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Abstract

Real-time applications, such as video conferences, have strong Quality of Service requirements for ensuring a decent
Quality of Experience. Nowadays, most of these conferences are performed over wireless devices. Thus, an appropriate
management of both heterogeneous mobile devices and network dynamics is necessary. Software Defined Networking
enables the use of multicasting and stream layering inside the network nodes, two techniques able to enhance the quality
of live video streams. In this paper, we propose two algorithms for building and maintaining multicast sessions in a
software-defined network. The first algorithm sets up the initial multicast trees for a given call. It optimally places
the stream layer adaptation function inside the core network in order to minimize the bandwidth consumption. This
algorithm has two versions: the first one, based on shortest path trees is minimizing the latency, while the second one,
based on spanning trees is minimizing the bandwidth consumption. The second algorithm adapts the multicast trees
according to the network changes occurring during a call. It does not recompute the trees, but only relocates the stream
layer adaptation functions. It requires very low computation at the controller, thus making our proposal fast and highly
reactive. Extensive simulation results confirm the efficiency of our solution in terms of processing time and bandwidth
savings compared to existing solutions such as multiple unicast connections, Multipoint Control Unit solutions and
application layer multicast.

Keywords: Software Defined Networking, Videoconference, Multicast, Scalable Video Coding, Quality of Service.

1. Introduction

For the past decade, the usage of video conference ap-
plications has considerably grown. One of the main crite-
ria when judging a video conference call is by the quality
of its video streams. These streams are usually very sen-
sitive to the network state and have stringent Quality of
Service (QoS) requirements, such as low end-to-end delay,
low packet loss, high bandwidth, etc. In addition, they
are also affected by the heterogeneity of the users’ wireless
link characteristics, which may degrade the quality of the
video streams for some or all users.

Traditional networks find it complex to manage all the
QoS requirements in real time. Earlier research has fo-
cused on developing new video codecs, such as Scalable
Video Coding (SVC) [1], that propose to separate a video
stream in several layers of different quality. Thus, these
codecs are able to adjust the bitrate of the video stream
more easily, simply by dropping unnecessary layers. This
allows a dynamic adaptation of the video stream to the
characteristics of the end-user access link. While SVC per-
mits a better control over the stream bitrate, it only drops
the unnecessary layers at the endpoints or in a Multiple
Control Unit (MCU). Layers could not be adapted inside
the core network.

The development of Software Defined Networking (SDN)
has enabled new possibilities for the complex control of
video conferences. This architecture provides a separation

between the control plane and the data plane of a network.
Thus, it enables a logically centralized view that allows the
management of the network in a more efficient way.

In this work, we propose two algorithms that build
and manage multicast trees in order to transmit a tailored
video stream to each user. We propose two versions of the
tree computation. The first version, called Shortest Path
Tree (SPT), minimizes the end-to-end delay; while the sec-
ond one, called Minimizing Spanning Tree, minimizes the
bandwidth consumption in the core network. Both ver-
sions optimize the placement of the SVC dropping rules in
the multicast tree.

Access bandwidth variations may occur quite often dur-
ing a call. In order to avoid a complete computation of the
multicast tree, that can be costly in processing time, we
propose an algorithm that optimally relocates the SVC
dropping rules at each bandwidth variation. The algo-
rithm is based on tree traversal ideas and is very fast, thus
offering high reactivity.

The paper is organized as follows: Section 2 discusses
the state of the art of video conferencing methods, espe-
cially in the SDN context. Section 3 describes our pro-
posed solution. Section 4 details the model and assump-
tions of our proposal for both static and dynamic environ-
ments. Section 5 describes the proposed algorithm for set-
ting up a video conference in a static environment. It also
discusses its complexity. Section 6 describes the proposed
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adaptation algorithm that reacts to bandwidth variations.
Section 7 details the performed simulations, and shows the
efficiency of our algorithms compared to the state of the
art. Finally, Section 8 concludes the paper.

This paper is an extended version of our two preceding
conference papers [2] and [3]. Compared to these previous
versions, we have restructured together the two (static and
dynamic) algorithms to show their complementarity. We
have also performed extended simulations to compare our
solution to more existing solutions: unicast, MCU-based
and application-layer multicast.

2. Related Work

Many efforts have been made on real-time applications
in order to improve the QoS/QoE for users while saving
network resources. However, device and access network
heterogeneity has brought many challenges to the field
compared to the rather predictable Plain Old Telephone
Service (POTS). To address these challenges, it was neces-
sary to adapt the video streams to each end-user. This led
to the creation of a special type of control called Multipoint
Control Unit (MCU) [4]. An MCU is a central node that
connects different end-users of a video conference. The
communicating users send video streams to the MCU in
order to transmit it the other end-users. The MCU can
adapt them if necessary, before forwarding them to the
destinations. The adaptation of the stream can be done
through transcoding in order to adapt the device and ac-
cess network heterogeneity. In case of bad reception of
any of the end-users, the latter asks the MCU to reduce
the quality (via bitrate, resolution, or frame rate reduc-
tion) of the transmitted video stream. However, since the
MCU is centralized, it becomes a single point of failure. In
addition, as the connection between the MCU and the net-
work requires high bandwidth capacity links, this makes
this solution very costly.

Another solution for adjusting stream bitrate is shown
in application supporting Real-Time Protocol (RTP). RTP
supports the notion of ”translators” and ”mixers”, which
could reconstruct and mix the high bitrate streams into
a single stream, then, translates the audio encoding to a
lower bitrate [5].

2.1. Multicasting

An MCU-based system uses unicast to manage data
traffic between the video conference participants. How-
ever, since unicast consists in sending replicated packets
from a source host to each destination, the traffic load in
the network becomes very high. Thus, unicast is ineffective
in terms of network resources and it presents scalability is-
sues. This led to the creation of IP-multicast as a network
layer protocol and service [6].

IP-multicast is a routing technique that allows one or
many sources to send IP packets to many destinations.
Hence, rather than sending the same packets to each end-
host, IP-multicast create a multicast tree where a single

packet is sent and is replicated at the suited nodes. Thus,
IP-multicast generates less traffic load in the network and
increases the QoS.

The underlying algorithmic problem of multicasting is
the well-known Steiner tree problem, i.e., computing the
minimum weight tree connecting a set of nodes in a net-
work. It is NP-complete if the weight is defined as an
additive or multiplicative metric. In this case, any prac-
tical solution is based on heuristics. Here, we consider
two metrics: i) the maximum end-to-end delay between
the source and any destination, ii) the total (i.e., sum)
bandwidth consumption overall used links of a call. Note
that, since the first metric is concave, the problem is poly-
nomial. While the problem remains NP-complete for the
second metric1.

Many protocols were built to perform multicast tree
construction. Protocol Independent Multicast-Sparse Mode
(PIM-SM) [7] is one of the most well-known. PIM-SM is
designed to efficiently establish distribution trees across
WANs. Using multicast to deal with multi-party video
calls is, therefore, a natural approach.

