
HAL Id: hal-02493104
https://hal.science/hal-02493104

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Back-to-Back Butterfly Network, an Adaptive
Permutation Network for New Communication

Standards
Hassan Harb, Cyrille Chavet

To cite this version:
Hassan Harb, Cyrille Chavet. Back-to-Back Butterfly Network, an Adaptive Permutation Network
for New Communication Standards. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2020, Barcelonne, Spain. �hal-02493104�

https://hal.science/hal-02493104
https://hal.archives-ouvertes.fr


Back-to-Back Butterfly Network, an Adaptive Permutation
Network for New Communication Standards

Hassan Harb, Post-Doctoral, and Cyrille Chavet, IEEE senior member
Universite Bretagne Sud, Lab-STICC (CNRS UMR 6285)

Abstract—In this paper, we introduce an adaptive Back-to-Back
Butterfly Network (B2BN ) dedicated to next communication standards.
It can perform any kind of permutation, and its architecture is based on
a concatenation of basic networks. However for a set of permutations,
the selection of non-conflicting paths is still a complex task. Hence, in our
paper we rely on the properties of the proposed architecture, to introduce
a formal model that efficiently solve such conflicts. From the collection
of all possible paths in the targeted B2BN , the proposed method select
the conflict-free paths to transfer data from the input to their permuted
output (w.r.t., a ad hoc constraints model). Once the appropriate paths
are selected, the control signals for B2BN are generated. This model
has been experimented with 5G communication, showing how to process
several frames in parallel with different permutation constraints.

Index Terms—Butterfly Network, Back-to-Back Butterfly Network,
Permutation, QC-LDPC, 5G.

I. INTRODUCTION

The impressive increase in data traffic in wireless communication do-
main overloads network capacity. Researchers are still exploring new
techniques to efficiently target high throughput applications. Designed
to push a step further these technical limits of telecommunication, the
incoming communication standards (5G, cognitive radio, SDR. . . )
will be the foundations of a deep revolution in our widely connected
world. For example, the next 3GPP standard (the so-called 5G) [1]
gathers several different radio signals (LTE-A, Wi-Fi/WISE. . . ) in a
combined heterogeneous and flexible network. In this standard, a new
family of Error Correction Code (ECC) have been adopted: Quasi-
Cyclic Low Density Parity Check (QC-LDPC) decoder [2].
As any ECC decoders, they are based on parallel architectures in
order to achieve high throughput requirements. In such parallel
designs, several Processing Elements PEs are concurrently used to
decode the received information [3]. In this context, several memory
banks RAMs are connected with these PEs through a dedicated
interconnection network. This network transfers data between PEs
and RAMs according to predefined access orders, i.e. the interleaving
rules. Designing efficient parallel hardware architecture (i.e., with no
access conflicts in memory nor in the interconnection network) is
a very complex and time consuming task. Several approaches have
been proposed in state of the art in order to solve such ”collision
problem” in ECC architectures ([4][5][6][7]. . . ).
In the case of QC-LDPC codes, they are based on a prototype matrix
where each non null elements are replaced by a N×N circularly
shifted identity matrix. This structure allows to implement a decoder
with N parallel PEs without any memory access conflict. Hence, in
this case a simple barrel shifter of size N can be used to reorder the
data between PEs and RAMs. The particularity of the 5G standard
is that the expansion factor sizes of the QC-LDPC code can take
51 values ranging between m = 2 and m = 384 (depending on the
code rate and the size of the code). Translated in hardware, this means
that the architecture should be able to perform rotations on vectors
of variable size. Moreover, in the incoming context of heterogeneous
and flexible network, this decoder must be able to process several
types of code (LTE-A, WiFi/WISE, DVB-T, DVB-S. . . ).
Our objective in this paper is to propose an interconnection network

