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ABSTRACT
Nitrogen-vacancy centers in diamonds possess an electronic spin resonance that strongly depends on temperature, which makes them effi-
cient temperature sensors with sensitivity down to a few mK/

√

Hz. However, the high thermal conductivity of the host diamond may strongly
damp any temperature variations, leading to invasive measurements when probing local temperature distributions. In the view of determining
possible and optimal configurations for diamond-based wide-field thermal imaging, here, we investigate both experimentally and numeri-
cally the effect of the presence of diamonds on microscale temperature distributions. Three geometrical configurations are studied: a bulk
diamond substrate, a thin diamond layer bonded on quartz, and diamond nanoparticles dispersed on quartz. We show that the use of bulk
diamond substrates for thermal imaging is highly invasive in the sense that it prevents any substantial temperature increase. Conversely,
thin diamond layers partly solve this issue and could provide a possible alternative for microscale thermal imaging. Dispersions of diamond
nanoparticles throughout the sample appear as the most relevant approach as they do not affect the temperature distribution, although NV
centers in nanodiamonds yield lower temperature sensitivities than bulk diamonds.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5140030., s

Thermal imaging, enabling fast and accurate monitoring of
heat distribution at sub-micron scales, has become decisive in a
broad range of fields from exploratory research up to prototyp-
ing and manufacturing in nanomaterials science, nanoelectronics,
nanophotonics, or nanochemistry. Various detection schemes are
being explored in this respect.1 These schemes include tip-enhanced
infrared or Raman thermometry,2,3 scanning thermal microscopy
(SThM),4,5 SQUID-based nano-thermometry,6 or nanoscale fluores-
cence thermometry, making use of fluorescent nanoparticles either
dispersed on the probed sample or attached to the tip of an atomic
force microscope (AFM).7 However, none of these techniques can
simultaneously provide fast, sensitive (in the sub-K/

√

Hz range),

and quantitative thermal imaging with a sub-micron spatial reso-
lution under ambient conditions.

Nitrogen-vacancy (NV) centers in diamonds have garnered
growing attention in the last decade, notably because their elec-
tron spin resonance can be detected optically8 and strongly depends
on various external perturbations. This dependence has enabled
the implementation of highly sensitive NV-based quantum sen-
sors capable of locally probing several physical quantities includ-
ing strain9,10 and electric11,12 and magnetic fields.13–15 The sensing
capabilities of the NV center have also been extended to thermom-
etry,16 building on the variation of the zero-field splitting param-
eter of its electron spin sublevels with temperature.17 A thermal

AIP Advances 10, 025027 (2020); doi: 10.1063/1.5140030 10, 025027-1

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1063/1.5140030
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5140030
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5140030&domain=pdf&date_stamp=2020-February-18
https://doi.org/10.1063/1.5140030
https://orcid.org/0000-0003-0554-8975
https://orcid.org/0000-0003-1699-388X
https://orcid.org/0000-0003-0488-1362
https://orcid.org/0000-0002-1586-2194
mailto:isabelle.philip@umontpellier.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5140030


AIP Advances ARTICLE scitation.org/journal/adv

sensitivity in the range of 100 mK/
√

Hz was demonstrated for single
NV centers hosted in nanodiamonds18 and can reach values down
to few mK/

√

Hz while using NV centers with long spin coherence
times embedded in ultrapure bulk diamond samples.16,18–20 Besides
building on the temperature dependence of spin resonance, temper-
ature sensing with NV centers in diamonds can utilize the tempera-
ture dependence of their optical response such as the Debye–Waller
factor, zero-phonon line, or anti-Stokes photoluminescence wave-
length.21,22 These all-optical schemes have also been extended to
other point defects in diamonds, e.g., SiV, GeV, or SnV colored
centers.23–25 Last but not least, the temperature sensitivities of NV
centers can be pushed down to few tens of μK/

√

Hz by relying on a
transduction of temperature gradients on magnetic fields probed by
their electronic spins.26,27

These thermal sensing modalities can be exploited for ther-
mal imaging. A first strategy consists in grafting a NV-doped
nanodiamond at the apex of either an optical fiber or an AFM
tip, which is scanned above the surface of the sample to be
probed.28–30 The spatial resolution of thermal imaging is then ulti-
mately limited by the nanodiamond size. Such a scanning-NV
configuration however requires a complex experimental appara-
tus and suffers from long acquisition times. In addition, the ther-
mal sensitivity is impaired by the short spin coherence time of
NV centers hosted in nanodiamonds. Another approach makes use
of stationary NV centers in a wide-field detection scheme.18,19,31

Although the spatial resolution is then fundamentally limited
by diffraction (∼500 nm), this approach offers faster acquisition
times and a simple experimental configuration. To date, wide-
field thermal imaging has been solely demonstrated with NV-
doped nanodiamonds directly dispersed on the surface of a target
sample.