The deployment of IP-multicast at the network layer
led to some problems: high complexity and low scalabil-
ity. Application Layer Multicasting (ALM) [8, 9] was in-
troduced in order to overcome the hurdle of router depen-
dence and to create efficient data delivery without mod-
ifying the network. ALM is implemented by the end-
hosts instead of the routers. Unlike IP-Multicast, ALM
consists of multicasting at the application layer in the
end-hosts, while still using unicast at the network layer.
There are many research works defining ALM protocols:
ALMI [10], ZIGZAG [11], NICE [8], and OMNI [12], to
take a few. While NICE reduces the network resource
usage, it does not optimize the end-to-end delay, which
is very important for real-time systems. Unlike NICE,
OMNI and ZIGZAG minimize the average delay. How-
ever, ZIGZAG faces bandwidth load on the nodes close to
the source. On the other hand, ALMI is subject to a single
point of failure due to its centralized nature. While ALM
solutions overcome the deployment and maintenance limi-
tations of IP multicast, it has very few information about
the network topology, compared to IP multicast.

Recently, some works started involving SDN in order to
improve multicasting. This involvement is called Software
Defined Multicast (SDM). The combination of SDN fea-
tures with multicasting enables better deployment of new
routing algorithms. SDM can overcome the limitations of
traditional IP multicast. Thanks to the centralized view,
the recalculation of multicast routing tables has become
more flexible and reusable. Applications like live video

1Note that in a single path computation, delay is an additive
metric and bandwidth is a concave one. However, in our specific
problem about multicast trees, we consider as objective functions,
the maximum delay between any pair of end-users, and the sum of
the used bandwidth over all the links. This makes the first metric
concave and the second one additive.
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streaming, video and audio conferencing, etc., use multi-
casting to transmit data to multiple users simultaneously.
The existing multicast scheduling (coordinating access to
the available channels) algorithms are either not efficient
or not scalable. The authors of [13] used SDM to create
a multicast solution for fat-tree data center networks to
ease the connection/disconnection of a user in a multicast
group. This solution has better performances compared
to the existing multicast scheduling algorithms. Another
work [14] empowered users in a multicast group by giv-
ing them membership control, which does not exist in IP
multicast. In addition, this work has developed a new ap-
proach for computing multicast trees. The results show a
decrease in the number of flow table entries.

2.2. Video Layering

Since the video quality of a video conference call is
highly dependent on the available bandwidth, video codecs
able to dynamically adapt to the network characteristics
have been developed. SVC is a layer-based video codec
that divides a video stream into different layers of differ-
ent qualities. All the layers are built upon a base layer with
minimal quality. SVC allows the users to select the video
layer corresponding to their capacity. Some works (ex.
[15] and [16]) use these mechanisms to improve the partic-
ipants’ Quality of Experience (QoE). The authors of [15]
used SVC to improve performance of video streaming over
wireless shared channels. While the authors of [16] used
the dropping mechanism to balance between the band-
width utilization and video quality. However, the video
layering adaptation in these works can only be performed
at the application layer, and thus the network bandwidth
consumption cannot benefit from it.

2.3. SDN Applied to Video applications

SDN architecture separates the network control from
the forwarding functionalities. Thus, it enables a direct
programmability of the network and moves the control
to the application layer. Since SDN can provide a logi-
cally centralized view of the network topology, it may ease
the management of the video delivery and improve the
QoS. Nowadays, Content Providers such as Netflix and
YouTube are responsible for most of the Internet video
traffic. Thus, providing the best QoE has become the main
challenge. Video quality degradation is mainly caused
by bandwidth overload that increases playback buffering,
startup delays for video streaming and exceeds latency
bound for live/interactive video applications. Researchers
today are applying SDN to implement less complicated
techniques for bandwidth estimation, better resources uti-
lization and rate adaptation used by real-time and stream-
ing video providers. To enhance video delivery, several
works (ex.[17], [18] and [19]) propose new routing meth-
ods over SDN that reduce packet loss rate and delay for
enhanced video delivery. the work in [17] beets Dijkstra
and Bellman–Ford algorithms with a genetic algorithm for

finding the optimal path. It reduces the packet loss rate
while improving the throughput and the peak signal–to–
noise ratio (PSNR). The authors of [18] propose a rout-
ing algorithm that provides a trade–off between the delay
and the packet loss while selecting non-shortest paths. It
makes sure of introducing more packet losses to a path that
maintains a tolerable delay. The authors of [19] minimize
packet loss and latency by proposing a dynamic QoS rout-
ing algorithm that routes some flows based on a Constraint
Satisfaction Problem (CSP). Some works (ex.[20] and [21])
use SDN to focus on providing the best quality bitrate to
the end-user. The authors of [20] improve the quality of
scalable video streaming by proposing dynamic rerouting
of QoS streams with a minimum disturbance on best-effort
traffic. The authors of [21] build a video control plane
which enforces video quality fairness among concurrent
video flows generated by heterogeneous end-users. The
bitrate adaptation assistance showed the best results in
terms of video quality fairness among clients. On another
hand, some researchers work on improving the bandwidth
utilization in an SDN environment (ex.[22] and [23]). The
authors of [22] propose new APIs as an extension of Open-
Flow. These APIs redirects some flows to a rate-limiters
for a better use of the aggregated bandwidth. A DASH-
aware networking architecture based on SDN was proposed
by the authors of [23]. This proposal enables the better
configuration of the network and defines how bandwidth
should be shared between video traffic and other traffic
types, and among video players. Several works focus on
the problem of network resource management to achieve
a better resource utilization in SDNs. The authors of [24]
propose to monitor the QoS metrics of each flow to de-
termine adequate parameters. By examining flow at the
source and destination switches, accurate results can be
obtained while minimizing the network and switch CPU
overhead. In [25], the authors present a model based on
queuing theory to evaluate the impact of different process-
ing strategies. Another approach, presented in [26], takes
into account device and network requirements to optimize
the QoE for all video streaming devices in a network.

The authors of [27] and [28] propose that the SDN
controller directly manages the multicast tree construction
and the video layering inside the network. The work in [27]
minimizes the bandwidth consumption while providing an
acceptable video quality stream of the participants. The
work in [28] reduces the packet-loss ratio while ensuring
the bounded delay between all sources and destinations.

Some work combine SDN with video layering. The
authors of [29] propose SDM2Cast, an SDN-based, scal-
able multimedia multicast streaming scheme, where each
SVC video layer has its own multicast tree. The proposed
scheme optimizes multimedia flow management and pro-
vides scalability and flexibility. The authors of [30] focus
on how to solve the SVC video manycast problem of effi-
ciency coming from multiple sources to multiple destina-
tions. They designed two heuristics to achieve the opti-
mal solutions for small-scale problems. Several works (ex.
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[31] and [28]) use SDN with SVC to reduce the number
of video freezes and the bandwidth consumption, respec-
tively. However, the first one only applies to one-to-one
video delivery, while the second focuses on the partici-
pants’ screen size capacity and does not take into account
the network access link properties. Both works keep SVC
functionalities at the end users or in the MCU. Since SVC
is capable of adjusting the bitrate of a video stream and
of reducing its load, it would be interesting to use it in the
core of the network. The work of [32] create a distributed
architecture for SDN network control in order to comply
with QoS constraints. However, the authors use SVC in
unicast mode. More recently, the authors of [33] and [34]
use SVC and SDN to propose a method that provides ad-
mission control, in-network adaptation, and supports het-
erogeneous devices having different display capabilities.

2.4. Dynamic aspects

The heterogeneity of participants’ access link band-
width is already an issue. Moreover, the access links are
dynamic, i.e., subject to variations during a single call.
This means that a video conference characteristics evolve
continuously and that the network should adapt to the
new characteristics.

