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Abstract

This paper examines the suitability of an important class of standard …nancial structured products,
namely those whose performances are based on smoothing the return of a given risky underlying asset
while providing a guarantee at maturity. Using various assumptions about the customers attitudes
towards risk, we show that such standardized products are not optimal, even if the …nancial market
volatility is constant. As a by-product, we provide in particular the optimal portfolio value in the
regret/rejoice framework to go further with the notion of aversion of getting a return smaller than the
risk-free one. Using the notion of compensating variation, we determine for the …rst time, the monetary
losses of providing these standardized products instead of the optimal ones to the customers. We show
that these monetary losses can be very signi…cant when the volatility of the risky asset is stochastic.
From the operational point of view, such results highly suggest to trade on the Volatility Index (VIX)
and/or to introduce derivatives written on it, when selling standardized funds in order to better meet
investors needs and preferences.

JEL classi…cation: G11, G13, G21, D03.

Keywords: Finance; Structured …nancial products; portfolio insurance; Asian options; average of
calls; stochastic volatility; compensating variation.
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1 Introduction

Structured …nancial products issued by …nancial institutions have been introduced in order to allow
investors to invest on complex …nancial instruments such as derivatives while satisfying speci…c needs.
Generally, the proposed portfolios provide a capital protection against market ‡uctuations while allowing
to bene…t from market rises. They are based on more or less complex options the underlying assets of
which can be a single security, a basket of securities or …nancial indices.

A …rst problem that arises with structured products is their fair pricing. It has been examined
by several authors using comparisons of prices in the primary or secondary market to the theoretical
fair values: Chen and Kensinger (1990) and Chen and Sears (1990) deal with the pricing of convex
instruments on the S&P 500; Wasserfallen and Schenk (1996) and Burth et al. (2001) examine the Swiss
market; Stoimenov and Wilkens (2005) investigate the fair pricing of equity-linked structured products in
the German private retail banking sector; Bertrand and Prigent (2015a) study the fair pricing of French
…nancial structured products. All these results show that almost all types of equity-linked structured
products are priced above their theoretical values, depending on their complexity degree.

The second important problem, which has been less examined in the …nancial literature, is the suit-
ability of a given structured product to the investor’s risk pro…le (see Shefrin and Statman, 1993; Driessen
and Maenhout, 2007; Das and Statman, 2013). Both the U.S. Dodd-Frank Act1 and the European MiFID
directive2 have emphasized that …nancial institutions must check the adequacy of structured products to
their retail investors, in light of investor …nancial protection (see Chang et al.., 2015). Most of these
structured products provide a capital guarantee3. Therefore, they are related to portfolio insurance (PI),
which has been extensively used by the …nancial management industry in equities, bonds and hedge funds.
One family of such products is devoted to the smoothing of the performance of a given underlying asset
over time (typically a …nancial index or a basket of indices). Two main methods are introduced to reach
such goal: one is based on the introduction of an Asian call option which yields part of the positive
performance of the average of the benchmark asset values along the management period; the other one is
based on an average of past positive performances of the benchmark asset.4

Both types of funds allow the portfolio to be less sensitive to the terminal value of the underlying asset.
Indeed, due to their averaging property, they exhibit lower volatilities than their underlying assets and
take better account of the whole path of the benchmark asset. However, Bertrand and Prigent (2015b)
show that complexity of such products does not always gain advantage over simpler products, when using
performance measures such as Kappa ratios (that include for instance both Omega and Sortino ratios).
Therefore a natural question arises: Are these funds optimal or not according to main decision criteria ?
And, if not, how to measure their inadequacy to customers needs ? For this latter purpose, de Palma and
Prigent (2008, 2009) introduce the compensating variation approach as a quantitative methodology to
provide investment recommendations relying both on the performances of the …nancial products and on
the investor preferences. For the standard allocation problem on simple assets such as equities, bonds and

1Enacted into law on July 21, 2010.
2 Initiated in 2004 and implemented in November 2007.
3For example, in France, 91% of the total amount of structured funds provide a capital guarantee at maturity. Assets

under management on the French retail market for structured products are equal to about 50 billion euros.
4As an illustration, about one third of French capital-guaranteed structured products provide a guaranteed return with

a bonus based on smoothing the price variations of a reference portfolio. Products based on Asian call options can reach
14% of the guaranteed funds, while the second based on an average of past positive performances of the benchmark asset
can reach 18% of the guaranteed funds.
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money market accounts, they show that the customers can su¤er from substantial losses when …nancial
institutions o¤er a limited number of standardized portfolios which imperfectly match investor preferences.

The objective of the paper is twofold. First, we prove that standardized path dependent structured
products issued by …nancial institutions are not optimal when considering main decision criteria, such as
the expected utility maximization and one of its extensions in the portfolio insurance framework, namely
the regret/rejoice criterion introduced by Bell (1982, 1983) and Loomes and Sugden (1982, 1987). For
this purpose, we begin by recalling optimization results within the standard concave utility framework
(with or without kink in the utility function). Then we investigate also the regret/rejoice criterion for
which we provide the optimal portfolio solution. This latter criterion allows to introduce for example the
regret of not having chosen a whole investment on the risk free asset if the structured product …nally
provides only the guarantee, which is an important issue with portfolio insurance. The non optimality of
the standardized path dependent structured products is true even if the …nancial market is driven by a
geometric Brownian motion or a usual Markov di¤usion process. Second, using the notion of compensating
variations, our numerical results show that the monetary losses resulting from not having access to the
optimal structured portfolio can be substantial. This is in particular signi…cant for investors who regret
not having invested on the risk free asset when they get a return smaller than the risk-free one (the so-
called "cash-lock risk"). This is also an important element when taking account of volatility randomness,
what these standardized products do not do.

Our results are in line with previous literature about the standard portfolio allocation problem which
also emphasizes the added value when introducing volatility indices exposures in portfolios, including
for example VIX call options. Szado (2009) emphasizes for instance the diversi…cation bene…ts of such
strategy based on VIX for institutional investors (but illustrated only for a static allocation and during
the 2008 crisis). Using the mean-variance analysis, Chen et al. (2010) show that introducing short VIX
futures exposures into portfolios enhances the e¢cient frontier. Looking at pension funds, Warren (2012)
also proves that VIX futures improve the in-sample performance of equity portfolios. Going beyond the
standard mean-variance framework which can be unsuitable given the statistical characteristics of the
VIX, Bahaji (2016) illustrates the attractiveness of VIX derivatives for risk-averse investors. In this
paper, we show the high interest of VIX instruments for the optimal management of …nancial structured
portfolios by measuring for the …rst time the monetary loss of buying standardized portfolios (which do
not take account of the volatility randomness) instead of getting the optimal ones. Indeed, our numerical
results emphasize that such kind of monetary loss can be higher than the corresponding risk free return on
the given portfolio management period. It implies in particular that options written on volatility should
be introduced in structured portfolios issued by …nancial institutions. From an operational point of view,
they should trade on volatility indices, for example on the volatility index VIX for the S&P 500 index
and the VSTOXX indices based on EURO STOXX 50, and/or should introduce options written on them
in the structured portfolios.

The paper is organized as follows. Section 2 is devoted to the modelling of the …nancial market when
taking account of the stochastic volatility of the risky asset. It provides also the analytical expressions of
optimal portfolios corresponding to various assumptions about the expected utility maximization criterion.
In Section 3, we examine the optimality of main path-dependent structured products issued by the …nancial
institutions (i.e. the standardized funds). We prove that they do not correspond to the optimal solutions.
Then, we introduce the notion of compensating variation to compute the monetary losses of not providing
the optimal portfolios to the customers. We illustrate numerically our theoretical results by considering
various values for both the risk aversion and …nancial parameters. Several technical details are relegated
in the Appendix (see also "Supplementary Materials" for additional …gures and tables).
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2 The …nancial market model and portfolio optimization

2.1 The …nancial market

In what follows, we consider a …nancial market modelling as in Pham and Quenez (2001). It encompasses
main stochastic volatility models, such as the Hull and White (1987), Heston (1993) and Black, Derman
and Toy (1990) models together with the more simple standard Markovian di¤usion case.