architecture that could handle several different frames in parallel,
potentially from different ECC, and the permutations of these frames
should be different. All these constraints must be achieved in the
minimum envelop in term of architectural cost (i.e., area and power
consumption).
A barrel shifter, as defined previously cannot be used in this context.
In [8] a flexible barrel shifter architecture for Quasi-Cyclic LDPC
is proposed (QSN ). This approach proposes an elegant solution
if the frame size m is smaller than N . The idea is to restrict
the interconnection to the first m PEs and RAMs. To be able to
perform the required shift rotations, it relies in particular on a smart
combination of two partial size-N barrel shifters. However, even
if the cost is relatively small, this approach cannot process several
different frames in parallel. In [9] the authors propose an architecture
that is able to deal with different standards, different frame lengths.
This architecture relies on a Butterfly Network (BN) [10], that offers
much more permutation flexibility than a barrel shifter. However, the
main limitation of this solution is that only one single frame can
be processed at a time. The most recent algorithm in this context is
the Extended Barrel Shifter (EBS) [11]. The key idea is that the
elements of the frame are split up appropriately at the inputs of
the barrel shifter such that after performing a circular-shift rotation,
each element will be at its desired position at the output or only
one shift will still be required to be performed on it. For that, an
extra stage is added at the output of the barrel shifter to perform
the one extra shift when it is necessary. The area consumption of
[11] is interestingly low. Nevertheless, [11] can process more than
one frame having same length (less than or equal N/2) and they
must have same desired circular-shift rotation value. Again, [11] has
restriction in terms of parallelism. The Back-to-Back BN (B2BN)
[10] (or similarly Benes network [12]) could be explored. These
networks are able to perform any permutation of N inputs (i.e.,
N ! permutations). For that, these architectures are relatively costly.
Furthermore, generating their control signals is not an easy task.
However, (B2BN) and Benes networks can permute more than one
frame in parallel having different length and different circular-shift
rotation. In [13] the authors propose to prune the Benes network in
order to tailor it exactly to the requirement of the applications. The
resulting architecture can be smaller than the initial Benes network,
but it requires that a low number of expansion factor, which is not
the case for 5G as seen before.
In this work, we adopt the B2BN network where we propose a
new method to generate the control signals based on constraint tools.
Note that the philosophy of this work can be performed in case of
Benes network. Thus, this paper is organized as follows. Section II
introduces a BN and presents the basic notations and concepts for
the rest of the paper. In section III, we describe the proposed formal
model and its associated modular architecture. In the final section IV,
we present the application of our approach on a case study from 5G
standard.



Algorithm 1: The BN algorithm
Part 1Part 1

At stage of MUXs l = 0:
for j ← N − 1 to N/2

M0j(xj , xj−N/2)

end for
for j ← N/2− 1 to 0

M0j(xj , xj+N/2)

end for

Part 2
At the rest of n− 1 stages of MUXs:
N ′ = N

for l← 1 to n− 1

N ′ =
N ′

2l

for k ← 0 to 2l − 1

for j ← N − 1− k.N ′ to N − (k + 1
2l
).N ′

Mlj(y
l−1
j , yl−1

j−N′/2)

end for
for j ← N − 1− (k + 1

2
).N ′ to N − (k + 1

2l
+ 1

2
).N ′

Mlj(y
l−1
j , yl−1

j+N′/2)

end for
end for

end for

II. THE BUTTERFLY NETWORK

Let N = 2n be the size of the vector to be permuted, n ∈ N+.
Hereafter, a BN associated to a vector of size N is called N×N -BN.
In general, for a given N = 2n, there are n stages, each consisting in
N MUXs. The MUX is represented by a circle such as M00 shown
in Fig.1.a). M00 is controlled by a signal s, such that if s = 0 then
the output y0

0 = x0, else the ouput y0
0 = x1. The generation of

the control signals is a key contribution of our work. However, the
control signals are removed from the figures in order to read them
easily.
The inputs of the first stage is the set X = {xN−1, . . . , x0}, the n−2
intermediate stages are represented by the set Y i = {yi

