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Existence for a quasi-static interaction problem
between a viscous fluid and an active structure

Céline Grandmont and Fabien Vergnet

Abstract. We consider a quasi-static fluid-structure interaction problem
where the fluid is modeled by the Stokes equations and the structure is an
active elastic material. More precisely, the displacement of the structure
satisfies the equations of elasticity with an additional active stress, which
models the presence of internal biological motors in the structure. Under
smallness assumptions on the data, we prove the existence of a solution
for this strongly coupled system.

Mathematics Subject Classification (2010). 35A01, 35A02, 35B65, 35D35,
74B99, 74F10, 76D07.

Keywords. Fluid-structure interaction, active structure, strong solution,
existence and uniqueness.

1. Introduction

Many biological and physiological phenomena involve active structures inter-
acting with fluids. For example, the mammalian reproduction process relies on
the ability of spermatozoa to swim using their flagellum [18]. In the lungs, cilia
are responsible for the transport of mucus in the mucociliary clearance process,
which protects bronchus from pathogens proliferation [28]. More generally, the
universal role played by cilia and flagella in biological transport mechanisms
motivates the present study of a fluid-structure interaction problem involving
an active material.

Cilia and flagella are soft media that deform themselves thanks to
internal motors and induce a flow within the surrounding fluid. Because of
their microscopic sizes and their low velocities, these structures evolve at a low
Reynolds number regime [25]. Indeed, the typical Reynolds number for fluids,
in which microscopic biological organisms (such as flagella and cilia) evolve,
lies between 10−6 and 10−4. From a modeling point of view, the inertial effects
are negligible within the fluid. Moreover, inertia effects within the structure
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can also be neglected and we can thus assume an instantaneous answer of the
structure to external and internal loads.

In the present article, we consider a fluid-structure interaction problem
involving an elastic material, subjected to an internal time-dependent stress,
and a Newtonian homogeneous viscous incompressible fluid, modeled by the
Stokes equations. The system is consequently time-dependent but non-inertial
and we end up with a quasi-static problem for which both the fluid domain and
the structure domain depend on the unknown displacement of the structure.
Moreover, the fluid and the solid are coupled at the interface and satisfy
transmission conditions, namely the continuity of velocities and the continuity
of normal stresses. For this coupled problem we prove that, for small enough
data (time, external and internal loads), there exists at least one smooth
solution and that any small enough solution is unique.

Numerous works have been devoted to the study of the existence of
solutions to coupled problems between a fluid and an elastic structure. For
problems involving a homogeneous viscous incompressible fluid and a passive
elastic structure, several models have been studied. In the case of a 3D linear
elastic structure evolving in a 3D viscous incompressible Newtonian flow, we
refer the reader to [17] and [8], where the structure is described by a finite
number of eigenmodes, or to [5] and [6] for an artificially damped elastic
structure. The considered models lead to parabolic-ODE or parabolic-parabolic
coupling which avoid the regularity gap induced by the parabolic-hyperbolic
coupling of standard fluid-structure interaction problems.

For systems coupling the incompressible Navier-Stokes equations with
the equations of linearized elasticity, existence and uniqueness of strong
solutions locally in time have been successively obtained in [15], [22], [26] and
more recently in [7]. In [15], the authors prove the existence of local strong
solutions for small enough data. To that aim, they require high regularity
assumptions on the initial data compared to the regularity obtained on the
solution. Uniqueness of the solution is obtained under even stronger regularity
assumptions. In [22], [26], the existence of local-in-time strong solutions is
proven in the case where the fluid-structure interface is flat and the initial
displacement of the structure is equal to zero. Once again, there exists a gap
between the regularity assumptions on the initial data and the regularity of
the solution. One of the main difficulties of such problems is to fill the gap
between the fluid (parabolic) and structure (hyperbolic) regularities. This has
been partially solved in [7] thanks to the obtention of an hidden regularity
property on the structure displacement, in the case of an immersed structure
which is initially at rest.

Finally, when the structure is nonlinear, very few results are known on
the well-posedness of the fluid-structure system. In [16], the Navier-Stokes
equations are coupled to the equations of elastodynamics and the existence
of a unique strong solution is proven locally in time under compatibility
conditions on the initial data. In [20], the steady state case is studied and the
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existence of strong solutions is derived for sufficiently small data, considering
either the Stokes or the steady state Navier-Stokes equations.

Regarding the well-posedness of fluid-structure problems involving active
structures and homogeneous viscous incompressible fluids, only few results
are available. In [19], the steady self-propelled motion of a rigid body in a
non-inertial fluid, modeled by either the Stokes or steady state Navier-Stokes
equations, is studied. The solid velocity on the fluid-structure interface is
divided in two parts: the first one is imposed and represents the self-propelled
velocity of the solid, whereas the second one is unknown and depends on
the interaction with the surrounding fluid. Existence of solutions is proven.
Moreover, conditions under which an imposed distribution of velocities on the
interface is able to propel the solid are investigated. In [27], [23], [14] boundary
value problems are considered for the swimming of a fish-like deformable
structure. Once again, the motion of the structure is split in two parts: the
rigid part of the displacement results from the fluid-solid interaction, whereas
the elastic deformations are imposed. The resulting system that couples the
Navier-Stokes equations for the fluid and Newton’s laws for the structure
is proven to be well-posed. Existence of weak solutions is derived in [23],
whereas [27] (resp. [14]) deals with the existence of a unique local-in-time
strong solution in the two-dimensional case (resp. three-dimensional case).

In all these works the strategy is the same: decompose the motion of
the structure in two parts. The first part is given and describes the internal
activity of the structure, while the second part is an unknown rigid motion
which satisfies the Newton’s law and is driven by the interaction with the
fluid. The originality of the present work lies in the fact that the activity of
the structure is modeled by a given internal active stress, so that the whole
motion of the structure results from strong interactions between the fluid, the
elastic properties of the structure and its internal activity.

Let us now introduce more precisely the fluid-structure problem that
we will consider from now on. Let n be the space dimension (n = 2 or 3)
and Ω be a regular open connected bounded subset of Rn (satisfying assump-
tions (H1) to (H4) below). We assume that the domain Ω is the union of
two subdomains: Ω = Ωs ∪ Ωf , with Ωs ∩ Ωf = ∅. The interface between Ωs
and Ωf is denoted by Γ and we define the remaining boundaries of Ωs and Ωf
by Γs = ∂Ωs \ Γ and Γf = ∂Ωf \ Γ. Examples of such domains are given in
Figure 1. Figure 1 (a) shows a sperm cell embedded in a fluid in the case
where |Γs| = 0. On the contrary, the case where |Γs| 6= 0 is illustrated in
Figure 1 (b), representing cilia attached to a wall.

The domain Ωs is filled with an active elastic medium. At time t, the
behavior of the structure is described by the non-inertial equations of elasticity
set in the reference configuration Ωs. Denoting by ds the displacement of the
structure, the equilibrium equations write

−div(Πs(ds(t), t)) = fs(t) in Ωs,
ds(t) = 0 on Γs,

(1.1)
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Figure 1. Two-dimensional examples of the geometry of the
fluid-structure problem, where |Γs| = 0 (a) and |Γs| 6= 0 (b).

where fs denotes an exterior body force applied on the structure. In the
present study, the tensor Πs, known as the first Piola-Kirchhoff stress tensor,
includes the active component. In the framework of continuum mechanics, two
popular approaches are used to model contractility of solid materials, namely
the active-stress method and the active-strain method (see [2]). The former
consists in adding an active component to the passive stress tensor, while
in the latter, the activation is modeled by a pre-strain in the multiplicative
decomposition of the deformation gradient tensor. Both approaches have been
used to describe active biological structures, in particular in the context of
myocardium and arteries studies. Yet, to our knowledge, they have never been
used to model cilia and flagella (we refer to [24, Chapter 2] for more details
on models of active organs). Here, we choose the active-stress formalism to
describe the presence of internal biological motors in cilia and we denote
by Σ∗ the active stress tensor added to the passive component of the stress
tensor. Moreover, we do not suppose the tensor Σ∗ to have any particular
structure. Instead, we consider the general case where it depends both on the
time t and the position x. If we consider the Saint Venant-Kirchhoff behavior
law to describe the passive component of the elastic medium, the constitutive
equations at time t then write

Πs(ds(t), t) = (I +∇ds(t))(Σs(ds(t))− Σ∗(t)),
Σs(ds) = 2µsE(ds(t)) + λstr(E(ds(t)))I,

E(ds) =
1

2
(∇ds(t) +∇ds(t)T +∇ds(t)T · ∇ds(t)),

(1.2)

where µs and λs are Lamé’s parameters (λs > 0, µs > 0) and I stands for
the identity matrix of Rn. The present active elastic model is particularly
interesting for the study of biological suspensions in a viscous fluid since the
activity of the structure is an internal activity. In particular, it allows to fully
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take into account the fluid-structure interaction, which is not the case when
one imposes the velocity or the deformation of the interface as in [19] or [27].

The structure moves under the influence of its internal activity and the
action of the surrounding fluid. Then, the deformation of the fluid domain at
time t, denoted by Φ(ds(t)), depends on the displacement of the structure on
the interface Γ and satisfies

Φ(ds(t)) = I + ds(t) on Γ,

where I is the identity mapping in Rn. Moreover, let γΓ be the trace operator
from Ωs onto Γ and R be a continuous linear lifting from Γ into Ωf (in spaces
made precise later on). Then, we extend the definition of the fluid domain
deformation Φ(ds(t)) to the whole domain Ωf as follows:

Φ(ds(t)) = I +R(γΓ(ds(t))) in Ωf ,

assuming that the deformation is equal to the identity on the fluid boundary Γf .
Thus, Φ(ds(t)) maps the reference fluid domain Ωf into the deformed fluid
domain at time t denoted by Φ(ds(t))(Ωf ).

The domain Ωf is filled with a Newtonian fluid of viscosity µf . At each
time t, the fluid velocity uf and the fluid pressure pf satisfy the Stokes
equations in the deformed configuration Φ(ds(t))(Ωf ), which write

−div (σf (uf (t), pf (t))) = 0 in Φ(ds(t))(Ωf ),
div(uf (t)) = 0 in Φ(ds(t))(Ωf ),

uf (t) = 0 on Φ(ds(t))(Γf ) = Γf ,
(1.3)

where
σf (uf (t), pf (t)) = 2µfD(uf (t))− pf (t)I,

D(uf (t)) =
1

2

(
∇uf (t) +∇uf (t)T

)
.

The tensor σf (uf (t), pf (t)) is the fluid stress tensor written in the deformed
configuration Φ(ds(t))(Ωf ) and D(uf (t)) denotes the symmetric part of the
gradient of uf (t). Moreover, we assume that no external force is applied to
the fluid.

