,T ;H3(Ωf )), (6.9)

where C1 has been introduced in (6.3) and depends on the domain Ωf .
As before, conditions (3.3) and (3.4) ensure that the data (fs,Σ

∗, δ1) and (fs,Σ
∗, δ2) are sufficiently

small to apply Lemma 4.1. Thus, there exists a unique solution ds,1(t) to problem (3.9) associated to the

20



data (fs,Σ
∗, δ1) and a unique solution ds,2(t) associated to the data (fs,Σ

∗, δ2). Moreover, according
to Corollary 4.1 and using (6.9), we also have the estimate:

‖ds,1 − ds,2‖L∞([0,T ],H3(Ωs))

≤ C2
sC1T

1/2

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

‖ω1 − ω2‖L2(0,T ;H3(Ωf )).
(6.10)

Furthermore, condition (3.5) ensures that ds,1(t) and ds,2(t) belong to BSM0
for almost every t in

(0, T ) and, as before, the two fluid problems of type (3.10), associated with the data (ds,1, ω1, π1) and
(ds,2, ω2, π2) are well-defined for almost every t in (0, T ). According to Lemma 5.1, it follows that they
both admit a unique solution in (H3(Ωf )∩H1

Γf
(Ωf ))×H2(Ωf ), respectively denoted by (wf,1(t), qf,1(t))

and (wf,2(t), qf,2(t)). By linearity of the Stokes problem (3.10), the couple (wf,1(t)− wf,2(t), qf,1(t)−
qf,2(t)) is also solution of a Stokes problem, which writes

−µf∆(wf,1(t)− wf,2(t)) +∇(qf,1(t)− qf,2(t)) = f̄(t) in Ωf ,
div (wf,1(t)− wf,2(t)) = ḡ(t) in Ωf ,

wf,1(t)− wf,2(t)) = 0 on Γf ,
σf (wf,1(t)− wf,2(t), qf,1(t)− qf,2(t))nf = h̄(t) on Γ,

(6.11)

where, f̄ , ḡ and h̄ are defined, for almost all t in (0, T ) by

f̄(t) = −µfdiv (((I −H(ds,1(t))∇)(ω1(t)− ω2(t)))
+µfdiv (((H(ds,1(t))−H(ds,2(t))∇)ω2(t))
−µfdiv

(
∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))

)
+µfdiv

(
∇ω2(t)T − F (ds,2(t))T∇ω2(t)TG(ds,2(t))

)
+(I −G(ds,1(t))∇(π1(t)− π2(t))
−(G(ds,1(t))−G(ds,2(t))∇π2(t),

(6.12)

ḡ(t) = −div
(
(I −G(ds,1(t))T )(ω1(t)− ω2(t))

)
+div

(
(G(ds,1(t))T −G(ds,2(t))T )ω2(t)

)
,

h̄(t) = (Πs(ds,1(t))−Πs(ds,2(t)))nf
+µf ((I −H(ds,1(t))∇)(ω1(t)− ω2(t)))nf
−µf ((H(ds,1(t))−H(ds,2(t)))∇)ω2(t)nf
+µf

(
∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))

)
nf

−µf
(
∇ω2(t)T − F (ds,2(t))T∇ω2(t)TG(ds,2(t))

)
nf

−(π1(t)− π2(t))(I −G(ds,1(t)))nf
+π2(t)(G(ds,1(t))−G(ds,2(t)))nf .

We recall that matrices F (ds,1(t)), F (ds,2(t)), G(ds,1(t)), G(ds,2(t)), H(ds,1(t)) and H(ds,2(t)) are
in H2(Ωf ) for a. e. t ∈ (0, T ). Moreover the space H2(Ωf ) is a Banach algebra and a multiplier
space of H1(Ωf ). Therefore we can show that f̄(t) belongs to H1(Ωf ), ḡ(t) belongs to H2(Ωf ) and
the function h̄(t) belongs to H5/2(Γ) for a. e. t ∈ (0, T ). Thus, applying Lemma 5.1, the solution of
problem (6.11) is unique and satisfies the estimate

‖wf,1(t)− wf,2(t)‖H3(Ωf ) + ‖qf,1(t)− qf,2(t)‖H2(Ωf )

≤ Cf (‖f̄(t)‖H1(Ω1) + ‖ḡ(t)‖H2(Ωf ) + ‖h̄(t)‖H3/2(Γ)).
(6.13)

Let us now estimate each term in the right-hand side of (6.13). First, we remark that

∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))
−∇ω2(t)T + F (ds,2(t))T∇ω2(t)TG(ds,2(t))

= (I − F (ds,1(t))T )(∇ω1(t)T −∇ω2(t)T )G(ds,1(t))
+(F (ds,2(t))T − F (ds,1(t))T )∇ω2(t)TG(ds,1(t))
−F (ds,2(t))T∇ω2(t)T (G(ds,1(t))−G(ds,2(t)))

+(∇ω1(t)T −∇ω2(t)T )(I −G(ds,1(t))).