N−1, . . . , y
i
0}

(i.e., the set of results of stage i, where i = 0, . . . , n − 2), and the
final stage is the resulting permutation set Z = {zN−1, . . . , z0} (i.e.,
the results of the nth stage). Algorithm 1 shows the connections at
every stage, where Mlj(a, b) indicates that the inputs a and b are
connected to MUX Mlj (i.e., MUX number j at (l + 1)th stage),
l = 0, . . . , n− 1 and j = N − 1, . . . , 0.
N×N -BN can perform any circular-shift rotation value pcs , where
0 ≤ pcs < N . For a given pcs , every input xi should be transferred
to z(p−i) mod (N), i = N − 1, . . . , 0.
Fig.1.a) shows a 4×4-BN architecture. X = {x3, . . . , x0}, Y 0 =
{y0

3 , . . . , y
0
0} and Z = {z3, . . . , z0} are respectively the inputs set,

the intermediate permutations set and the final permutation results
set.
A BN is unable to perform all possible permutations. To tackle all
these challenges, in this paper we propose a modular construction of
a B2BN . To construct a B2BN , the concept of Inverse BN is
required [14]. Fig.1.b) shows the inverse of 4×4-BN.

III. BACK-TO-BACK BUTTERFLY NETWORK

A B2BN is a combination of a BN and its corresponding inverse.
A modification should be done on the inverse BN. The first stage of
inverse BN is removed since it is similar to last stage of BN (see
Fig.1.a) and Fig.1.b). A B2BN has the same expressiveness that
a Benes network, which means that all possible permutations can

be generated with this model [15]. Once again, for a given N , we
refer to B2BN associated to a vector of size N as N×N -B2BN .
This N×N -B2BN requires 2.n − 1 stages each of N parallel
MUXs. The intermediate results are called Y l = {yl

N−1, . . . , y
l
0},

l = 0, . . . , 2.n − 2. Fig.1.c) shows the 4×4-B2BN architecture.
Two complementary parts can be observed, a 4×4-BN connected
to the ”modified” inverse 4×4-BN. Fig.1.d) shows an example of
a permutation: z3 = x2, z2 = x0, z1 = x3 and z0 = x1. The
inputs are being transferred through the stages to perform the desired
permutation as shown in Fig.1.d). The ”line” that transfers an input xi

to an output zj is called a path Txi→zj , with i, j = N − 1, . . . , 0.
It is not an easy task to find out the paths of the inputs through
the stages given a desired permutation. In other words, it is not
easy to generate the control signals of the MUXs to perform all
the desired permutations. N ! possible permutations are possible in
case of N×N -B2BN . Thus, the higher the N value the higher the
number of stages, and hence the more complex is the problem to
find out the appropriate paths for every desired permutation with
no conflict along the path. In this paper, we also propose a formal
approach to solve this problem.

A. Proposed Method to Generate the Control Signals

For a given permutation, the proposed method relies on collecting
all the possible paths from xi to zj , where i, j = N − 1, . . . , 0.
We call this set Txi→zj , where → refers to a transition. In
total, there will be N sets (one set of path for every inputs)
each of 2n−1 possible paths. In more details, to transmit xi

to zj we have: xi → y0
k0
→ · · · → y2.n−2

k2.n−2
→ zj , where

i, k0, . . . , k2.n−2 and j ∈ [N − 1, . . . , 0]. Thus, the path is
presented as (i, k0, . . . , k2.n−2, j).
For example, let x2 should be transferred to z3 as shown in Fig.1.d).
We have z3 = y1

1 = y0
0 = x2 and hence the path is (2, 0, 1, 3).

Considering the permutation shown in Fig.1.d), the original set of
all possible paths is reduced to the subsets in which the input xi

corresponds to the output zj , i, j = 3, . . . , 0, with respect to the
required permutation:
Tx3→z1 = {(3, 3, 3, 1), (3, 1, 1, 1)}
Tx2→z3 = {(2, 2, 3, 3), (2, 0, 1, 3)}
Tx1→z0 = {(1, 1, 0, 0), (1, 3, 2, 0)}
Tx0→z2 = {(0, 2, 2, 2), (0, 0, 0, 2)}
The solution shown in Fig.1.d) is found based on Tx3→z1 , Tx2→z3 ,
Tx1→z0 and Tx0→z2 . Let A be a matrix of size N × 2.n where:

A =


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 =


3 3 3 1
2 0 1 3
1 1 0 0
0 2 2 2


The elements of the first row of A belong to Tx3→z1 (i.e.,
(a00, a01, a02, a03) is equal to (3, 3, 3, 1) or (3, 1, 1, 1)). The ele-
ments of the second row of A belong to Tx2→z3 , the elements of the
third row of A belong to Tx1→z0 and the elements of the fourth row
of A belong to Tx0→z2 . The elements of every column of A should
be different, i.e., no conflict in terms of MUXs at every stage. Thus,
one possible solution is the solution that A equal to. Therefore, A is
the matrix representation of the solution shown in Fig.1.d).