We complete the system of equations (1.1), (1.2) and (1.3), with the usual
coupling conditions on the fluid-structure interface Γ, namely the continuity
conditions on the velocities:

wf (t) =
∂ds
∂t

(t) on Γ, (1.4)

and the continuity on the normal component of the stress tensors, which
stands for the action-reaction principle:

Πs(ds(t), t)nf = Πf (wf (t), qf (t))nf on Γ. (1.5)

The vector nf is the exterior unit normal vector of ∂Ωf , while wf and qf are
respectively the velocity and the pressure of the fluid written in the reference
configuration, defined at time t by

wf (t, ·) = uf (t,Φ(ds(t)(·))) and qf (t, ·) = pf (t,Φ(ds(t)(·))) in Ωf .
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In (1.5), Πf (wf (t), qf (t)) denotes the fluid stress tensor written in the reference
configuration, which will be specified below.

Even though the fluid-structure interaction problem that we consider in
the present study is non-inertial, it requires initial data for the displacement
of the structure on the interface Γ. This is due to the continuity condition
(1.4) on velocities. For the sake of simplicity, as in [7] and [26] for instance,
we assume that the fluid-structure interface is initially at rest, i.e. that

ds(0) = 0 on Γ, (1.6)

so that the kinematic boundary condition (1.4) writes

ds(t) =

∫ t

0

wf (s)ds on Γ. (1.7)

Note that, even if the fluid-structure interface is initially at rest, it does not
imply that the internal structure displacement is equal to zero. Moreover,
provided that ds(0) = 0, let us point out that (1.4) and (1.7) are just two
different ways to express the same boundary condition, namely the equality
of the velocities at the interface. Nevertheless, condition (1.4) can be seen as
a Dirichlet boundary condition for the fluid problem (with a possible loss of
regularity in time due to the derivation of the structure displacement) whereas
condition (1.7) can be seen as a Dirichlet boundary condition for the structure
problem. Then, in the decoupling procedure that we shall consider in order
to prove the existence of a solution and due to the loss of time regularity just
mentioned, we will split the fluid-structure coupled problem by considering
the structure part with the Dirichlet boundary condition (1.7) and the fluid
part with the Neumann boundary condition (1.5).

At first, we also assume that the internal forcing of the structure initially
counterbalances the external load, which means that fs(0) = div (Σ?(0)).
Then, together with the initial condition (1.6), it implies that ds(0) = 0 in
Ωs. Section 7 is devoted to the more general case where fs(0) 6= div (Σ∗(0)).

In order to define the fluid stress tensor Πf we write the Stokes sys-
tem (1.3) in the reference configuration. It is standard when analyzing fluid-
structure interaction problems since the original Stokes equations are set in an
unknown domain Φ(ds(t))(Ωf ). To that aim, we introduce the mappings F , G
and H defined by

F (ds(t)) = (∇(Φ(ds(t))))
−1,

G(ds(t)) = cof(∇(Φ(ds(t)))),
H(ds(t)) = F (ds(t))G(ds(t)).

(1.8)

The matrix F (ds(t)) (and a fortiori the matrix H(ds(t))) is well defined
whenever Φ(ds(t)) is, for instance, a C1-diffeomorphism. As we shall argue, it
is the case for small enough displacements in well chosen spaces. Then, using
the definitions of the mappings F , G and H, the Stokes equations, written in
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the reference configuration, are

−µfdiv
(
(H(ds(t))∇)wf (t) + F (ds(t))

T∇wf (t)TG(ds(t))
)

+G(ds(t))∇qf (t) = 0 in Ωf ,
div(G(ds(t))

Twf (t)) = 0 in Ωf ,
wf (t) = 0 on Γf ,

(1.9)

and the fluid stress tensor, written in the reference configuration at time t, is
defined by

Πf (wf (t), qf (t)) = µf

(
(H(ds(t))∇)wf (t)

+F (ds(t))
T∇wf (t)TG(ds(t))

)
−qf (t)G(ds(t)).

(1.10)

Remark 1.1. The tensor Πf is the image of the fluid stress tensor σf by the
Piola transformation.

We are going to prove the existence of strong solutions for the latter
coupled problem. To that purpose, in Section 2, we introduce useful nota-
tions and prove some technical lemmas. In particular, we show that, for
sufficiently small displacements of the structure, the mappings F and H,
defined by (1.8), are well-defined, so that the fluid problem (1.9) is also
well-defined. In Section 3, we state our main result, namely the existence
and the uniqueness (locally in time) of a regular strong solution to equations
(1.1), (1.2), (1.9), (1.4), (1.5), (1.6) under smallness assumptions on the data
and if the structure is initially at rest. As in [20], the proof is based on a fixed
point argument applied to a mapping that iterates between the resolution of
the elastic problem and the fluid problem. The difference between the present
quasi-static problem compared to the steady state problems, studied in [20],
relies on the kinematic condition (1.4) on the interface Γ, which is an unsteady
condition. In order to prove the convergence of the iterative process, we thus
have to split the fluid-structure problem by solving the structure problem
with the Dirichlet boundary condition (1.7) and the fluid problem with the
Neumann boundary condition (1.5). By doing so we ensure compactness in
time, whereas if one solves the structure problem with the Neumann boundary
condition (1.5) and the fluid problem with the Dirichlet boundary condition
(1.4) (as in [20]), one loses time regularity in the iterative process. In Section 4
and in Section 5, we study the structure and fluid problems independently. In
Section 6, the existence of a unique fixed point procedure is derived showing
that, under smallness assumptions on the data, the above mapping goes from
a ball into itself and is a contraction. Finally, in Section 7, we extend our
result to the case where the internal forcing does not initially counterbalance
the exterior load, i.e. where fs(0) 6= div (Σ∗(0)).
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2. Notations and preliminaries
2.1. Technical lemma
In this subsection, Ω denotes an open connected bounded subset of Rn of
class Ck−1,1, for an integer k ≥ 1. For r ≥ 0, the space Hr(Ω) denotes the
standard Sobolev space. Note that, the same notation is used whenever it is a
space of real-valued functions or vector-valued functions.

If Γ is a part of the boundary of Ω, we say that Γ is a disjoint part
of ∂Ω if Γ is non empty and Γ ∩ (∂Ω \ Γ) = ∅. Then, if Γ is a disjoint
part of ∂Ω, we denote by γΓ the trace operator on Γ, which is continu-
ous and surjective from Hr(Ω) onto Hr−1/2(Γ) for all 1

2 < r ≤ k (see [9,
Chap. 3, Sec. 2.5.3]). In particular, there exists a continuous lifting operator
from Hr−1/2(Γ) into Hr(Ω). Using these notations, we denote by H1

Γ(Ω) the
space defined by

H1
Γ(Ω) =

{
u ∈ H1(Ω); γΓ(u) = 0

}
.

For s ≥ 0, the space Hs(0, T ;Hr(Ω)) denotes the space of Sobolev-valued
functions in the time interval (0, T ), with T > 0. For s = 0 we denote this
space by L2(0, T ;Hr(Ω)).

The constant C that appears in all that follows always denotes a positive
constant that may change from line to line. However, its dependencies on the
fluid and structure domains or on the various parameters will always be made
clear.

We start by giving a technical lemma.

Lemma 2.1. Let Ω be a Lipschitz open connected bounded subset of Rn,
with n ≥ 1, and consider Γ, a part of its boundary.

i) Let r > n
2 . If u and v belong to Hr(Ω), then the product uv belongs

to Hr(Ω) and there exists a constant C(Ω) which depends on the do-
main Ω such that,

‖uv‖Hr(Ω) ≤ C(Ω)‖u‖Hr(Ω)‖v‖Hr(Ω).

ii) Let r ≥ 0 and s > max(n2 , r). If u belongs to Hs(Ω) and v belongs
to Hr(Ω), then the product uv belongs to Hr(Ω) and there exists a
constant C(Ω) which depends on the domain Ω such that,

‖uv‖Hr(Ω) ≤ C(Ω)‖u‖Hs(Ω)‖v‖Hr(Ω).

In this case Hs(Ω) will be designated as a multiplier space of Hr(Ω).
iii) Let k ∈ N∗ and T > 0. Moreover, assume that Ω is of class Ck−1,1. If w

belongs to L2(0, T ;Hk(Ω)), then the function δ defined by

δ(t) =

∫ t

0

γΓ(w(s))ds, ∀t ∈ [0, T ],

belongs to H1(0, T ;Hk−1/2(Γ)), and there exists a constant C(Ω) which
depends on the domain Ω such that,

‖δ‖L∞(0,T ;Hk−1/2(Γ)) ≤ C(Ω)T 1/2‖w‖L2(0,T ;Hk(Ω)).
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Proof. The proof of point i) relies on Sobolev injections and we refer to [1]
for a detailed proof. The essential point here is that the space Hr(Ω) is a
Banach algebra, because 2r is greater than the dimension n.

Point ii) is a consequence of [3, Theorem 7.5] and also relies on embedding
theorems for Sobolev spaces.

For point iii), a straightforward computation gives us that, for all t
in [0, T ],

‖δ(t)‖Hk−1/2(Γ) = ‖
∫ t

0

γΓ(ω(s))ds‖Hk−1/2(Γ) ≤ C(Ω)t1/2‖ω‖L2(0,T ;Hk(Ω)),

where C(Ω) is the continuity constant of the trace operator from Hk(Ω) onto
Hk−1/2(Γ). It follows that

‖δ‖L∞(0,T ;Hk−1/2(Γ)) ≤ C(Ω)T 1/2‖ω‖L2(0,T ;Hk(Ω)).

Moreover, since ∂δ
∂t = γΓ(ω) belongs to L2(0, T ;Hk−1/2(Γ)), we can conclude

that δ belongs to H1(0, T ;Hk−1/2(Γ)). �

2.2. Assumptions and preliminary results
In the remainder of the present article, we assume that the following assump-
tions hold true.

The domain Ω is an open connected bounded subset of Rn
(n ∈ {2, 3}) divided in two open connected bounded sets Ωf
and Ωs by an interface Γ.

(H1)

The interface Γ is of class C3,1, is non empty and does not
encounter the boundary of Ω, i.e. Γ ∩ ∂Ω = ∅.

(H2)

The remaining boundaries are denoted Γf = ∂Ωf \ Γ

and Γs = ∂Ωs \ Γ and are of class C2,1.(H3)

The boundary Γf is such that |Γf | 6= 0, whereas the
boundary Γs satisfies |Γs| ≥ 0.(H4)

Remark 2.1. Note that at many steps one could assume a C2,1 regularity of
the domains only. Yet the required C3,1 regularity on Γ is used to prove the
elliptic regularity of the solution to the fluid problem with mixed Dirichlet
and Neumann boundary conditions, which requires more regularity than when
considering a pure Dirichlet problem for the Stokes equations (see [9]).

