
HAL Id: hal-02493276
https://hal.science/hal-02493276

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spying on Instant Messaging Servers: Potential Privacy
Leaks through Metadata

Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

To cite this version:
Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe. Spying on Instant Messaging
Servers: Potential Privacy Leaks through Metadata. Transactions on Data Privacy, 2019, 12(2),
pp.175-206. �hal-02493276�

https://hal.science/hal-02493276
https://hal.archives-ouvertes.fr

TRANSACTIONS ON DATA PRIVACY 1 (2019) 1–33

Spying on Instant Messaging Servers:
Potential Privacy Leaks through Metadata
Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe
Performance Engineering Laboratory, School of Computer Science and Informatics,

University College Dublin, Belfield, Dublin 4, Ireland

LaBRI - University of Bordeaux, Talence, France

Technological University Dublin

E-mail: alexandre.pujol@ucdconnect.ie, damien.magoni@u-bordeaux.fr,

liam.murphy@ucd.ie, christina.thorpe@itb.ie

Abstract. Nowadays, digital communications are pervasive and as such, they carry a huge amount
of both professional and private information all around the world. Given the knowledge that can
be extracted from such information, its confidentiality is of utmost importance for both companies
and individuals. Recent news related to massive breaches of privacy by both external actors such
as government agencies, rogue teams, and internal actors such as communication services providers
(i.e., Google, Apple, Facebook, Microsoft, Amazon) have exacerbated the need for more secure com-
munication technologies. Although message content can be encrypted end-to-end by so-called off-
the-record techniques, message metadata such as sender, recipient, time sent and size can still leak a
lot of information about communicating parties. Oblivious RAM (ORAM) systems form a promising
new branch of research for hiding such metadata from the hosting servers, but they have not yet been
deployed in production environments. Due to their complexity and performance penalty, they can
currently be used only for very simple client-server applications such as instant messaging (IM). In
this context, we show that accessing metadata on a messaging server can leak information that could
be concealed by ORAM systems. More specifically, we show the differences observed in metadata
collection between a classic XMPP server and two ORAM-based servers. In order to assess those sys-
tems, we have designed a new attack based on live forensic techniques in order to retrieve metadata
from the RAM of a running IM server. We have used two datasets of instant messages for carrying
out this assessment. Our experimental attack setup can highlight the leak of metadata from a stan-
dard messaging server and can also be used for testing the security of an ORAM-based messaging
server.

Keywords. Data Privacy, Metadata Privacy, ORAM, Spy, Attack, Instant Messaging, Oblivious RAM,
Live Forensic

1 Introduction

We live in a worldwide digital society that is becoming more and more ubiquitously con-
nected. As such, we now rely heavily on digital communications services such as e-mail,
instant messaging, teleconferences, forums, etc. In recent years, many of these services
have moved to centralised Cloud-based applications, thus enabling their high scalabil-
ity. Among these, Instant Messaging (IM) services have grown significantly in popularity.

1

2 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Nowadays IM system such as XMPP, Slack, Mattermost or Gitter1 are becoming predomi-
nant in the workplace. Unfortunately, the main Cloud-based IM applications are controlled
by only a few companies: the GAFMA2, which can raise concerns about the control they
can exert on users. Indeed, Edward Snowden’s revelations [18] on the NSA’s industrial and
domestic spying through these companies have broken the trust between users and these
service providers. Meanwhile, non-technical users have become accustomed to sending
more and more personal information to the various services they use. This has led to an
increase in privacy concerns from client companies and populations [35]. These breaches of
privacy have proven to be a major threat since the service providers could accidentally, or
deliberately, disclose the data, or use it for unauthorised purposes. Moreover, fear of mas-
sive spying attacks from external entities such as governments, companies, or specialised
attack teams tends to be a challenge to democracy. Such fear could increase self-censorship
and therefore prevent people from developing opinions different from mainstream. To mit-
igate these issues, many companies have implemented data privacy in their IM services by
using end-to-end encryption. It has become a new de facto standard for IM applications
such as Signal and WhatsApp, which are using Off-the-Record (OTR) cryptography. This is
a first step to securing IM communications, but although data can be kept safe by encryp-
tion when stored or in transit, an attacker or an untrustworthy service provider, with full
access to an IM server, could still have many more possibilities for obtaining sensitive in-
formation. The question for these malicious parties then becomes: knowing that the user’s
data is encrypted, how can they still retrieve information? One potential solution would be
to spy on the metadata while staying as passive on the server as possible.

From a user’s point of view, the privacy issues detailed earlier remain a reality whether the
attacker is inside (service provider) or outside the system (state or otherwise). Considering
a given IM application, this paper tries to answer the following questions:

• How much metadata could an attacker collect over time?
• Could an attacker retrieve valuable knowledge from this collection?
• If an attacker could retrieve interesting knowledge from metadata, what are some of

the possible solutions to prevent such attacks?

Given the stated research questions, this work looks at methods to obfuscate metadata.
Oblivious Random Access Memory (ORAM) is a technique that allows clients to access en-
crypted data residing on an untrusted storage server, while completely hiding the access
patterns to storage. Notably, the sequence of physical addresses accessed is independent
of the actual data that the user is accessing. To achieve this, existing ORAM constructions
continuously download, re-encrypt, and re-upload data blocks on the storage server, see
Section 5. However, ORAM schemes are limited in terms of complexity; in recent years,
the goal of most research contributions was to decrease the complexity of the model in or-
der to make it practical in real life [6]. Thus, in order to speed up and simplify the ORAM
schemes, the structure of most server models have been changed [42, 44]. Therefore, as of
today, ORAM studies focus on scheme complexity and security features like group sup-
port [27]. Meanwhile, the security proof of these schemes is limited to the formal proof of
obliviousness [44]; no empirical study of metadata leakage has been conducted on either
classic or on ORAM systems.

1https://slack.com/, https://about.mattermost.com, https://gitter.im/.
2Google, Apple, Facebook, Microsoft, Amazon

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://slack.com/
https://about.mattermost.com
https://gitter.im/

Potential Privacy Leaks through Metadata 3

In order to answer the above research questions, this study has the following objectives:
We want to show the leak of metadata on a classic IM server and to compare it against
an ORAM IM server. The purpose is to show that an ORAM construction can be seen as
a solution to metadata privacy leak. Finally, we want to provide an attack, a dataset and
a testbed in order to test the security of future ORAM models empirically. We limit our
study to the IM use case in order to have a reasonable scope and because IM applications
are perfect candidates for metadata collection. Our research contributions are as follows:

1. We defined a new metadata definition to be valid in the scope of data privacy. This
definition is required when we work on data privacy. Indeed, the manner in which
data leaks depends on its technical nature.

2. We created a new attack based on live forensic techniques in order to retrieve meta-
data from the RAM (Random Access Memory) of a running IM server. This attack is
not based on a security vulnerability, and its efficacy increases over time i.e., in gen-
eral, the more time spent passively collecting metadata, the more knowledge can be
inferred from it.

3. In order to test this attack over different systems, we designed an experiment and
conducted it using two instant message datasets.

4. We created and implemented a simple ORAM model for comparison purposes against
a faster model from the literature.

5. We highlight the leak of metadata from non-ORAM IM servers and show that our
experiment can be used in order to test the security of an ORAM scheme.

This work compares three different IM systems. All these systems share the same archi-
tecture, use case and attacker model. It is necessary for us to select only one application
in order to be able to use the same dataset over our three IM systems and thus be able to
compare them to each other. This comparison will look only at metadata leaks; we are not
taking the performance of the systems into consideration.

The remainder of the paper is organised as follows: Section 3 proposes the new defini-
tion of metadata in the security and privacy general scope and for the use case of an IM
server. Then we present, define and explain the attacker model considered in this work.
Section 6 explains and justifies how our proposed attack works. Section 5 describes the
ORAM systems that have been tested. Section 7 explains the construction of the datasets
used, describes and discusses the experimental results. Finally, Section 8 concludes the
paper and presents some future work.

2 Related Work

This section describes the previous work that has been published in the area. To the best of
our knowledge, this is the first work that shows the importance of metadata leaks on instant
messaging servers, and that proposes an Oblivious RAM solution in order to prevent this
leak. Our previous work in [37] provides a distinction between metadata types, presenting
the difference between tangible and intangible metadata. This article extends the previous
definition to a more global and formal one.

However, we are not the first to demonstrate and propose protection against data privacy
threats. This section describes the related work that has been published in the area.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

4 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Landau [24] highlights the importance of metadata in Edward Snowden’s revelations on
the security world. For instance, this paper shows that NSA is now known to collect
domestic and telephony metadata. Furthermore, [30] evaluates the privacy properties of
telephone metadata and shows how applying prediction on collected metadata, we can
retrieve sensitive knowledge such as location, relationship, health state. On another appli-
cation, but still considering metadata, [12] shows how video identification can be achieved
from an encrypted multimedia stream like YouTube. Finally, [19] shows how using a simple
trilateral method it is possible to retrieve user positions on famous LGBT-focused dating
applications, which poses enormous privacy issues.

Protection against data privacy threats can be achieved with data encryption techniques,
data sanitisation [1] or data anonymisation [3]. More generally, there exists a lot of various
techniques to ensure data privacy [47]. However, since these techniques do not protect
against metadata leaks, a significant amount of work has been done in order to provide
access privacy for outsourced data. This can be achieved by means of Private Information
Retrieval (PIR) [7,16] or by means of Oblivious RAM. PIR and ORAM are similar in the way
that a PIR scheme can be seen as a read only ORAM scheme. PIR is, therefore, suitable for
different use case. Nevertheless, a lot of ORAM scheme include techniques that are similar
to PIR, like the technique based on homomorphic encryption cited in the next paragraph.