B. Control Signals Generation

As described previously, the generation of the control signals
consists in fixing the control signal s of each MUX. We recall
that the output of M00 shown in Fig.1.a) is equal to x0 (direct
input) when s = 0 while it is equal to x2 (indirect input) when
s = 1 (every MUX has its own s). In other words, to compute the



Fig. 1. a) 4×4-BN; b) Inverse 4×4-BN; c) 4×4-B2BN and d) 4×4-B2BN example.

Algorithm 2: Algorithm of control signals generation
for i← 0 to N − 1

for j ← 0 to 2.n− 2
if aij+1 = aij

bij = 0

else
bij = 1

end if
end for

end for

s control value of a given MUX, we have to check whether the
output is equal to the direct input or the indirect input. This can be
done by analyzing A matrix. Let B be the matrix that contains the
control signals of every MUX in B2BN . Thus, B is of size equal
to N × 2.n − 1. Algorithm 2 shows how the control signals are
being generated Based on A. In this algorithm, the jth column in B
is associated to jth stage of MUXs in B2BN . Using Algorithm 2,
the control signals of the MUXs of the example shown in Fig.2.g) are:

B =


b00 b01 b02
b10 b11 b12
b20 b21 b22
b30 b31 b32

 =


0 0 1
1 1 1
0 1 0
1 0 0


b00 is the control signal of M03, b01 is the control signal of M13, b02
is the control signal of M23, . . . and b32 is the control signal of M20.
Then, it is clear that as soon as we have the set of paths required
by the applications, the control signals generation is straightforward.
Hence, the key problem of our approach is to be able to explore the
set of all possible paths.

C. Path-Finder Generation Approach

Our solution exploits the modularity offered by the B2BN
architecture. More formally, every xi, i = N − 1, . . . , 0, can be
transferred to any zj , j = N − 1, . . . , 0. We recall that Txi→zj is
the set of possible paths that transfer xi to zj . Txi→zj is of length
equal to 2n−1. Thus, there are 2n−1 × N = 2n−1 × 2n = 22.n−1

paths that connect xi to {zN−1, . . . , z0}. Therefore, in total, there
are 22.n−1 × N = 22.n−1 × 2n = 23.n−1 paths that connect
{xN−1, . . . , x0} to {zN−1, . . . , z0} in N×N -B2BN . The sets that
are having the 23.n−1 paths is called TN×N .

To extend the case from N×N -B2BN up to N ′×N ′-B2BN
(N ′ = 2.N), N×N -B2BN should be duplicated and a stage of
MUXs at the inputs and a stage of MUXs at the outputs should
be added. The connections at the inputs of both added stages are
being done based on the initialization loops described in part 1 of
algorithm 1 (N is then replaced by N ′). This modularity allows to

Algorithm 3: Generation of the N ′×N ′-B2BN paths

Read all paths associated to N×N -B2BN called TN×N .
N ′ = 2.N , i = 0 and LTN×N = 23.n−1 is the length of TN×N .

for j ← 0 to LTN×N − 1

V0 = TN×N (j)

TN′×N′ (i) = {V0(0), V0, V0(2.n− 1)}
TN′×N′ (i+ 1) = {V0(0) +N,V0, V0(2.n− 1)}
TN′×N′ (i+ 2) = {V0(0), V0, V0(2.n− 1) +N}
TN′×N′ (i+ 3) = {V0(0) +N,V0, V0(2.n− 1) +N}