There is an extensive literature on video calls under
bandwidth variations. For example, the authors of [35]
provide an architecture and different mechanisms to per-
form video streaming that adapts to congestion and band-
width variations. It investigates both unicast and mul-
ticast methods. But the congestion control is performed
at the application layer, and thus at the endpoints of the
communication. The network resource consumption can-
not benefit from it.

The authors of [36] investigate the effect of congestion
and bandwidth variation on a Skype video call. However,
the case study includes only two hosts and, again, the
adaptation mechanism is performed within the application
layer. Some other works focus on the reactivity to band-
width variation. For example, the authors of [37] propose
a cross-layer approach where the Bit Error Rate (BER),
and thus the bitrate, is directly estimated on the physical
layer. This can allow a quick adaptation.

More recently, the new approach of pseudo-analog video
transmission, which allows a direct adaptation of the video
stream quality according to the channel noise, is investi-
gated in [38], [39], but, again, the video quality adaptation
is done at the endpoints. In the case of the multicast ap-
proach, this has two consequences: i) If the video quality
adaptation is performed at the sender, it will adapt to the
video quality of the receiver with the lowest bandwidth.
This means that receivers with higher bandwidth cannot
benefit from a quality corresponding to their access chan-
nel. ii) If the adaptation is performed at the receivers, the
sender has to emit the highest quality stream through the
multicast tree, which implies higher bandwidth consump-
tion in the core network.

3. Proposed Solution

The problem we are facing is more complex. After com-
puting the multicast trees, we aim at optimally placing the
SVC dropping rules in the trees. By optimally, we mean
minimizing the bandwidth consumption while providing
the maximum video stream quality that an end-user can
receive. This consists of placing the SVC dropping rules
as close as possible to the source.

In order to adapt the streams inside the network and
minimize the core bandwidth consumption, without the
need of a specific MCU server to manage the control, we
propose algorithms leveraging SDN architecture that mini-
mize the bandwidth consumption in the core network while
providing the best possible video quality to each partici-
pant. We assume switches having SVC functionalities 2.

Our algorithm computes a multicast tree from each
sender to all the receivers. It provides two modes: the
first one minimizes the end-to-end delay, by computing
the shortest path tree (hence the name SPT); the second
one, called Minimizing Spanning Tree (MST), minimizes
the bandwidth consumption and proceeds iteratively. The
receivers are first ordered according to their access link
bitrate. Then the shortest path between the sender and
the first receiver is computed and added to the multicast
tree. Afterward, each receiver is linked to the tree through
the shortest path to any node already in the tree. Note
that this algorithm is different from a classical minimum
spanning tree algorithm. It is a heuristic since the problem
is NP-complete.

Once the tree completely built, the algorithm places
adaptation rules to drop the unnecessary video layers at
optimal locations (on SVC switches), i.e., as close as pos-
sible to the sender.

When an access link variation occurs, one can com-
pletely recompute the multicast tree thanks to our algo-
rithm. However, this may be costly and long, inducing
possible disruptions in the call. To avoid this, we pro-
pose an algorithm that does not recompute the tree but
relocates the SVC adaptation rules only when and where
needed. When a variation occurs at a receiver’s access
link, the algorithm propagates the new bitrate upward in
the tree, until there is no need to move further. This algo-
rithm is very fast and offers high reactivity, thus avoiding
possible disruptions.

Our algorithms rely on the SDN controller that pro-
vides a logically centralized view of the core network in-
frastructure and is aware of bandwidth variations. There-
fore, the SDN controller is able to define where inside the
network, some video layers should be dropped. Thanks
to the video layer dropping, we are able to adapt to the
bandwidth capacities of the receiving devices. However,
note that we do not consider the mobility case where the

2A simple way to implement such functionalities is to associate
each SVC layer to a specific UDP port. Thus, dropping a layer is
done through suited forwarding rules.
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end-users may change their access node during a video call.
This is left for a future work. Note also that the end-users
are not forwarders of the different streams, but the access
nodes are able to perform this task.

4. System model

In this section, we describe the technical assumptions
and the formal model used in this paper.

4.1. Technical assumptions

When a video conference is set between a set of users,
they are called participants. A participant is, at the same
time, a sender of its video stream and a receiver of video
streams from all other participants. we assume that the
participants are connected to any node belonging to the
network, and that several participants can be connected
to the same node. Participants are considered to be con-
nected wirelessly to their node by a 4G cellular technol-
ogy such as LTE. Each node of the network is supposed
to provide a wireless access function (such as an eNode-
B) and an SDN switching function. As the network is
SDN-enabled, we assume that all nodes within the network
contain OpenFlow switches and can communicate with an
SDN controller that is responsible for the management of
the calls. All switches are supposed to be able to adapt
SVC streams by dropping unnecessary layers on the paths
indicated by the controller.

SVC streams are structured in layers, all built upon
a base layer. We assume the SVC layers consisting of a
base layer L1, and three enhanced layers L2, L3, and L4.
However, our algorithms can be easily generalized to any
number of layers. In addition, a given layer can be used
only if all the lower layers are also received. Each par-
ticipant accepts the highest number of layers allowable by
its downlink capacity. With only the base layer, the par-
ticipant will receive the lowest video quality. If the par-
ticipant’s downlink capacity falls below what is required
to receive the base layer, it can still remain in the confer-
ence if it can at least receive an audio-only stream. If any
participant can not receive the audio stream, the call is
rejected.

In a video-conference, the highest possible bitrate per-
mitted by the access link bandwidth is recommended in
order to achieve a better QoE. Therefore, during a video
call, each participant sends the maximum bitrate stream
acceptable by any one receiver, and this stream is then
degraded (i.e., higher layers are dropped) to adapt to the
participants with lower downlink bandwidth capacity. Af-
ter discovering the network topology and channel condi-
tions using SDN global view, it is significantly easier to
identify the locations of the switches where it is necessary
to degrade SVC streams.

Our algorithm, executed in the SDN controller for set-
ting up a video conferencing call, builds a multicast tree
from each participant (sender) to all the others (receivers).
It relies on the following assumptions:

• All SVC layers belonging to the video stream emitted
by one sender, follow the same paths. There is one
tree for all layers of a given video stream. Since the
adaptation are performed in the core network, some
branches of that tree may carry only a subset of the
layers.

• The SDN controller knows the complete topology of
the network, the position of the participants as well
as their available uplink and downlink access band-
width.

• Any SDN switch can degrade (i.e., drop higher qual-
ity layers) an SVC stream.

4.2. Formal model

We model the network as a graph G = (V,E), where
|V | = n is the number of nodes and |E| = m is the
number of links. The set of participants is denoted by
P = {1, . . . , p}. There is p multicast trees, one for each
participant as a sender. Thus, a multicast tree Ti is asso-
ciated with a sender si and a set of receivers Ri = {ri,j |
i ∈ P ∧ j 6= i}. For simplicity, we consider that the partic-
ipants are also nodes of the trees (the receivers as leaves
and the sender as the root). For any link specified by a pair
of nodes (x, y), the bandwidth3 (or capacity) is denoted by
B(x, y) and the bitrate (the currently used capacity in a
specified tree Ti) is denoted by bi(x, y). In a tree Ti, the
parent of a node x is denoted by Pi(x) and the set of its
children (if any) by Ci(x). Note that each receiver has the
same parent in all the trees, as it has only one access link.
For simplification, B(r) (resp bi(r)) can denote the down-
load bandwidth (resp. the bitrate in Ti) of the receiver r.
The codec bitrate CB represents the bitrate levels recog-
nized by the codec used in the system. In our case, CB
is equal to the SVC levels {L1, L2, L3, L4} and the audio
layer. Table 1 summarizes the variable notations.