Preventing the leak of data using an oblivious structure between a trusted processor and
an untrusted RAM has been presented for the first time in 1996 by Goldreich and Ostro-
vsky [17]. They were the first to introduce the notion of Oblivious RAM. The purpose of
this technique was to protect the access pattern of the software on the local memory. Later,
the system was extended for cloud storage purpose [6, 42]. Then, the goal of most research
contributions was to decrease the complexity of the models in order to make them practical
in real life. Thus, the techniques used changed. The structure of most models changed from
tree based models, where the server structure is a binary tree [31,39,42,43], to Path ORAM
based system [44, 48]. Furthermore, given that executing all computation on the client side
is not efficient and since the Cloud has the advantage of providing computational resources
in addition to storage, ORAM with server side computation was proposed [2, 11, 28, 51].
These schemes use a fully homomorphic encryption function [15] resulting in the com-
putation shrinking from logarithmic in client-side to constant in server-side computation
model. However, server-side computation suffered from significant communication over-
head. Onion ORAM [11] is a layered encryption approach that aims to reduce the commu-
nication overhead incurred in the oblivious storage process using bandwidth-efficient ad-
ditive homomorphic encryption schemes. Meanwhile, some recent systems support shar-
ing features, e.g., Group ORAM [27] or Obliv P2P [21]. They introduce some additional
concerns; new parameters such as access rights management must be considered. Finally,
Dog ORAM [36], proposes an ORAM scheme that merges some existing solutions, a Path
ORAM based server, with server-side computation and user management.

All of these schemes propose innovations in terms of complexity or security features. They
provide proof of security in the form of formal proof of obliviousness of the protocol pro-
posed. No empirical security test is carried out. Moreover, they do not compare their
security with other systems or with a non-ORAM server.

Since ORAM solutions present complexity issues, there have been numbers of studies
conducted to examine the necessity of this scheme. On searchable encryption, [32] and [33]
present inference attacks on searchable encrypted databases secured with an ORAM model.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 5

They show these systems still leak metadata. This is because ORAM models are secure only
when the data is accessed through a random access interface. For an application such as
searchable encryption, that does not fit this requirement, ORAM schemes are not a solu-
tion. For other kinds of applications, however, [38] shows ORAM is needed. This paper
introduces and discusses the feasibility of a practical anonymous cloud storage service that
includes an anonymous payment method. This paper especially shows that long term
anonymous cloud storage can be achieved using an ORAM system. Moreover, the authors
confirm ORAM methods are an open research challenge.

Computer forensics is the branch of computer science that collects, preserves and analyses
material found on digital devices. It often occurs in relation to an ongoing investigation
regarding computer crime. Any digital devices can be the source of investigation: desktop
computer, mobile, server, etc. In order to facilitate more efficient and effective memory
forensics investigations, forensics framework like Volatility [49] or Rekall [46] have been
developed. Rekall [46] is a memory live forensic analysis framework. It is used in our
work to easily read data from server RAM. As one of the main memory analysis tools, it
is widely used around the world for forensic and anti-forensic analysis. For instance, an
attacker can extract the TrueCrypt master key from the RAM of a running machine3. It
can also be used as an anti-forensic tool to detect and report anomalies on a server using
Google Rapid Response (GRR) [8]. GRR is a distributed live forensics and incident response
platform. GRR uses rekall for most of the memory analysis tasks and is widely used on
Google servers. Although we do not use GRR in this paper, it is an essential platform for
our work because it guarantees the scalability of our attack over thousands of servers.

However, until recently, the collection of data from the user space process was complex
using rekall. [9] solves this issue on Windows based systems, adding to rekall the ability
to enumerate heap allocations and discover internal references. Meanwhile, in 2017, [4]
and [5] add this feature to rekall on Linux. For instance, they successfully retrieved pass-
words, logins and emails from an unlocked KeePass4 database.

In order to test our attack on both classic and ORAM IM servers, we need a dataset to test
our attack on. As described in Section 7, we use two datasets. The first dataset used is the
Enron Email dataset [10, 41]. To our knowledge, it is the only available large-scale dataset
where sensitive information can be identified and separated from regular information. As
there is no available similar large-scale dataset for instant messaging, our second dataset
is a statistically generated synthetic dataset, using distributions from the literature [20, 25].
The work in [25] presents a study from Microsoft research on a large instant messaging
network. It explores a dataset from 30 billion conversations by 240 million users over one
month, but unfortunately, it only provides aggregated information about it.

3 Metadata

In this section, we propose a new definition of metadata in the scope of data privacy. Then
we define the concept of obliviousness and ORAM used in this paper.

In 2009, Georges [13] presented the three digital layers that constitute the full digital iden-
tity of a person on internet. As shown with a non-exhaustive list of elements in Figure 1,
these layers are the:

3https://volatility-labs.blogspot.com/2014/01/truecrypt-master-key-extraction-and.html
4https://keepass.info

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://volatility-labs.blogspot.com/2014/01/truecrypt-master-key-extraction-and.html
https://keepass.info

6 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

1. Declarative identity: the data entered by the users (emails, contacts, files).

2. Acting identity: composed by the user’s activities and events (such as sending emails,
reading or writing files and ads seen or blocked).

3. Calculated identity: computed by the server using the data from the declarative &
acting identities.

The author [13] performed a study on Facebook profiles and showed that digital identity on
Facebook is determined less by declarative identity than by acting and calculated identity.
Although this paper is ten years old, the concepts remain valid today, as evidenced by the
recent blog on this topic 5.

Declarative Identity (what the user shares)

Acting Identity (what the behaviour tells)

Computed Identity (what the server thinks)

em
ail

co
nta

cts

mes
sa

ge
s

rec
ipi

en
ts

ac
tio

n t
yp

e

mes
sa

ge
 id

tim
es

tam
p

mes
sa

ge
 si

ze

nb
 of

 m
es

sa
ge

pe
r d

ay
dis

cu
sio

n

pa
tte

rns

(ro
uti

ne
)

IP ad
dre

ss

mes
sa

ge
s

his
tor

y vo
lum

e o
f

mes
sa

ge
s g

et/

se
nt

Work

rel
ati

on
sh

ip
Fa

mily

rel
art

ion
sh

ip

New

rel
ati

on
sh

ip
Old

rel
ati

on
sh

ip

La
ng

ua
ge

Spo
ke

n

un
em

plo
ye

d

pro
mote

d

Sex
ua

l

pre
fer

en
ce

s

Mari
tal

 st
atu

s

...

...int
era

cti
on

fre
qu

en
cy

Lif
e h

ab
it

Hea
lth

 st
atu

s

Poli
tic

al

op
ini

on
s

pro
fes

sio
na

l &

Pers
on

al

ha
bit

s

Figure 1: Representation of digital identities

The definitions presented in this section are inspired by existing work in the literature on
digital identity. Section 3.1 is dedicated to the definition of metadata concepts regardless
of application use case, while section 3.2 is dedicated to the definitions of metadata in the
scope of an IM application. This differentiation is significant because the exact list and
types of metadata varies with the application.

3.1 General Definitions

In this article, we propose a new formal definition of metadata and show that there are two
classes of metadata, which differ from a technical perspective. They need to be handled in
different ways, and they require different protection systems. Additionally, we propose a
definition of ’metadata type’. These definitions are based on the work we published previ-
ously [37]; however, they provide a significant enhancement. Moreover, these definitions

5https://qz.com/1525661/your-digital-identity-has-three-layers-and-you-can-only-protect-one-of-them/

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 7

are different from the classification that can be found in the literature [45] because our work
falls within the scope of data privacy, and therefore, we differentiate metadata according to
its technical nature, not its use.

Definition 1 (Metadata). Metadata is defined as the data that provides information about other
data.

Definition 2 defines the concept of type of metadata. A data has a given format (e.g., file,
message). Its metadata can be multiple, but they describe the data in their very own way.
Each different way to describe a data is called a ’type’ of metadata.

Definition 2 (Type of Metadata). When the information collected between different data de-
scribes the same property, this information is from the same type of metadata.

While definition 1 is similar to the common dictionary definition of metadata, it is not
sufficient when we want to prevent metadata leaks in order to ensure user privacy. For
this purpose, inspired by the declarative and acting identity detailed in the introduction of
this section, two classes of metadata must be defined: Tangible Metadata (definition 3) and
Intangible Metadata (definition 4).

Definition 3 (Tangible MetaData (TMD)). Tangible metadata is the static metadata of user’s
data.

TMD describes the data attributes; they are stored next to the data itself, and they can be
found either encrypted or unencrypted on the server drive. For instance, they could be the
file name, the file path, the timestamp, the owner id, image or video attributes. Therefore,
TMD is part of the user’s declarative identity because it is directly associated with the data
the user wants to put online.

To limit metadata leakage, the TMD could be protected using a standard encryption mech-
anism or reduced using a metadata anonymisation toolkit6. However, these protection
mechanisms are limited because TMD is usually needed in plain text when the user is per-
forming an action on the server, in order to execute it.

Definition 4 (Intangible MetaData (IMD)). Intangible metadata is the metadata created by an
action of a client on a server.

An example of when IMD is generated is when the server is uploading a file from a client
to a server. The packets received by the server reveal that an action is being executed. This
action by itself leaks intangible knowledge about the file owner. Therefore, IMD is part of
the user acting identity.

It is important to note that there is a strong interdependence between TMD and IMD. In-
deed, in order to execute an action (to generate IMD), the server usually needs to access
TMD to check the validity of the action using, for instance, the owner id, the file name, etc.
In some cases, depending on the software running on the server, IMD can be converted by
the server at run-time into TMD. The best example of this is the log files that show the list
of actions the server observed. Once converted and written on disk, they become full TMD
and cannot be considered as IMD any longer.