Let (­F P) be a complete probability space equipped with a …ltration F = fF 0 ·  · g with  a
…xed maturity date and F = F . Recall that F corresponds to the dynamic available information from
the …nancial market. Consider a …nancial market with a risk free asset  with instantaneous rate  and
with a risky asset the dynamics of which is de…ned as follows:

 = 
h
+ (  )

(1)


i
 (1)

 = + (  )
(1)


+ (  )
(2)


 (2)

where  (1) and  (2) are two independent standard Brownian motions under the historical probability P.
We denote by 0 and 0 the initial values of previous processes. Both processes  and  are supposed
to be adapted to the …ltration F . The three deterministic functions (  ), (  ) and (  ) are
measurable mappings from [0  ] £ R £ R into R. They are assumed to satisfy the standard conditions
to ensure the existence and the uniqueness of the solution to the system (1) of stochastic di¤erential
equations, namely:5

1) H1: The functions (  ) (  ) and (  ) are Lipschitz in ( ) 2 R+ £ R uniformly in
 2 [0  ];

2) H2: The functions (  ) and (  ) are non negative on [0  ] £ R+ £ R.

We deduce that the dynamics of the volatility  has the following form:

(  ) = (  )
h

()
  + ()(  )

(1)


+ ()(  )
(2)


i
 (3)

We assume that the function ()(  ) is non negative on [0  ] £ R+ £ R.

2.2 Portfolio optimization

In what follows, we consider that both processes  and  are observable, which is equivalent to the
observation of both Brownian motions  (1) and  (2) under the previous assumptions. This yields to a
complete …nancial market, meaning that any contingent claim is perfectly hedged from trading on the two
basic assets  and . Such assumption is obviously satis…ed when the process  has not to be introduced
(i.e. for the standard Markovian case). From the practical point of view, such assumption assumes that
the portfolio manager can invest in …nancial products such as the volatility indices.6

We investigate three kinds of decision criterion: The …rst one corresponds to the standard expected
utility maximization with a regular and concave utility function; the second one introduces a kink in the

5See e.g. Jacod and Shiryaev (2003) for details about these conditions.
6 If only the risky price process  is observed and tradable, then the …nancial market is incomplete. In such a case, we

can determine optimal portfolios using results as in Pham and Quenez (2001). Roughly speaking, the portfolio optimization
problem is solved in a complete market but for a modi…ed dynamics of the risky asset. To simplify the whole presentation
of the present paper, we omit this case. Note that the introduction and development of volatility indices (VIX) instruments
allow to drastically reduce this market incompleteness. Additionally, our approach allows to better illustrate the interest of
introducing options written on the stochastic volatility in standardized portfolios to better …t customers needs.
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utility function to better take account of aversion to the loss relatively to the risk-free investment; …nally,
the third one introduces explicitly the regret/rejoice of not having chosen the risk-free investment.7

2.2.1 Computation of the optimal portfolio for the standard decision criterion

To represent the investor’s preferences, consider a utility function  () : R+ ! R, which is assumed to
be continuous, monotonically increasing and twice di¤erentiable. For the standard decision criterion, the
utility  is also supposed to be concave, meaning that the investor is risk averse. Let denote by  the
inverse function of the marginal utility, i.e.  = ( 0)¡1. In what follows, we …rst determine the (unique)
risk neutral probability measure Q. We denote by  the riskless interest rate. The probability measure Q
is characterized by means of its Radon-Nikodym derivative process (). This latter one is de…ned by:

 = EP

·
Q
P

jF

¸
=

exp

·
¡1

2

Z 

0

³
(1)

´2
¡

Z 

0
(1)  (1)

 ¡ 1

2

Z 

0

³
(2)

´2
 ¡

Z 

0
(2)  (2)



¸
 (4)

where the premium processes (1) and 
(2)
 are given by:8

(1) =
 ¡ 

(  )
and (2) =

()


¡  ¡ ()(  )
(1)


()(  )
 (5)

Proposition 1 The optimal portfolio value is given by:

 ¤ = ( ) (6)

where the parameter  is determined from the budget constraint, namely:

¡EQ [ ¤ ] = 0

Proof. We apply results of Cox and Huang (1989).

Remark 2 Looking at Formulas (6) and (4), the optimal portfolio value is function of both the whole
paths of the risky asset process and the volatility process.

2.2.2 Computation of the optimal portfolio with kink

As illustrated in Ben-Akiva et al. (2008), the investor may exhibit a kink in her utility function. For
example, instead of having a CRRA utility function, the relative risk aversion may take two di¤erent
values. In the portfolio insurance framework, such a kink can occur when the investor compares her
portfolio return to the riskless rate. It corresponds to an aversion of getting a return smaller than the
risk-free one.

7We could consider as well the Kahneman and Tversky’s framework based on loss aversions. However, since we deal with
portfolio insurance, the investor does not su¤er from losses. Instead, she is more sensitive to comparisons with the risk free
strategy.

8See Appendix 1 in Supplementary Materials 1.

5



Proposition 3 When there is a kink in the utility function, the optimal portfolio is de…ned from the
following equality:

 ¤ =  0¡1+ (¤ )  (7)

where  0¡1+ denotes the inverse of the right derivative of the utility function.

Proof. This is a particular case of Cox and Huang (1989) result.
To provide an illustration of such a kink, consider the modi…ed CRRA utility de…ned as follows:

( ) =

(
 (1¡1)

(1¡1)
if  ¸ 


(1¡2)

(1¡2)
if   



with  = (1¡2)
(1¡1)

(2¡1) and either 0  2  1  1 or 1  1  2.

We get:

 0+( ) =

½
 ¡1 if  ¸ 
 ¡2 if   

 and  0¡1+ () =

8
>><
>>:




¡ 1
1


if   ¡1

 if ¡1 ·  · ¡2





¡ 1
2


if   ¡2



Corollary 4 For the GBM case, where  has the form  ¡ (see Relation 35), the optimal portfolio
value when there is a kink in the CRRA type utility function, is given by:

 ¤ =  0¡1+

¡
¤¡

¢

=
¡
¤¡

¢¡ 1
1



If(¤¡ )¡1g + If¡1·(¤¡ )·¡2g +

µ
¤¡



¶¡ 1
2



If(¤¡ )¡2g

= (¤)


¡ 1
1





1
 If(¤1)1g+If(¤2)1··(¤1)1g+

µ
¤



¶¡ 1
2





2
 If(¤2)1g

For example, consider the GBM case with the following parameter values:

 = 006;  = 02;  = 8 ; 0 = 100; 0 = 100; = 0
 ; 1 = 16; 2 = 24

Figure 1 illustrates the optimal portfolio value as function of the risky asset value . As expected,
the payo¤ is equal to the constant  = 0

 on the interval [(¤2)1  (¤1)1].