(6.14)

21



Then, injecting (6.14) in (6.12) and using Lemma 2.1, Corollary 2.1 and the fact that F (ds,2(t)) and
G(ds,1(t)) are bounded since ds,1(t) and ds,2(t) belong to BSM0

, f̄ satisfies

‖f̄(t)‖H1(Ωf ) ≤
C(Ωf ,M0, µf )

(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

))
.

Using Lemma 2.1 and Corollary 2.1, ḡ can be estimated as

‖ḡ(t)‖H2(Ωf ) ≤ C(Ωf ,M0)
(
‖ds,1(t)‖H3(Ωs)‖ω1(t)− ω2(t)‖H3(Ωf )

+‖ds,1(t)− ds,2(t)‖H3(Ωs)‖ω2(t)‖H3(Ωf )

)
.

Then, using (6.14), the continuity property of the trace operator from H2(Ωs) into H3/2(Γ) and from
H2(Ωf ) into H3/2(Γ), Lemma 2.1 and Corollary 2.1, h̄ can be bounded

‖h̄(t)‖H3/2(Γ) ≤
C(Ωs, R0, µs, λs)

(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1(t)− ds,2(t)‖H3(Ωs)

+C(Ωf ,M0, µf )
(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

))
.

Replacing them in inequality (6.13), yields

‖wf,1(t)− wf,2(t)‖H3(Ωf ) + ‖qf,1(t)− qf,2(t)‖H2(Ωf )

≤ CfC(Ωs, R0, µs, λs)
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1(t)− ds,2(t)‖H3(Ωs)

+CfC(Ωf ,M0, µf )
(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

))
.

Then, taking the L2-norm in time we obtain that

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
(
T 1/2

(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

+‖ds,1‖L∞(0,T ;H3(Ωs))

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
+‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

(
‖ω2‖L2(0,T ;H3(Ωf )) + ‖π2‖L2(0,T ;H2(Ωf ))

))
,

where C = C(Ωf ,Ωs,M0, R0, µf , µs, λs). Then, using estimate (6.2) on the couple (ω2, π2) which
belongs to BFM1

,

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
(
T 1/2

(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

+‖ds,1‖L∞(0,T ;H3(Ωs))

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
+‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))(M1 + Cf‖Σ∗‖L∞(0,T ;H2(Ωs))T

1/2)
)
.

Finally, using estimate (6.10) applied to the difference ds,1 − ds,2 and estimate (6.4) to the displace-
ment ds,1, we obtain

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
((
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
×C2

s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (R0 + C1CfT )‖Σ∗‖L∞(0,T ;H2(Ωs)) + C1M1T

1/2
)

+C2
sC1

T +M1T
1/2 + (1 + Cf )T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

‖ω1 − ω2‖L2(0,T ;H3(Ωf ))

)
,
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which rewrites

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C3

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
×
(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (1 + T )‖Σ∗‖L∞(0,T ;H2(Ωs)) +M1T

1/2

+
T +M1T

1/2 + T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

)
,

where C3 = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Therefore, we see that condition (3.7) guarantees that the
mapping S is a contraction.

Step 3. To conclude, we have proved that, i) under conditions (3.3), (3.4) and (3.5), the mapping
S is well-defined from BFM1

into L2(0, T ;H3(Ωf )) × L2(0, T ;H2(Ωf )), ii) under condition (3.6), the
image of BFM1

by S is included in BFM1
and iii) under condition (3.7), S is a contraction mapping.

Moreover, BFM1
is a bounded closed subset of a Banach space. Consequently, we apply Banach’s fixed

point theorem and conclude that the mapping S has a unique fixed point in BFM1
. Furthermore, this

also proves the existence and the uniqueness, for small enough forces and a small enough time, of a
regular solution to the fluid-structure interaction system (1.1), (1.2), (1.9), (1.4) and (1.5).

Remark 6.2. Note that here we have both smallness conditions on the time and on the amplitude of
the applied forces. It is due to the quasi-static nature of the problem we consider with elliptic problems
coupled through a kinematic condition at the interface.