In this paper, we investigate whether this method could be
extended to NV centers hosted in an ultrapure bulk diamond sam-
ple in view of improving the thermal sensitivity, thanks to the
improved NV spin coherence time. To this end, we first experi-
mentally analyze the temperature distribution induced by a micron-
sized heat source deposited on the surface of a bulk diamond mate-
rial. The results are then compared to numerical simulations per-
formed for a bulk diamond, a 100-nm thin diamond membrane
deposited on quartz, and nanodiamonds directly dispersed on the
heat source. This study shows that any detection scheme based on
bulk diamonds is highly perturbative due to the large thermal con-
ductivity of diamonds. Dispersions of nanodiamonds, in the vicin-
ity of a heat source, appear as the most relevant configuration for
invasive-less wide-field thermal imaging, while thin diamond mem-
branes could provide an effective option for thermal imaging at
microscale.

The heat source here consists of an array of gold nanoparti-
cles illuminated at their plasmonic resonance wavelength.32,33 We
consider 10 × 10 μm2 assemblies of gold cuboids with the thick-
ness t = 40 nm, width w = 60 nm, and length l ranging from
90 nm to 210 nm. As illustrated in Fig. 1(a), the metallic cuboids
are arranged in periodic two-dimensional rectangular patterns, each
with constant cuboid dimensions and with a side-to-side distance
of 100 nm along the cuboid’s width direction and of 1, 6 × l along
the cuboid’s length direction. These thermoplasmonic arrays were
fabricated on two substrates, namely, an ultrapure electronic grade
diamond substrate grown by chemical vapor deposition (element 6)

FIG. 1. (a) Scanning electron images of a thermoplasmonic structure deposited on
quartz, (b) the schematic of the thermal imaging experimental setup: the thermo-
plasmonic arrays are surrounded by water and illuminated in a wide-field config-
uration through a high numerical aperture microscope objective (NA = 0.95) by a
tunable infrared Ti:Sapphire laser whose wavelength is set close to the cuboids’
plasmonic resonance; a spatially coherent white-light source impinges on the sam-
ple on the opposite side, passes through the same objective, and is focused on a
wavefront analyzer, which consists of a modified Hartmann grating combined with
a CCD camera (Sid4Bio, Phasics SA); the wavefront analyzer records an interfero-
gram on the CCD, which is further processed to retrieve the optical path difference
(OPD) generated by the thermal-induced refractive index variations in water, (c)
the typical OPD map recorded for a thermoplasmonic array consisting of 60 × 120
nm2 cross-section cuboids illuminated at 760 nm on the quartz substrate, and [(d)
and (e)] resulting maps of heat power density (HPD) and temperature variations.

and on a quartz substrate used as a reference. The process combines
an electron-beam lithography step, the deposition of 5 nm of tita-
nium and 35 nm of gold, followed by a lift-off. Under continuous
near-infrared laser illumination at their absorption resonance, the
thermoplasmonic structures give rise to a delocalized temperature
distribution, fairly uniform throughout the array.33,34 The increase
in temperature induced by the array is then governed, inter alia, by
the absorption cross-section σabs of each cuboid, the number N of
cuboids forming the array, and the intensity I of the infrared laser
illumination.
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Temperature variations induced by the thermoplasmonic
structures were imaged using quadriwave lateral shearing
interferometry35 [see Fig. 1(b)]. This technique uses a wavefront
analyser to indirectly provide temperature distributions with a
diffraction-limited spatial resolution and an accuracy of about 1 K.
It relies on the temperature-dependent refractive index of a sur-
rounding water layer covering the thermoplasmonic arrays. The heat
generated by the arrays results in a steady-state temperature dis-
tribution, which provokes modifications in the refractive index in
the water. These spatial variations in the refractive index result in
a wavefront distortion of a white light source illuminating the sam-
ple in a Köhler configuration. Such local distortions are recorded
on a wavefront analyser, providing spatially-resolved optical path
difference (OPD) maps. A typical OPD map recorded for a ther-
moplasmonic array deposited on quartz is shown in Fig. 1(c).
Post-processing of these data then enables the retrieval of the spa-
tial distribution of the heat power density (HPD) [Fig. 1(d)] and
the spatial temperature variations δT [Fig. 1(e)]. This processing
relies on a modeling of heat diffusion based on Green’s function
formalism.35

The plasmonic resonance wavelength of the heating structures
varies with respect to both the substrate and the shape of the metallic
cuboids. In order to obtain a reliable comparison between the heat
generated on an ultrapure diamond substrate and on a quartz sub-
strate, experimental conditions leading to similar absorption cross-
sections of the thermoplasmonic arrays were carefully selected. As
explained in detail in Ref. 35, the absorbed power Pabs can be inferred
through a spatial integration of the HPD image. The absorption
cross-section is then given by σabs = Pabs/(I × N), where I is the
infrared laser intensity (power per unit area), and N is the number
of cuboids forming the thermoplasmonic array. Similar absorption
cross-sections, σabs ∼ 2 × 104 nm2, were found for (i) 60 × 120 nm2

cross-section cuboids illuminated at 760 nm on the quartz substrate
and (ii) 60 × 90 nm2 cross-section cuboids illuminated at 710 nm on
the diamond substrate.