2.2.3 Computation of the optimal portfolio within the regret/rejoice framework

To go further with the notion of aversion of getting a return smaller than the risk-free one, we can base
our analysis on the regret/rejoice theory.
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Figure 1: Optimal portfolio payo¤ (utility with kink)

The regret/rejoice criterion Among generalizations of the standard maximization of expected con-
cave utility functions, a well-known approach is the cumulative prospect theory with the notion of loss
aversion (see Tversky and Kahneman, 1992). However, in the portfolio insurance framework, loss (af-
ter deduction of management fees) cannot exist, implying that loss aversion cannot be applied in such
a context. But a well-known problem arises: Does the insured portfolio provide higher bene…ts than a
straightforward investment on the risk free asset?9 Similarly, the investor can regret not having su¢ciently
investing on the risky asset when the …nancial market rises. To model such attitude towards risk and re-
turn, we can involve the regret aversion as suggested by Bell (1982) and further developed by Loomes and
Sudgen (1987) who emphasize that "one signi…cant factor is an individual’s capacity to anticipate feelings
of regret and rejoicing."10 Regret is also often observed when examining …nancial investment decisions.
Using regret theory framework, Michenaud and Solnik (2005) examine usual …nancial problems such as
international portfolio optimization. They analyze in particular the home bias equity, which corresponds
to weak international diversi…cation for investors having strong preference for domestic …nancial assets.11

The regret theory supposes that individuals are «rational » but that their decisions are not only based
on potential bene…ts (as for EU criterion) but also on expected regret with respect to other possible
outcomes. Therefore, it includes two types of aversions: aversion to risk and aversion to regret.

The regret theory involves the regret or rejoice that an individual can feel when she gets outcome 
instead of outcome . The di¤erence between these two outcomes is a measure of the rejoice or regret
( ) de…ned by:

( ) = () ¡() (8)

9Bertrand and Prigent (2015 b) shows that the probability that the fund becomes monetized (known as "the cash-lock")
is null for a structured fund based on the average of the past performances of the risky underlying asset while it can be
signi…cant for the OBPI or Asian type funds.

10This theory succeeds in explaining paradoxes such as the fanning out and the preference reversal e¤ects (see e.g. Seidl,
2002). A large literature has been devoted to experimental psychology while a recent literature in neurobiology shows that
regret has an impact on decision making under uncertainty and is not su¢ciently taken into account by usual approaches
(see Gilovich and Medvec, 1995; Zeelenberg, 1999; Bleichrodt and Wakker, 2015).

11As mentioned by Solnik (2007), the regret in investment choices leads to simple rules such as formulated by Harry
Markowitz: “I should have computed the historical covariance of the asset classes and drawn an e¢cient frontier. Instead
I visualized my grief if the stock market went way up and I wasn’t in it–or if it went way down and I was completely in
it. My intention was to minimize my future regret, so I split my [pension scheme] contributions 50/50 between bonds and
equities.”(Harry Markowitz, as quoted in Zweig (1998).).
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which is negative if the individual feels regret and positive if she feels rejoice. More generally, Loomes and
Sugden (1982) and Bell (1982) introduce the following modi…ed version of the utility of  in the presence
of :

V( ) = () +  [() ¡()]  (9)

with  [0] = 0,  increasing, concave and  000  0.

Optimal portfolio within regret/rejoice utility In what follows, the utility  of the investor is
supposed to be increasing and piecewise di¤erentiable. The regret function  satis…es:  [0] = 0,  is
increasing,  00concave and  000  0. We assume that the marginal utility  0 is invertible, and we denote
its inverse by  . When the investor may regret or rejoice of not having received the reference terminal
wealth e  the optimal payo¤  ¤ is solution of the following problem:

EP[( ) + 
³
 ( ) ¡

³
e

´´
] with 0 = ¡EP[  ]

Suppose that the function © [] de…ned by:

© [] =  0 []
¡
1 +  0 [ [] ¡  []]

¢


has an inverse for any value of . Under previous assumptions on utility  and regret function  , the
function © is strictly decreasing.

Proposition 5 The optimal portfolio in the regret/rejoice framework is given by

 ¤ = © [ ]  (10)

where  corresponds to the Lagrange multiplier associated to the budget constraint.
Proof. See Appendix 2 in Supplementary Materials 1.

When the terminal wealth e is a function of the terminal value of the risky asset price, namely
e = 0( ), we introduce the function ©0 which is de…ned by:

©0()() =  0 ()
£
1 +  0 [ () ¡ (0())]

¤


It is invertible as function of .

Corollary 6 In the GBM framework, we deduce that the optimal portfolio value is equal to the payo¤
¤ ( ) given by:

¤ = ©¡10()( ) (11)

where  is the scalar Lagrange multiplier such that:

0
 =

Z

R+
©¡1
0()

(())() ()

Example 7 Consider the following regret function, as suggested in Bell (1983):

() =
1 ¡ exp[¡]


with   0

Then, for a CRRA utility () = 1¡(1 ¡ ) we have:

©0()() = ¡
µ

1 + exp

µ
¡

·
1¡

1¡ ¡ 0()
1¡

1¡

¸¶¶

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For example, consider the GBM case with the following parameter values:

 = 006;  = 02;  = 8 ; 0 = 100; 0 = 100;  = 2; = 20 (12)

Figure (2) illustrates the optimal portfolio value as function of the risky asset value . As expected,
since we have considered here a rather high regret aversion, the optimal payo¤ for the regret/rejoice utility
is much more close to the payo¤ corresponding to the risk free investment (horizontal line in the …gure).
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Figure 2: Optimal portfolio payo¤ (regret utility)

2.2.4 Computation of the optimal insured portfolio

Since we want to examine the optimality of funds in the portfolio insurance framework, we have to
introduce speci…c guarantee constraints. The following proposition provides the optimal insured portfolio
for all the previous cases. Using results of Bertrand et al. (2001) and El Karoui et al. (2005), we get:

Proposition 8 The optimal insured portfolio corresponds to the maximum of a portfolio value without
guarantee constraint and the guarantee itself. When this guarantee is equal to the initial portfolio value,
we get:

 ¤¤ =  [( ) 0]  (13)

Remark 9 We note that the previous optimal solution can be viewed as a combination of an investment
on the risk free asset and on a call option written on a portfolio value without guarantee constraint since
we have:

 ¤¤ = 0 + [( ) ¡ 0 0]  (14)

Relation (13) is true for all cases that we investigate in the paper. In Section 3, this optimal solution
is compared with the standardized …nancial products.
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3 Optimality of standardized path-dependent structured products

In this section, we examine whether or not the standardized structured products issued by …nancial
institutions to smooth risky market ‡uctuations are optimal with respect to usual decision criteria. we
introduce the notion of compensating variation to determine the monetary losses of the customers when
…nancial institutions do not provide their optimal portfolios. We examine two main types of such products:
the …rst one corresponds to a combination of a riskless investment (providing the guarantee) with an Asian
call option which yields part of the positive performance of the average of the benchmark asset values
along the management period; the second one is based on an average of past positive performances of the
benchmark asset. We also consider the most popular insured portfolio, namely the portfolio corresponding
to the Option Based Portfolio Insurance (OBPI), introduced by Leland and Rubinstein (1976).12 The
portfolio is invested in a risky benchmark asset  covered by a listed put written on it. The strike  of
the put is equal to a predetermined proportion of the initial investment. This amount corresponds to the
capital that is insured at maturity whatever the value of  at the terminal date  .13

3.1 The standardized structured products

3.1.1 The OBPI portfolio

The OBPI method consists basically in purchasing an amount invested on the money market account and
 shares of European call options written on asset  with maturity  and exercise price , usually the
initial one 0. The payo¤ is de…ned as follows. At maturity, the payo¤ of this fund is de…ned by:14

 = 0 + 0( ¡ 0)
+ (15)

We denote by  ( 0  ) the price of each call option with maturity  , strike , underlying ,
and riskless interest rate . We deduce that, at time 0, the budget constraint is given by:

0 = 0
¡ + 0 ( 0 )  (16)

In what follows, we set  = 0. The parameter  is chosen such that the initial price 0 solves
equation (16):

 =

¡
1 ¡ ¡

¢

 ( 0 0 )
 (17)

Therefore, the return of the OBPI strategy over the period [0  ] is given by:


0

= 1 +
¡
1 ¡ ¡

¢ ( ¡ 0)
+

 ( 0 0 )


3.1.2 Guaranteed funds based on average of positive performances

This …nancial structured product is based on the average of past positive performances with respect to
a given underlying asset value, usually the initial one 0. Usually, the performances (monthly, quarterly
or half-yearly) are de…ned by averages of calls with strike equal to the initial value 0 of the underlying

12See Bertrand and Prigent (2005, 2011) for more details about portfolio insurance methods and their comparison.
13Equivalently, a call option can be bought on  with strike  and cash held equal to the discounted value of .
14Notation: + = ( 0).
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risky asset. In what follows,  corresponds to the number of dates per year (for example;  = 12 4 or 2),
 is the time horizon (number of years) and  denotes the value of the risky asset at time  = . The
payo¤ of a guaranteed fund based on average (excess) performances is de…ned as follows. At maturity,
the payo¤ of this fund is de…ned by:

 = 0 + 0
1



X

=1
( ¡ 0)

+ (18)

Therefore, only the  values of the underlying index which are higher than the initial 0 value are
taken into account in the formula.