Remark 2.2. Under assumptions (H1)-(H4), we see that boundaries Γ, Γf
and Γs are all disjoint parts of ∂Ωf and ∂Ωs. An example of such a domain is
given in Figure 1.

Let T > 0. The fluid problem written in the reference configuration,
defined by (1.9), is well-defined if, for almost every t in (0, T ), the displacement
of the structure at time t, ds(t), is sufficiently regular and if the deforma-
tion Φ(ds(t)) is a C1-diffeomorphism that maps Ωf into Φ(ds(t))(Ωf ). In the
next lemma, we show that this is true if the displacement of the structure at
time t belongs to the ball BSM0

of H3(Ωs), defined by

BSM0
= {b ∈ H3(Ωs); ‖b‖H3(Ωs) ≤M0}, (2.1)
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with a small enough constantM0.
Let R be a linear lifting operator from H5/2(Γ) to H3(Ωf ) ∩H1

Γf
(Ωf )

and we recall that γΓ is the trace operator on the interface Γ. Since the
domains are of class C2,1, they are both continuous operators. We then have
the following result

Lemma 2.2. There exists a constantM0 > 0 such that for all b in BSM0
, we

have
i) ∇(I +R(γΓ(b))) = I +∇(R(γΓ(b))) is an invertible matrix in H2(Ωf ),
ii) Φ(b) = I +R(γΓ(b)) is one to one on Ω̄f ,
iii) Φ(b) is a C1-diffeomorphism from Ωf onto Φ(b)(Ωf ),

Proof. It is clear that Φ(b) = I + R(γΓ(b)) belongs to H3(Ωf ) for all b
in H3(Ωs). From Lemma 2.1, point i), we know that H2(Ωf ) is a Banach
algebra. Thus, ifM0 is chosen such that

‖b‖H3(Ωs) ≤M0 =⇒ ‖∇(R(γΓ(b)))‖H2(Ωf ) <
1

C(Ωf )
,

where C(Ωf ) is defined in Lemma 2.1, point i), then I +∇(R(γΓ(b))) is an
invertible matrix in H2(Ωf ) and point i) is proven.

For point ii), we know from [13, Theorem 5.5-1] that there exists a
constant C > 0 such that for all φ in C1(Ω̄f ),

‖∇φ‖C0(Ω̄f ) ≤ C =⇒
{

det(∇(I + φ))(x) > 0, ∀x ∈ Ω̄f ,
I + φ is injective on Ω̄f .

Then, because of the continuous embedding of H3(Ωf ) into C1(Ω̄f ) (see
[1, Theorem 6.3, part III]), and ifM0 is chosen small enough, this result can
be applied to R(γΓ(b)) and we obtain point ii).

Finally, using the continuous embedding of H3(Ωf ) into C1(Ω̄f ), the fact
that det(∇Φ(b))(x) > 0 for all x ∈ Ω̄f and point ii), we can apply the inverse
function theorem and prove point iii). �

With the previous lemma we know that F and H, defined by (1.8),
are well-defined in H2(Ωf ) for all ds in BSM0

. We now state another lemma,
dealing with the mappings F , G and H.

Lemma 2.3. The mapping G defined from H3(Ωs) into H2(Ωf ) is of class C∞.
The mappings F and H are defined from BSM0

into H2(Ωf ) and are infinitely
differentiable everywhere in BSM0

.

Proof. Let b be in BSM0
, then G(b) belongs to H2(Ωf ) because H2(Ωf ) is a

Banach algebra according to Lemma 2.1. The fact that F (b) and H(d) belong
to H2(Ωf ) is also due to the fact that H2(Ωf ) is a Banach algebra, along with
the invertible property of ∇Φ(b) in H2(Ωf ). The mapping G is of class C∞ by
composition of C∞ mappings (such as γΓ, R, ∇, det, cof). For the regularity
of the mappings F and H, it is sufficient to use the fact that the mapping

H2(Ωf ) → H2(Ωf )
M 7→ M−1
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is infinitely differentiable for all invertible matrices inH2(Ωf ) (see [12, chap. I]).
�

Corollary 2.1. For all b1 and b2 in BSM0
, we have the following estimates,

‖F (b1)− F (b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs),
‖G(b1)−G(b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs),
‖H(b1)−H(b2)‖H2(Ωf ) ≤ C(M0)‖b1 − b2‖H3(Ωs).

where C(M0) denotes a positive constant which depends onM0.

Proof. This result is a straightforward application of Lemma 2.3 and the
mean value inequality (see [12, Thm. 3.3.2]). The constants appearing in these
inequalities are in fact given by

sup
b∈BS

M0

‖DF (b)‖L(H3(Ωs),H2(Ωf )),

sup
b∈BS

M0

‖DG(b)‖L(H3(Ωs),H2(Ωf )),

sup
b∈BS

M0

‖DH(b)‖L(H3(Ωs),H2(Ωf )).

For the sake of simplicity in the upcoming computations, we denote them all
by C(M0). �

3. Main result
In this section, we state the existence of a local solution (in time) for the
fluid-structure interaction system with an active stress term, for small enough
applied forces and a small enough internal activity of the structure.

Theorem 3.1. Let the domains and boundaries Ωf , Ωs, Γf , Γs and Γ be defined
by (H1)-(H4) and let T > 0. Consider the force fs in L∞(0, T ;H1(Ωs)) and
the internal activity Σ∗ in L∞(0, T ;H2(Ωs)), the data of the problem, such
that fs(0) = div (Σ∗(0)). First, we introduce (w0

f , q
0
f ) solution of the following

Stokes problem

−div
(
σf (w0

f , q
0
f )
)

= 0 in Ωf ,

div(w0
f ) = 0 in Ωf ,

w0
f = 0 on Γf ,

σf (w0
f , q

0
f ) · nf = −Σ∗(0) · nf on Γ.

(3.1)

Then, letM1 > 0 and consider the ball BFM1
defined by

BFM1
=
{

(ω, π) ∈ L2(0, T ;H3(Ωf ) ∩H1
Γf

(Ωf ))× L2(0, T ;H2(Ωf ));

‖ω − w0
f‖L2(0,T,H3(Ωf )) + ‖π − q0

f‖L2(0,T,H2(Ωf )) ≤M1

}
.

(3.2)

If the data fs and Σ∗, the time T and the constantM1 are sufficiently small,
then there exists a unique solution (wf , qf , ds) to (1.1), (1.2), (1.9), (1.4)
and (1.5), with (wf , qf ) in BFM1

and ds in L∞(0, T ;BSM0
∩H1

Γs
(Ωs)).
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Remark 3.1. To be precise, the data fs and Σ∗, the time T and the con-
stantM1 are considered to be sufficiently small if they satisfy the following
conditions, that will appear in the proof of Theorem 3.1, detailed in Section 6:

‖fs − div (Σ∗) ‖L∞(0,T,H1(Ωs))

+R0‖Σ∗‖L∞(0,T,H2(Ωs)) + C1M1T
1/2 ≤ R1,

(3.3)

C1
s‖Σ∗‖L∞(0,T,H2(Ωs)) < 1, (3.4)

‖fs − div (Σ∗) ‖L∞(0,T,H1(Ωs))

+(R0 + C1CfT )‖Σ∗‖L∞(0,T,H2(Ωs)) + C1M1T
1/2 ≤ M0

C2
s

,
(3.5)

C2

(
(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
≤M1,

(3.6)

C3

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (1 + T )‖Σ∗‖L∞(0,T ;H2(Ωs))

+M1T
1/2 +

T +M1T
1/2 + T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

)
< 1.

(3.7)

where R0, R1,M0, C1
s , C2

s , Cf , C1, C2 and C3 are positive constants which
only depend on the domains Ωf and Ωs, the viscosity of the fluid µf and
Lamé’s parameters µs and λs.

Remark 3.2. Theorem 3.1 states the existence of solutions to the quasi-static
fluid-structure problem with an active structure. Moreover any solution such
that (wf , qf ) ∈ BFM1

and ds ∈ L∞(0, T ;BSM0
∩H1

Γs
(Ωs)) is unique. Note that,

if one assumes further time regularity on the data and, to simplify, that the
fluid-structure system is initially at rest, it ensures that the solution stays in
a neighborhood of zero locally in time (see Remark 6.2) and thus that the
solution is unique.

The proof of Theorem 3.1 is based on Banach’s fixed point Theorem (see
[10, Theorem V.7]). In this scope, we build a mapping S defined from BFM1

(the ball defined by equation (3.2)) into the space for the velocity and the
pressure of the fluid: L2(0, T ;H3(Ωf ))× L2(0, T ;H2(Ωf )). This mapping is
defined through a composition of three mappings. The first one associates to a
couple (ω, π) in BFM1

a boundary condition δ in H1(0, T ;H5/2(Γ)). The second
one solves an elastic problem with a Dirichlet boundary condition associated to
the data (fs,Σ

∗, δ). The third one solves a fluid problem with mixed Dirichlet
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and Neumann boundary conditions. In sum, S can be represented as the
following composition of mappings:

S = O3 ◦ O2 ◦ O1, (3.8)

where each mapping writes

O1 :
BFM1

→ H1(0, T ;H5/2(Γ))
(ω, π) 7→ δ

,

O2 :
H1(0, T ;H5/2(Γ)) → L∞(0, T ;H3(Ωs))

δ 7→ ds
,

O3 :
L∞(0, T ;H3(Ωs)) → L2(0, T ;H3(Ωf ))× L2(0, T ;H2(Ωf ))

ds 7→ (wf , qf )
,

and will now be defined.
Given a couple (ω, π) in BFM1

, the boundary condition δ is build as
follows, for all t ∈ [0, T ],

δ(t) =

∫ t

0

γΓ(ω(s))ds.

According to Lemma 2.1, δ belongs to H1(0, T ;H5/2(Γ)). This defines the
mapping O1.

Then, with this boundary condition, we consider the following problem
in order to obtain an elastic displacement ds such that, for almost every t
in (0, T ),  −div (Πs(ds(t), t)) = fs(t) in Ωs,

ds(t) = δ(t) on Γ,
ds(t) = 0 on Γs.

(3.9)

This elastic problem with internal activity is studied in Section 4. It ad-
mits a unique solution if the data (fs,Σ

∗, δ) are small enough, namely if
conditions (3.3) and (3.4) are satisfied. This step defines the mapping O2.