7 More general conditions on the data

In this section, let us relax the assumption on the initial configuration of the system, fs(0) = div (Σ∗(0)).
This means that the structure is not at rest initially, even if it starts from its reference configuration.
Then, we show that the result stated in Theorem 3.1 is still true, i.e. that, under some smallness
conditions on the data, the time T and the constantM1, there exists a unique solution (wf , qf , ds) to
the coupled fluid-structure system (1.1), (1.2), (1.9), (1.4) and (1.5).

Theorem 7.1. Let the domains Ωf and Ωs and the frontiers Γf , Γs and Γ be defined by assump-
tions (H1)-(H4) and let T > 0 and 0 < ε < T . Consider fs in L∞(0, T ;H1(Ωs)) and Σ∗ in the
space L∞(0, T ;H2(Ωs)), the data of the problem. LetM1 > 0 and consider the ball BεM1

defined by

BF,εM1
= {(ω, π) ∈ L2(0, T − ε;H3(Ωf ) ∩H1

Γf
(Ωf ))× L2(0, T − ε;H2(Ωf ));

‖ω − w0
f‖L2(0,T−ε,H3(Ωf )) + ‖π − q0

f‖L2(0,T−ε,H2(Ωf )) ≤M1},

where (w0
f , q

0
f ) is the initial state of the fluid, solution of (3.1).

There exists positive constants R0, R1, M0, C1
s , C2

s , Cf , C1, C2 and C3, which only depend on
the domains Ωf and Ωs, the viscosity of the fluid µf and the elasticity parameters µs and λs of the
structure such that, if the data fs and Σ∗, the time T and the constant M1 satisfy conditions (3.3),
(3.4), (3.5), (3.6) and (3.7), then, there exists a unique solution (wf , qf , ds) of (1.1), (1.2), (1.9), (1.4)
and (1.5), with (wf , qf ) in BF,εM1

and ds in the space L∞(0, T − ε;BM0 ∩H1
Γs

(Ωs)).

The idea of the proof of Theorem 7.1 is inspired by the incremental method, usually used for the
numerical resolution of elasticity problems involving large deformations. In [13, sec. 6.10], Ciarlet
describes it as a method which consists in “letting the forces vary by small increments from zero to the
given ones and to compute corresponding approximate solutions by successive linearization”. Actually,
in the context of numerical simulation, it enables to compute the displacement of a structure whose
equilibrium position is “far” from its reference position, and which could not be obtained directly. Here,
this trick is used to apply Theorem 3.1 on a slightly different problem whose data, f εs and Σ∗ε, satisfy
the condition f εs (0) = div (Σ∗ε(0)). Then, we recover the solution associated with the true data, fs and
Σ∗.
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Proof. Let us introduce a body force f εs and an internal activity Σ∗ε, defined by

f εs (t) =

{ 1

ε
fs(0)t if t ≤ ε,

fs(t− ε) for almost every t in (ε, T ),

Σ∗ε(t) =

{ 1

ε
Σ∗(0)t if t ≤ ε,

Σ∗(t− ε) for almost every t in (ε, T ).

With these definitions, f εs belongs to the space L∞(0, T ;H1(Ωs)), Σ∗ε belongs to the space L∞(0, T ;H2(Ωs))
and the condition f εs (0) = div (Σ∗ε(0)) = 0 is satisfied. Moreover,

‖f εs − div (Σ∗ε) ‖L∞(0,T ;H1(Ωs)) ≤ ‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)),

‖Σ∗ε‖L∞(0,T :H2(Ωs)) ≤ ‖Σ∗‖L∞(0,T ;H2(Ωs)),

then the data f εs and Σ∗ε, the time T and the constantM1 also satisfy the conditions (3.3), (3.4), (3.6)
and (3.7) of Theorem 3.1. Thus, we can apply Theorem 3.1 to the fluid-structure system (1.1), (1.2),
(1.9), (1.4) and (1.5) associated to the data f εs and Σ∗ε. Consequently, there exists a unique solution
(wεf , q

ε
f , d

ε
s), with (wεf , q

ε
f ) in BM1 and dεs in L∞(0, T ;BM0 ∩H1

Γs
(Ωs)). Furthermore, if we choose ε < T ,

the triplet (wf , qf , ds) defined almost everywhere in (0, T − ε) by,

wf (t) = wεf (t+ ε),

qf (t) = qεf (t+ ε),

ds(t) = dεs(t+ ε),

is solution to the fluid-structure system (1.1), (1.2), (1.9), (1.4) and (1.5), associated to the data fs
and Σ∗, but only almost everywhere in (0, T − ε):

(wf , qf ) ∈ BεM1
and ds ∈ L∞(0, T − ε;BM0 ∩H1

Γs
(Ωs)).
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