V1 = V0 +N

TN′×N′ (i+ 4) = {V1(0), V1, V1(2.n− 1)}
TN′×N′ (i+ 5) = {V1(0) +N,V1, V1(2.n− 1)}
TN′×N′ (i+ 6) = {V1(0), V1, V1(2.n− 1) +N}
TN′×N′ (i+ 7) = {V1(0) +N,V1, V1(2.n− 1) +N}
i = i+ 8

end for

derive all possible N ′×N ′-B2BN paths from TN×N . Algorithm 3
shows how the N ′×N ′-B2BN paths are generated from the N×N -
B2BN paths.
For a given permutation to be performed by N ′×N ′-B2BN , the
relevant set of paths Txi→zj are selected from TN′×N′ and the
solution is found depending on them as shown previously.
Fig.2.a shows 8×8-B2BN designed from 4×4-B2BN . The bold
MUXs Mij , i = 1, 2, 3 and j = 3, 2, 1, 0, constitute 4×4-B2BN
as well as Mij , i = 1, 2, 3 and j = 7, 6, 5, 4, constitute another
4×4-B2BN . T 8×8 can be generated from T 4×4 based on algorithm
3. The eight pointed paths shown in Fig.2.a) are derived from the
path V0 = {1, 3, 2, 0} associated to 4×4-B2BN . Of course, for real
life test cases, it is not possible to solve such problem by hand. In
the next section shows how to execute the proposed method using
dedicated tools.
Fig.2.b) shows an example where two sets of elements are processed
simultaneously. A set X ′ = {x′7, . . . , x′3} where p′cs = 2 is per-
formed and hence {z7, z6, z5, z4, z3} = {x′5, x′4, x′3, x′7, x′6} (straight
lines) and X ′′ = {x′′2 , x′′1} where p′′cs = 1 is performed and hence
{z2, z1} = {x′′1 , x′′2} (pointed lines).

IV. APPLICATION OF OUR MODEL ON A 5G TEST CASE

During our experimentation’s, we used the proposed approach to
design architectures relying on the QC-LDPC code proposed in the
5G standard [1]. The resulting interconnection network should be
able to permutes distinct frames in parallel, with distinct permutation
constraints. As previously mentioned, the design space is too huge to
be explored by hand, that is why we decided to provide our constraint
model to a constraints solver tool. Many constraints solver tool exist
in the literature, depending on the problem to solve. For example, if



Fig. 2. a) 8× 8-B2BN shuffling 8 inputs and b) 8× 8-B2BN example shuffling two sets of elements with two different permutations.

the constraints are correctly defined, a solver could find solutions to
SAT isfaction problems, linear inequality. . .
In our context, from a N ′×N ′-B2BN for a given permutation P , we
defined the matrix A (see previous section) in which each of the N
rows is considered as a variable. Then, from the set of all possible
path TN×N (generated by Algorithm 3), we extract all the paths that
match with permutation P for each variable in matrix A. In this way,
we define the N domains for the N variables in matrix A. Then
we provide the matrix A, the associated domains and the constraint
defined in section III (i.e., each element in a column of A must be
different) to a constraint solver (in our experiments we used Gecode
[16]). Finally, the generation of the control signal is performed by
applying Algorithm 3 on the resulting matrix. If the architecture has
to deal with several permutations, the idea is to generate the control
signals for every permutations off line, and store them in a ROM.
The time consumption to find out a solution varies depending on the
size N and the desired permutation.
The lifting size of the 5G LDPC codes varies from 2 up to 384
[1]. Thus, since N is a power of 2, a 512×512-B2BN should be
designed to cover all lifting sizes. However, since B2BN can perform
all kind of permutations, and thanks to its modular construction,
the parallelism can be covered where more than one frame has to
be permuted simultaneously. For instance, a frame of 384 elements
can be processed simultaneously with a frame of 512 − 384 = 128
elements.
Table I shows the number of MUXs of our model compared to QSN
[8] and EBS [11]. Recalling that QSN cannot perform several frames
in parallel and EBS is limited in this context. It can be observed that
our approach presents a limited over-cost between around ×0.92 to
×0.72 in these 5G test cases compared to QSN. While comparing
to EBS, the limited over-cost varies between ×0.67 and ×0.44. This
additional complexity is the minimal investment to take advantage of
the high flexibility offered by our architectural model.