We denote by  (  ) the price of each call option with maturity , strike , underlying ,
and riskless interest rate . We deduce that, at time 0, the budget constraint is given by:

0 = 0
¡ + 0

1



X

=1
¡(¡) (  0 )  (19)

Thereafter, we denote:

 (  0 ) =
1



X

=1
¡(¡) (  0 )

The parameter  is chosen such that the initial price 0 solves equation (19):

 =

¡
1 ¡ ¡

¢

 (  0 )
 (20)

The return of the average strategy over the period [0  ] is given by:


0

= 1 +
¡
1 ¡ ¡

¢ 1


P
=1( ¡ 0)

+

 (  0 )


3.1.3 Guaranteed funds based on Asian options

Asian options were introduced to take account of the average of the underlying asset values, unlike the
European-type options linked to the standard OBPI method which only use value at maturity. It is not
surprising, therefore, that they are being used with …nancial structured funds, particularly insured funds.
A guaranteed fund based on discrete-time Asian options delivers a payo¤ de…ned by:

 = 0 + 0 [ ( ) ¡ 0]
+  (21)

with  ( ) = 1


P
=1  .

The term [ ( ) ¡ 0]
+ in expression (21) represents the payo¤ of a discrete arithmetic Asian Call

on the index with a strike price equal to the initial price 0 of the index. We denote its price by
 (  ( )  0 ) where  corresponds to the riskless interest rate. Therefore, at time 0, the
budget constraint is given by:

0 = 0
¡ + 0

 ( ( )  0 )  (22)
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from which we deduce that the parameter  must be chosen such that:

 =

¡
1 ¡ ¡

¢

 ( ( )  0 )
 (23)

Note that the return of the strategy over the period [0  ] is also de…ned by:


0

= 1 +
¡
1 ¡ ¡

¢ [ ( ) ¡ 0]
+

 (  ( )  0 )
 (24)

3.2 Comparison with optimal portfolios

In what follows, we examine the optimality of the previous standardized structured products. As it can be
immediately deduced, these products can only be optimal in the case of a Markovian di¤usion, since they
do not involve explicitly the random paths of the volatility. To make the comparison between standardized
structured products and optimal portfolios, we …rst detail these ones in what follows.

3.2.1 Optimal portfolio in the Markovian di¤usion framework

This is a particular case of the general model (1) where both functions (  ) and (  ) do not
depend on  . The stock index price dynamics is given by the following stochastic process:

 = [( )+ ( )] (25)

where ( ) and ( ) are deterministic functions that satisfy the usual assumptions and  denotes a
standard Brownian motion with respect to a given …ltration (F). Then, the risky asset price  is a
Markovian di¤usion process. One particular case is known as the CEV model for which the volatility is
given by: (  ) = 1¡.

It implies:

 = 0 exp

·Z 

0

µ
( ) ¡ 1

2
2( )

¶
+

Z 

0
( )

¸
 (26)

Under the (unique) risk neutral probability measure Q, we have:

 = 0 exp

·Z 

0

µ
 ¡ 1

2
2( )

¶
+

Z 

0
( )f

¸
 (27)

where  denotes the riskless interest rate and process f is a Brownian motion with respect to Q.
Note that :

 = EP

·
Q
P

jF

¸
= exp

"
¡1

2

Z 

0

µ
( ) ¡ 

( )

¶2
¡

Z 

0

( ) ¡ 

( )


#


Assuming ( )  0, we get:

 =
 ¡ ( )

( )
 (28)

Therefore, we have:
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Proposition 10 For the Markovian case, the optimal portfolio value is given by:

 ¤ = ( ) (29)

with

 = exp

·Z 

0

·
1

2

µ
( ) ¡ 

( )

¶µ
( ) + 

( )

¶¸
¡

µZ 

0

( ) ¡ 

2( )

¶


¸


As emphasized previously, the optimality of the main standardized path dependent structured products
issued by …nancial institutions has a chance to be satis…ed only in the Markovian framework. It is the
reason why we detail this case under various assumptions on the drift and volatility functions.

Consider two fundamental examples of utility functions, namely the Constant Relative Risk Aversion
(CRRA) case and the Constant Absolute Risk Aversion (CARA) case.

1) Assume that the utility function is a power function () = 1¡

1¡ with a constant relative risk

aversion   0 and  6= 1. We have:  0() = ¡and () = 
¡1
 . Thus the optimal portfolio value is

given by:

 ¤ = 
¡1
 exp

·
¡1



Z 

0

·
1

2

µ
( ) ¡ 

( )

¶µ
( ) + 

( )

¶¸
+

1



Z 

0

µ
( ) ¡ 

2( )

¶


¸
(30)

2) Assume that the utility function is an exponential () = ¡(¡) for  ¸ 0 with a constant
absolute risk aversion   0. We have:  0() = ¡ and () = ¡1

(). Thus the optimal portfolio
value is given by:

 ¤ = ¡1



·
() +

Z 

0

·
1

2

µ
( ) ¡ 

( )

¶µ
( ) + 

( )

¶¸
¡

Z 

0

µ
( ) ¡ 

2( )

¶


¸
(31)

Optimal portfolio under speci…c assumptions on the modi…ed Sharpe ratio In the Markovian
framework, usual discussions are based on the following modi…ed Sharpe ratio ()¡

2()
. We investigate

two main cases: the …rst one assumes that this modi…ed Sharpe ratio is constant; the second one supposes
that this ratio divided by the risky asset price is constant (i.e. ()¡

2()
). We examine what happens for

the two standard utility functions.

Assume now that the modi…ed Sharpe ratio is equal to a constant e, which is a common assumption
in the theoretical literature about portfolio choice. It implies that the Sharpe ratio ()¡

()
is increasing

with the volatility.

Corollary 11 When the modi…ed Sharpe ratio is constant, the optimal portfolio value for the CRRA case
is given by:

 ¤ = 
¡1
 exp

·
¡1



Z 

0

·
1

2
e (( ) + )

¸


¸
exp

· e
2

Z 

0
2( )

¸
£ 




 

For the CARA case, it is given by:

 ¤ = ¡1



·
() +

Z 

0

·
1

2
e (( ) + )

¸


¸
+

e


µ
ln

·

0

¸
+

1

2

Z 

0

2( )

¶

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Proof. For the CRRA case, applying Relation (30), we get:

 ¤ = 
¡1
 exp

·
¡1



Z 

0

·
1

2
e (( ) + )

¸
+

e


Z 

0




¸


from which we deduce the result.
For the CARA case, using Relation (31), we get:

 ¤ = ( ) = ¡1



·
() +

Z 

0

·
1

2
e (( ) + )

¸


¸
+

e


Z 

0




Note that we have: Z 

0




=

Z 

0
( )+ ( )

=

Z 

0

1

2
2( )£

·Z 

0

µ
( ) ¡ 1

2
2( )

¶
+

Z 

0
( )

¸

= exp

·Z 

0

1

2
2( )

¸
£ ln

µ

0

¶


Therefore we deduce the result.
We note that, for the CRRA case, the portfolio value is a power of the risky asset value, weighted by

exponentials of stochastic integrals involving respectively the drift and volatility of the risky asset. For
the CARA case, the portfolio value is a linear combination of the risky asset logreturn and of temporal
means of respectively the drift and volatility of the risky asset.