5. Setting a video conference call

In this section, we present our algorithm to set up a
video conference call. The algorithm consists of the fol-
lowing general steps:

1. Collect the uplink/downlink bandwidth for each par-
ticipant.

2. Compute the optimal receiving and sending bitrates
for each participant.

3. If it is possible, build a multicast tree from each par-
ticipant to all the others.

In step 1, the controller backs up the network state,
then it retrieves the uplink/downlink bandwidth value of
each participant by polling its access switch (the one through
which the participant is connected to).

3Note that it is possible that B(x, y) 6= B(y, x) if the uplink and
downlink bandwidths are not the same.
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Notation Definition

B(ri,j) Downlink bandwidth of the receiver ri,j

B(si) Uplink bandwidth of the sender si
B(x, y) Bandwidth of the link (x, y)
b(si) Uplink bitrate of the sender si
bi(ri,j) Downlink bitrate of the receiver ri,j in the tree Ti

bi(x, y) Bitrate of the link (x, y) in the tree Ti

Ci(r) Set of children of a node r in the multicast tree Ti

CB Set of SVC bitrates
m Number of links in the network
n Number of nodes in the network
P Set of participants
p Number of participants
Pi(r) Parent of a node r in the multicast tree Ti

Ri Set of receivers in the tree Ti

ri,j Receiver j in the tree Ti

si Sender i
Ti Multicast tree associated to the sender si
path Shortest path connecting a receiver to a sender

or to the closest node of the tree
k Node where dropping layer is needed

Table 1: Model notations

In step 2, the receiving bitrate of each participant bi(ri,j)
is calculated by first dividing its downlink bandwidthB(ri,j)
by the number of participants excluding itself (p− 1), and
then by picking the highest bitrate level lower or equal to
this computed value. The receiving bitrate represents the
highest bitrate which a receiver is able to receive from any
sender. The sending bitrate b(si) is then defined as the
maximum received bitrate level bi(ri,j) found among all
the receivers. The bitrate b(si) should be lower or equal
to its uplink bandwidth B(si). As we assume that the up-
link bandwidth is always higher than the highest bitrate
level, the sending bitrate is thus the same for each partici-
pant. However, the sending bitrate may be lower than the
highest quality bitrate if no receiver can receive it. Eq.(1)
summarizes the computation of the receiving/sending bi-
trates.

bi(ri,j)← max
k∈CB

{
k, k ≤ B(ri,j)

p− 1

}
b(si)← min

{
B(si), max

ri,j∈Ri

bi(ri,j)

} (1)

In step 3, the controller builds a multicast tree from
each sender to all the receivers.

5.1. The algorithm

Algorithm 1 builds multicast distribution trees and sets
rules for dropping video layers at optimal locations, after
computing the best receiving/sending bitrate of each par-
ticipant.

First, Algorithm 1 takes as input participant si and
builds its diffusion tree Ti (lines 1-3). The function

Algorithm 1: Setup of the Video conference Call

1 Input: a sender si with i ∈ P
2 Output: a multicast tree Ti
3 Ti ← {si}
4 Ri ← SortReceivers(Ri, si)
5 higestBitrate← max(bi(ri,j)) with j ∈ P/{i}
6 foreach ri,j ∈ Ri do
7 path← BuildShortestPathToTree(ri,j , Ti) if mode = MST

// Builds the shortest path from the receiver the closest
node in Ti

8 path← BuildShortestPathToSender(ri,j , si) if
mode = SPT // Builds the shortest path from the
sender si

9 if path 6= {∅} then
10 if ri,j == Ri[0] ∧ bi(ri,j) == higestBitrate then
11 foreach edge ∈ path do
12 AddEdge(Ti, edge, b(si))

13 else
14 if bi(ri,j) == b(si) then
15 foreach edge ∈ path do
16 AddEdge(Ti, edge, b(si)) if edge /∈ Ti

17 else
18 foreach edge ∈ path do
19 AddEdge(Ti, edge, bi(ri,j)) if edge /∈ Ti
20 k = edge[1] // k is the intersection node

of the added edge and the tree
21 Rule(k, ri,j) ← (bi(Pi(k), k), bi(ri,j)))

SortReceivers() (line 4) sorts the receivers Ri first, from
the highest receiving bitrate to the lowest, then from the
closest (to the sender) to the farthest. For each receiver
ri,j , the shortest path is built depending on the mode (lines
7-8). Two modes are defined :

• Minimizing Spanning Tree (MST): in this mode,
BuildShortestPathToTree() builds a shortest path up
to the closest node already belonging to the tree.
Thus, MST builds a tree that minimizes bandwidth
usage in the network (line 7).

• Shortest Path Tree (SPT): in this mode, Build-
ShortestPathToSender() builds a shortest path to
the sender, potentially stopping at the first node of
the tree. This mode builds a shortest path tree that
minimizes latency between participants (line 8).

Starting from the sender si, the first shortest path of
the tree is built to the first receiver in the list of sorted
receivers, regardless the mode. If no path is found, due
to saturated links, the call is rejected. If a path is found,
three cases are considered:

• ri,j is the closest receiver to the sender with the high-
est bitrate. Thus, the computed path is the first in
the tree. We simply add the path’s edges to the
tree Ti with a bitrate equal to the sender bitrate
b(si). To add an edge between two nodes we use the
AddEdge(tree, (node1, node2), bitrate) function that
takes as parameters the tree to which we are adding
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the edge, the edge which is a couple of two nodes
and the bitrate associated to this edge (lines 10-12).

• ri,j ’s receiving bitrate bi(ri,j) is equal to the sender
bitrate b(si); knowing that path, in this case, is not
the first shortest path in the tree, its edges might
overlap with others in the tree. Thus, before adding
new edges, we must check if they already exist in
the tree. The bitrate associated to each of the new
edges is equal to the sender bitrate b(si) which is the
maximum bitrate that can be sent (lines 14-16).

• ri,j ’s receiving bitrate bi(ri,j) is lower than the sender
bitrate b(si); the edges are added from the receiver
up to the sender stopping on the first overlapping
edge. In this case, the bitrate associated to each of
the new edges is equal to the receiver’s receiving bi-
trate bi(ri,j). Knowing that the existing edges of the
tree carry bitrate equal or greater than the current
receiving bitrate bi(ri,j), we may need to drop some
bitrate layers on the intersecting node k. Thus, using
Rule(), node k will drop some layers on k to attend
the receiver bitrate bi(ri,j) (lines 18-22).

The goal of this algorithm is to minimize the consumed
bandwidth. To do so, it places rules that drop layers from
a higher quality stream as close as possible to the sender,
thus saving the bandwidth in the core network. Rule()

takes as input a node k and a receiver ri,j and specifies
that some bitrate layers will be dropped at node k to reach
the acceptable receiving bitrate bi(ri,j) (line 21).

Complexity: As the problem of generating an opti-
mal multicast tree (also known as the Steiner tree prob-
lem) is NP-complete [40], we use a single source (sender)
approach and the two modes mentioned above for defin-
ing a non-optimal heuristic that builds the tree backward
from each receiver to a given sender. We then iterate the
procedure for every sender. We use Dijkstra algorithm for
all nodes in the network, in order to obtain the shortest
paths needed by our algorithm, The complexity of an all-
pairs Dijkstra’s algorithm on a sparse network of size n,
with a binary heap implementation, is O(n2× log n). This
can be done upfront. For a video conference call with p
participants and k video layers, on a network of diameter
D, the time/computation complexity of our algorithm is
O(p2 × k ×D). Given that k and D are usually constant
during a video call, and that p << n, the time complexity
of our algorithm is very small.