Next, to define the mapping O3, we consider a fluid problem obtained
from the fluid equations (1.9) through a perturbation argument which writes:
find (wf , qf ) such that, for almost every t in (0, T ),

−div (σf (wf (t), qf (t))) = −µfdiv (((I −H(ds(t)))∇)ω(t))
−µfdiv

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t) in Ωf ,

div (wf (t)) = −div
(
(I −G(ds(t))

T )ω(t)
)

in Ωf ,

wf (t) = 0 on Γf ,

σf (wf (t), qf (t))nf = Πs(ds(t), t)nf
+µf ((I −H(ds(t)))∇ω(t))nf

+µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

− (π(t)(I −G(ds(t))))nf on Γ.
(3.10)

This Stokes problem with mixed Dirichlet and Neumann boundary conditions
is studied in Section 5. In particular, problem (3.10) is well-defined since



14 Céline Grandmont and Fabien Vergnet

condition (3.5) ensures that, for almost all t in (0, T ), the displacement ds(t)
belongs to the ball BSM0

(defined by (2.1)).

Furthermore, condition (3.6) ensures that the image of the ball BFM1
by

the mapping S is included in BFM1
(i.e. S(BFM1

) ⊂ BFM1
) and condition (3.7)

ensures that S is a contraction mapping.

We can then apply Banach’s fixed point Theorem and conclude that
there exists a solution to the fluid-structure interaction problem since any
fixed point of S in BFM1

is a solution of (1.1), (1.2), (1.9), (1.4) and (1.5).

Remark 3.3. In the steady state case studied in [20], the fixed point procedure
is done by solving the fluid problem in a given geometry with a Dirichlet
boundary condition and the solid problem with a Neumann boundary condition
and performing the fixed point argument on the geometry. However, in the
present study, where we consider a quasi-static time dependent model, the fixed
point is conducted on the velocity and the pressure of the fluid by solving the
structure problem with a Dirichlet boundary condition and the fluid problem
with mixed Dirichlet and Neumann boundary conditions. Our choice on the
fluid-structure splitting is due to the fact that we need time regularity on
the solution. Indeed, one instantly loses time regularity if one applies the
kinematic coupling condition (1.4) as a Dirichlet boundary condition to the
fluid equations.

The remaining of the present article is organized as follows. In Section 4,
we consider the system (3.9) and prove its well-posedness and the regularity
of its solution. In Section 5, we study equations (3.10) and prove existence,
uniqueness and regularity results. In Section 6, the proof of Theorem 3.1 is
done using a fixed point procedure on the mapping S. Finally, in Section 7, a
generalization of Theorem 3.1 with less restrictive assumptions on the data is
given.

Remark 3.4. In Section 7, we generalize the existence result states at Theo-
rem 3.1 to the more general case for which fs(0) 6= div (Σ∗(0)). This corre-
sponds to a case where the initial internal displacement of the structure is
not equal to zero. The case γΓ(ds(0)) 6= 0, however, is more involved. Indeed,
the fact that γΓ(ds(0)) = 0 ensures that the fluid domain is initially "at rest",
i.e. that the initial fluid domain is the equilibrium configuration of the fluid.
This statement is no longer true when γΓ(ds(0)) 6= 0 and the linearization
of the fluid problem (3.10) has to be done around the initial geometrical
configuration defined by ds(0). If γΓ(ds(0)) is regular enough, the same reg-
ularity result is obtained for the solution of the fluid equations. However,
if γΓ(ds(0)) belongs only to H

5
2 (Γ), it would require regularity results for

the Stokes problem with mixed boundary conditions in domains with non
standard boundary regularity.
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4. Structure equations
In this section we study the two or three-dimensional elasticity equations with
a non-homogeneous Dirichlet boundary condition, where the solid is described
by the nonlinear Saint Venant-Kirchhoff behavior law with an additional
active stress. The domain Ωs satisfies assumptions (H1)-(H4). For a given
body force fs, a given Dirichlet boundary condition δ on Γ and a given active
stress tensor Σ∗, the considered structure problem writes: −div((I +∇d)(Σs(d)− Σ∗)) = fs in Ωs,

d = δ on Γ,
d = 0 on Γs,

(4.1)

where the passive stress tensor Σs is defined by (1.2). Then, the following
lemma states that problem (4.1) admits a unique solution d in H3(Ωs), for
small enough data.

Lemma 4.1. Let Ωs, Γs and Γ be defined by (H1)-(H4) and suppose that fs
belongs to H1(Ωs), δ belongs to H5/2(Γ) and Σ∗ belongs to H2(Ωs). There
exist three real positive constants R0, R1 and C1

s which only depend on the
domain Ωs and Lamé’s parameters µs and λs such that, if the data satisfy

‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ) ≤ R1, (4.2)

C1
s‖Σ∗‖H2(Ωs) < 1, (4.3)

then there exists a unique solution d to (4.1) in a neighborhood of 0 in the
space H3(Ωs) ∩H1

Γs
(Ωs). Moreover, there exists a positive constant C2

s which
only depends on Ωs, µs and λs such that the solution can be estimated with
respect to the data:

‖d‖H3(Ωs) ≤ C2
s (‖fs − div(Σ∗)‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ)). (4.4)

Proof. The proof is based on Banach’s fixed point Theorem. We build a
mapping T defined from H3(Ωs)∩H1

Γs
(Ωs) into itself which, to all fonction u

in H3(Ωs) ∩H1
Γs

(Ωs), associates the solution to the following passive elastic
problem: find a structure displacement d such that −div((I +∇d)Σs(d)) = fs − div (Σ∗)− div (∇uΣ∗) in Ωs,

d = δ on Γ,
d = 0 on Γs.

(4.5)

More precisely, T is the following mapping:

T : H3(Ωs) ∩H1
Γs

(Ωs) → H3(Ωs) ∩H1
Γs

(Ωs)
u 7→ d.

The objective is to show that the mapping T has a unique fixed point
in H3(Ωs) ∩H1

Γs
(Ωs), which in turn solves problem (4.1).

The rest of the proof is divided in three parts. Firstly, we prove that,
under condition (4.2) on the data, the mapping T is well-defined, i.e. that
problem (4.5) admits a unique solution in H3(Ωs) ∩H1

Γs
(Ωs). Secondly, we

show that under condition (4.3) the mapping T is a contraction from a
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ball in H3(Ωs) ∩H1
Γs

(Ωs) into itself. Finally, we apply Banach’s fixed point
Theorem and obtain the desired estimate.

Let us show that (4.5) admits a unique solution in a neighborhood
of 0 in H3(Ωs) ∩H1

Γs
(Ωs) if the data are sufficiently small. A study of elastic

problems similar to problem (4.5) has been done in [13] in Sobolev spacesW 2,p

with p > n and considering a homogeneous Dirichlet boundary condition;
our proof essentially uses the same arguments. We introduce the following
nonlinear operator of passive elasticity:

A : H3(Ωs) ∩H1
Γs

(Ωs) → H1(Ωs)×H5/2(Γ),
d 7→ (−div((I +∇d)Σs(d)), γΓ(d)) ,

where we recall that γΓ is the trace operator on Γ. The mapping A is defined
since H2(Ωs) is a Banach algebra in both two or three space dimensions
(see Lemma 2.1) and is infinitely differentiable since it is a sum of continuous
multilinear mappings. As a consequence, problem (4.5) can be written in
terms of operator: find d such that

A(d) = (f̃s, δ),

where

f̃s := fs − div(Σ∗)− div (∇uΣ∗) .

Here, we observe that d = 0 is a particular solution corresponding to the
data (f̃s, δ) = (0, 0). Thus, a natural idea consists in showing that the map-
ping A is locally invertible in a neighborhood of this particular solution.
In order to prove it, we need to check that the differential of A at 0 is an
isomorphism between H3(Ωs) ∩H1

Γs
(Ωs) and H1(Ωs)×H5/2(Γ), so that the

implicit function Theorem can be applied. This differential at point 0 is given
by

DA(0) · d = (−div (2µsD(d) + λsdiv (d) I) , γΓ(d)) ,

where D(d) = 1
2 (∇d+∇dT ) is the symmetric part of the gradient of d. The

operator DA(0) is the linearized elasticity operator and is an isomorphism if
for all f̃s in H1(Ωs) and for all δ in H5/2(Γ), there exists a unique solution
in H3(Ωs) ∩H1

Γs
(Ωs) to the problem: find d such that −div (2µsD(d) + λsdiv(d)I) = f̃s in Ωs,

d = δ on Γ,
d = 0 on Γs.

(4.6)

Because δ belongs to H5/2(Γ) and Ωs is of class C2,1, there exists a lifting of δ
in H3(Ωs)∩H1

Γs
(Ωs), denoted by δ̃, such that γΓ(δ̃) = δ. Then, the function d̃

defined by

d̃ = d− δ̃
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is solution to the problem of linearized elasticity with a homogeneous Dirichlet
boundary condition: find d̃ such that,

−div
(

2µsD(d̃) + λsdiv(d̃)I
)

=

f̃s + div
(

2µsD(δ̃) + λsdiv(δ̃)I
)

in Ωs,

d̃ = 0 on ∂Ωs.

(4.7)

Problem (4.7) is known as the linearized pure displacement problem and has
been studied for instance in [13, Theorem 6.3-6]. Because the boundary of Ωs
is of class C2,1 and the right-hand side in the first equation of (4.7) belongs
to H1(Ωs), then problem (4.7) admits a unique solution in H3(Ωs) ∩H1

0 (Ωs)
(see [21, Theorem 2.5.1.1]), satisfying the following continuity estimate

‖d̃‖H3(Ωs) ≤ C(Ωs, µs, λs)(‖f̃s‖H1(Ωs) + ‖δ̃‖H3(Ωs)).

Furthermore, problem (4.6) admits d̃+ δ̃ as unique solution.
Hence, the linear continuous operator

DA(0) : H3(Ωs) ∩H1
Γs

(Ωs)→ H1(Ωs)×H5/2(Γ)

is bijective and its inverse is also continuous, by the closed graph Theorem.
Thus, we can apply the implicit function Theorem. Consequently, there
exists V0 a neighborhood of 0 in H3(Ωs) ∩H1

Γs
(Ωs) and V1 a neighborhood

of (0, 0) in H1(Ωs)×H5/2(Γ) such that the mapping A is a C1-diffeomorphism
from V0 to V1. In particular, there exist two positive constants R0 and R1

such that the ball

BSR0
=

{
u ∈ H3(Ωs) ∩H1

Γs
(Ωs); ‖u‖H3(Ωs) ≤ R0

}
,

satisfies

A−1
({

(f, δ) ∈ H1(Ωs)×H3/2(Γ); ‖f‖H1(Ωs) + ‖δ‖H5/2(Γ) ≤ R1

})
⊂ BSR0

.

