
Datastructure for
Filtering and Storing Non-Dominated Points
MOPGP’2017: Int. Conf. on “Multi-Objective Programming and Goal-Programming”
October 30-31, 2017 – Université de Lorraine (Metz), France.

Dorian DUMEZ, Xavier GANDIBLEUX, Irena RUSU
October 30, 2017

Université de Nantes, UFR Sciences et Techniques
Laboratoire des sciences du numérique de Nantes UMR CNRS 6004
France

Supported by

vOpt Research Project
Exact Efficient Solution of Mixed Integer Programming Problems with Multiple
Objective Functions (ANR/DFG-14-CE35-0034-01)

Université de Nantes, France – Technische Universität Kaiserslautern, Germany.

1

1. Introduction

1

Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2

Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2

Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2

Example

For

y “
" ˆ

5
6

˙

;
ˆ

7
7

˙

;
ˆ

2
4

˙

;
ˆ

6
3

˙

;
ˆ

8
4

˙

;
ˆ

3
7

˙

;
ˆ

7
1

˙ *

,

and the minimization case, the operations are:

iteration y operations SN
0 - - H

1
ˆ

5
6

˙

added
"ˆ

5
6

˙*

2
ˆ

7
7

˙

dominated by
ˆ

5
6

˙

ñ deleted
"ˆ

5
6

˙*

3
ˆ

2
4

˙

added; dominates
ˆ

5
6

˙

ñ removed
"ˆ

2
4

˙*

4
ˆ

6
3

˙

added
"ˆ

2
4

˙

;
ˆ

6
3

˙*

5
ˆ

8
4

˙

weakly dominated by
ˆ

2
4

˙

ñ deleted
"ˆ

2
4

˙

;
ˆ

6
3

˙*

6
ˆ

3
7

˙

dominated by
ˆ

2
4

˙

ñ deleted
"ˆ

2
4

˙

;
ˆ

6
3

˙*

7
ˆ

7
1

˙

added
"ˆ

2
4

˙

;
ˆ

6
3

˙

;
ˆ

7
1

˙*

3

Motivations

Multiobjective Optimization:
• discrete variables (MOIP/MOCO)
• compute YN , the set of non-dominated points

Algorithms:
• exact:

such a branch and bound (to handle local sets of points)
ë identify YN

• approximation:
such a (meta)heuristics or a local search (to maintain the elite
population)

ë identify YPN

4

Question investigated

Problematic:
• SN “ H

• to maintain SN : for each new point y considered,
add or not y in the set, remove one or several points from the set
ë initialize SN

push y into SN

is y ND? in SN

getall z1, z2 from SN

Question:
• which data structure/algorithm to recommand for performing

efficiently this problematic?

5

Main approaches in the MOO literature

Linear structures:
• List (L)
• Sorted list (SL)

Tree structures:
• Quad-Tree (QT) Habenicht, 1982; Sun and Steuer, 1996
• ND-Tree (ND) Jaszkiewicz and Lust, 2016
• Balanced Binary Tree (Adelson-Velskii-Landis, AVL) Dumez, 2016

6

Fast analysis

L SL QT ND AVL
implementation easy easy intermediate intermediate intermediate

(immediate) (maintain) (maintain) (maintain) (maintain)
specific none yes1 yes2 yes3 yes4

operation
require no no no yes no

a tuning 2 parameters
complexity linear linear linear unknown logarithmic

(worst case)
limit no yes no no yes
on p p “ 2 p “ 2

1: at the insertion, the list must be maintained sorted
2: at the deletion, the sub-tree has to be re-inserted to the structure
3: at the insertion, spliting points into hypercube cluster
4: balance

Best for p “ 2: SL according [Jaszkiewicz and Lust 2016]

7

Objectives of this study

• (re)visit the AVL trees for the identified problematic; to the best of
our knowledge, no such paper exists in the MCDM literature;

• propose “the AVL for non-dominated points on a dynamic set
(AVL ND) algorithm” with proofs and theoretical complexity results;

• experiment numerically the structures SL / QT / NDtree / AVL-ND
in practice.

8

2. AVL ND
stands for

AVL tree for non-dominated points on a dynamic set

8

Main phases of the algorithm

1 - Search for the position of y in the tree
2 - If y is not dominated, add it and refresh info at the node
3 - During the ascent, look for dominated points
4 - Balance all nodes for which we proceeded additions or deletions in

their subtrees

9

Main phases of the algorithm

1 - Search for the position of y in the tree
2 - If y is not dominated, add it and refresh info at the node
3 - During the ascent, look for dominated points
4 - Balance all nodes for which we proceeded additions or deletions in

their subtrees

9

Main phases of the algorithm

1 - Search for the position of y in the tree
2 - If y is not dominated, add it and refresh info at the node
3 - During the ascent, look for dominated points
4 - Balance all nodes for which we proceeded additions or deletions in

their subtrees

9

Main phases of the algorithm

1 - Search for the position of y in the tree
2 - If y is not dominated, add it and refresh info at the node
3 - During the ascent, look for dominated points
4 - Balance all nodes for which we proceeded additions or deletions in

their subtrees

9

Lexicographic order

When we introduce a point y in S we can say that :

• if y is dominated then it will be dominated by
maxlextx P SN |x ďlex yu

• if y dominates points then it will dominates minlextx P SN |x ělex yu
• all points dominated by y in SN are consecutive

10

Phases 2 and 3

When we add a point we can quickly look at its father, and brother, to
determine whether they are dominated or not.
Furthermore, starting from the node of y and all left father of it :

• we may be able to delete the whole right subtree
• otherwise we have to dive into it. Then at each level we go in the

left subtree or in the right one (and we can delete the left one)

11

Phase 4

We can balance a node a in Op|balancepaq|q.