6. Dynamic adaptation

In this section, we present an algorithm that replaces
optimally the adaptation rules when a bandwidth varia-
tion occurs. As recomputing the trees is costly, we opt
for keeping them unchanged. The basic principle of our
algorithm is to always guarantee that each participant re-
ceives the highest video quality allowed by its bandwidth
but with minimum computation. Thus, when a bandwidth

variation occurs, the bitrates are recomputed. If there is
a bitrate change at a receiver, this change is propagated
and the adaptation rules are pushed upward the tree. In
the same way, if a bitrate change occurs at the sender,
the propagation is done downward. This algorithm is ex-
pected to be performed by the SDN controller, and it takes
as input the global model of the network in the controller.
The forwarding/adaptation rules are then propagated to
the SDN switches.

6.1. Change at a receiver

We aim to illustrate with Figure 1 the propagation
mechanism when a receiving bitrate changes. Figure 1a
depicts a multicast tree where node a is the sender and
nodes e, f , and g are the receivers. The other nodes are
SDN switches. The bitrate of each link is given beside it.
In Figure 1b, because of a bandwidth change, the receiving
bitrate of (c, e) is no longer 250Kbps but 90Kbps. While
neither e nor f need a stream of 250Kbps, the layer cor-
responding to this rate is dropped at b, the parent of c.
In Figure 1c, the bitrate of (d, g) changes from 1Mbps to
0.5Mbps. This change is propagated until b, but neither c
nor d require 1Mbps, thus the bitrate of a is also adapted.
This method adapts the bitrate upward from a receiver,
but it is infrequent that it reaches the sender. It happens
only in the case where the bitrate of the receiver and the
sender are the same, and a change of the first one affects
the second one. The goal of Algorithm2 is to minimize the
computation task while minimizing the consumed band-
width. To do so, it places the adaptation rules that drop
higher quality streams as close as possible to the sender,
thus saving the bandwidth in the core network.

Algorithm 2: Relocate Up

1 Input: A tree Ti and a node r
2 bmax ← max1≤j≤k(bi(Pi(r), ci,j) with ci,j ∈ Ci(Pi(r))
3 bmin ← min(bmax, b(si))
4 if (bmin 6= bi(Pi(Pi(r)), Pi(r)) then
5 bi(Pi(Pi(r)), Pi(r))← bmin

6 AdaptRule(Pi(r))
7 if Pi(Pi(r)) 6= si) then
8 RelocateUp(Ti, Pi(r))

9 AdaptRule(Pi(r))

Algorithm 2 formalizes this method. It takes as in-
put the receiver where a change occurs, then propagates
the change recursively. At each step, it checks if all the
children of a node Pi(r) receives less than their parent
(line 3). If it is the case, Pi(r) does not need to receive
its current bitrate from Pi(Pi(r)). The latter bitrate is
adapted (line 5). With AdaptRule() (line 6), the rules
at Pi(r) are updated or deleted in a way that the bitrate
received by the node Pi(r) will be the maximum bitrate
sent by this node. AdaptRule() is further described in
Algorithm 4 in the Section 6.3. The algorithm operates
recursively (line 8) until it reaches the sender (line 7) or
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(a) Tree before bitrate change. (b) Bitrate change propagated. (c) Bitrate change propagated to the sender.

Figure 1: Bitrate change propagation

there is no need to go further, i.e., the bitrate received by
Pi(r) has not to be changed.
Complexity: In Algorithm 2, the number of recursive
calls is bounded by the height of the multicast tree, which
is itself bounded by the diameter of the network. The di-
ameter is in O(n) in the worst case, however, it is much
smaller in random and realistic networks. It is well known
that the diameter of an Erdős-Rényi4 graph G(n, φ) is “al-
most constant5” when φ is fixed, and the diameter of a
scale-free graph is ∼ log n/ log log n [41]. At each recur-
sive call, Algorithm 2 checks the bandwidth between P (r)
and its children. This suggests that this operation is in
O(p) (because the number of children of any node in the
tree is smaller than the number of participants). The same
argument applies to the complexity of Algorithm 4 (Adap-
tRule). Assuming that the diameter of the network is in
O(log n), the complexity of Algorithm 2 is in O(p log n).

6.2. Change at the sender

When the bitrates are recomputed and the value of
b(si) is modified, the method used is almost the same as
the previous section, except that the propagation is per-
formed from the sender to the receivers. Again, the goal
is to keep the adaptation rules as close as possible to the
sender. The main difference between this case and the

4Erdős-Rényi graphs are usually denoted by G(n, p) where p is a
probability to exist for a link. We replaced it by φ in order to avoid
confusion with the number of participants.

5The diameter of an Erdős-Rényi graph where φ is fixed tends
toward 2 when n→ +∞ .

previous one is that the propagation is not only done on a
branch of the tree but can occur on several branches down
to the leaves (receivers).

Algorithm 3: Relocate Down

1 Input: A tree Ti and node r
2 foreach ci,j ∈ Ci(r) do
3 if bi(r, ci,j) 6= bi(Pi(r), r) then
4 bi(r, ci,j)← bi(Pi(r), r)
5 AdaptRule(Pi(r))
6 RelocateDown(ci,j)

Algorithm 3 is performed when the sender’s bitrate de-
creases. It starts at each sender’s child. From each one
of these nodes, if their own children receive more than
the sender’s bitrate (line 3), the children bitrates should
be changed (line 4) and the rules updated (line 5)using
AdaptRule() further described in 6.3. The algorithm per-
forms recursively (line 6) until reaching a leaf. Unlike Al-
gorithm 2 that starts from a leaf but infrequently reaches
the sender, Algorithm 3 always reaches at least one re-
ceiver. Because there is always a receiver that receives the
same bitrate as the one emitted by the sender (otherwise
the sender could send a lower bitrate), and this receiver’s
bitrate must be updated.
Complexity: the alg. 3 browses all the tree in the worst
case. In the worst case, the size of the tree is n, giving a
complexity of O(n). However, in the more realistic case
where the tree height is in O(log n), the size of the tree is
at most O(p log n), which is also the complexity of alg. 3.
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6.3. Adapting the SVC Downsizing Rules

When incoming and outgoing bitrates are changed at
a node, the adaptation rules should be updated. Algo-
rithm 4 takes as input a node r and, for each one of its
children, deletes the old rule if it exists and replaces it
by the correct one, i.e., the pair (incoming bitrate into r,
outgoing bitrate from r to its child).

Algorithm 4: Adapt rules

1 Input: A tree Ti and node r
2 foreach ci,j ∈ Ci(r) do
3 if bi(r, ci,j) = bi(Pi(r), r) then
4 Delete rule if exists

5 else
6 Rule(r, ci,j)← (bi(Pi(r), r), bi(r, ci,j))

Complexity: On any node, there is at worst one rule
per child. The number of children of any node is smaller
than the number of participants, this gives a complexity
of O(p).