Assume now that the ratio ()¡
2()

= b is constant with  6= . We get:

Corollary 12 When the ratio ()¡
2()

is constant, the optimal portfolio value for the CRRA case is
given by:

 ¤ = 
¡1
 exp

·
¡1



Z 

0

·
1

2
b (( ) + )

¸
+

b


( ¡ 0)

¸


For the CARA case, it is given by:

 ¤ = ¡1



·
() +

Z 

0

·
1

2
b (( ) + )

¸
+ b0

¸
+

b

 

Additionally, if ( ) ´  constant (thus ( ) =
q

¡


), then we deduce:

 ¤ = ¡1


() ¡ b


0 ¡ b (+ )

2

Z 

0
 +

b

 

We note that, for the CRRA case, the portfolio log return is a linear combination of the risky asset value
at maturity and of the temporal mean of its current values weighted by the sum of its drift with the risk
free asset. For the CARA case, the portfolio value is a linear combination of the risky asset terminal value
and of the temporal mean of the risky asset values.

Finally, note that the Markovian di¤usion case with constant Sharpe ratio encompasses the usual
geometric Brownian motion (GBM) case.15Due to its fundamental applications, we detail this case in
what follows.

15Such an assumption is commonly introduced when dealing with the pricing of structured funds.
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Optimal portfolio for the basic example (GBM case) Consider the risky asset dynamics de…ned
by:




= +   (32)

with constant parameters  and  (  0). Denote:

 =  ¡ 1

2
2;  =

 ¡ 


(Sharpe ratio) (33)

 = ¡1

2
2 +




 ;  =




;  = (0)



We consider the risk-neutral probability measure Q to price options. The ¡algebra F is generated
by the Brownian motion  . We deduce that the probability density function (pdf) of Q

 is a function
( ) of the terminal value of the risky asset price with respect to the -algebra generated by  . This
function is given by:

() = ¡

Therefore, from Relation (6), we deduce that the optimal portfolio is equal to:

 ¤( ) = 
£
  ¡

¤
 (34)

where  is the Lagrange parameter associated to the budget constraint.

The CRRA case

Corollary 13 For the GBM case, the optimal solution for the CRRA case is given by:

 ¤( ) = 
¡ 1
 




  (35)

where the power 
 of  is equal to the Sharpe type ratio16  = ¡

2
times the inverse of the relative risk

aversion . The ratio 
 corresponds to the Merton ratio. Applying budget constraint, the coe¢cient  is

equal to:

 =
0





·¡
¡

¢ ¡1


¸ with 

·¡
¡

¢ ¡1


¸
= exp

µ
1

2
2

1 ¡ 

2

¶
 (36)

Therefore, the optimal portfolio is a power of the terminal risky asset value. Note that  ¤( ) =
¤( ) is increasing. This property is satis…ed for all concave utilities, as soon as the density  is
decreasing, for instance within the Black-Scholes asset pricing framework. The concavity/convexity of
the optimal payo¤ is determined by the comparison between the relative risk-aversion  and the ratio
 = ¡

2
, which is the Sharpe ratio divided by the volatility 17:

i) ¤ is concave if   ; ii) ¤ is linear if  = ; iii) ¤ is convex if   .

16We call it "Sharpe type ratio" since it is equal to the Sharpe ratio when we consider the standard deviation instead the
variance.

17See e.g. Prigent (2007).

15



To illustrate the previous result, consider the following numerical base case:

 = 3%  = 20% 0 = 1 0 = 100

The initial investment is 0 = 100 and the time horizon  is equal to 1 (one year). Figure 3 illustrates
how the optimal portfolio pro…le depends on the expected instantaneous rate of return  of the risky
asset, which has a straightforward impact on the Sharpe type ratio .18When  is smaller than , the
optimal payo¤ is a decreasing function of the risky asset value  , which leads in practice to buy put
options on ; for  higher than , the optimal is an increasing function of the risky asset value  which is
concave for moderate values of  then convex for higher values. Indeed, when the expected instantaneous
rate of return  of the risky asset is su¢ciently high, the investor searches to better bene…t from potential
market rises.
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Figure 3: The optimal payo¤ for various values of 

The CARA case

Corollary 14 For the GBM case, the optimal solution for the CARA case is given by:

 ¤ = ¡1


() ¡ 


0 ¡  (+ )

2

Z 

0
 +




 

Therefore, the optimal portfolio is a combination of the terminal risky asset value and of the average
of its values over the time period.

18For this example, the relative risk aversion is …xed at the level  = 09.
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3.2.2 Optimality of the OBPI

The standard OBPI fund with no cap can be optimal but under very strong assumptions (GBM case and
speci…c parameter values). Using previous results (see Corollary 13 and Proposition 8), we get:

 = 0 + (

 ¡ 0)

+ with  constant. (37)

For  = 1, we get the OBPI fund.19 But recall that this fund is not used to smooth the volatility along
the management period.

3.2.3 Optimality of the guaranteed fund based on average of positive performances

To examine the optimality of the guaranteed fund based on average of positive performances, we can
introduce its continuous time version, namely:

 


0
= 1 +

¡
1 ¡ ¡

¢ R 
0 ( ¡ 0)

+

 (  0 )


Let us examine the optimality of such a product.20 Due to terms (¡0)+ or equivalently (¡0)+

in continuous time, this portfolio cannot be optimal when compared with previous solutions for the
Markovian di¤usion case. First, the volatility would be constant; second it would be assumed that the
investor searches a portfolio optimization for each time subperiod. For example, assume that the investor
maximizes her expected utility on each subperiod [¡1 ]. Assume also that she wants a guarantee on
each subperiod (i.e.  ¸ 0).

Then, the optimization problem is the following:

 E [ ()] under  ¸ 0

with  () = (1¡)(1 ¡ ).

Using previous results (see Corollary 13 and Proposition 8), we get:

 = 0 + 0(
¡
¡1

¢ ¡ 1)+

If the investor splits her initial investment into  equal amounts 0 for all the subperiods with
condition (i.e. 0 = 0), then we have:

 = 0+ 0(
¡
¡1

¢ ¡ 1)+

19Consider the HARA utility case:

() = ( ¡ ¤)
(1¡)

 (1¡ ) 

where ¤ corresponds to the initial invested wealth 0. The optimal portfolio has the following form:  = 0 +   with
 constant.

It corresponds to another portfolio insurance method, namely the Constant Proportion Portfolio Insurance (CPPI) method.
As opposed to the Option Based Portfolio Insurance (OBPI) strategy, the CPPI portfolio payo¤ does not truly include an
option whereas, for the OBPI method, the strike corresponds to the initially invested amount which insures the capital at
maturity). In the paper, we only consider structured products which provide capital protection while allowing investors to
bene…t from market rises through more or less sophisticated derivatives written on a risky asset. The payo¤ at maturity is
characterized by a given formula that de…nes the optional component.

20 In the GBM framework, Shackleton and Wojakowski (2007) provides the explicit pricing formula of
 (  0 ).
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Thus, the global portfolio value at maturity is given by:

 =
X

=1

 = 0

"
1 +

1



X

=1

(
¡
¡1

¢ ¡ 1)+

#


Thus, the portfolio value at maturity is a sum of call options written on the return of the underlying
asset . However there are several shortcomings in order this fund to be truly optimal: …rst, this fund
does not correspond to returns 0; second, we must have  = 1, which is a very speci…c case; …nally,
the decision criterion is only "local" (i.e. optimization only on each subperiod).