As we explain with definition 4, each event/action generates intangible metadata. How-
ever, one action might not reveal anything by itself. Therefore, definition 5 proposes the
concept of a metadata pattern that considers time.

6https://github.com/jubalh/MAT

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://github.com/jubalh/MAT

8 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Definition 5 (Metadata Patterns (MP)). The Metadata Pattern of a user for a given application
is the list of all the metadata collected over time on this application.

For ease of understanding, Figure 2 sums up the definitions presented here. TMD is writ-
ten with the data while IMD is linked to an action. TMD and IMP together, over time, form
the MP. For each of these metadata classes, the different type of metadata is always present.

TMD

client server

time client server

IMD

MP

Recipients, Storage address,
Sender, Size, Date, Message id...

Recipients, Storage address,
Sender, Size, Date, Message id...

Action

Recipients, Storage address,
Sender, Size, Date, Message id...

Actions

Figure 2: Conceptual overview of the metadata types.

3.2 Scoped Definitions

This scope of this research is defined around an instant messaging application use case.
Therefore, knowing the exact type of data (messages) and metadata types, we can propose
more precise definitions.

As shown in Table 1, we consider an instant messaging server S that stores a database DB
on its memory disk. U is the list of all the users known by S. For a given message mid

where id is the message identifier, we propose the following definitions.

Table 1: Definitions notations.

Notation Meaning
S Server
DB Server Database
id Message identifier
mid Message from the database
U List of all the users known by S
U Subset of U

TMD List of tangible metadata on DB
IMD List of intangible metadata from S
N Number of message in DB
E Number of events executed on S

Definition 6 (Tangible Metadata). Let TMD be the list of all tangible metadata stored in DB.
TMD contains an entry for all messages in DB. Such that: TMD = [tmd1, ..., tmdI] where I is
the number of message in DB and tmdid is the tangible metadata for the message mid. For an IM
server, the tangible metadata of mid is defined as tmdid, the list of all information written on the
disk that provides information on mid. Such that: tmdid contains at least the following metadata
types:

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 9

U the list of the users (such that U ⊆ U) that have access to mid),
s the size of mid,
t the access time,
id the message id,
a the message address in the database.

Definition 7 (Intangible Metadata). Let IMD be the list of all intangible metadata gen-
erated by an action on S. IMD contains an entry for all action that held in S. Such that:
IM = [imd1, ..., imdE] where E is the number of events executed on S and imdid is the intangible
metadata for an action that send the message mid. For an IM server, the intangible metadata of mid

is defined as imdid, the list of all information available from the event link with mid on S. Such that
imdid contains at least the following metadata types:

U the list of the users (presents in U) that have access to mid),
t the current date of the action,
id the message id,

type the type of action (e.g., pull, push).

Definition 8 (Metadata). The metadata of mid is defined as Mid, the union of its tangible and
intangible metadata, as in the following equation:

Mid = IMDid ∪ TMDid (1)

Definition 9 (Metadata Patterns). Lets cU be an instant messaging conversation between the
users in U , such that U ⊆ U. cU contains the list of message id that represents this conversation.
The metadata patterns of cU is defined as MPcU , the union of all the metadata for the message in
cU , as in the following equation:

MPcU =
⋃

id∈cU

Mid (2)

4 Attacker Model

This section describes the attacker model defined for this work; it is critical for the valid-
ity of the proposed solution. Certain changes to the attacker model might have major use
case, security, and performance consequences. Although most of the ORAM models in
the literature share an important common attacker model, there are often minor changes
that make each model unique. One of the objectives of this paper is to compare a real life
IM server with IM servers implementing classic ORAM models presented in the literature.
Therefore, the attacker model and architecture considered need to be compatible in order
to have comparable results.

The target application for this work is an IM server; Figure 3 shows the simple client-
server architecture considered for this research. Table 2 sums up the attacker model. The
IM server is considered ’honest but curious’ as shown in definition 10. The data owners
(discussion members) are trusted and the other users are not trusted, but we assume they
do not collude with the server. We remark this paper focuses only on server security as-
sessment, and not on clients security.

Definition 10 (Honest but Curious Server (HbC)). The server is regarded as a passive adver-
sary following the scheme specifications correctly but seeking to gather additional information about
the client’s data and access patterns.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

10 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

The common security policies considered for the IM servers are the following:

• Secrecy: A client can only read entries for which they hold read permissions.
• Integrity: A client can only write entries for which they hold write permissions.
• Authentication: A client can only access their entries after the server has verified

their identity.

This paper focuses on obliviousness and its consequences. Definition 11 introduces the
security property of obliviousness and definition 12 presents the definition of an ORAM
system commonly used and accepted in the literature [11, 48]. This definition is an ex-
tension of obliviousness to a client-server system. Intuitively, with an ORAM system, the
server cannot determine:

1. What data is being accessed,
2. How old the data is,
3. If the same data has been accessed multiple times,
4. The access pattern (sequential, random, etc.),
5. Whether the access is a read or a write action.

Definition 11 (Obliviousness). A scheme is oblivious if the server cannot distinguish between
two accesses which contain any kind of operation the users have the rights to execute on the server.

Definition 12 (Oblivious RAM). Let a be the address to query inDB such as a denotes an input
access sequence. Let o = ORAM(a) be the resulting data request sequence of an ORAM algorithm.
The ORAM guarantees that for any two sequences a and a′, ORAM(a) and ORAM(a′) are com-
putationally indistinguishable if |a| = |a′|, and also that for any sequence a the data returned to the
client by ORAM is consistent with the access sequence a with high probability.

There are three different IM servers (called systems) considered in this paper: a classic
IM server using the XMPP protocol and two IM ORAM servers called Basic ORAM and
Path ORAM. Section 5 describes in detail how these ORAM schemes work. Table 3 shows
the security policies each system provides. Since this paper mostly focuses on oblivious-
ness, other security properties are secondary and are not always respected by the ORAM
scheme. This is not an issue for the scope of this work.

Table 2: Overview of the attacker model.

Server Owners Clients
All Systems HbC Trusted No collusion

Table 3: Security policies of the systems considered.

Secrecy Integrity Authentication Obliviousness
XMPP 3 3 3 5

Path ORAM 3 3 5 3

Shell ORAM 3 3 5 3

Server, Untrusted

Attacker

Clients,
Trusted

Figure 3: System architecture

Security Assumptions Our adversarial model draws from assumptions common in real
life and in the ORAM literature. They are justified in real live cloud architectures because
service providers need to maintain a good reputation:

• The IM server S is assumed to be HbC and does not collude with any users.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 11

• The data owners are always trusted.
• The other clients are not especially trusted. However, they do not collude with the

server. This assumption makes sense because it would be against the purpose of the
software for a malicious client to voluntary send metadata to the server.

• The network is not trusted and can be malicious.

5 Oblivious RAM Scheme

In this section, we present two ORAM schemes: Path ORAM [44] and Basic ORAM. Ba-
sic ORAM is a very simple ORAM scheme we developed, it follows a construction that
is often presented as obvious in the literature [36]. Path ORAM is a very well-known
ORAM construction in the literature and it is used as a basis for most of the modern ORAM
schemes [27, 44, 48]. This section presents these schemes and explains how we use them in
the scope of our paper.

The attacker model used for these ORAM schemes is presented in Section 4. ORAM’s
particularity implies the obliviousness security policy is provided.

5.1 Basic ORAM

Basic ORAM is a new and straightforward ORAM scheme designed and implemented for
the purpose of this research. It follows a simple protocol derived from an “obvious” algo-
rithm from the literature [11]: download, re-encrypt, and upload the entire server database
for each access to the database, in order to prevent the leak of any kind of metadata. This
approach is obviously not efficient, however, the scope of this paper is to compare meta-
data leaks between different kinds of systems, not to improve the performance of an ORAM
scheme. This scheme is not intended to be practical and used in real-life IM application.

The client-server architecture presented in Section 4 is respected, but due to its simple
oblivious structure, this IM ORAM scheme works differently than a classic IM server:

• Users always work on the full server database.
• The database is shared, that is to say, all the users can download, decrypt it and read

it.

Overview Figure 4 presents how Basic ORAM works. The server is seen as an external
storage system. From the server point of view, the database is encrypted using the clients’
keys. All the clients that have access to the server are able to decrypt the database with
their user key. The encrypted database of size N bytes is called a block. This size is constant
and must not change through time.

All the data the server wants to make available to the clients (all its storage capacity) is
written in this block. For each action a client wants to execute on the database, algorithm 2
is used. It can be summarised in 5 simple steps:

1. Download: Download the server database and store it locally,
2. Create: Create a new empty block filled with random dummy values,
3. Copy: Copy all the data present in the database to the new block,
4. Access: Access the database (e.g., read, write, etc.),
5. Upload: Upload the new database version to the server.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

12 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Server (storage only)

Block

20%
Full

80%
Dummy

random value

Block

21%
Full

Users 1,2

Users 3,4

msg1
msg2

msg1
msg2

Create a new empty block

Copy the data

Access the data

Block

Block

20%
Full

80%
Dummy
value

Users 1,2

Users 3,4

msg1
msg2

msg1
msg2

msg3

Client

Download Upload1

2

3

4

5

100%
Dummy random value

79%
Dummy

random value

Figure 4: Overview of the Basic ORAM database structure

Probabilistic encryption is used in order to encrypt the database, thus the re-encryption of
the same data will create an entirely new binary. Moreover, it is vital to fill unused space
with random values in order to make it impossible to differentiate between used and free
space. The purpose of this algorithm is to show to the server that all data changed after
every access, thus not revealing the real action. It is not possible to determine what data
has been accessed and in which mode. As a consequence, it requires all the possible users
on the server to be able to update the database.