Under such experimental conditions, thermal images were
recorded while increasing the absorbed infrared laser power Pabs. As
shown in Fig. 2, the maximum local heating δTmax evolves linearly
with Pabs for both substrates, as expected. However, for equivalent
absorption powers, the heating induced by the thermoplasmonic
array on the quartz substrate is much higher than the one observed
on the diamond substrate. A difference of two orders of magnitude is
observed, with a maximum heating per absorbed power of 38 K/mW
and 0.2 K/mW for quartz and diamond substrates, respectively. This
discrepancy results from the large difference in thermal conductivity
κ of the substrates. While κ is about 1.4 W/(m K) in quartz, it reaches
values almost three orders of magnitude higher in diamonds, with κ
= 1000–3300 W/(m K) depending on its purity. Consequently, while
heat dissipation in a quartz material is rather low, heat transfer in
diamonds is highly efficient. As such, the diamond substrate acts
as a thermal sink that cools the heat source.36 Any architecture of
thermal imagers based on bulk diamonds will thus be perturbative:
the measured temperature, though recorded with a high sensitiv-
ity, will be the temperature of the heat source however significantly
cooled by the diamond substrate hosting the NV centers probes and
down to temperatures that may be too small to be measured. This
precludes the use of bulk diamond samples for wide-field thermal
imaging.

FIG. 2. Maximum local heating δTmax as a function of the absorbed optical power
Pabs for thermoplasmonic arrays deposited on quartz (blue squares) and diamonds
(red dots); insets: temperature maps recorded (i) on the quartz substrate for Pabs
= 2.9 mW leading to δTmax = 115.2 ○C (top within the blue frame) and (ii) on
the diamond substrate for an absorbed laser power of Pabs = 68.8 mW leading
to δTmax = 12.8 ○C (bottom within the red frame); solid lines are linear fits of the
experimental data.

In order to reduce heat dissipation in bulk diamonds, one
alternative approach could be to rely on a thin diamond mem-
brane bonded on a low thermal conductivity substrate, such as
quartz. Figure 3 gathers finite-difference time-domain (FDTD) sim-
ulations based on heat conduction modeling of temperature increase
as a function of heat power for three different diamond-based

FIG. 3. Numerical simulations of the maximum local heating δTmax at the sam-
ple surface induced by a two-dimensional 10 × 10 μm2 heater for increasing heat
powers Pheat; four configurations are considered: the hot plate located either on
a diamond substrate (red dash line), on a quartz substrate (blue solid line), on
a 100-nm thick diamond membrane bonded on a quartz substrate (orange dot-
ted line), or on a quartz substrate with diamond nanostructures dispersed on the
surface (green dots); in this latter architecture, temperature increase is the one
reached within the nanostructures whose dimensions are in the range of few tens
of nanometers; the insets show schematics of the four configurations; the tem-
perature increase per heating power reaches ≃4 K/mW in the heterostructure
geometry; it is almost two orders of magnitude higher than the one predicted on
bulk diamonds and is solely ≃6 or 7 times smaller than the one expected on the
quartz geometry.
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architectures: (i) a bulk diamond, (ii) a 100-nm thin diamond mem-
brane on quartz, and (iii) nanodiamonds dispersed on the heat
source. The achieved temperature increase in the diamond–quartz
heterostructure is much higher than the one predicted for bulk dia-
monds and gets closer to the one expected on quartz. This stems
from the strongly reduced effective thermal conductivity of the
diamond–quartz heterostructure, in which the effective heat release
through diamonds occurs no longer in three but in two dimen-
sions. In view of applications for thermal imaging, this partly lifts
the limitations encountered with bulk diamonds. However, the heat
diffusion throughout the diamond layer would still yield a lateral
spreading of temperature distribution over a length scale of a few
μms, thus limiting the spatial resolution.

Conversely, the temperature of nanodiamonds exactly matches
the one expected on the low thermal conductivity quartz substrate
(see Fig. 3), with a homogenous temperature distribution across
the entire nanodiamond volume. This thermalization of the nan-
odiamonds with the local thermal bath, combined with the con-
stant temperature profile within the nanoparticle, allows for a non-
perturbative measurement of the heat source temperature, despite
the randomness in the position of the NV spin sensor inside the
nanodiamond.

These results enable us to specify the optimal configuration
for NV-based wide-field thermal imaging. Although bulk diamond
imagers would provide the highest temperature sensitivity due to
increased spin coherence times, efficient heat transfer in such high
thermal conductivity material unavoidably leads to significant cool-
ing of the sample to be probed, thus preventing any effective tem-
perature mapping at sub-micron scales. Engineered heterostructures
stacking thin diamond membranes over low conductive substrates
feature significantly reduced heat diffusion, providing a valuable
option for imaging at microscale. The most relevant configuration
for non-invasive wide-field thermal imaging yet consists of random
or ordered dispersions of diamond nanostructures on the hot sam-
ple to be probed. These thermal imagers may bring competitive
imaging modalities with implications in the fields of micro- and
nano-electronics, nanoplasmonics, or chemistry at nanoscale.
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