3.2.4 Optimality of the Asian product

To examine the optimality of the Asian product, we can also introduce its continuous-time version, namely:

 


0
= 1 +

¡
1 ¡ ¡

¢
h
1


R 
0  ¡ 0

i+

 (  0 )


Therefore, this structured fund has no component de…ned on the volatility process itself. Again, for
this Asian fund to be optimal, the …nancial market must evolve according to the Markov di¤usion process
described previously.

Note that, for the computation of the current value of A = 1


R 
0 , we can use the standard

no-arbitrage valuation. Therefore, the current value of A is equal to:

¡(¡)EQ [A jF ] = ¡(¡)EQ

·
1



Z 

0
 jF

¸


Since we have: for  ¸   = ¡(¡)EQ [ jF ], we deduce:

¡(¡)EQ [A jF ] =
1


¡(¡)

µZ 

0

+ 

Z 



(¡)

¶


=
1


¡(¡)

µZ 

0

+ 
h³
(¡) ¡ 1

´


i¶


Let () =  ±(). We search a function  such that

 ¤ =  ±( ) = A 

This is equivalent to:
(ln + ln  ) = A 

which gives:



µ
ln +

Z 

0

·
1

2

µ
( ) ¡ 

( )

¶µ
( ) + 

( )

¶¸
¡

µZ 

0

( ) ¡ 

2( )

¶


¶
=

1



Z 

0


Denote ()¡
2()

= ( ).



µ
ln +

Z 

0

·
1

2
( ) (( ) + )

¸
¡

µZ 

0

( )

¶


¶
=

1



Z 

0


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The only possible case corresponds to the CARA case (i.e.  is an exponential function). Looking
at Corollary (14), the temporal mean 1



R 
0  appears in the fund’s formula. However, the terminal

payo¤  is also involved.

To avoid such problem, we can also rely on the intertemporal consumption framework since the Asian
product is based on temporal mean of the risky asset price. In the GBM framework, in order to get such
products in the optimal portfolio, we can also introduce a consumption based model. This leads to the
following expected utility:

E
·Z 

0

b( )+ ( )

¸
 (38)

Proposition 15 Using the Hamilton-Jacobi-Bellman approach (see Karatzas et al., 1985), we deduce the
optimal consumption and portfolio values.

 ¤ =  ( ) and ¤ = b () 

Remark 16 Consider a particular case (see Prigent, 2007, pages 198-202) for which we assume that

 = 0 b() =
1¡

1 ¡ 
with   0 and  6= 1 and …nally the Merton ratio

1



( ) ¡ 

( )2
= 1

Then, there exists only a consumption process of type ¤ = () where () is the deterministic function
of time  given by:21

() = ¡with  = ¡1

2
2 +




 (39)

Thus the cumulated consumption process is based on the temporal mean of the risky asset values weighted
by a deterministic function, namely

R 
0 ¤  =

R 
0 ().

Looking at the previous optimal solution, for the Asian option to be optimal, …rst we must require
a Merton ratio 1


()¡
()2

equal to 1. In that case, the cumulated consumption process is based on

the temporal mean of the risky asset values weighted by a deterministic function, namely
R 
0 ¤  =R 

0 (). Second, to get exactly the Asian payo¤, the deterministic function () must be constant
which is equivalent to ( ) ¡  = 0. Obviously, the two previous conditions cannot be simultaneously
satis…ed.

3.3 Compensating variation (monetary loss)

As shown in Bertrand and Prigent (2015b), when using Kappa performance measures (including both
Omega and Sortino ratios), Asian funds are preferred to Average fund for risk-neutral investors, since the
expectation of the Asian fund return is higher than the expectation of the Average fund return. But, as
soon as potential risk aversion or implicitly loss aversion are taken into account, the ranking is reversed.
In what follows, our goal is to go further into this comparison by …rst introducing various risk aversions
and second to compare standardized funds with optimal ones. For this purpose, our approach relies on
the notion of compensating variation.

21Using Relation (33).
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3.3.1 Compensating variation

Several …nancial institutions have understood the importance to evaluate the investor’s risk aversion al-
though there are di¢culties to rigorously link those measures to investment recommendations. To the
best of our knowledge, one of the reasons is that those evaluations often do not provide a quantitative eval-
uation of investor risk aversion. Moreover, these approaches fail to describe the dynamics of risk aversion
over the investor’s time horizon. An exception is provided by Ben-Akiva, de Palma and Bolduc (2002)
who propose an econometric method to measure quantitatively the investors’ risk aversion. Typically
…nancial institutions o¤er a limited number of standardized portfolios which imperfectly match investor
preferences. In this paper, we quantify the e¢ciency losses of an investor acquiring given standardized
structured funds instead of getting the portfolio corresponding to her own attitude towards risk. The
compensating variation approach, introduced by Hicks (1939) in economics and by De Palma and Pri-
gent (2008, 2009) in …nance, allows to quantitatively measure the monetary loss of not receiving her own
optimal portfolio.

Consider an investor with utility function parametrized by  and time horizon  . Denote by  ¤ her
optimal portfolio and by  the standardized structured product sold by the …nancial institution. Since
this latter one is generally not optimal, we search the initial value b0 necessary to reach the same utility
level. Such condition leads to the following indi¤erence condition:

[(
¤
 ;0)] = [(; b0)] (40)

The ratio b00, called the compensating variation, provides a quantitative (monetary) measure of
the lack of adequacy of the standardized structured product.22

3.3.2 Compensating variation of the standardized path-dependent structured products

In what follows, we provide numerical examples of the compensating variations for various cases.23 First,
we focus on the standard GBM framework, for which we consider several extensions of the standard
concave utility case. Second, assuming that the investor has a standard concave utility, we study the
impact of the ‡uctuations of the stochastic volatility. For this purpose, we choose the Log Ornstein
model, which is one of the main modelling of stochastic volatility.

Compensating variation for the concave utility in the GBM framework For the riskless rate,
we choose two main values, namely  = 1% (low rate) and  = 3% (standard rate). Since the compensating
variation is increasing with respect to , we get its bounds for  2 [1% 3%], in particular for  = 2%. For
both these cases, we vary the volatility level of the risky asset (here, it corresponds to an equity index).
For this latter purpose, we choose four main values of the volatility, namely  = 15% (low volatility),
 = 20% (moderate volatility),  = 25% (rather high volatility) and …nally  = 30% (high volatility).
Finally, we choose two main values for the drift  such that the risk premium (¡ ) is equal to its
usual value namely 5%. 24In what follows, our numerical base cases correspond to the following …nancial
parameters:

( = 6%  = 1%) ; ( = 8%  = 3%) ;  = 8; 0 = 100; 0 = 100

22 In De Palma and Prigent (2008), it is shown that the compensating variation can be also related to the certainty
equivalent notion.

23We use Monte Carlo method when there is no explicit formula as in Detemple et al. (2003).
24Note also that, in Supplementary Materials 2, we examine how the compensating variation varies with respect to interest

rate  (see Figures 1 to 16) and drift  (see Figures 17 to 20). The main conclusions about the compensating variation are
not signi…cantly modi…ed.
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Figure (4) is devoted to the case  = 1% while Figure (5) corresponds to the case  = 3%.
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Figure 4: The CV as a function of gamma (CRRA) with GBM (mu=6% and r=1%)
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Figure 5: The CV as a function of gamma (CRRA) with GBM (mu=8% and r=3%)
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Main comments:

- First, we can note that the three standardized products, namely the OBPI, the Average and the
Asian funds are rather close from the compensating variation point of view. Indeed, looking at Tables
1 to 4, the maximum compensating variation is equal to 10327 (OBPI versus Average,  = 1  = 6%,
 = 15% and  = 1%). Since the fund horizon is equal to 8 years for this example, it corresponds to a
monetary loss per year equal to about 04%;

- Second, we can notice that, as volatility increases, the OBPI is less dominant compared to the
two other structured funds. For example, the Asian strategy is never dominant for  = 15% 20% and
becomes dominant only from  = 25% and generally for investors having moderate or high risk aversions
( ¸ 4). It means that, according to their objective of smoothing the return of the risky asset, both Asian
and Average funds are improving with respect to the standard OBPI fund when the volatility increases.
Thus, as volatility increases, the performance smoothing feature of the path dependent strategies goes
into action. The Average fund is generally dominant when compared to the Asian fund, especially when
the volatility increases or/and the risk aversion increases. As expected, it provides a higher protection
against volatility ‡uctuations for investors having moderate or high risk aversions ( ¸ 4).