Going back to the nonlinear problem (4.5), for all u in BSR0
, if the couple (f̃s, δ)

belongs to the space{
(f, δ) ∈ H1(Ωs)×H3/2(Γ); ‖f‖H1(Ωs) + ‖δ‖H5/2(Γ) ≤ R1

}
,

i.e. if the inequality (4.2) is satisfied, there exists a unique solution d in BSR0

to problem (4.5). Moreover, this solution can be estimated with respect to
the data:

‖d‖H3(Ωs) ≤ C2
s

(
‖fs − div ((I +∇u)Σ∗) ‖H1(Ωs) + ‖δ‖H5/2(Γ)

)
, (4.8)

where the constant C2
s is defined by

C2
s = sup

‖(f,δ)‖≤R1

‖DA−1(f, δ)‖L(H1(Ωs)×H5/2(Γ),H3(Ωs)).

Thus, we just proved that the mapping T is well-defined from BSR0
into itself,

if the data satisfy condition (4.2).
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Now, let us show that condition (4.3) ensures that T is a contraction
from BSR0

into itself. Under condition (4.2) on the data we have, for all u1

and u2 in BSR0
,

T (u1) = A−1(fs − div ((I +∇u1)Σ∗) , δ),
T (u2) = A−1(fs − div ((I +∇u2)Σ∗) , δ).

Since the mapping A−1 is a C1-diffeomorphism from V1 to V0, the mean value
inequality can be applied. From the mean value inequality and Lemma 2.1,
we obtain the following inequality

‖T (u1)− T (u2)‖H3(Ωs) ≤ C2
s‖(div ((∇u1 −∇u2)Σ∗) , 0)‖H1(Ωs)×H5/2(Γ),

≤ C1
s‖Σ∗‖H2(Ωs)‖u1 − u2‖H3(Ωs),

where C1
s = C2

sC(Ωs). It follows that T is a contraction from BSR0
into itself

if the active stress Σ∗ satisfies inequality (4.3).
So, under conditions (4.2) and (4.3) the mapping T is a contraction

from BSR0
into itself. Thus, Banach’s fixed point Theorem implies that T has

a unique fixed point d in BSR0
, which proves, under smallness assumptions on

the data, that there exists a unique solution d ∈ H3(Ωs) ∩H1
Γs

(Ωs) to (4.1).
Moreover, replacing the fixed point d in (4.8) and using the fact that d belongs
to BSR0

we obtain the estimate

‖d‖H3(Ωs) ≤ C2
s (‖fs − div(Σ∗)‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ‖H5/2(Γ)).

�

Remark 4.1. In the particular case where fs = div (Σ∗) and δ = 0, if Σ∗

satisfies conditions (4.2) and (4.3), then Lemma 4.1 implies that ds = 0 is the
unique solution to problem (4.1).

Using the notation introduced in the proof of Lemma 4.1, we also state
the following corollary, which gives a continuity estimate of the solutions
of (4.1) with respect to the boundary data.

Corollary 4.1. Let fs be in H1(Ωs), Σ∗ be in H2(Ωs), and δ1 and δ2 be
in H5/2(Γ). Moreover, suppose that these data satisfy the following conditions:

‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ1‖H5/2(Γ) ≤ R1,
‖fs − div (Σ∗) ‖H1(Ωs) +R0‖Σ∗‖H2(Ωs) + ‖δ2‖H5/2(Γ) ≤ R1,

C1
s‖Σ∗‖H2(Ωs) < 1,

where R0, R1 and C1
s have been defined in Lemma 4.1. Then there exists

a unique solution d1 of (4.1) in a neighborhood of 0 in H3(Ωs) ∩H1
Γs

(Ωs),
associated to the data (fs,Σ

∗, δ1) and there exists a unique solution d2 to the
same problem associated to the data (fs,Σ

∗, δ2). Furthermore, we have the
following estimate:

(1− C1
s‖Σ∗‖H2(Ωs))‖d1 − d2‖H3(Ωs) ≤ C2

s‖δ1 − δ2‖H5/2(Γ),

where C1
s and C2

s have been defined in Lemma 4.1.
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Proof. The existence and uniqueness of d1 and d2 is a direct consequence
of Lemma 4.1. Moreover, using the fact that the mapping A−1 is everywhere
differentiable in V1 and according to Lemma 2.1, we have that

‖d1 − d2‖H3(Ωs)

=
∥∥∥A−1(f − div (Σ∗)− div (∇d1Σ∗) , δ1)

−A−1(f − div (Σ∗)− div (∇d2Σ∗) , δ2)
∥∥∥
H3(Ωs)

,

≤ C2
s‖(div ((∇d1 −∇d2)Σ∗) , δ1 − δ2)‖H1(Ωs)×H5/2(Γ),

≤ C1
s‖Σ∗‖H2(Ωs)‖d1 − d2‖H3(Ωs) + C2

s‖δ1 − δ2‖H5/2(Γ).

Then, using (4.3) we obtain the desired inequality

0 ≤ (1− C1
s‖Σ∗‖H2(Ωs))‖d1 − d2‖H3(Ωs) ≤ C2

s‖δ1 − δ2‖H5/2(Γ).

�

5. Fluid equations

In this section, we study the two or three-dimensional Stokes equations
with mixed non-homogeneous Dirichlet and Neumann boundary conditions,
where the domain Ωf is defined by (H1)-(H4). The cases of pure Dirichlet
or Neumann boundary conditions have been, for example, treated in [9],
where existence, uniqueness and regularity results have been obtained for the
solution of the Stokes problem, depending on the regularity of the domain
and the data.

Let f be a given body force, g be a given divergence constraint and h
be a given Neumann boundary condition. We consider the Stokes problem:
find (u, p) such that

−div (σf (u, p)) = f in Ωf ,
div(u) = g in Ωf ,

u = 0 on Γf ,
σf (u, p)nf = h on Γ,

(5.1)

where σf (u, p) is the fluid stress tensor defined by

σf (u, p) = 2µfD(u)− pI,
D(u) =

1

2
(∇u+∇uT ).

In the following lemma, we state an existence, uniqueness and regularity
result for the solution of problem (5.1). The key argument here is the fact
that the boundary Γf , where the homogeneous Dirichlet boundary condition
is applied, and the boundary Γ, where the Neumann boundary condition is
applied, are disjoint parts of ∂Ωf , i.e. Γf ∩ Γ = ∅. Indeed, this assumption on
the domain Ωf allows us to easily obtain the regularity of the solution, using
existing regularity results on the solutions of the pure Dirichlet boundary
problem and the pure Neumann boundary problem, that can be found in [9].
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Lemma 5.1. Let Ωf , Γf and Γ be defined by (H1)-(H4) and suppose that f
belongs to H1(Ωf ), g to H2(Ωf ) and h to H3/2(Γ). Then, the Stokes prob-
lem (5.1) admits a unique solution in (H3(Ωf )∩H1

Γf
(Ωf ))×H2(Ωf ). Moreover,

there exists a positive constant Cf depending only on Ωf and µf such that

‖u‖H3(Ωf ) + ‖p‖H2(Ωf ) ≤ Cf (‖f‖H1(Ωf ) + ‖g‖H2(Ωf ) + ‖h‖H3/2(Γ)).

To prove this lemma, we start by giving a preliminary result concerning
the divergence operator, which is based on Bogovskii’s result in [4].

Lemma 5.2. Let Ωf and Γf be defined by (H1)-(H4) and suppose that g
is a function in L2(Ωf ). Then, there exists a function u in H1

Γf
(Ωf ) such

that div(u) = g. Moreover, there exists a constant C(Ωf ) which depends on Ωf
such that,

‖u‖H1(Ωf ) ≤ C(Ωf )‖g‖L2(Ωf ).

Proof. We consider an extension of Ωf , denoted by Ω∗, which strictly con-
tains Ωf and such that Γf ⊂ ∂Ω∗. We define the function g∗ by

g∗(x) =


g(x) if x ∈ Ωf ,

−1

|Ω∗ \ Ωf |

∫
Ωf

g if x ∈ Ω∗ \ Ωf ,

where |Ωf | (resp. |Ω∗ \ Ωf |) is the volume of the domain Ωf (resp. Ω∗ \ Ωf ).
Then, g∗ belongs to L2(Ω∗) and has zero mean value over Ω∗. Consequently,
we can apply Bogovskii’s result [4], which states that there exists a function u∗
in H1

0 (Ω∗) such that div(u∗) = g∗. Moreover, there exists a constant that only
depends on the domain Ω∗ (then depends on Ωf ) such that

‖u∗‖H1(Ω∗) ≤ C(Ωf )‖g∗‖L2(Ω∗).

Now, defining u as the restriction of u∗ over Ωf , we obtain that div (u) = g
in Ωf . Moreover, we have the following estimate:

‖u‖H1(Ωf ) ≤ C(Ωf )‖g‖L2(Ωf ).

�

We are now able to prove Lemma 5.1.

Proof of Lemma 5.1. We define the saddle-point formulation of problem (5.1)
as follows:

find (u, p) in H1
Γf

(Ωf )× L2(Ωf ) such that,
a(u, v) + (p,Bv)L2(Ωf ) = l(v) ∀v ∈ H1

Γf
(Ωf ),

(q,Bu)L2(Ωf ) = (q, g)L2(Ωf ) ∀q ∈ L2(Ωf ),

(5.2)

where (·, ·) denotes the scalar product in L2(Ωf ). The bilinear and linear
forms a and l are defined by

a(u, v) = µf

∫
Ωf

D(u) : D(v),

l(v) =

∫
Ωf

f · v +

∫
Γ

h · v.
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Moreover, B is the divergence operator defined by

B : H1
Γf

(Ωf ) → L2(Ωf )

u 7→ div (u) .

It is easy to check that a is a symmetric coercive continuous bilinear form
on H1

Γf
(Ωf )×H1

Γf
(Ωf ) and that l is a continuous linear form on H1

Γf
(Ωf ).

Moreover, the operator B is a linear continuous operator from H1
Γf

(Ωf )

into L2(Ω) and Lemma 5.2 ensures that B is surjective. Thus, according
to Brezzi’s result on saddle-point problems (see [11]), there exists a unique
solution (u, p) to problem (5.2). Moreover, there exists a constant which
depends on Ωf such that

‖u‖H1(Ωf ) + ‖p‖L2(Ωf ) ≤ C(Ωf )(‖f‖H1(Ωf ) + ‖g‖H2(Ωf ) + ‖h‖H3/2(Γ)).