By design, this scheme cannot handle a server-side IM database. Therefore, we mimic
the IM action using a simple file system architecture as an IM database. This structure is
presented in Figure 4. For each conversation, a folder named by the id of the participants,
(id1, id2) is created at the root of the database. All the messages are simple files in this
folder and named in chronological order (1., 2., 3.). Therefore, pushing a new message to
the database means adding a new file into the conversation folder.

As a consequence, all the users have access to the full list of conversations. Therefore,
this system cannot provide secrecy of the conversation. This was a design decision made
during the conception of this scheme. The justification for this decision is linked to the sole
objective of the ORAM scheme in the context of this work. That is, the only purpose of this
ORAM model is to test the obliviousness security property on a very well known ORAM
scheme. Furthermore, it could be possible to add message secrecy (from other users) by
using state of the art end-to-end encryption system on the message files. However, this is
outside the scope of this paper.

In order to speed the system up, a caching mechanism can be added. Frequent access
without new concurrent changes can be directly accessed locally. However, it is not within
the scope of this paper. The list and kind of actions a user can take on the database are not
limited because they take place on the client computer. Examples of action are: read, write,
list, remove, search, etc.

Formalisation Basic ORAM follows definitions 11 and 12 of obliviousness and ORAM
respectively from Section 3. Definition 13 proposes a formal definition of Basic ORAM. Ta-
ble 4 presents the notation used in the algorithms. Basic ORAM uses a classic probabilistic

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 13

Algorithm 1 B ← Gen(N)

Input: Database size N , Security parameter λ
Output: B Block to be uploaded to the server

1: for i ∈ {0, ..., N − 1} do
2: B[i]← UniformRandom()
3: end for
4: Encrypt B using k
5: return B

encryption scheme E , the encryption key is noted k.
Algorithm 1 shows the block generation phase. At server initialisation, the user generates

its database key, k, then calls the algorithm 1 and uploads the encrypted database to the
server. Algorithm 2 shows the access function. When the user wants to access (read or
write) a file on the database, it downloads the block, generates a new block, copies all the
data to the new block and accesses the file. Basic ORAM’s security is regarded as the proof
of obliviousness of the scheme. Theorem 14 shows this proof of obliviousness, therefore,
we can say that Basic ORAM is a new valid oblivious scheme.

Definition 13 (Basic ORAM). A Basic ORAM scheme is a tuple of algorithms (Gen,Access)
such that:

B ← Gen(N) This algorithm initialises an empty database full of dummy data. It takes as input
the size of the database and outputs a newly generated encrypted database to be uploaded to
the server.

data← Access(op, a, data∗) The access algorithm takes as input the action name to be executed
on the database (read, write) and the optional new data to be written. It outputs the data
requested. A new version of the database is uploaded to the server by this algorithm.

Table 4: Basic ORAM parameters and notations.

Notation Meaning
a Address of the requested data
op operation (read, write)
N Block size in bits
B Local encrypted database
k Block key, generated separately

Theorem 14. Basic ORAM is a valid oblivious RAM scheme as defined in definition 12.

Proof. Let a be the address of the data, a denotes an access sequence to query. LetBORAM
be a Basic ORAM scheme such that BORAM(a) = data. By construction, BORAM uses a
probabilistic encryption scheme E such that for any encryption of data and data′: E(data) 6=
E(data′) even if data = data′. Dummy random values fill empty space, free and used
space are indistinguishable. Finally, for every access, B is re-encrypted using E . Therefore:
for all addresses (a, a′), BORAM(a) and BORAM(a′) are consistent and computationally
indistinguishable even if |a| = |a′|. Therefore BORAM is oblivious.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

14 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Algorithm 2 data← Access(op, a, data∗)

Input: a address, op operation, data∗ optional data.
Output: data stored at address a

1: B ← Download block from S
2: B′ ← Gen(N)
3: for i ∈ {0, ...,#B − 1} do
4: B′[i]← B[i]
5: end for
6: data← B′[a]
7: if op is ’write’ then
8: B′[a]← data∗

9: end if
10: Upload B′ to S
11: return data

Basic ORAM has been implemented in Zshell7. It heavily uses existing well-known cryp-
tographic software like GPG8, Tomb9 and dm-crypt10. The source code of this application
is open source and can be found at https://github.com/roddhjav/boram. We im-
plemented it in Shell for ease of simplicity and speed reason.

5.2 Path ORAM

Path ORAM [44] is one of the most well-known ORAM schemes, as Path ORAM inspires
most of the schemes in the literature and share the same concepts and data structure. Un-
like Basic ORAM, Path ORAM intends to be as practical as possible. Moreover, it can be
seen as an optimisation of Basic ORAM. Indeed, instead of working with the full database
for every access, this scheme works on a subset of data. See Figure 5. In order to ensure
obliviousness, like Basic ORAM, these blocks are re-encrypted and re-written after every
access. It makes Path ORAM an ideal scheme to conduct security tests and to compare
against Basic ORAM. In this paper, the client-server architecture is respected, but all the
users have access to the full database.

Client Server

0

1

2

3

.

N

Can I have blocks
1, 5, 25, 87

Here are your blocks

1 5 25 87

I need block 5

Figure 5: Path ORAM base system

7https://www.zsh.org/
8https://gnupg.org/
9https://www.dyne.org/software/tomb/

10The Linux standard tool for block storage encryption.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://github.com/roddhjav/boram
https://www.zsh.org/
https://gnupg.org/
https://www.dyne.org/software/tomb/

Potential Privacy Leaks through Metadata 15

Overview This scheme is called Path ORAM because data on the server is always ac-
cessed in the form of tree paths. The main idea with Path ORAM is to optimise the obvious
solution of download, re-encrypting and re-uploading everything for each access. Instead
of working on the full server database, with Path ORAM, clients are doing the same but on
a path of a binary tree that is the database.

Table 5 presents the notation used in the algorithms. The client stores a small amount of
local data in a stash S. The data on the server is stored in a binary tree of L + 1 levels
(see Figure 6). Each node is called a bucket. Each bucket contains Z blocks of data (real
or dummy). The leaves are numbered from 0 to 2L − 1. Each block is associated with a
random path from the root to a leaf l: P (l).

A matrix of metadata called PositionMap is needed to remember on which leaves the
virtual blocks are assigned. It links the virtual address a of a block to its assigned leaf on
the server. PositionMap[a] gives a leaf l. The block at the address a can be found in the
server in the path P (l).

Each time, each block is mapped to a random leaf in the tree. On every action, the entire
path P (l) is read into the stash S, the target block is reassigned to a random leaf, and the
path that was read is re-written to the server.

Table 5: Path ORAM notations.

Notation Meaning
N Number of data blocks
c Number of clients
L Depth of the binary tree
B Block size in bits
Z Capacity of each bucket (in blocks)
S Client local stash

PositionMap clients local position map
P(l) Path from the root to the leaf l
P(l, i) The i-th bucket (from the root) on P(l)

0 1 2L – 1

L

0

p

l

P(l)

Figure 6: Illustration of the Path ORAM database
structure (from [36])

Formalisation Path ORAM follows the definitions 11 and 12 of obliviousness and ORAM
respectively from Section 3. Because this is not a new model, we do not propose a security
proof of the scheme.

Algorithm 3 (taken from [44]) shows the Access algorithm, similar to Basic ORAM, this is
the only algorithm needed in order to conduct any kind of operation on the database. This
algorithm can be summarised in 4 steps:

1. Remap the block to a new random leaf l.
2. Read the path P(l). It contains the block a.
3. Access (read or write) the block.
4. Write the path back to the server.

Implementations of Path ORAM for research purposes already exist and are available for
download and use. We used PyORAM11, a python library implementing Path ORAM.
Our implementation creates an oblivious IM server in python based on PyORAM. The IM
structure is similar to Basic ORAM’s structure.

11https://github.com/ghackebeil/PyORAM

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://github.com/ghackebeil/PyORAM

16 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

Algorithm 3 data← Access(op, a, data∗)

Input: a block address, op operation (read, write), data∗ optional data.
Output: data stored at address a

1: l← PositionMap[a]
2: PositionMap[a]← UniformRandom(0, 2L − 1)
3: for i ∈ {0, 1, ..., L} do
4: S ← S ∪ReadBucket(P(l, i))
5: end for
6: data← Read block a from S
7: if op is ’write’ then
8: S ← (S − {(a, data)} ∪ {(a, data∗)}
9: end if

10: for i ∈ {L,L− 1, ..., 0} do
11: S ′′← (a′, data′) ∈ S : P(l, i) = P(PositionMap[a′], i)
12: S ′′← Select min(|S ′|, Z) blocks from S ′′
13: S ← S − S ′
14: WriteBucket(P(l, i))
15: end for
16: return data

6 Proposed Attack

The purpose of this section is to propose a proof of concept attack that would allow an
attacker to spy on the metadata leaked by an IM server. The attack proposed here has been
tested against classic IM server and the ORAM schemes presented in Section 5.

In Section 4 we explained that the server is not trusted. Therefore, it is assumed for our
attack that the attacker has root access to the server. This assumption is common in the
literature [11]. Figure 7 shows an overview of the attack. The principle is that even if the
metadata are encrypted alongside the data when written on the disk while they will always
be available in plain text on the server’s memory. Therefore, our attack analyses the state
of the RAM of a running server in order to collect metadata. Our method is based on a live
forensic technique. In order to exploit this attack, an attacker would have to follow these
steps:

1. Gain root privilege on the server.
2. Spy on the server’s RAM in order to collect live data from the IM server.
3. Select the metadata from the data present in RAM
4. Exfiltrate the metadata collected.

6.1 Technical Justification

This section is dedicated to the justification of the design decisions that we made in order
to create this proof of concept attack.