- Third, the compensating variation between those standardized structured products and the optimal
fund is very signi…cant, compared to the compensating variations between only standardized structured
products. For the compensating variation between the OBPI fund and the optimal one, it can reach for
example 1176 for  = 10,  = 25% and  = 3% meaning a monetary loss per year equal to about 224%
(see Tables 5 to 8). This would induce an implicit managing cost higher than 2% per year! However, for
both interest rate levels, namely  = 1% and  = 3%, the maximum compensating variation is always
smaller than the return of the risk free asset on the same time period. Such feature illustrates the lack of
adequacy to customers needs, especially for both "aggressive investors" ( = 1) in a moderate ( = 20%)
or low ( = 15%) volatility environment and for "conservative" investors ( = 10);

- Fourth, the behavior of the compensating variation as a function of risk aversion and volatility levels
is rather complex. It depends on all the …nancial parameter values: For …xed …nancial parameter values,
the compensating variation is a function of the risk aversion  which can be either …rst decreasing then
increasing or always increasing. Indeed, as it can be seen in Relation (37), the compensating variation
is null when the risk aversion  is such that the OBPI fund is optimal ( = ). Thus, as soon as
the distance between  and  increases, the compensating variation does also. As it can be seen in
Appendices 3 and 4 (see Supplementary Materials 1), for a simpli…ed case with no insurance constraint,
for …xed risk aversion parameter , the compensating variation between the optimal fund and an optimal
fund related to the OBPI fund is increasing with the volatility if  is su¢ciently high. Such property is
rather robust when dealing with portfolio insurance. Indeed, Relation 13 characterizes the optimal insured
portfolio as the maximum between an optimal portfolio without insurance constraint and, for example, a
…xed guaranteed amount. Looking at Figures (4) and (5), (see also Figures (9) to (20) in Supplementary
Materials 2), we can notice such feature. Indeed, when  = 15%, the compensating variation between the
optimal fund and the three standardized funds is higher for small values of the risk aversion  than for
the three other values of the volatility, namely  = 20% 25% 30%. For moderate or high risk aversion ,
it is the converse: for …xed  ¸ 5, the higher the volatility, the higher the compensating variation.

- Finally, as function of time horizon, the compensating variation is increasing, as illustrated by Figures
(21), (22) and (23) (see Supplementary Materials 2). Finally, note that the choice of the utility function
does not change very signi…cantly the numerical values of the compensating variation (as explained in
Supplementary Materials 2).
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Compensating variation for the concave utility with kink case in the GBM framework
In this case, the dynamic of the risky asset process is given by a geometric Brownian motion ( =
 [ +  ]). The utility with kink is given by:

( ) =

(
 (1¡1)

(1¡1)
if  ¸ 


(1¡2)

(1¡2)
if   

 with  =
(1 ¡ 2)

(1 ¡ 1)
(2¡1)

Looking at Tables (11) to (18) in Supplementary Materials 3, we deduce similar results as previously
when comparing the three standardized products between them and with the optimal fund. We still
observe that higher volatility generally implies higher compensating variations for moderate or high risk
aversion . These latter ones are more sensitive to the volatility than to the threshold determining the
kink around the riskless return. Most of the time, the compensating variation is decreasing with respect
to the drift of the risky asset. We can also examine the compensating variation as function of the kink
level. Recall that we choose  = 075 exp[ ],  = 075 exp[ ] and …nally  = 125 exp[ ].

For the case  = 1%, we compare results for the standard concave case with  = 6% and  = 20% (see
Table 2) to those in Tables (11) to (14) corresponding to the kink case. We use the following approximate
correspondence between the standard concave and the kink cases: For  = 2, 1 = 16 and 2 = 24 for
the utility with kink; for  = 6, 1 = 52 and 2 = 68 for the utility with kink; for  = 10, 1 = 85 and
2 = 115 for the utility with kink. For  = 2, the compensating variations for the standard concave case
are higher than for the kink case, while for both  = 6 and  = 10, it is generally the converse. Most
of the time, the compensating variation is slightly increasing with respect to level of the kink  but the
di¤erence is relatively weak.

For the case  = 3%, we compare results for the standard concave case with  = 6% and  = 20% (see
Table 6) to those in Tables (15) to (18) corresponding to the kink case. Most of the time, the compensating
variations for the kink case is very close to that for the standard utility case. We note also that, for  = 6
and  = 10, the compensating variation is not sensitive to the level of the kink (at least for the three
considered values, namely  = 075 exp[ ],  = 075 exp[ ] and  = 125 exp[ ]).

Therefore, to better investigate the impact of the aversion of getting a return smaller than the risk-free
one, we analyze numerically the regret/rejoice criterion in what follows.

Compensating variation for the regret/rejoice case in the GBM framework To illustrate the
compensating variation for the regret/rejoice case, we choose the regret function  , as suggested in Bell
(1983), namely:

 () =
1 ¡ exp[¡]


with   0

Then, we choose a CRRA utility () = 1¡(1 ¡ ). Thus, we get:

©0()() = ¡
µ

1 + exp

µ
¡

·
1¡

1¡ ¡ 0()
1¡

1¡

¸¶¶


Applying results of Proposition 5, we can numerically analyze the impact of both the relative risk
aversion  and the parameter  de…ning the regret/rejoice function. For this purpose, we set the following
…nancial parameters: The drift  of the risky asset is equal to 6%; the volatility  of the risky asset is
equal to 20%; the interest rate is equal to either to 1% or to 3%. We consider also a time horizon  equal
to 8 years. To calibrate the parameter  associated to the regret function, we use results in Michenaud
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and Solnik (2008) based on regret aversion. This latter parameter has been de…ned by Bell (1983) who

has introduced the ratio  = ¡0
00
 0

1+ 0 . This leads us to consider the following values for the parameter
:  = 1 10 20 and …nally 30. Note that these values yield to regret aversion levels  lying mainly
between 2 and 30. Note also that, when letting  converges to 0, the regret function converges to the
linear function (namely lim!0+ () = ), which ultimately corresponds to the standard utility case.

Cv Opti Average (r=1%) Cv Opti Average (r=3%)

Cv Opti Asian (r=1%) Cv Opti Asian (r=3%)

Cv Opti OBPI (r=1%) Cv Opti OBPI (r=3%)

Figure 6: Compensating variations for utility with regret/rejoice
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Figure (6) illustrates the compensating variation for utility with regret/rejoice (see also Tables (9) and
(10). For the case  = 1%, we compare results in Table (2) for the standard concave case with  = 6%
and  = 20%. We note …rst that the compensating variations for the regret/rejoice case are much higher
than for the standard utility case. Indeed, they can reach values equal to about 65% corresponding
approximately to 08% per year, which is close to the risk-free rate itself. We note also that, except for
the case  = 2, the compensating variation for the regret/rejoice criterion is an increasing function of
the parameter  associated to the regret/rejoice function. Table (9) displays the compensating variations
when comparing the optimal portfolio to the three standardized structured products for the case  = 3%.
For the case  = 3%, we compare results in Table (10) to those in Table (6) for the standard concave
case with  = 6% and  = 20%. As previously, we note also that the compensating variations for the
regret/rejoice case are much higher than for the standard utility case. Indeed, they can reach very high
values for weak relative risk aversion such as  = 2. Even for stronger relative risk aversions, for example
 = 10, the compensating variation for the regret/rejoice case can be equal to about 258% corresponding
approximately to 287% per year, which is still close to the risk-free rate itself. We note also that here the
compensating variation for the regret/rejoice criterion is always an increasing function of the parameter
 associated to the regret/rejoice function.