6.3.1. The general algorithm

Algorithm 5 is performed at the SDN controller. The
call is first established by using Algorithm 1 with either
MST mode or SPT mode of Section 5. Then at each event
(bandwidth variation on the access links), the controller
reacts and adapts the multicast trees. We consider four
events:

• B(r) ↓: The downlink bandwidth of a node r de-
creases. This may lead to a change of bi(r) and b(si)
for each tree Ti according to the formulas in (1). In
this case, the bitrates are recomputed and the new
bitrate of r is propagated in all the trees (except
the one where it is the sender) using Algorithm 2.
Thus the complexity of processing this event is in
O(p2 log n).

• B(si) ↓: The Uplink bandwidth of a node si de-
creases. This can affect the bitrate of si and those of
the receivers, but only in the tree Ti where si is the
sender. The change is propagated using Algorithm 3
on the access node of si, which is its only child. The
complexity is that of Algorithm 3, i.e., O(p log n).

• B(si) ↑: The uplink bandwidth of a node si in-
creases. Again, this can impact the bitrates of si
and the receivers ri,j . After recomputation, if the
receivers’ bitrates do not change, there is no need to
propagate the new bitrate of si, because no receiver
can get a higher bitrate. Otherwise, the new bitrates
are propagated in Ti using Algorithm 2. Likewise the
case B(r) ↓, the complexity is in O(p2 log n).

• B(r) ↑: The downlink bandwidth of a node r in-
creases. This case is more complex since, accord-
ing to formulas 1, it can impact all the bitrates in

all the trees (except the one where r is the sender).
For each tree, there are two possible cases. i) The
sender’s bitrate is not affected, in this case, the new
downlink bitrate of r is propagated upward. ii) The
sender’s bitrate is affected, in this case, it can, in
turn, affect the other receivers’ bitrates. This case is
similar to the previous one where the sending bitrate
increases. The complexity of processing this event is
in O(p3 log n).

Complexity: Note that the number of participants is
much smaller than the network size, i.e., p � n. If we
consider the network size as a parameter, Algorithm 5
processes each event in O(n) if the diameter is linear and
in O(log n) in the more realistic case where the diame-
ter is logarithmic. This complexity is much lower than
the complexity of MST/SPT that is in O(n3) if the net-
work is dense and O(n2 log n) if the network is sparse. A
lower complexity when processing an event implies less
consumed resources in the controller and better reactivity
for the participants.

Algorithm 5: The general algorithm

1 Perform MST or SPT to create a video conference
2 while an event occurs do
3 if Downlink bandwidth of a receiver r decreases (B(r) ↓)

then
4 Recompute all the bitrates
5 foreach Multicast tree Ti do
6 RelocateUp(Ti, r)

7 if Uplink Bandwidth of a sender decreases (B(si) ↓)
then

8 Recompute the uplink bitrate of si
9 RelocateDown(c) where {c} = C(si)

10 if Uplink Bandwidth of a sender increases (B(si) ↑)
then

11 Recompute the uplink bitrate of si
12 Recompute the downlink bitrates of each ri,j
13 foreach receiver ri,j of Ti do
14 if the bitrate of ri,j increased after

recomputation then
15 RelocateUP(Ti, ri,j)

16 if Downlink bandwidth of a receiver r increases (B(r) ↑)
then

17 Recompute all the bitrates
18 foreach Tree Ti do
19 if the bitrate of si increases after recomputation

then
20 foreach receiver ri,j of Ti do
21 if the bitrate of ri,j increased after

recomputation then
22 RelocateUp(Ti, ri,j)

23 else
24 RelocateUp(Ti, r)
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7. Evaluation

In this section, we evaluate the efficiency of our static
and dynamic algorithms through extended simulations.
We compare them to the main state of the art algorithms:
unicast, MCU and ALM. More precisely, we study the per-
formance of the different algorithms in terms of processing
time, bandwidth saving, maximum delay and network call
capacity. The implementation used for MCU and ALM is
detailed in Section 7.1.1. All the algorithms were imple-
mented in Python 2.7.10, using the NetworkX package 6.

7.1. Simulation of setting up a video call

In this section, we evaluate the different algorithms for
setting up a video call. We detail the simulation method-
ology and parameters, then we show the results assessing
the efficiency of our algorithms.

7.1.1. Simulation methodology and parameters

We evaluate the different algorithms on random topolo-
gies according to two models:

• Erdős-Rényi model (ER) [42].

• Magoni-Pansiot model (MP) [43]; where the degree
distribution follows a power law (as on the Internet
and in large communication networks). It is based on
an algorithm that performs a sampling on measured
Internet maps.

Using two different models allows us to evaluate the effect
of the topologies on our algorithms efficiency.

We have implemented Algorithm 1 in two different
modes (MST, STP) and compared them to the unicast,
MCU and ALM algorithms.

• ALM: This solution is usually based upon a hier-
archical clustering of the application-layer multicast
peers. However, since our call sessions contain few
participants (up to 12), the creation of the clusters
is not necessary. Thus, we have implemented a sim-
ple form of ALM that creates a multicast tree by
connecting each participant to the closest existent
participant in the tree. When the tree is built, the
sender emits multicast streams to the other partici-
pants. The bitrate of the emitted multicast stream
corresponds to the sender’s capacity. Once the stream
is received, each participant adapts it with respect
to his own capacity.

• MCU: All the participants are connected to the MCU
node. To build the tree of each sender, the algo-
rithm first builds the shortest path from the sender
to the MCU (sender-MCU). Secondly, it builds the

6https://networkx.github.io/

shortest paths from the MCU to each receiver (MCU-
receiver(s)). Then, it connects the first path (sender-
MCU) to the others (MCU-receiver(s)) to get the fi-
nal tree (sender-MCU-receiver(s)). A sender emits a
stream with a certain bitrate to the MCU. Knowing
the capacity of each receiver, the MCU adapts this
stream by choosing the minimum bitrate between the
initially sent stream and the receiver’s capacity. We
note that while implementing MCU, the algorithm
finds the shortest path from MCU to all participants
and stores it in memory, which may affect the pro-
cessing time of the algorithm.

To build our simulation system, we consider the follow-
ing parameters:

• For p participants, p multicast trees will be built.

• We assume the SDN network to be WAN-sized. The
network topology sizes implemented are 500, 1000,
2000 and 4000 nodes, which allows us to evaluate the
impact of the size of the network on the efficiency of
the algorithms.

• Access downlink bandwidths are chosen from a range
of plausible 4G data rates for each participant. They
may vary from a call to the other. Thus, the access
downlink capacity for each participant is set to a
value in the range from 4 Mbps to 14Mbps and its
uplink bandwidth is set to 1.5Mbps.

• Core links are supposed to all have the same band-
width dedicated for this type of A/V traffic. This
means that links may have different bandwidth ca-
pacities but they all reserve the same amount of
bandwidth for the video conferencing calls. The core
link bandwidth is set to 1Gbps.

• Access links delay is set to 30 ms (a typical average
value as shown in [44]) and core link delay is set to
10 ms (as observed in [45]). The maximum latency
authorized over any path is set to 250ms.

• SVC layers (including network headers’ overhead and
audio streams) are set to:

– Audio-only, 32kbps.

– Layer 1: Scalable Constrained Baseline, Level
1, 90kbps.

– Layer 2: Scalable Baseline, Level 1.1, 250kbps.

– Layer 3: Scalable Constrained High, Level 1.2,
0.5Mbps.

– Layer 4: Scalable High, Level 1.3, 1Mbps.