The collection could not have been done on the network because it is not trusted and
therefore the packets traversing the network are encrypted. Moreover, not enough infor-
mation can be collected from the network for the attack we propose in this work. Finally,
many networks have dedicated devices (Network Intrusion Detection/Protection System)

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 17

Server

Network

CPU

RAM Disk

Database

Log fies

Plain
Intangible Metadata

Figure 7: Architecture of the proposed attack.

that are able to detect and prevent network spying.

Since metadata collection from the network is not possible in the scope of our paper, we
need to collect data from the server itself. We considered the two following possibilities of
spying on metadata from a server. Each time we explain the advantages and disadvantages
of the technique envisaged.

Collection from the server hard drive: It is a simple solution that only requires an at-
tacker to be able to read files from the server disk. Depending on the system used, these
files could be either log files or data files. Because IMD can be converted to TMD, it seems
to be useful to spy on specific files on the server. However, this solution has several major
issues:

• Not all software writes metadata to the disk. Therefore, this technique might not
work on many systems.

• Applications could protect metadata using a simple encryption scheme.
• Outsourcing application’s logs to a dedicated system is common12.

Collecting from the process RAM: It is a complex solution, it requires an inspection of
the process memory state of the RAM, to perform an analysis of it, and to select and retrieve
the interesting metadata. Like the previous solution, collecting metadata from the process
state requires that each system creates a specific program that will look for the target data.
Moreover, in order to be useful, it has to be done in real time. Nevertheless, this technique
has the following advantages:

• It collects all metadata before it is written on the server drive.
• It is impossible to prevent on an untrusted server because it is not based on a security

issue as explained in the Attack Protection paragraph below.

Attack Protection Our attack is not based on a security vulnerability present in the op-
erating system; it can be executed on any operating system. Indeed, the attacker has root
access on the server; therefore they can do everything including spying at the RAM state.
Moreover, in our security model we define that the server is not trusted, therefore, it could

12https://logentries.com/

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://logentries.com/

18 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

even be the server owner and IM provider that is spying on the users.

A solution that would prevent this attack on a trusted processor (and not-trusted RAM)
would be to use a local ORAM system between the processor and the RAM. As explained
in our related work, Section 2, modern cloud ORAM (presented in Section 5) are all based
on this local ORAM [17]. However, such systems are intended to be used on the client
computer; it is useless on a server because we do not trust the server, meaning we do not
trust both the RAM and the processor.

Not limited to centralised architecture This attack focuses on simple client-server archi-
tecture. However, similar results could be obtained on a peer to peer architecture as a
decentralised ORAM system has already been proposed in [21].

6.2 Data Collection

A basic example of a memory forensic investigation on a server could be summarised as
follow:

1. Create an image of the server memory.
2. On a local system, analyse the image generated and look for irregularities in the ker-

nel and the process executed.
3. Write a report on your findings.

This method is useful in the case of an investigation of a known attack or security breach.
However, it is limited because it is a manual investigation that takes place only after an at-
tack has been noted. In order to fix this limitation, live forensic analysis tools and method-
ologies have been developed. Typically, they are automated in order to detect in real time
a specific set of actions on the system being monitored.

Rekall Forensic Framework We use Rekall as a framework to easily create a passive at-
tack on a server. We selected Rekall because it has the ability to work on the live RAM
of the system, not only on an image of the memory. However, this is not a simple task, it
requires:

• To compile and add a module to the Linux kernel in order to bypass kernel’s security
preventing even a root user from reading more than 1 MB at once from the RAM.

• A Rekall kernel profile that describes kernel allocation. It needs to be generated for
each different Linux distribution and kernel version we target.

The Rekall framework was used because it provides high-level access to complex memory
structures. It is allowing us to quickly set up an attack while not spending to many time on
it. However, it is not mandatory to use Rekall. The same attack could have been done from
scratch to reduce payload size, thus maximising the chance for the spy to stay as passive as
possible on the target server.

Memory Heap The purpose of the attack presented here is to retrieve the metadata when
they appear in a plain text form in server memory. Therefore, it is necessary to understand
how volatile memory works and how the operating system handles memory allocation
of a user process. Linux process memory is organised into a heap. The Linux heap is a

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 19

global data structure that provides dynamically allocated memory storage. It allows an
application to allocate space for variables at run time that can exist outside the scope of
the currently executing function. A significant amount of research has been carried out on
the behaviour of the heap with Linux processes. In 2007, Ferguson [14] showed how the
heap on a Linux process works and presented a possible approach to exploit it. However,
not enough information was released to use it in a real-life usage. In 2015, Cohen et al [9]
solved this issue on Windows based system, adding to rekall the ability to enumerate heap
allocations and discover internal references. Meanwhile, in 2017, [4] and [5] add this feature
to Rekall on Linux. This later work is used without significant change in this paper to
collect data from process memory. The description provided here is simplified by design
for ease of understanding.

Data Collection Figure 8 shows the process memory layout. A chunk contains the ac-
tual process data, which has been allocated either explicitly via a malloc call or implicitly
via a new class instantiation. Those chunks are located in memory regions called “Mmap
region”. Each chunk contains the actual data structure stored in memory alongside the
chunk’s internal metadata, such as size, state (free, used, etc.), pointers. The ”Heap” region
contains metadata describing its size and the different Mmap regions used by the process.
Indeed, a process has as many Mmap regions as it has threads.

The purpose of our data collection system is to read message objects from the IM server
process. Therefore knowing the message object structure, we need to look for all the data
chunks present in the server process that contains this structure. Then, Rekall allows us to
repeat this action through time.

This functionality has been implemented in Rekall by [5]. It takes the form of Rekall
modules. The implementation of our attack also takes place as a python Rekall module
using the heap functionality on the live memory. The exact structure collected depends on
the target process.

Kernel

Stack

Mmap Region

Heap

.bss

.data

.text

User Space

0xFFFFFFFF

0xC0000000

0x00000000

data chunk

data chunk

Figure 8: Linux memory process layout.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

20 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

7 Experiments

In this section, we present the experiments we designed in the scope of this paper. We test
the classic XMPP server and the ORAM schemes presented in Section 5, using the attack
from Section 6, and using the datasets we present in Section 7.1. The purposes of these tests
are to:

• Compare metadata leaks between classic and ORAM servers.
• Show XMPP servers leak metadata and metadata leaks can leak to privacy issues.
• Validate our proposal to use an ORAM scheme as a solution to this leak.

Table 6 summarises the systems we tested on our metadata collection attack proposed in
Section 6. We use two datasets in order to feed the IM server with comparable data. We
use an XMPP server as a reference IM server while we use Basic ORAM and Path ORAM
as oblivious IM server.

Table 6: Overview of the experiments

Reference IM Server ORAM IM Servers
Dataset 1: Sensitive XMPP IM Server Basic ORAM Path ORAMDataset 2: Synthetic

7.1 Datasets

In order to tests our experimental ORAM servers, we need a relevant IM dataset. Then,
sending all messages from our dataset, we can collect the metadata available from the
server and compare the metadata collected between the IM systems considered. Dataset
selection is important; it should come from a real application with real users, the number
of messages should be high enough in order to be representative, and the messages should
show real interactions between users. However, to the best of our knowledge, no such IM
dataset currently exists. Consequently, we do not use one but two datasets that allow us to
respect our specifications for a good dataset:

1. Sensitive Dataset: Based on the Enron email dataset [10], selecting only sensitive
conversations (defined in Section 7.1.1).

2. Synthetic Dataset: Statistically generated from literature description of IM dataset.

7.1.1 Sensitive Dataset

The first dataset considered is based on the Enron email dataset [10]. It contains 0.5 mil-
lion public emails and is well known in the literature [22, 41]. The Enron Corporation was
an American gas company that went bankrupt in 2001 because they were doing market
manipulation, corporate fraud, and corruption. The email dataset was released a few years
after and is the collection of 0.5M emails from approximately 150 users, mostly senior man-
agement of Enron.

The Enron dataset takes the form of hundreds of mailboxes from Enron employees. There-
fore not all the emails show a real discussion between users. Some emails are duplicated,
spam, deleted chunks or unfinished drafts. Before being able to use the dataset, a prelim-
inary scan was needed in order only to select real discussions. The usable Enron dataset
used in this work has approximately 0.4M messages.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 21

Objectives The most interesting part of this dataset is that they are real emails from a real
company. Therefore, we can use this dataset for our attack by converting the email files
present in the dataset in instant message object.

However, this dataset has a few disadvantages: The Enron bankrupted 17 years ago, IM
usage in a company almost did not exist at this time whereas, nowadays IM system such as
XMPP, Slack and Mattermost are becoming predominant in the workplace. Furthermore,
users do not use emails the same way they use IM systems (e.g., frequency of access, time
between messages, etc.).

Nevertheless, this limitation is not a big issue because we can use the Enron dataset as a
real-life dataset from a company that had sensitive discussions to protect. The leak of these
discussions would show a privacy leak. We can read special discussions regarding market
manipulation, and we know the company structure. Therefore, we can identify important
users. Besides, we know the list of people that were at the origin of the Enron scandal;
we also know the content of the messages that were at the origin of the Enron scandal are
sensitive in the scope of this scandal. Consequently, we can select the sensitive messages
and compare the metadata of these messages with the metadata of the full dataset. Then
we can run our experiment on these sensitive messages and check how much metadata
is collected depending on the system tested. The purpose of this dataset is to show the
following:

• Show there are differences in the metadata generated from regular discussions and
sensitive discussions, we show these differences on the local dataset.

• Show the reference IM server has the same leak as the local dataset.
• Show ORAM systems do not leak metadata in the same way.