V. CONCLUSION

In this paper, we proposed a new method to resolve the problem of
finding the appropriate paths for a given permutation using B2BN .
The solution should take into account that the output of a MUX

TABLE I
NETWORK COMPLEXITY COMPARISON (NUMBER OF MUXS)

N Based On Nb. of MUXs

15
Our model 112

[QSN] 104
[EBS] 75

80
Our model 1664

[QSN] 945
[EBS] 640

384
Our model 8704

[QSN] 6273
[EBS] 3840

should not present two different data. We have shown how the sets
of all possible paths can be generated and how a solution can be
found using these sets, with a dedicated constraints model. B2BN
can be employed for different applications such as 5G LDPC codes
where the parallelism is needed to increase the throughput rate. This
proposal could be enhanced (e.g., by replacing the control ROM by
a RAM) if the constraint solver could be replaced by a dedicated
real-time algorithm.

VI. ACKNOWLEDGEMENTS

This work has been founded the Brittany region and the EU that
funded the project through the FEDER program in the frame of the
FLEXDEC-5G project. The authors would like also to thank Jeremie
Nadal and Cedric Marchand for their corrections and suggestions to
improve the paper.

REFERENCES

[1] http://www.3gpp.org.
[2] K. T. Sarika and P. P. Deepthi, “A channel coder design for a high speed

and less complex communication system using qc - ldpc codes,” in 2014
International Conference on Communication and Signal Processing,
April 2014, pp. 326–330.



[3] A. H. Sani, P. Coussy, and C. Chavet, “A first step toward on-chip
memory mapping for parallel turbo and ldpc decoders: A polynomial
time mapping algorithm,” IEEE Transactions on Signal Processing,
vol. 61, no. 16, pp. 4127–4140, Aug 2013.

[4] S. U. Reehman, C. Chavet, P. Coussy, and A. Sani, “In-place memory
mapping approach for optimized parallel hardware interleaver architec-
tures,” in 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2015, pp. 896–899.

[5] M. J. Thul, F. Gilbert, and N. Wehn, “Optimized concurrent interleaving
architecture for high-throughput turbo-decoding,” in 9th International
Conference on Electronics, Circuits and Systems, vol. 3, Sep. 2002, pp.
1099–1102 vol.3.

[6] C. Chavet and P. Coussy, Eds., Advanced Hardware Design for Error
Correcting Codes, springer-verlag ed., Sep. 2015, pp. 177–192, ISBN
978–3–319–10 568–0.

[7] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws
to parallel turbo and ldpc decoder architectures,” IEEE Transactions on
Information Theory, vol. 50, no. 9, pp. 2002–2009, Sep. 2004.

[8] S. L. X. Chen and V. Akella, “Qsn : A simple circular-shift network for
reconfigurable quasi-cyclic ldpc decoders,” IEEE Trans. on Circuits and
Systems II: Express Briefs, vol. 57, no. 10, pp. 782–786, Oct 2010.

[9] A. Sani, P. Coussy, and C. Chavet, “A dynamically reconfigurable
ecc decoder architecture,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 1437–1440.

[10] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and
benes-based on-chip communication networks for multiprocessor turbo
decoding,” in 2007 Design, Automation Test in Europe Conference
Exhibition, April 2007, pp. 1–6.

[11] E. Boutillon and H. Harb, “Extended barrel-shifter for versatile qc-ldpc
decoders,” IEEE Wireless Communications Letters, pp. 1–1, 2020.

[12] V. Benes, “Optimal rearrangeable multistage connecting networks,” Bell
Syst. Tech. J., vol. 43, no. 7, p. 1641–1656, 1964.

[13] J. Lin, Z. Wang, L. Li, J. Sha, and M. Gao, “Efficient shuffle network ar-
chitecture and application for wimax ldpc decoders,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 56, no. 3, pp. 215–219,
March 2009.

[14] http://programming.sirrida.de/bit perm.html.
[15] http://pages.cs.wisc.edu/ tvrdik/10/html/Section10.html.
[16] https://www.gecode.org/doc-latest/MPG.pdf.