The audio-only profile enables receivers with very
low access link bandwidth to participate to the call.
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Figure 2: Average bandwidth usage according to the network size and the number of participants on topology type MP (with 6 participants
per call for (a) and a network size of 2k node for (b)).

To obtain our results, we first start by creating 20 ran-
dom topologies of each type (ER and MP) and of each
network size (500, 1000, 2000 and 4000). Then, for each
one of these topologies, we connect randomly the clients
with different access capacities. This operation is repeated
20 times to obtain 20 different instances. Thus, each point
on the following plots is the average of the values obtained
from 400 simulations.

7.1.2. Simulation results

Figures 2a, 2b show consecutively the impact of the
network size and the number of participants on the average
bandwidth usage obtained for MP topologies.
Bandwidth saving:

Figure 2a shows the influence of the network size (from
500 to 4000 nodes) on the bandwidth usage of a call with
6 participants. In Figure 2a every solution exhibits a flat
nearly linear relationship between the network size and the
bandwidth consumption. Our MST and STP solutions are
better in saving bandwidth than the other solutions. As
expected, the MST mode is the least bandwidth consum-
ing, closely followed by the SPT mode, due to MST nature
that finds the shortest path to the closest node existing in
the tree, unlike SPT which creates the shortest path up
to the tree root. ALM mode indicates higher bandwidth
consumption since it creates the tree by connecting the
new participants to the closest existent participant in the
tree. The MCU mode, on the other hand, consumes the
highest bandwidth usage since the stream needs to attend
the MCU before getting to the receivers. Similarly, Uni-
cast mode has high bandwidth consumption due to the
redundancy of the streams on the shared links. With 4k
network size, MST mode roughly consumes 56.7% of the
bandwidth used by the MCU mode and 60% of the one
used by unicast mode. The ratio drops to 26% for ALM.
We notice the network size affects the average bandwidth
usage less than the number of participants does.

Figure 2b shows the influence of the number of partic-
ipants (3, 6, 9, 12) on the bandwidth usage of a call with
a network size of 2000 nodes. Obviously, the bandwidth
consumption increases according to the number of partic-
ipants. With 3 participants, the bandwidth usage of all
modes is very close to each other due to the small size of
the created trees. As expected and noticed in Figure 2a,
MST and SPT modes have the lowest results. On another
hand, with unicast and MCU, the bandwidth usage is more
affected by the participants’ number.

Figures 3a, 3b show consecutively the impact of the
network size and the number of participants on the average
bandwidth usage obtained for ER topologies. The results
are similar to those obtained for MP topologies. MST
and SPT are still the most bandwidth saving. But we can
notice in figure 3a that the network size in ER has more
effect on the average bandwidth usage than the one in MP.
This is due to the sparse nature of MP topologies.
Processing time:

Figures 4a, 4b show consecutively the impact of the
network size and the number of participants on the pro-
cessing time obtained for MP topologies.

On Figure 4a, we observe the average processing time
of the different algorithms per call of 6 participants.

MST follows ALM, UNI and STP with very close pro-
cessing time and have the similar results as they all use
shortest paths to a specific point in the tree.

The impact of the number of participants on the pro-
cessing time is showed in 4b. The processing time of MST
grows faster than the others’. This is due to its complex-
ity as explained in Section 5.1. However, it remains very
applicable since it requires only 0.4s to establish a video
call with 12 participants.

Figure 5 shows the same results on ER topologies.
Figures 6a, 6b show consecutively the impact of the

network size and number of participants, on the maximum
latency obtained for MP topologies.
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Figure 3: Average bandwidth usage depending on the network size or the number of participants on topology type ER (with 6 participants
per call for (a) and a network size of 2k node for (b)).

Figure 6a shows the influence of the network size on
the maximum latency of a call. The maximum latency of
a call is defined as the maximum latency measured over all
paths between all participant pairs. It takes into account
access and core link delays. We observe that the network
size does not have a big influence on the latency since
MP topologies have a small diameter. As expected, ALM
shows the highest latency: it reaches 255ms ('19.5×core
link delays of 10ms + 2×access link delay of 30ms) with 4k
network node. MCU has also a high latency (215ms with
4k network node) due to the fact that all the streams need
to reach the MCU before reaching the destination. MST
mode shows a maximum latency of 208ms since MST, un-
like SPT, is designed to save the bandwidth without taking
into consideration the latency. The latency is exactly the
same for the SPT and unicast modes, as expected, and
decreases with the increase of the network size. This is
also expected as MP topologies are power-law type graphs
where average distance and diameter do not (much) in-
crease when the network size increases.
Maximum latency:

Figure 6a shows the influence of the network size on
the maximum latency of a call. The maximum latency of
a call is defined as the maximum latency measured over all
paths between all participant pairs. It takes into account
access and core link delays. We observe that the network
size does not have a big influence on the latency since
MP topologies have a small diameter. As expected, ALM
shows the highest latency: it reaches 255ms ('19.5×core
link delays of 10ms + 2×access link delay of 30ms) with 4k
network node. MCU has also a high latency (215ms with
4k network node) due to the fact that all the streams need
to reach the MCU before reaching the destination. MST
mode shows a maximum latency of 208ms since MST, un-
like SPT, is designed to save the bandwidth without taking
into consideration the latency. The latency is exactly the
same for the SPT and unicast modes, as expected, and

decreases with the increase of the network size. This is
also expected as MP topologies are power-law type graphs
where average distance and diameter do not (much) in-
crease when the network size increases.

Figure 6b shows the influence of the number of par-
ticipants on the maximum latency of a call. The number
of participants affects mostly ALM mode since it based
on finding the closest participant to create the tree. MST
mode exhibits a higher latency than MCU with more than
9 participants. However, MST latency values remain ac-
ceptable (<250ms) on MP. The latency in MCU, SPT and
unicast is barely affected by the number of participants
as they create the shortest paths to a specific point ran-
domly selected. The SPT and unicast modes yield the
same and lowest results regardless of the number of par-
ticipants, which is expected as they both use shortest paths
to the source of the tree, unlike MCU mode which uses the
shortest path to the MCU node.

Figures 7a and 7b show similar behavior on ER to the
one on MP topology. However, the latency on ER is higher
than the one on MP and it exceeds 250ms with MST, ALM
mode with a number of participants of 12 participants.
Network call capacity:

Figure 8 shows the impact of the network size on the
network call capacity. The network call capacity is deter-
mined as follows: the call arrival model is a Poisson distri-
bution with a mean arrival time depending on the expected
number of simultaneous calls in a network with specific
core link bandwidth capacity. We assume that the call du-
ration model follows an exponential distribution with an
average of 23 minutes and the call arrival model is a Pois-
son distribution. At some point, the BuildShortestPath()
function defined in Algorithm 1 will return false, indicating
that the call could not be setup because one or more links
involved in the call were saturated (i.e., filled at the maxi-
mum of their bandwidth capacity). In this case, the call is
rejected. After 100 rejected calls, the network call capac-

12



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0.5k 1k 2k 4k

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

Network Size

UNI SPT MST ALM MCU

(a)

 0.1

 0.125

 0.15

 0.175

 0.2

 0.225

 0.25

 0.275

 0.3

 0.325

 0.35

 0.375

 0.4

 0.425

 0.45

3 6 9 12

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

Number of participants

UNI SPT MST ALM MCU

(b)