In order to achieve these objectives, we select all the discussions that are specifically re-
lated to the Enron scandal; it forms a sub-dataset of the Enron’s dataset, we call it “Sensitive
dataset”. Then, we show differences in terms of MP pattern between the Enron dataset and
the sensitive dataset. It provides experimental proof, depending on the kind of discussion
people have, their IM use change. This is a first demonstration of the existence of privacy
leak through the means of metadata. Then, we show using the experiment described in Sec-
tion 7, we continue to see MP leaks on the reference server. Finally, we compare metadata
leaks on reference and ORAM servers.

Kolmogorov-Smirnov Test The data collected by our test-bed form different distribu-
tions of metadata. For a given dataset, our experiments require, depending on the test, to
show whether the empirical distribution formed by the collection of metadata on two dif-
ferent systems are the same. To achieve this objective, we used the Kolmogorov-Smirnov
(KS) test for goodness of fit [29]. It is a common test used for distribution comparison.

The KS statistic Dn,n′ quantifies a distance between two empirical distributions of size
n and n′. X and Y are the Empirical Cumulative Distribution Function (ECDF) of these
distributions. An ECDF shows the probability that the secret key will take a value less or
equal than x (3).

Dn,n′ = sup
x
|Xn(x)− Yn′(x)| (3)

The null hypothesis H0 we want to prove is that the two samples are drawn from the same
distribution. If the KS distance is smaller than a critical distance then we cannot invalidate

TRANSACTIONS ON DATA PRIVACY 1 (2019)

22 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

our null hypothesis H0.

In order to test H0, we proceed with a comparison of Dn,n′ against a critical distance δα.
δα is function of a critical value c(α), where α is the significance level, and of the number of
samples. α = 0.05 is typically used for most applications [50] and c(α) is given by equation
(4):

c(α) =

√
−1

2
ln

(
α

2

)
(4)

The null hypothesis H0 is rejected for a given α if (5):

Dn,n′ > δα = c(α)

√
n+ n′

nn′
(5)

101 102 103 104 105

Message Size (bytes)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Sensitive Dataset
Enron Dataset

(a) Sensitive dataset size of messages.

0 1 2 3 4 5 6
Weekday

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Sensitive Dataset
Enron Dataset

(b) Sensitive dataset weekday.

0 20000 40000 60000 80000
Time in the day (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Sensitive Dataset
Enron Dataset

(c) Sensitive dataset hours.

102 103 104 105 106 107 108 109

Time between messages (s)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Sensitive Dataset
Enron Dataset

(d) Sensitive dataset time between messages.

Figure 9: Sensitive vs Enron Dataset, the reference test: Figure 9a messages size, Figure 9b weekday
(0 Monday, 6 Sunday), Figure 9c time in the day and Figure 9d time between messages.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 23

Sensitive vs Enron Dataset The sensitive dataset was sorted from Enron dataset selecting
both the discussions from the main people included in the Enron scandal and the discus-
sions containing sensitive keywords relative to the scandal. Figure 9 shows the differences
in the metadata pattern (MP) between the sensitive dataset and Enron dataset. This figure
shows the cumulative probability in terms of MP regarding the classes of comparison con-
sidered in our work. The y-axis is the Empirical Cumulative Distribution Function (ECDF),
that is to say, the probability of the class of metadata (message size, time in the day, time
between messages) will take a value less than or equal to the value in the x-axis. The KS
statistic is the biggest distance between the two ECDF curves. This figure is useful to see the
differences between the sensitive dataset and the Enron dataset (the reference test). Table 7
shows the exact KS distance calculated. These results show for all the classes of metadata
considered, there is a difference in terms of MP between the sensitive and Enron dataset
and that this difference is statistically significant.

Table 7: Enron Dataset vs Sensitive dataset

size weekday hours timesstamp
Critical distance δα 4.202× 10−2

KS Distance Dn,n′ 3.021× 10−1 8.863× 10−2 1.030× 10−1 3.986× 10−2

Validity Invalid Invalid Invalid Invalid

7.1.2 Synthetic Dataset

The second dataset is a synthetic IM dataset. Indeed, the Enron dataset is an email dataset,
not an IM dataset. Although it stays very interesting because of its structure from a real
company, the messages are from email, not IM. We do not use an IM application in the
same way we use an email system [34]. Therefore, we also need to run our experiment on
an IM dataset. However, since no such dataset is freely available, we created one based
on statistical information found in the literature. Microsoft present in a paper from Eric
Horvitz [25] a study on a large IM network. It presents the statistical characteristics of a
real dataset from 30 billion conversations by 240 million users over one month. We use this
paper in order to generate our own synthetic IM dataset.

The synthetic dataset is mostly useful in order to validate the use of the Enron e-mail
dataset. Indeed, in Section 7, we show metadata collection works the same way on both
datasets. However, its use is limited because it does not hold information on important
metadata types such as message size, pull, and push.

We generated a synthetic IM dataset using the distribution presented in [25]. Although
this paper provides a full study on the IM dataset, it does not provide the exact distribution
of all the properties needed to generate a dataset. Therefore our dataset is generated with
four different values. It is enough for the scope of this paper because it is only used to
retrieve metadata from IM dataset. Moreover, a dataset from a real-life scenario is already
used in the experiments. The values considered are:

• Average conversation duration per user.
• Time between conversations for a given user.
• The degree of distribution of the communication network, it represents the commu-

nication network.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

24 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

• The number of exchanged messages per minute of conversation.

The dataset generated contains only conversations between two participants because it
counts for 99% of all discussions of the source dataset. Figure 10 provides two important
distributions in order to generate a relevant IM dataset. These distributions are a simplified
form of the distribution proposed by [25]. The x-axis shows the value considered and the
y-axis indicates the number of occurrences of the same value in the dataset. Figure 10a
shows the distribution of average conversation duration in minutes and Figure 9b presents
the distribution of time between conversation in minutes. Figure 11 shows the degree of
distribution of communication among the users. It provides a probability that a user would
have a given number of active friends. It is used in order to link users together in our
generated dataset. Finally, the number of exchanged messages per minute of conversation
is given in [25] by table 1d and is set to 1.42 message/minutes.

100 101 102 103

101

103

105

107

109

Conversation duration (min)

C
ou

nt

(a) Average conversation duration per user.

100 101 102 103

105

106

107

108

Time between conversations (min)

C
ou

nt

(b) Time between conversations of user.

Figure 10: Synthetic dataset, the temporal characteristic of conversations. 10a Average conversation
duration per user and 10b time between conversations of user.

100 101 102 103
10−16

10−12

10−8

10−4

100

k, Number of conversant

p
(k
),

Pr
ob

ab
ili

ty

Figure 11: Synthetic dataset, degree distribution of communication network, that is to say number of
people with whom a person communicates.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 25

7.2 Test Setup

Reference server As a reference non-ORAM server, we use an XMPP [40] server. We
selected the XMPP protocol because it is very well-known and used in a lot of various
systems. Moreover, it supports message encryption with Off-the-Record (OTR) messaging.
Nevertheless, any open source IM server could be used as a reference server. In the test we
conducted, the XMPP server used is Prosody13 version 0.10.0.

ORAM servers The ORAM models used in the experiments are the two ORAM models
presented in Section 5 and adapted for an IM application. These models are by construc-
tion very different, Basic ORAM is extremely slow while Path ORAM has been designed in
order to be practical. However, they should theoretically provide the same security. There-
fore, they are two good candidates for these experiments. These two oblivious servers were
selected for our experiments because we would like the answer the following questions:

• Do ORAM servers leak as much data as a classic server?
• Is data leakage a privacy issue?
• Do these models provide the same security (in terms of obliviousness)?
• Could we use the empirical experiment presented here to check the obliviousness of

ORAM schemes?

Test bed All the tests presented here share the same test-bed:

• Dataset: The different datasets have the same structure. Each dataset is constituted by
a list of discussions from different users. Each discussion contains the list of messages
that have been sent by the users with the metadata linked to these messages.

• Servers: The server takes the form of a VM with four virtual CPU and 2 GB of RAM, it
runs ArchLinux. The IM server tested is installed on the server alongside with Rekall
and the attacker script. Depending on the IM server, the attacker script changes in
order to fit the structure of metadata we wish to collect. Then our Rekall script writes
on the server the IMD collected.

• Clients: The host system used has the IM client; it mimics all the users present in
the dataset. It reads the dataset, orders it by date and sends the IM messages to the
server using the good IM interface depending on the IM server. In order to speed up
experiments executions, we change the timescale. Otherwise, we would need up to 4
years to send all the messages from the Enron dataset. Please note we do not modify
the relative time between messages and discussion.

Evaluation Criteria The attack script retrieves IMD from multiple type of metadata (see
definition 2). Table 8 presents the classes of metadata collected on the different IM servers
considered in this work. On the XMPP reference test, the metadata collected are from
different types. We gathered for all the messages, the message id, the user ids of the sender
and receiver, the exact timestamp and, we were able to compute the size of the messages.

Due to the structure of the ORAM server, it is not possible to retrieve most of these classes.
The message id, size and recipients are not available. Therefore, our comparison method is
based on the only metadata type that is present on all the servers, the time. Distribution
comparison between servers is done using the KS-Test as described in Section 7.1. We do

13https://prosody.im

TRANSACTIONS ON DATA PRIVACY 1 (2019)

https://prosody.im

26 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

not want to compare the time of message reception on the server, but access patterns, the
time-based distribution considered is the time between messages.

Table 8: Metadata to consider depending on the IM system.

XMPP id size from to time
Basic ORAM time
Path ORAM time

7.3 Results

This section shows the results of our experiments. In all of these experiments, the reference
test is the classic XMPP server while the tests are the ORAM servers using sensitive and
synthetic dataset.