Algorithm 1: Balancing algorithm
Function BALANCE pa, f q:
if |balancepaq| ą 1 then

∆ “ appropriated rotation
return BALANCE pa, ∆pa, f qq

Where a rotation returns the node which is now the father of a.

12

Complexity

Let n be the number of element in our tree. The complexity of each
phase is :

1. Oplogpnqq because it a research into a binary search tree
2. Oplogpnqq because it is in Op1q or we dive into the right subtree
3. Oplogpnqq because we need to dive into a subtree at most once
4. Oplogpnqq because the number of created ”unbalancement” is

bounded by 9.logpnq

13

3. Numerical experiments

13

Environment

Numerical instances:
• Dataset 1: random; clusters

(#S=100 000, 5 values for the parameter “quality of distribution”)
• Dataset 2: random; classic

(#S=100 000, 5 values for the parameter “quality of distribution”)
• Dataset 3: 2TSP, PLS

(#S=100 000)
• Dataset 4: S composed by only (supported) non-dominated points

(#S=100 000 to 1 000 000, 10 runs where S is randomly shaked)

Procedures:
• implemented in C and Julia programming languages,

Julia version of AVL-ND is integrated to vOptSolver
• C/C++ versions of SL, ND, AVL used here for comparisons needs

Datasets 1„3, ND-tree: from [Jaszkiewicz and Lust 2016]

14

Results

Dataset 1: (clusters) Dataset 2: (classic)

Dataset 3: (PLS) Dataset 4:(SN)

15

AVL-ND available within vOptSolver

http://voptsolver.github.io/vOptSolver/
16

http://voptsolver.github.io/vOptSolver/

Follow/join/contribute to vOptSolver

Homepage of vOptSolver:
http://voptsolver.github.io/vOptSolver/

Repository of vOptSolver:
http://github.com/vOptSolver

Contact concerning vOptSolver:
vopt@univ-nantes.fr

Follow vOptSolver on Twitter:
@vOptSolver

17

http://voptsolver.github.io/vOptSolver/
http://github.com/vOptSolver

4. Discussion

17

Conclusion and ongoing works

Ñ A new approach in this context
Ñ Introduction of a new rotation, allowing a quicker balancing of a

possibly very unbalanced tree
Ñ Best known theoretical complexity in the worst case

PROS:
• very good running time
• in practice, the algorithm is not sensitive to the distribution of y P S;

no pathologic case of the tree may appear
• not difficult to implement (codes in Julia and C are available)

CONS:
• up to now, limited to p “ 2

NOW:
• Careful analyse of the existing literature about Dynamic Algorithms

in Computational Geometry
• to study the case when p ě 3

18

Main references

1. G. Adelson-Velskii and E. Landis: “An algorithm for organization of information”. Soviet
Mathematics doklady, 6:1259–1263, 1962.

2. H. T. Kung, F. Luccio, and F. P. Preparata: “On finding the maxima of a set of vectors”.
Journal of the ACM, 22 (4): 469–476, 1975.

3. Walter Habenicht: “Quad trees, a datastructure for discrete vector optimization problems”.
In Lecture Notes in Economics and Mathematical Systems, volume 209, pages 136–145.
Springer Berlin Heidelberg, 1983.

4. Minghe Sun and Ralph E. Steuer: “Quad-trees and linear lists for identifying nondominated
criterion vectors”. INFORMS Journal on Computing, 8(4):367–375, 1996.

5. Dorian Dumez: “Etude, mise en oeuvre et comparaison d’algorithmes de filtrage et maintien
d’ensembles de points non dominés”. Summer internship, Université de Nantes, 2016.

6. Andrzej Jaszkiewicz and Thibaut Lust: “Nd-tree: a fast online algorithm for updating a
pareto archive and its application in many-objective pareto local search”.CoRR,
abs/1603.04798, 2016.

7. Xavier Gandibleux, Gauthier Soleilhac, Anthony Przybylski, Stefan Ruzika. “vOptSolver: an
open source software environment for multiobjective mathematical optimization”.
IFORS2017: 21st Conference of the International Federation of Operational Research
Societies. July 17-21, 2017. Quebec City (Canada).

8. Homepage of vOptSolver: http://voptsolver.github.io/vOptSolver/

9. Dorian Dumez, Xavier Gandibleux, Irena Rusu. “Datastructure for Filtering and Storing
Non-Dominated Points”. Technical report, Université de Nantes, 2017.

19

http://voptsolver.github.io/vOptSolver/