Compensating variation for the standard concave utility case with the Log Ornstein Uhlen-
beck model for stochastic volatility This is the model introduced by Black, Derman and Toy (1990).
Let  ´  constant and (  ) ´ () with () = . Here the process  denotes the logarithm of
the volatility. It is supposed to follow an Ornstein-Uhlenbeck model. In this case, the dynamics of the
risky asset process is given by: (In Relation 1, it corresponds to the choice  = (1 ¡  ); (  ) =
;(  ) =

p
1 ¡ 2)

 = 
h
 + ()

(1)


i
 with  = (1 ¡  )+  (1)


+

p
1 ¡ 2 (2)




with constant parameters  (the drift of the risky asset),   0,   0 (standard deviation of  ), 
(correlation of the two Brownian motions). Thus  is mean reverting and converges to its long term value
1 with a speed equal to . Applying Ito’s lemma to ( ), we deduce that the parameters of volatility
 de…ned in Relation (3) are given by: 

()
 = (ln1 ¡ ln) + 052; ()(  ) = ; ()(  ) =p

1 ¡ 2. The two premium processes (1) and 
(2)
 de…ned in Relation 5 are given by:

(1) =
¡ 

exp[]
 (2) =

(1 ¡ ) ¡  ¡  ¡
exp[]p

1 ¡ 2


For the numerical illustration, we consider the following …nancial parameters:

( = 006;  = 001); ( = 008;  = 003)  = 02

We set 1 = 0 = [02], which allows a better comparison to the GBM case with constant
volatility  equal to 20%.25 Indeed, by setting both the initial volatility 0 =  [0] and the long term
volatility 1 =  [1] to the same level equal to 20%, we only take account of the stochastic feature
of the volatility. For this purpose, we consider four choices for the pair of parameters ( ), namely
 = ¡05 or 0, and  = 005 or  = 010. Recall that parameter  allows to calibrate the dependency

25 In Supplementary Materials 4, we have conducted the same analysis for two other levels, namely 1 = 0 = [015]
and 1 = 0 = [025]. As shown by Figures (24) to (27), we get the same features of the compensating variation.

25



between the return of the risky asset  and the logarithm of its volatility (usually  is negative) while
parameter  allows to consider various levels of the "volatility of the volatility."

For the case  = 1%. Looking at Figure (7), we note that the three standardized products, namely
the OBPI, the Average and the Asian funds, are rather close from the compensating variation point of
view. Indeed, the maximum compensating variation is equal to 10245. Since the fund horizon is equal
to 8 years for this example, it corresponds to a monetary loss per year about equal to 03% These weak
compensating variations between the three standardized structured products are also illustrated in Tables
(19) to (21) (see Supplementary Materials 4), from which we can also deduce that parameters  and  do
not have a signi…cant impact on these compensating variations.

On the contrary, the compensating variations between those standardized structured products and the
optimal fund are very signi…cant. Compared to results in Table (6) corresponding to the standard GBM
case, they are much higher. For example, they can reach 12113 meaning a monetary loss per year equal
to about 243%. This induces an implicit managing cost higher than 2% per year ! We note that most of
the compensating variations are close to 107 which is only slightly smaller than the risk fee return 1083
on 8 years. For the GBM case, the maximum value is equal to 10436 corresponding "only" to 053%
per year. Such feature illustrates the lack of adequacy of those three standardized products to customers
needs when the volatility is stochastic, especially for "aggressive" investors ( = 1 or 2). Figure (7)
illustrates also the compensating variations between standardized structured products and the optimal
fund. We note that we get the maximal compensating variations for the cases  = 0,  = 005,  = ¡05,
 = 010 and  = ¡05,  = 005, while the minimal compensating variations is reached for the case  = 0,
 = 010. Indeed, for instance when the correlation  is null, it is interesting to be able to use a …nancial
instrument de…ned on the volatility itself but the higher its volatility the smaller the interest to diversify
on it since it becomes riskier. When the correlation is negative (which is for example usually the case
between a stock index and its own volatility), the higher the risk aversion from the level 4, the higher the
expected utility since the investor can bene…t from the diversi…cation (see Appendix 4 in Supplementary
Materials 1 for a simpli…ed example explaining most of these features).

For the case  = 3%, we choose  = 8% so that we get the same risk premium as in previous case,
namely the standard value  ¡  = 5%. We set the portfolio horizon to 5 years, which implies that
the initial proportion of wealth invested on the risky asset is about 14% (it is equal to about 77% for
the case with  = 1%). Note that, from the operational point of view, the horizon equal to 5 years is
the standard value used by practitioners as soon as the interest rate is about 3%. We recover the same
main features, namely the compensating variations between the standardized structured products and
the optimal fund are very signi…cant, compared to those between the standardized structured products
themselves. We note in particular that the compensating variations can reach levels signi…cantly higher
than the risk free return on the given time period (i.e.  [ ] ' 1162), for the cases  = 0,  = 005 and
 = ¡05,  = 005, while the minimal compensating variations is reached for the cases  = 0,  = 010
and  = ¡05,  = 010. (see Figure 8). As previously explained, for  = 005, the Sharpe type ratio of
the Log volatility is higher than for  = 010, implying higher compensating variations. Compared to the
case  = 1% and  = 6%, when the risk free rate is equal to 3%, the factor loading 

(2)
 (see Relation 5)

can have a signi…cant smaller absolute value for  = ¡05,  = 010, explaining why, for this second case
(i.e.  = 3% and  = 8%) , it is less interesting to be able to trade on the volatility (see remark about
condition 0  ¡(2) in Appendix 4). Obviously, when  is high, this condition has much more chance to
be met). On the contrary, for the case  = 3%,  = 8% and portfolio horizon  equal to 5 years, we can
better …t from trading on the volatility when its Sharpe ratio is relatively high since the initial proportion
of wealth invested on the risky asset is equal to about twice that for the case  = 1%,  = 6% and  = 8.
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Figure 7: Compensating variations for the Ornstein-Uhlenbeck case case (mu=0.06, r=0.01)
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Figure 8: Compensating variations for the Ornstein-Uhlenbeck case (mu=0.08,r=0.03)
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4 Conclusion

The suitability of standard …nancial structured products is a very important topic for the costumer
protection. We look at an important class of such products, namely those whose performances are based
on smoothing the return of a given risky underlying asset while providing a guarantee at maturity. We
illustrate the potential inadequacy of such standardized …nancial funds to customers, depending on their
attitudes towards risk. From the theoretical point of view, we prove that such standardized products
are not optimal, even if the …nancial market volatility is constant. By using the notion of compensating
variation, we compute the monetary losses of providing these standardized products instead of the optimal
ones to the customers. We show that these (theoretical) losses can be severe, since they can be higher
than the risk-free return on the given portfolio management period. It implies in particular that trading
on volatility indices and/or options written on them should be introduced in structured portfolios issued
by …nancial institutions (for example on the volatility index VIX for the S&P 500 index and the VSTOXX
indices based on EURO STOXX 50). Another possible study would consist of calculating also the lowest
cost strategies to achieve the given payo¤ distribution of each standardized fund (see e.g. the distributional
analysis of portfolio choice and the theory of cost-e¢ciency of Dybvig (1988a, 1988b) and Bernard et al.,
2014).
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