Proof of existence of metadata leak Figure 12 shows the observed metadata pattern on
a given discussion in the sensitive dataset on both the XMPP reference server (Figure 12a)
and Basic ORAM (Figure 12b). These are one dimensional figures with the time on the x-
axis. Each vertical line shows the presence of a message from the given discussion received
by the server at a time t. On Figure 12a, the height of the line represents the size of the
message while the arrows up and down show a push and down action respectively. These
figures present, over time, the activity of a discussion collected by the server. It forms the
metadata pattern as presented in Definition 9. They show that even if ORAM servers still
leak time access, they are not linked anymore with the other metadata types, and therefore
they hold far less information to collect.

(a) XMPP Metadata Pattern (b) ORAM Metadata Pattern

Figure 12: Metadata pattern collected on a given discussion on XMPP and ORAM server.

These figures provide a proof of the existence of metadata leak. The conceptual idea be-
hind this result is that the more metadata you are able to link together, the more knowledge
on the user you are able to infer. In the next set of results, we generalise this concept to the
full dataset.

Generalisation on metadata leak As we explained in the previous section, the only meta-
data available on ORAM server is the timestamp of collected messages. Moreover, because

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 27

we work on the collection of metadata pattern, for our results, we consider the distribution
of the time between messages.

On the contrary to what we could have expected, the distribution of the time between
messages is the same on a given dataset among the different server. Figure 13 and Table 9
show this distribution for both ORAM and XMPP servers on the sensitive and synthetic
dataset. On this figure (and on all the remaining figures in this section), the y-axis is the
Empirical Cumulative Distribution Function (ECDF), that is to say, the probability the time
between messages will take a value less than or equal to the value in the x-axis. The x-axis is
in seconds. We note the XMPP curve on Figure 13 shows the ECDF of a normal distribution
with a mean of 42 seconds. This result is expected because this is how was generated the
messages from the synthetic dataset.

102 103 104 105 106 107 108 109

Time between messages (s)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Basic ORAM
XMPP
Path ORAM

(a) Sensitive Dataset

0 50 100 150 200 250
Time between messages (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Basic ORAM
XMPP
Path ORAM

(b) Synthetic Dataset

Figure 13: Time between messages for ORAM based servers and XMPP server on the sensitive dataset
(13a) and the synthetic dataset (13b).

Table 9: XMPP Server vs ORAM Servers

Sensitive Dataset Synthetic Dataset
Server Basic ORAM Path ORAM Basic ORAM Path ORAM
Critical distance δα 5.935× 10−2 2.444× 10−2

KS Distance Dn,n′ 8.816× 10−3 6.040× 10−3 1.500× 10−2 1.400× 10−2

Validity Valid Valid Valid Valid

Indeed, the purpose of an ORAM server is to hide the full metadata pattern, not the fact a
given user is using the server. Furthermore, XMPP and Basic share approximately the same
distribution whereas while statistically identical, the distribution from Path ORAM is a lit-
tle bit different. It is explained by the design. XMPP and Basic ORAM share approximately
the same number of transactions by access, while Path ORAM has a more significant trans-
action complexity (see Figure 5). This bigger number of transactions is a requirement in
the Path ORAM protocol to ensure obliviousness while decreasing computation and band-
width overhead. However, as we show in Figure 13 it does not change the distribution.
Furthermore, Figure 13 shows synthetic and sensitive datasets work the same way. There-
fore, for the following results, we consider only the sensitive dataset because the synthetic

TRANSACTIONS ON DATA PRIVACY 1 (2019)

28 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

dataset does not hold the data regarding the complex metadata aggregation.

The previous test considers inter-message times pattern over time. When we consider the
metadata pattern (MP) of the user’s access (i.e., the pattern leaked by all the metadata avail-
able on a given server over the time), we show, for the full dataset, important differences
in terms of distribution. Indeed, for Basic and Path ORAM servers, the MP leaked by the
access over the dataset always remains the one presented in Figure 13. However, figures 14
and Figure 15 show the differences with the XMPP pattern when we take into considera-
tion the additional metadata types linked to the time. Since the distribution drawn from
Basic and Path ORAM are statistically identical, we did not include graphs for both - these
figures only represent the distribution of Basic ORAM.

102 103 104 105 106 107 108 109

Time between messages (s)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

ORAM Access
XMPP Access: pull
XMPP Access: push

Figure 14: ORAM access vs XMPP access on sensitive dataset considering push and pull access.

Figure 14 presents the distribution of time between messages for push and pull access.
Since, on the complete dataset, a given user is always the receiver of their correspondent,
we needed to split the users into two parts: the users we target and the users we do not.
Push and pull distributions are for the targeted users only and these results only show the
distribution from users we target. This method does not represent a flaw in our demon-
stration because:

• Targeted users are random in the dataset and in a number big enough to maintain the
statistical validity of the results.

• Regardless of the user targeted, the MP collected from ORAM servers remains the
same.

Furthermore, when we consider a second and third layer of metadata type and for each
different combination of these layers, the distribution changes every time as we show in
Figure 15. This figure shows the access distribution for the XMPP server changes while the
distribution from the ORAM servers remains the same.

Figure 15a considers push action for big and small messages. We define as “big message”
the top 25% biggest messages and the ”small message” the bottom 25% smallest messages
in the dataset. Figure 15b shows the push action on Monday and the push action on Friday
morning (before 12 am) with small messages only. Every-time, the distributions from the
XMPP server changes and are significantly different from each other while the distribution
from ORAM servers remains identical.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 29

102 103 104 105 106 107 108 109

Time between messages (s)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

ORAM Access
XMPP Access: push small
XMPP Access: push big

(a) Push on small & big messages.

102 103 104 105 106 107 108 109

Time between messages (s)

10 3

10 2

10 1

100

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

ORAM Access
XMPP Access: push friday morning small
XMPP Access: push monday

(b) Complex access on Friday & Friday.

Figure 15: ORAM access vs XMPP access on sensitive dataset considering complex aggregation of
different metadata type: Push on big messages and small messages (15a), Push on Monday, Push on
Friday morning with small messages (15b)).

These are significant results and show how aggregated metadata from different types on
an XMPP server can change the access pattern of a user. Conversely, regardless of the type
of access considered, on an ORAM server, all the access patterns remain indistinguishable
from each other.

What these figures do not show is that if we consider a very precise access, the messages
selected are not present in big enough number to allow the statistical test to remain valid.
For instance, even considering the full dataset, we cannot compare the distribution of mes-
sages from the push action on Sunday before 8 am with small messages because it does not
result in enough messages. Therefore, every metadata type you are able to add allows you
to narrow your search down to the activity of your targeted users. As a conclusion, with
these results we show:

• XMPP servers leak metadata.
• Leak from XMPP IM server can lead to privacy issue for the targeted user when con-

sidering complex aggregation of metadata types.
• ORAM based IM servers prevent the leak of metadata and are, therefore, a valid

solution to privacy leaks through metadata.

7.4 Discussion

This section provides a general discussion of the work proposed in this paper.

Basic ORAM vs Path ORAM By construction, Basic ORAM and Path ORAM leak the
same amount and type of metadata. The metadata leaked is the access time of the mes-
sages (see Figure 13). The access time distribution for a given dataset is thus the same for
both systems. While being two fundamentally different constructs, Basic and Path ORAM
provide the same obliviousness and are both able to prevent the leak of metadata.

Anonymity This paper does not consider anonymity as a possible solution to these pri-
vacy leaks. Although it can be easy to add it to these systems, it is not the purpose of an

TRANSACTIONS ON DATA PRIVACY 1 (2019)

30 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

oblivious system to provide user anonymity. When we provide anonymity to the users
of a server, we hide the real identity of the user, but we do not hide their actions. It is a
significant limitation because using inference attacks make it possible to retrieve the real
identity of the user and thus break user’s anonymity. Therefore, users need to take care
of compartmentalising their lives as much as possible. However, compartmentalising dig-
ital life requires a lot of security skills and is not always possible in real life. Furthermore,
many services only make sense when the users are not anonymous or when they keep the
same id between platforms such as health system, financial system, social network, and so
on. On the contrary, by using an ORAM scheme, users are not anonymous, but the server
does not know the actions they have been conducting. Moreover, the non-anonymous part
is usually not an issue because a user’s interaction with a specific server can be public.
For instance, a user can have legitimate communication with the server that manages its
medical data, its email or its enterprise IM server. As a conclusion, for these use cases, it is
becoming more interesting to provide obliviousness than anonymity to assure user privacy.

Spectre & Meltdown While writing this paper, the Spectre [23] and Meltdown [26] at-
tacks have been publicly disclosed. These attacks allow a user process to read any kind of
data in the memory. It works with any kind of user-space program, including browsers’
JavaScript engine. The attacks are based on hardware CPU vulnerabilities and affect ev-
ery CPU vendor regardless of the operating system used. Our proposed attack makes the
assumption that the attacker has root access on the server. Spectre and Meltdown show
that an attacker might conduct this attack just with a regular user’s rights. Therefore, it
makes metadata collection easier than expected and a much bigger issue than we could
have thought.

8 Conclusion

Privacy concerns about Cloud-based applications have been a growing issue in the last few
years. In addition to content, metadata can also be used for gathering information about
communicating entities. In this paper, we have introduced and formalised the notions of
tangible and intangible metadata as well as the notion of metadata type. In the context of
instant messaging, we have then proposed a new live forensic-based attack that allows an
attacker with access to an IM server to retrieve intangible metadata by spying on the RAM
process. The purpose of this attack is to be active as long as possible in order to accumulate
information permitting meaningful inferences. We have developed a new ORAM scheme,
Basic ORAM for the purpose testing our attack. By using this attack on both a classic IM
server and two types of ORAM servers, the results show that the classic system does leak
information while ORAM systems do not and are therefore an effective solution for pro-
viding privacy to the users of Cloud-based services. Furthermore, this results can easily be
extended to similar application and dataset than share the same structure and approach. To
the best of our knowledge, this work is the first to experimentally show the leak of informa-
tion by metadata and to evaluate an ORAM server as a potential solution, notwithstanding
performance issues.