Hence, since the boundaries Γf and Γ are disjoint and because Γf is
of class C2,1 and Γ is of class C3,1, the rest of the proof, i.e. the regularity
of the solution, follows from the method of translations. For local (interior)
regularity we refer to Theorem IV.6.1 in [9]. For tangential regularity on
the boundary Γf , where a Dirichlet boundary condition is applied, we refer
to the proof of Theorem IV.5.8 in [9]. For the tangential regularity on the
boundary Γ, where a Neumann boundary condition is applied, we refer to the
proof of Theorem IV.7.4 in [9], which is presented in three space dimension
but is still true in two space dimension. Then, we use the tangential and
normal coordinates in a tubular neighborhood of ∂Ωf in Ωf , to deduce the
regularity up to the boundary of the solution from the tangential regularity.
The desired estimate follows from these results. �

Remark 5.1. On one hand, in [9], no assumption on the regularity of the
domain is necessary to apply the result on the interior regularity of the
solution, stated in Theorem IV.6.1, which is also independent of the chosen
boundary conditions. On the other hand, Theorem IV.5.8, dealing with
pure Dirichlet boundary condition, and Theorem IV.7.4, dealing with pure
Neumann boundary condition, require hypotheses on the regularity of the
domain and compatibility conditions on the data due to the particular choice
of boundary conditions. Yet, these compatibility conditions only appear in
the case of pure Dirichlet or pure Neumann boundary conditions, which is
not the case here. Nevertheless, the proofs for the regularity of the solution
apply in the same way, since the boundaries where Dirichlet and Neumann
boundary conditions are applied are disjoint.

6. Fixed point procedure. Proof of Theorem 3.1
In this section, we go back to the coupled fluid-structure problem and apply
the results of Section 4 and Section 5 to prove Theorem 3.1.

We recall that we consider T > 0, a positive constantM1, a force fs in
the space L∞(0, T ;H1(Ωs)) and an internal activity of the structure Σ∗ in
the space L∞(0, T ;H2(Ωs)), that satisfy conditions (3.3), (3.4), (3.5), (3.6)
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and (3.7). Moreover, the structure is supposed to be initially at rest, i.e. we
suppose that fs(0) = div (Σ∗(0)) and that ds(0) = 0 on Γ, which implies
that ds(0) = 0 in Ωs (see Remark 4.1). However, because the active stress
tensor Σ∗ is not necessarily equal to zero at t = 0, neither are the velocity and
the pressure of the fluid. This is the reason why we introduce the initial solution
of the fluid problem (3.10) denoted by (w0

f , q
0
f ), which satisfies equations (3.1),

that we recall:
−div

(
σf (w0

f , q
0
f )
)

= 0 in Ωf ,

div
(
w0
f

)
= 0 in Ωf ,

w0
f = 0 on Γf ,

σf (w0
f , q

0
f )nf = −Σ∗(0)nf on Γ.

This Stokes problem is similar to the one studied in Lemma 5.1. Then,
because the domain Ωf satisfies assumptions (H1)-(H4) and Σ∗(0) · nf
is in H3/2(Γ), it follows that equations (3.1) admit a unique solution de-
noted (w0

f , q
0
f ) in (H3(Ωf )∩H1

Γf
(Ωf ))×H2(Ωf ), which satisfies the following

inequality:
‖w0

f‖H3(Ωf ) + ‖q0
f‖H2(Ωf ) ≤ Cf‖Σ∗(0)‖H2(Ωs).

Furthermore, by taking the L2-norm in time, between 0 and T , we obtain

‖w0
f‖L2(0,T ;H3(Ωf )) + ‖q0

f‖L2(0,T ;H2(Ωf )) ≤ CfT 1/2‖Σ∗‖L∞(0,T ;H2(Ωs)). (6.1)

As explained in Section 3, the fixed-point procedure is done on the
velocity and the pressure of the fluid, in a neighborhood of the initial fluid
state (w0

f , q
0
f ). This is the reason why we introduced the ball BFM1

, defined
by (3.2), for which we recall the definition:

BFM1
=
{

(ω, π) ∈ L2(0, T ;H3(Ωf ) ∩H1
Γf

(Ωf ))× L2(0, T ;H2(Ωf ));

‖ω − w0
f‖L2(0,T,H3(Ωf )) + ‖π − q0

f‖L2(0,T,H2(Ωf )) ≤M1

}
.

Remark 6.1. From (6.1), we deduce that a given couple (ω, π) in BFM1
can be

estimated with respect to the constantM1, the time T and the norm of Σ∗ as

‖ω‖L2(0,T ;H3(Ωf )) + ‖π‖L2(0,T ;H2(Ωf ))

≤M1 + CfT
1/2‖Σ∗‖L∞(0,T ;H2(Ωs)).

(6.2)

The remaining of the proof is divided in three steps. First, we show
that the mapping S, defined by (3.8), is well-defined from BFM1

into itself
under condition (3.6). Then, we prove that S is a contraction mapping if the
data satisfy condition (3.7). Finally, we conclude using Banach’s fixed point
Theorem.

Step 1. Let us show that the mapping S is well-defined from BFM1
into

itself under condition (3.6). We consider a couple (ω, π) in BFM1
and, for

all t ∈ [0, T ],

δ(t) =

∫ t

0

γΓ(ω(s))ds.
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According to Lemma 2.1, δ belongs to H1(0, T ;H5/2(Γ)) with the following
estimate

‖δ‖L∞(0,T ;H5/2(Γ)) ≤ C1T
1/2‖ω‖L2(0,T ;H3(Ωf )), (6.3)

where C1 = C(Ωf ).
Now, we consider the elastic problem (3.9) associated to the newly

constructed boundary condition δ that writes: find ds such that, for almost
every t ∈ (0, T ), −div (Πs(ds(t), t)) = fs(t) in Ωs,

ds(t) = δ(t) on Γ,
ds(t) = 0 on Γs.

Conditions (3.3) and (3.4) guarantee that fs, Σ∗ and δ satisfy conditions (4.2)
and (4.3) for almost every t in (0, T ), namely

‖fs(t)− div (Σ∗(t)) ‖H1(Ωs) +R0‖Σ∗(t)‖H2(Ωs) + ‖δ(t)‖H5/2(Γ) ≤ R1,
C1
s‖Σ∗(t)‖H2(Ωs) < 1,

where R0, R1 and C1
s have been introduced in Lemma 4.1. Then, for almost

every t in (0, T ), Lemma 4.1 ensures the existence of a unique solution ds
in BSR0

to problem (3.9). Moreover, ds can be estimated with respect to the
data as follows

‖ds(t)‖H3(Ωs) ≤ C2
s

(
‖fs(t)− div (Σ∗(t)) ‖H1(Ωs)

+R0‖Σ∗(t)‖H2(Ωs) + ‖δ(t)‖H5/2(Γ)

)
,

where C2
s has been introduced in Lemma 4.1. Using (6.3) and (6.2), it follows

that

‖ds‖L∞(0,T ;H3(Ωs)) ≤C2
s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+R0‖Σ∗‖L∞(0,T ;H2(Ωs))

+ C1T
1/2‖ω‖L2(0,T ;H3(Ωf ))

)
,

≤C2
s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+ (R0 + C1CfT )‖Σ∗‖L∞(0,T ;H2(Ωs)) (6.4)

+ C1T
1/2M1

)
.

The next step is the study of the fluid problem (3.10), that we recall:

−div (σf (wf (t), qf (t))) = −µfdiv (((I −H(ds(t)))∇)ω(t))
−µfdiv

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t) in Ωf ,

div (wf (t)) = −div ((I −G(ds(t))
t)ω(t)) in Ωf ,

wf (t) = 0 on Γf ,

σf (wf (t), qf (t))nf = Πs(ds(t), t)nf
+µf (((I −H(ds(t)))∇)ω(t))nf

+µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

− (π(t)(I −G(ds(t))))nf on Γ.
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Problem (3.10) is well-defined if ds(t) belongs to the ball BSM0
(defined

by (2.1)) for almost every t. Indeed, the matrix F (ds(t)) is well-defined under
this condition (see Lemma 2.3). From estimate (6.4), we see that condition (3.5)
ensures that ds(t) belongs to BSM0

, hence that problem (3.10) is well-defined.
Moreover, in order to apply Lemma 5.1, we must show that every term in the
right-hand side of problem (3.10) is regular enough. The term

f(t) = −µfdiv (((I −H(ds(t)))∇)ω(t))
−µfdiv

(
∇wf (t)T − F (ds(t))

T∇wf (t)TG(ds(t))
)

+(I −G(ds(t)))∇π(t),

belongs to H1(Ωf ) a.e. in t because F (ds(t)), G(ds(t)) and H(ds(t)) are
in H2(Ωf ) and because H2(Ωf ) is a Banach algebra and a multiplier space
of H1(Ωf ) (see Lemma 2.1). Moreover f ∈ L2(0, T ;H1(Ωf )). For the same
reasons and because of the H2(Ωf ) regularity of Σ∗(t) a.e. in t, the term

h(t) = Πs(ds(t), t)nf + µf ((I −H(ds(t)))∇)ω(t)nf
+µf

(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf

−(π(t)(I −G(ds(t))))nf

belongs to H3/2(Γ) a.e. in t and h ∈ L2(0, T ;H3/2(Γ)). In addition, because
the matrix G(ds(t)) = cof(∇Φ(ds(t))), the Piola identity (see [13, Chapter I,
p 39]) implies that the term

g(t) = −div
(
(I −G(ds(t))

t)ω(t)
)

= (I −G(ds(t))
t) : ∇ω(t)

belongs to H2(Ωf ) a.e. in t and g ∈ L2(0, T ;H2(Ωf )). Moreover, the do-
main Ωf satisfies assumptions (H1)-(H4). As a consequence, and accord-
ing to Lemma 5.1, problem (3.10) admits a unique solution (wf (t), qf (t))
in the product space (H3(Ωf ) ∩ H1

Γf
(Ωf )) × H2(Ωf ) for almost every t

in (0, T ). Therefore, due to the linearity of the Stokes equations (3.10), the
couple (wf (t) − w0

f , qf (t) − q0
f ), is also solution of a Stokes problem. Us-

ing Lemma 5.1 again, we obtain the following inequality for almost every t
in (0, T ),

‖wf (t)− w0
f‖H3(Ωf ) + ‖qf (t)− q0

f‖H2(Ωf )

≤ Cf
(
‖µfdiv (((I −H(ds(t)))∇)ω(t)) ‖H1(Ωf )

+‖µfdiv
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
‖H1(Ωf )

+‖(I −G(ds(t)))∇π(t)‖H1(Ωf )

+‖(I −G(ds(t))
t) : ∇ω(t)‖H2(Ωf )

+‖(Πs(ds(t), t) + Σ∗(0))nf‖H3/2(Γ)

+‖µf (((I −H(ds(t)))∇)ω(t))nf‖H3/2(Γ)

+‖µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf‖H3/2(Ωf )

+‖(π(t)(I −G(ds(t))))nf‖H3/2(Γ)

)
.

(6.5)

Now, we estimate each term appearing in the right-hand side of the previous
inequality. For the first term in the right-hand side of estimate (6.5), using
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Lemma 2.1 and Corollary 2.1 and since ds(t) belongs to BSM0
, we have

‖µfdiv (((I −H(ds(t)))∇)ω(t)) ‖H1(Ωf )

≤ C(Ωf , µf )‖∇ω(t)‖H2(Ωf )‖I −H(ds(t))‖H2(Ωf ),
≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ).