Figure 4: Average processing time according to the network size and the number of participants on MP (with 6 participants per call for (a)
and a network size of 2k node for (b)).
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Figure 5: Average processing time according to the network size and the number of participants on ER (with 6 participants per call for (a)
and a network size of 2k node for (b)).
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Figure 6: Maximum latency according to the network size and the number of participants on MP (with 6 participants per call for (a) and a
network size of 2k node for (b)).
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Figure 7: Maximum latency according to the network size and the number of participants on ER (with 6 participants per call for (a) and a
network size of 2k node for (b)).
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Figure 8: Number of calls supported by the network usage depending
on the network size on MP.

ity is considered reached. The number of supported calls
depends on the sequence of construction of all the calls
which are generated according to our model. Therefore, for
each experiment, the network capacity will slightly vary.
We have performed 400 experiments on MP networks with
core link bandwidth set to 1Gbps. In Figure 8, for all the
algorithms except MCU, the call capacity quickly increases
with the network size. ALM mode exhibits the best results
with the highest number of supported calls (4200 with 4k
node), as the trees in ALM are not optimized, and the
paths are more distributed among the topology which lead
to a slower saturation of the network, thus more supported
calls. MST and SPT modes show as well good results fol-
lowed by unicast. On the other hand, MCU does not seem
to be affected by the network capacity. That is due to the
fact that all the calls need to pass through the MCU which
may saturate some links and cause a quick call rejection.

As a conclusion, our solutions, MST and SPT modes,

save a lot of bandwidth comparing to the other modes.
MST shows better performance than SPT for bandwidth
usage on both ER and MP topologies. In term of latency,
both SPT and MST modes have good performance and do
not exceed the maximum allowed latency on MP topology.
However, with ER topology, MST exceeds the latency lim-
its when the number of participants increases. With ALM
mode the network can support the highest number of si-
multaneous calls, followed by MST and STP mode. How-
ever, since ALM has a very high latency, our solutions SPT
and MST seem more suitable than the other algorithms.

7.2. Adaptation to bandwidth variations during a call

In this section, we aim to evaluate our adaptation algo-
rithms of section 6 under a dynamic system where access
link bandwidth varies during the call.

7.2.1. Simulation parameters

For the dynamic implementation, the topology type
and size are built in the same way as the topologies pre-
sented in the parameter of the section 7.1.1. As well as
the access/core links capacities and delays requirements.
The only difference occurs within the access links band-
width; they may vary over the duration of the call. In
our simulation, the bandwidth variation is reproduced by
choosing, a each time, a random value from the interval
of [4Mbps,14Mbps] for downlink access capacity and form
the interval of [500kbps,1.5Mbps] for uplink access capac-
ity. To adapt to those variations, we either recompute the
trees or adapt to the changes using the algorithm described
in Section 6. We compare it to unicast, ALM and MCU in
a dynamic environment. We use the following approaches:

• UNI or Uni-recomputation approach: it represents
the unicast approach in a dynamic environment which
recomputes the shortest paths between each pair of
participants at each access link bandwidth variation.
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Figure 9: Average bandwidth usage according to the network size and the number of participants on MP (with 6 participants per call for (a)
and a network size of 2k node for (b)).

• MST or MST-recomputation approach: it represents
our MST mode in a dynamic environment which re-
computes all the trees at each access link bandwidth
variation.

• SPT or SPT-recomputation approach: it represents
our SPT mode in a dynamic environment which re-
computes all the trees at each access link bandwidth
variation.

• ALM approach: we have implemented ALMI as an
ALM approach for dynamic environment. ALMI
is an Audio/video conferencing centralized protocol,
where the forwarding responsibility is given to the
end hosts. In a dynamic environment, ALMI recom-
putes all the trees to adapt to the bandwidth change.

• MCU approach: In a dynamic environment, the path
end host - MCU or MCU - end host is recomputed,
depending on the type of access change.

• MST-Adapt approach: it represents our MST mode
in a dynamic environment which uses the algorithms
of adaptation defined in Section 6. It adapts the bi-
trates on the trees at each access links bandwidth
variation. We have implemented our solution only
for MST since the results of MST in the static envi-
ronment where more efficient than SPT.

7.2.2. Simulation results

Bandwidth saving:
Figures 9a/ 9b and Figures 10a/ 10b show the impact

of the network size/participants number per call on the
average bandwidth usage for MP and ER topologies, re-
spectively.

The results are almost the same as in a static environ-
ment. It is important to notice that MST-adapt is almost
as efficient as MST-recompute for bandwidth saving. Re-
computing the bitrates and moving the adaptation rules is

enough to perform very good bandwidth saving, without
the necessity of recomputing the multicast trees at each
variation. It appears that the bandwidth variations at an
access link are very small compared to the bandwidth scale
in the core links. They are too small to induce a change
in the multicast trees.
Processing time:

Figures 11a/ 11b and Figures 12a/ 12b show the impact
of the network size/participants number per call on the
processing time for MP and ER topologies, respectively.

As expected, the results show that MST-adapt is much
faster than the other algorithms (in an order of several
hundred times compared to the other algorithms – except
MCU). This is due to the fact that it does not recompute
the trees but just moves upward and downward the adap-
tation rules. This very short processing time offers high re-
activity to network changes, less computation at the SVN
controller, and smaller probability of call disruption.

MCU is also very fast (although slower than MST-
adapt) due to the fact that it recomputes only a single
path in the tree at each variation.

However, as seen in the previous sections, MCU suffers
from a very low network call capacity and a poor band-
width saving. While MST-adapt is faster, more efficient
and achieves almost the same bandwidth saving as MST
without recomputing the multicast trees.
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Figure 10: Average bandwidth usage according to the network size or the number of participants on ER (with 6 participants per call for (a)
and a network size of 2k node for (b)).
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Figure 11: Average processing time according to the network size and the number of participants on MP (with 6 participants per call for (a)
and a network size of 2k node for (b)).
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Figure 12: Average processing time according to the network size and the number of participants on ER (with 6 participants per call for (a)
and a network size of 2k node for (b)).
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8. Conclusion

Video conferences create a heavy load on the access
network due to the large size of video data. Improving
video conferencing systems can lead to large bandwidth
savings for network operators and can increase their ability
to serve a larger number of users as well as improving their
QoE. The emergence of SDN is enabling new solutions for
better video management.

In order to minimize the bandwidth consumption in the
core network while providing the best possible video qual-
ity to the users, we have proposed in this paper several al-
gorithms for creating a video conferencing system leverag-
ing SDN-enabled networks. Our solution transmits video
streams using multicast trees while applying SVC layer
adjustments inside the network to adapt these streams
to the users’ access network characteristics. Our results
show that our solution saves more bandwidth compared
to previous existing systems and increases the number of
simultaneous calls supported by the network.

We also have designed our algorithms to dynamically
adapt the video streams to the bandwidth variations of the
users’ access channels. For this matter, we have proposed
adaptation algorithms, based on tree traversal ideas, that
do not require recomputing the multicast trees (i.e., con-
nections) of a call. These algorithms show fast adaptation
due to their low complexity which allows high reactivity
to network changes and low resource consumption.

Our algorithms and our network simulator are cur-
rently both implemented in Python. They are open source
and available for use7. As a future work, we plan to port
our algorithms in a Python SDN controller such as Ryu,
in order to perform experiments on a virtualized network
build by Mininet. This will enable us to confirm the cur-
rent results at a medium scale but using real network soft-
ware such as OpenVswitch. A next step would then be to
deploy it on a real network.
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