Future work will consider other applications such as file storage, and audio/video calls
where a single communication usually involves several servers or proxies. We are also
on the lookout for obtaining real-life, large-scale complete datasets of messages/calls with
both content data and metadata to be able to analyse potential leaks in more detail. Finally,

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 31

we plan to make a performance evaluation of state of the art ORAM systems for assessing
their possible use in production environments.

Acknowledgement

This work was supported, in part by Irish Research Council grant GOIPG2016479 (re-
search.ie), in part by Science Foundation Ireland grant 10CEI1855 to Lero — the Irish
Software Research Centre (www.lero.ie) and in part by Science Foundation Ireland grant
13RC2094 and co-funded under the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero — the Irish Software Re-
search Centre (www.lero.ie). The authors thank the anonymous reviewers for their helpful
comments and suggestions. We also thank Thomas Laurent for the valuable discussions
and reviews.

References

[1] Balamurugan Anandan, Chris Clifton, Wei Jiang, Mummoorthy Murugesan, Pedro Pastrana-
Camacho, and Luo Si. t-Plausibility: Generalizing Words to Desensitize Text. Trans. Data Privacy,
5(3):505–534, 2012.

[2] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable Oblivious
Storage. In Public-Key Cryptography–PKC 2014, pages 131–148. Springer, 2014.

[3] Vanessa Ayala-Rivera, Patrick McDonagh, Thomas Cerqueus, Liam Murphy, and Christina
Thorpe. Enhancing the Utility of Anonymized Data by Improving the Quality of Generalization
Hierarchies. Transactions on Data Privacy, 10(1):27–59, 2017.

[4] Frank Block and Andreas Dewald. Linux Memory Forensics: Dissecting the User Space Process
Heap. Digital Investigation, 22:S66–S75, 2017.

[5] Frank Block and Andreas Dewald. Linux Memory Forensics: Dissecting the User Space Process
Heap - Technical Report CS-2017-02. 2017.

[6] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote Olivious Storage: Making Oblivi-
ous RAM Practical. 2011.

[7] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Re-
trieval. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages
41–50. IEEE, 1995.

[8] M. I. Cohen, D. Bilby, and G. Caronni. Distributed forensics and incident response in the enter-
prise. Digital Investigation, 8(SUPPL.), 2011.

[9] Michael Cohen. Forensic Analysis of Windows User space Applications through Heap alloca-
tions. pages 1138–1145, 2015.

[10] William W Cohen. Enron Email Dataset. 2009.

[11] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, and Ling Ren. Onion ORAM: A
Constant Bandwidth And Constant Client Storage ORAM (Without FHE or SWHE). 2015.

[12] Ran Dubin, Amit Dvir, Ofer Hadar, and Ofir Pele. I Know What You Saw Last MinuteThe
Chrome Browser Case. Black Hat Europe, 2016.

[13] Georges Fanny. Self-representation and digital identity: A semiotic and quali-quantitative ap-
proach to the cultural empowerment of the Web 2.0. Reseaux, 154:165–193, 2009.

[14] Justin N Ferguson. Understanding the Heap by Breaking It. black Hat USA, pages 1–39, 2007.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

http://research.ie/
http://research.ie/
http://www.lero.ie
http://www.lero.ie

32 Alexandre Pujol, Damien Magoni, Liam Murphy, Christina Thorpe

[15] Craig Gentry et al. Fully Homomorphic Encryption using Ideal Lattices. In STOC, volume 9,
pages 169–178, 2009.

[16] Ian Goldberg. Improving the robustness of private information retrieval. In Security and Privacy,
2007. SP’07. IEEE Symposium on, pages 131–148. IEEE, 2007.

[17] Oded Goldreich and Rafail Ostrovsky. Software Protection And Simulation On Oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[18] Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the US surveillance state.
Macmillan, 2014.

[19] Nguyen Phong HOANG, Yasuhito ASANO, and Masatoshi YOSHIKAWA. Your Neighbors
Are My Spies: Location and other Privacy Concerns in GLBT-focused Location-based Dating
Applications. ICACT Transactions on Advanced Communications Technology, 5(3):851–860, 2016.

[20] Fei Hong, Rui Liu, Liting Hu, and Yu Bai. Analysis and Characteristic at the Chat Session Level
in Instant Message Traffic. In Information Science and Engineering (ICISE), 2009 1st International
Conference on, pages 1666–1669. IEEE, 2009.

[21] Yaoqi; Tarik Moataz Jia. OBLIV P2P: An Oblivious Peer-to-Peer Content Sharing System. 2016.

[22] Parambir S Keila and David B Skillicorn. Structure in the Enron Email Dataset. Computational
& Mathematical Organization Theory, 11(3):183–199, 2005.

[23] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution *. 2018.

[24] Susan Landau. Making sense from Snowden: What’s significant in the NSA surveillance reve-
lations. IEEE Security & Privacy, 11(4):54–63, 2013.

[25] Jure Leskovec and Eric Horvitz. Planetary-Scale Views on a Large Instant-Messaging Network.
In Proceedings of the 17th international conference on World Wide Web, pages 915–924. ACM, 2008.

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. 2018.

[27] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Privacy And Ac-
cess Control For Outsourced Personal Records. In 36th IEEE Symposium on Security and Privacy,
2015.

[28] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schroder. Maliciously Secure
Multi-Client ORAM. pages 1–29, 2017.

[29] Frank J Massey Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

[30] Jonathan Mayer, Patrick Mutchler, and John C Mitchell. Evaluating the privacy properties of
telephone metadata. Proceedings of the National Academy of Sciences, 113(20):5536–5541, 2016.

[31] Daniele Micciancio. Oblivious Data Structures: Applications to Cryptography. Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages 456–464, 1997.

[32] Muhammad Naveed. The Fallacy of Composition of Oblivious RAM and Searchable Encryp-
tion. IACR Cryptology ePrint Archive, 2015:668, 2015.

[33] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference Attacks on Property-
Preserving Encrypted Databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 644–655. ACM, 2015.

[34] Carol XJ Ou, Robert M Davison, Xuepan Zhong, and Yi Liang. Empowering Employees
Through Instant Messaging. Information Technology & People, 23(2):193–211, 2010.

[35] Andrea Peterson. Why a Staggering Number of Americans have Stopped Using the Internet the
Way they Used To. Washington Post. May, 13, 2016.

[36] Alexandre Pujol and Christina Thorpe. Dog ORAM: A Distributed and Shared Oblivious RAM

TRANSACTIONS ON DATA PRIVACY 1 (2019)

Potential Privacy Leaks through Metadata 33

Model with Server Side Computation. In Utility and Cloud Computing (UCC), 2015 IEEE/ACM
8th International Conference on, pages 624–629. IEEE, 2015.

[37] Alexandre Pujol, Christina Thorpe, and Liam Murphy. Collecting Metadata on an Instant Mes-
saging Server. In European Conference on Cyber Warfare and Security, pages 741–744. Academic
Conferences International Limited, 2017.

[38] Tobias Pulls and Daniel Slamanig. On the Feasibility of (Practical) Commercial Anonymous
Cloud Storage. Trans. Data Privacy, 8(2):89–111, 2015.

[39] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk,
and Srinivas Devadas. Ring ORAM: Closing the Gap Between Small and Large Client Storage
Oblivious RAM. IACR Cryptology ePrint Archive, 2014:997, 2014.

[40] Peter Saint-Andre. Extensible messaging and presence protocol (XMPP): Core. 2011.

[41] Jitesh Shetty and Jafar Adibi. The Enron Email Dataset Database Schema and Brief Statistical
Report. Information sciences institute technical report, University of Southern California, 4(1):120–128,
2004.

[42] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM With O((logN) 3)
Worst-Case Cost. In Advances in Cryptology–ASIACRYPT 2011, pages 197–214. Springer, 2011.

[43] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM. arXiv preprint
arXiv:1106.3652, 2011.

[44] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 299–310. ACM,
2013.

[45] Elaine Svenonius. Metadata and the World Wide Web. SRELS Journal of Information Management,
25(4):215–227, 1988.

[46] The Rekall Team. The Rekall memory forensic framework. 2014.

[47] Vicenç Torra and Guillermo Navarro-Arribas. Data privacy: A survey of results. In Advanced
Research in Data Privacy, pages 27–37. Springer, 2015.

[48] Sameer Wagh, Paul Cuff, and Prateek Mittal. Root ORAM: A Tunable Differentially Private
Oblivious RAM. pages 1–17, 2016.

[49] Aaron Walters. The Volatility Framework: Volatile Memory Artifact Extraction Utility Frame-
work. 2007.

[50] Ian T Young. Proof Without Prejudice: Use of the Kolmogorov-Smirnov Test for the Analysis
of Histograms from Flow Systems and other Sources. Journal of Histochemistry & Cytochemistry,
25(7):935–941, 1977.

[51] Samee Zahur. Revisiting Square-Root ORAM Efficient Random Access in Multi-Party Compu-
tation. Number May, pages 1–17, 2016.

TRANSACTIONS ON DATA PRIVACY 1 (2019)

	Introduction
	Related Work
	Metadata
	General Definitions
	Scoped Definitions

	Attacker Model
	Oblivious RAM Scheme
	Basic ORAM
	Path ORAM

	Proposed Attack
	Technical Justification
	Data Collection

	Experiments
	Datasets
	Sensitive Dataset
	Synthetic Dataset

	Test Setup
	Results
	Discussion

	Conclusion