For the second term in the right-hand side of estimate (6.5), we remark that

∇ω(t)T − F (ds(t))
T∇ω(t)TG(ds(t))

= (I − F (ds(t))
T )∇ω(t)TG(ds(t))−∇ω(t)T (G(ds(t))− I).

(6.6)

Then, using (6.6), Lemma 2.1, Corollary 2.1 and the fact that G(ds(t)) is
bounded because ds(t) belongs to BSM0

, it follows that

‖µfdiv
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
‖H1(Ωf )

≤ C(Ωf ,M0, µf )
(
‖(I − F (ds(t))

T )∇ω(t)T ‖H2(Ωf )

+‖∇ω(t)T (I −G(ds(t)))‖H2(Ωf )

)
≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ).

Similarly, for the third, fourth, sixth, seventh and eighth terms in the right-
hand side of estimate (6.5), we use Lemma 2.1, Corollary 2.1 and equation (6.6)
(for the seventh term) and it yields

‖(I −G(ds(t)))∇π(t)‖H1(Ωf ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖π(t)‖H2(Ωf ),

‖(I −G(ds(t)
t)) : ∇ω(t)‖H2(Ωf ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ),

‖µf (((I −H(ds(t)))∇)ω(t))nf‖H3/2(Γ)

≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ),

‖µf
(
∇ω(t)T − F (ds(t))

T∇ω(t)TG(ds(t))
)
nf‖H3/2(Ωf )

≤ C(Ωf ,M0, µf )‖ds(t)‖H3(Ωs)‖ω(t)‖H3(Ωf ),

‖(π(t)(I −G(ds(t))))nf‖H3/2(Γ) ≤ C(Ωf ,M0)‖ds(t)‖H3(Ωs)‖π(t)‖H2(Ωf ).

Finally, for the fifth term in the right-hand side of estimate (6.5), we use the
continuity of the trace operator from H2(Ωs) to H3/2(Γ), the multilinearity
property of the operator A (defined in the proof of Lemma 4.1) and Lemma 2.1.
We obtain

‖(Πs(ds(t), t) + Σ∗(0))nf‖H3/2(Γ)

≤ C(Ωs)‖Πs(ds(t), t) + Σ∗(0)‖H2(Ωs),

≤ C(Ωs)
(
‖(I +∇ds(t))Σs(ds(t))‖H2(Ωs) + ‖∇ds(t)Σ∗(t)‖H2(Ωs)

+‖Σ∗(t)− Σ∗(0)‖H2(Ωs)

)
,

≤ C(Ωs, R0, µs, λs)‖ds(t)‖H3(Ωs) + C(Ωs)‖∇ds(t)‖H2(Ωs)‖Σ∗(t)‖H2(Ωs)

+C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs)),
≤ C(Ωs, R0, µs, λs)‖ds(t)‖H3(Ωs) + C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs))‖ds(t)‖H3(Ωs)

+C(Ωs)‖Σ∗‖L∞(0,T ;H2(Ωs)).
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Then, replacing each term in (6.5), it yields

‖wf (t)− w0
f‖H3(Ωf ) + ‖qf (t)− q0

f‖H2(Ωf )

≤ C
((
‖ω(t)‖H3(Ωf ) + ‖π(t)‖H2(Ωf )

)
‖ds(t)‖H3(Ωs)

+
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds(t)‖H3(Ωs)

+‖Σ∗‖L∞(0,T ;H2(Ωs))

)
,

where C = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Taking the L2-norm in time, we
obtain

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C
((
‖ω‖L2(0,T ;H3(Ωf )) + ‖π‖L2(0,T ;H2(Ωf ))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
.

Then, using estimate (6.2), we find the following inequality

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C
((
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

+T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
.

(6.7)
Now, we estimate the first term in the right-hand side of (6.7), using (6.4):

(
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

≤ C2
s

(
(1 + Cf )(R0 + C1CfT )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+(1 + Cf )T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+
(
C1CfT

3/2 + C1(1 + 2Cf )M1T +R0T
1/2 +R0M1

)
‖Σ∗‖L∞(0,T ;H2(Ωs))

+C1(T 1/2 +M1)M1T
1/2
)
,

which rewrites(
T 1/2 +M1 + (1 + Cf )T 1/2‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds‖L∞(0,T ;H3(Ωs))

≤ C
(

(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
,

(6.8)
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where C = C(R0, C1, Cf , C
2
s ). Replacing (6.8) in (6.7) we find

‖wf − w0
f‖L2(0,T ;H3(Ωf )) + ‖qf − q0

f‖L2(0,T ;H2(Ωf ))

≤ C2

(
(1 + T )T 1/2‖Σ∗‖2L∞(0,T ;H2(Ωs))

+T 1/2‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))‖Σ∗‖L∞(0,T ;H2(Ωs))

+(M1 + T 1/2)‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs))

+(T 3/2 +M1T + T 1/2 +M1)‖Σ∗‖L∞(0,T ;H2(Ωs))

+(T 1/2 +M1)M1T
1/2
)
,

where C2 = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Therefore, condition (3.6) guaran-
tees that the solution (wf , qf ) to the fluid problem belongs to BFM1

. Hence,
the mapping S is well-defined from BFM1

into BFM1
if the data Σ∗ and fs, the

time T and the constantM1 satisfy condition (3.6).

Step 2. Now, let us show that S is a contraction mapping. Let (ω1, π1)
and (ω2, π2) be given in BFM1

. We built δ1 and δ2 such that, for all t ∈ [0, T ],

δ1(t) =

∫ t

0

γΓ(ω1(s))ds,

δ2(t) =

∫ t

0

γΓ(ω2(s))ds.

Applying Lemma 2.1 to the difference δ1 − δ2, it yields

‖δ1 − δ2‖L∞(0,T ;H5/2(Γ)) ≤ C1T
1/2‖ω1 − ω2‖L2(0,T ;H3(Ωf )), (6.9)

where C1 has been introduced in (6.3) and depends on the domain Ωf .
As before, conditions (3.3) and (3.4) ensure that the data (fs,Σ

∗, δ1)
and (fs,Σ

∗, δ2) are sufficiently small to apply Lemma 4.1. Thus, there exists
a unique solution ds,1(t) to problem (3.9) associated to the data (fs,Σ

∗, δ1)
and a unique solution ds,2(t) associated to the data (fs,Σ

∗, δ2). Moreover,
according to Corollary 4.1 and using (6.9), we also have the estimate:

‖ds,1 − ds,2‖L∞([0,T ],H3(Ωs))

≤ C2
sC1T

1/2

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

‖ω1 − ω2‖L2(0,T ;H3(Ωf )).
(6.10)

Furthermore, condition (3.5) ensures that ds,1(t) and ds,2(t) belong
to BSM0

for almost every t in (0, T ) and, as before, the two fluid problems
of type (3.10), associated with the data (ds,1, ω1, π1) and (ds,2, ω2, π2) are
well-defined for almost every t in (0, T ). According to Lemma 5.1, it follows
that they both admit a unique solution in (H3(Ωf ) ∩ H1

Γf
(Ωf )) × H2(Ωf )

denoted by (wf,1(t), qf,1(t)) and (wf,2(t), qf,2(t)) respectively. By linearity of
the Stokes problem (3.10), the couple (wf,1(t) − wf,2(t), qf,1(t) − qf,2(t)) is
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also solution to a Stokes problem, which writes
−µf∆(wf,1(t)− wf,2(t)) +∇(qf,1(t)− qf,2(t)) = f̄(t) in Ωf ,

div (wf,1(t)− wf,2(t)) = ḡ(t) in Ωf ,
wf,1(t)− wf,2(t)) = 0 on Γf ,

σf (wf,1(t)− wf,2(t), qf,1(t)− qf,2(t))nf = h̄(t) on Γ,
(6.11)

where, f̄ , ḡ and h̄ are defined, for almost every t in (0, T ) by

f̄(t) = −µfdiv (((I −H(ds,1(t)))∇)(ω1(t)− ω2(t)))
+µfdiv (((H(ds,1(t))−H(ds,2(t)))∇)ω2(t))
−µfdiv

(
∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))

)
+µfdiv

(
∇ω2(t)T − F (ds,2(t))T∇ω2(t)TG(ds,2(t))

)
+(I −G(ds,1(t)))∇(π1(t)− π2(t))
−(G(ds,1(t))−G(ds,2(t)))∇π2(t),

(6.12)

ḡ(t) = −div
(
(I −G(ds,1(t))T )(ω1(t)− ω2(t))

)
+div

(
(G(ds,1(t))T −G(ds,2(t))T )ω2(t)

)
,

h̄(t) = (Πs(ds,1(t))−Πs(ds,2(t)))nf
+µf ((I −H(ds,1(t)))∇(ω1(t)− ω2(t)))nf
−µf ((H(ds,1(t))−H(ds,2(t)))∇ω2(t))nf
+µf

(
∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))

)
nf

−µf
(
∇ω2(t)T − F (ds,2(t))T∇ω2(t)TG(ds,2(t))

)
nf

−(π1(t)− π2(t))(I −G(ds,1(t)))nf
+π2(t)(G(ds,1(t))−G(ds,2(t)))nf .

We recall that matrices F (ds,1(t)), F (ds,2(t)), G(ds,1(t)), G(ds,2(t)),H(ds,1(t))
and H(ds,2(t)) are in H2(Ωf ) for a.e. t ∈ (0, T ). Moreover the space H2(Ωf )
is a Banach algebra and a multiplier space of H1(Ωf ). Therefore we can show
that f̄(t) belongs to H1(Ωf ), ḡ(t) belongs to H2(Ωf ) and the function h̄(t)

belongs to H5/2(Γ) for a.e. t ∈ (0, T ). Thus, applying Lemma 5.1, the solution
to problem (6.11) is unique and satisfies the estimate

‖wf,1(t)− wf,2(t)‖H3(Ωf ) + ‖qf,1(t)− qf,2(t)‖H2(Ωf )

≤ Cf (‖f̄(t)‖H1(Ω1) + ‖ḡ(t)‖H2(Ωf ) + ‖h̄(t)‖H3/2(Γ)).
(6.13)

Let us now estimate each term in the right-hand side of (6.13). First, we
remark that

∇ω1(t)T − F (ds,1(t))T∇ω1(t)TG(ds,1(t))
−∇ω2(t)T + F (ds,2(t))T∇ω2(t)TG(ds,2(t))

= (I − F (ds,1(t))T )(∇ω1(t)T −∇ω2(t)T )G(ds,1(t))
+(F (ds,2(t))T − F (ds,1(t))T )∇ω2(t)TG(ds,1(t))
−F (ds,2(t))T∇ω2(t)T (G(ds,1(t))−G(ds,2(t)))

+(∇ω1(t)T −∇ω2(t)T )(I −G(ds,1(t))).

(6.14)

Then, injecting (6.14) in (6.12) and using Lemma 2.1, Corollary 2.1 and the
fact that F (ds,2(t)) and G(ds,1(t)) are bounded since ds,1(t) and ds,2(t) belong
to BSM0

, f̄ satisfies
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‖f̄(t)‖H1(Ωf ) ≤
C
(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

) )
,

where C = C(Ωf ,M0, µf ). Using Lemma 2.1 and Corollary 2.1, ḡ satisfies
the inequality

‖ḡ(t)‖H2(Ωf ) ≤ C(Ωf ,M0)
(
‖ds,1(t)‖H3(Ωs)‖ω1(t)− ω2(t)‖H3(Ωf )

+‖ds,1(t)− ds,2(t)‖H3(Ωs)‖ω2(t)‖H3(Ωf )

)
.

Then, using (6.14), the continuity property of the trace operator from H2(Ωs)
into H3/2(Γ) and from H2(Ωf ) into H3/2(Γ), Lemma 2.1 and Corollary 2.1, h̄
can be bounded by

‖h̄(t)‖H3/2(Γ) ≤
C
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1(t)− ds,2(t)‖H3(Ωs)

+C ′
(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

) )
,

where C = C(Ωs, R0, µs, λs) and C ′ = C(Ωf ,M0, µf ). Then, replacing all
three inequalities in (6.13), yields

‖wf,1(t)− wf,2(t)‖H3(Ωf ) + ‖qf,1(t)− qf,2(t)‖H2(Ωf )

≤ C
(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1(t)− ds,2(t)‖H3(Ωs)

+C ′
(
‖ds,1(t)‖H3(Ωs)

(
‖ω1(t)− ω2(t)‖H3(Ωf ) + ‖π1(t)− π2(t)‖H2(Ωf )

)
+‖ds,1(t)− ds,2(t)‖H3(Ωs)

(
‖ω2(t)‖H3(Ωf ) + ‖π2(t)‖H2(Ωf )

) )
,

where C = CfC(Ωs, R0, µs, λs) and C ′ = CfC(Ωf ,M0, µf ). Taking the L2-
norm in time we obtain

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
(
T 1/2

(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

+‖ds,1‖L∞(0,T ;H3(Ωs))

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
+‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

(
‖ω2‖L2(0,T ;H3(Ωf )) + ‖π2‖L2(0,T ;H2(Ωf ))

) )
,

where C = C(Ωf ,Ωs,M0, R0, µf , µs, λs). Then, using estimate (6.2) on the
couple (ω2, π2) which belongs to BFM1

,

‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
(
T 1/2

(
1 + ‖Σ∗‖L∞(0,T ;H2(Ωs))

)
‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))

+‖ds,1‖L∞(0,T ;H3(Ωs))

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
+‖ds,1 − ds,2‖L∞(0,T ;H3(Ωs))(M1 + Cf‖Σ∗‖L∞(0,T ;H2(Ωs))T

1/2)
)
,

where C = C(Ωf ,Ωs,M0, R0, µf , µs, λs). Finally, using estimate (6.10) ap-
plied to the difference ds,1 − ds,2 and estimate (6.4) to the displacement ds,1,
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we obtain
‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C
((
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
×C2

s

(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (R0 + C1CfT )‖Σ∗‖L∞(0,T ;H2(Ωs))

+C1M1T
1/2
)

+C2
sC1

T +M1T
1/2 + (1 + Cf )T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

‖ω1 − ω2‖L2(0,T ;H3(Ωf ))

)
,

which rewrites
‖wf,1 − wf,2‖L2(0,T ;H3(Ωf )) + ‖qf,1 − qf,2‖L2(0,T ;H2(Ωf ))

≤ C3

(
‖ω1 − ω2‖L2(0,T ;H3(Ωf )) + ‖π1 − π2‖L2(0,T ;H2(Ωf ))

)
×
(
‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)) + (1 + T )‖Σ∗‖L∞(0,T ;H2(Ωs)) +M1T

1/2

+
T +M1T

1/2 + T‖Σ∗‖L∞(0,T ;H2(Ωs))

1− C1
s‖Σ∗‖L∞(0,T ;H2(Ωs))

)
,

where C3 = C(Ωf ,Ωs, R0,M0, µf , µs, λs). Therefore, we see that condi-
tion (3.7) guarantees that the mapping S is a contraction.

Step 3. To conclude, we have proved that, i) under conditions (3.3), (3.4)
and (3.5), the mapping S is well-defined from the ball BFM1

into the product
space L2(0, T ;H3(Ωf )) × L2(0, T ;H2(Ωf )), ii) under condition (3.6), the
image of BFM1

by S is included in BFM1
and iii) under condition (3.7), S is a

contraction mapping. Moreover, BFM1
is a bounded closed subset of a Banach

space. Consequently, we apply Banach’s fixed point Theorem and conclude
that the mapping S has a unique fixed point in BFM1

. This proves the existence,
for small enough forces and a small enough time, of a regular solution to the
fluid-structure interaction system (1.1), (1.2), (1.9), (1.4) and (1.5). Moreover
any solution such that (wf , qf ) ∈ BFM1

and ds ∈ L∞(0, T ;BSM0
∩H1

Γs
(Ωs)) is

unique. �

Remark 6.2. Note that here we have both smallness conditions on the time
and on the amplitude of the applied forces. This is due to the quasi-static
nature of the problem, which involves elliptic problems coupled through a
kinematic condition at the interface. Nevertheless, assuming further time
regularity on the data, namely assuming that fs ∈ C0,α([0, T ];H1(Ωs))
and Σ∗ ∈ C0,α([0, T ];H2(Ωs)) with, to simplify, fs(0) = 0 and Σ∗(0) = 0, one
could prove, following the very same lines as in the previous proof, a local-in-
time existence result and ensure that the solution stays in a neighborhood of
zero for T small enough. Thus, this solution would be unique.

7. More general conditions on the data
In this section, we relax the assumption on the initial configuration of the
system, fs(0) = div (Σ∗(0)). This means that the structure is not initially at
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rest. Then, we show that the result stated in Theorem 3.1 holds true, i.e. that,
under some smallness conditions on the data, the time T and the constant
M1, there exists a solution (wf , qf , ds) to the coupled fluid-structure system
(1.1), (1.2), (1.9), (1.4) and (1.5).

Theorem 7.1. Let the domains Ωf and Ωs and the boundaries Γf , Γs and Γ be
defined by assumptions (H1)-(H4) and let T > 0 and 0 < ε < T . Consider fs
in L∞(0, T ;H1(Ωs)) and Σ∗ in the space L∞(0, T ;H2(Ωs)), the data of the
problem. LetM1 > 0 and consider the ball BF,εM1

defined by

BF,εM1
= {(ω, π) ∈ L2(0, T − ε;H3(Ωf ) ∩H1

Γf
(Ωf ))× L2(0, T − ε;H2(Ωf ));

‖ω − w0
f‖L2(0,T−ε,H3(Ωf )) + ‖π − q0

f‖L2(0,T−ε,H2(Ωf )) ≤M1},

where (w0
f , q

0
f ) is the initial state of the fluid, solution to (3.1).

There exists positive constants R0, R1,M0, C1
s , C2

s , Cf , C1, C2 and C3,
which only depend on the domains Ωf and Ωs, the viscosity of the fluid µf and
Lamé’s parameters µs and λs such that, if the data fs and Σ∗, the time T and
the constantM1 satisfy conditions (3.3), (3.4), (3.5), (3.6) and (3.7), then,
there exists a unique solution (wf , qf , ds) to (1.1), (1.2), (1.9), (1.4) and (1.5),
with (wf , qf ) in BF,εM1

and ds in the space L∞(0, T − ε;BSM0
∩H1

Γs
(Ωs)).

The idea of the proof of Theorem 7.1 is inspired by the incremental
method, often used for the numerical resolution of elastic problems involving
large deformations. In [13, sec. 6.10], Ciarlet describes it as a method which
consists in “letting the forces vary by small increments from zero to the
given ones and to compute corresponding approximate solutions by successive
linearization”. Actually, in the context of numerical simulation, it allows to
compute the displacement of a structure whose equilibrium position is “far”
from its reference position, and that could not be obtained directly. Here, this
trick is used to apply Theorem 3.1 on a slightly different problem whose data,
fεs and Σ∗ε, satisfy the condition fεs (0) = div (Σ∗ε(0)). Then, we recover the
solution associated with the true data, fs and Σ∗.

Proof. Let us introduce a body force fεs and an internal activity Σ∗ε, defined
by

fεs (t) =

{
1

ε
fs(0)t if t ≤ ε,

fs(t− ε) for almost every t in (ε, T ),

Σ∗ε(t) =

{
1

ε
Σ∗(0)t if t ≤ ε,

Σ∗(t− ε) for almost every t in (ε, T ).

With these definitions, fεs belongs to the space L∞(0, T ;H1(Ωs)), Σ∗ε belongs
to the space L∞(0, T ;H2(Ωs)) and the condition fεs (0) = div (Σ∗ε(0)) = 0 is
satisfied. Moreover,

‖fεs − div (Σ∗ε) ‖L∞(0,T ;H1(Ωs)) ≤ ‖fs − div (Σ∗) ‖L∞(0,T ;H1(Ωs)),
‖Σ∗ε‖L∞(0,T :H2(Ωs)) ≤ ‖Σ∗‖L∞(0,T ;H2(Ωs)),
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then the data fεs and Σ∗ε, the time T and the constant M1 also satisfy
the conditions (3.3), (3.4), (3.6) and (3.7) of Theorem 3.1. Thus, we can
apply Theorem 3.1 to the fluid-structure system (1.1), (1.2), (1.9), (1.4)
and (1.5) associated to the data fεs and Σ∗ε . Consequently, there exists a unique
solution (wεf , q

ε
f , d

ε
s), with (wεf , q

ε
f ) in BFM1

and dεs in L∞(0, T ;BSM0
∩H1

Γs
(Ωs)).

Furthermore, as we choose ε < T , the triplet (wf , qf , ds) defined almost
everywhere in (0, T − ε) by,

wf (t) = wεf (t+ ε),

qf (t) = qεf (t+ ε),

ds(t) = dεs(t+ ε),

is solution to the fluid-structure system (1.1), (1.2), (1.9), (1.4) and (1.5),
associated to the data fs and Σ∗, but only almost everywhere in (0, T − ε):

(wf , qf ) ∈ BF,εM1
and ds ∈ L∞(0, T − ε;BSM0

∩H1
Γs

(Ωs)).
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