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Dorian DUMEZ, Xavier GANDIBLEUX, Irena RUSU
October 30, 2017
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1. Introduction
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Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2



Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2



Context

Background:
• y P S Ď Rp

• points of S are dynamically revealed
• identify SN Ď S, the set of non-dominated points y P S

Remark: if S is static, and contains n points, then
• this is the problem of finding all maximal points, sometimes called

the maxima set problem in computational geometry.
• for p “ t2, 3u, this problem can be solved in time Opn log nq [Kung

et al., 1975]

Assumptions:
• p “ 2
• ranges of components of SN are a priori unknown

2



Example
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and the minimization case, the operations are:
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Motivations

Multiobjective Optimization:
• discrete variables (MOIP/MOCO)
• compute YN , the set of non-dominated points

Algorithms:
• exact:

such a branch and bound (to handle local sets of points)
ë identify YN

• approximation:
such a (meta)heuristics or a local search (to maintain the elite
population)

ë identify YPN
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Question investigated

Problematic:
• SN “ H

• to maintain SN : for each new point y considered,
add or not y in the set, remove one or several points from the set
ë initialize SN

push y into SN

is y ND? in SN

getall z1, z2 from SN

Question:
• which data structure/algorithm to recommand for performing

efficiently this problematic?
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Main approaches in the MOO literature

Linear structures:
• List (L)
• Sorted list (SL)

Tree structures:
• Quad-Tree (QT) Habenicht, 1982; Sun and Steuer, 1996
• ND-Tree (ND) Jaszkiewicz and Lust, 2016
• Balanced Binary Tree (Adelson-Velskii-Landis, AVL) Dumez, 2016
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Fast analysis

L SL QT ND AVL
implementation easy easy intermediate intermediate intermediate

(immediate) (maintain) (maintain) (maintain) (maintain)
specific none yes1 yes2 yes3 yes4

operation
require no no no yes no

a tuning 2 parameters
complexity linear linear linear unknown logarithmic

(worst case)
limit no yes no no yes
on p p “ 2 p “ 2

1: at the insertion, the list must be maintained sorted
2: at the deletion, the sub-tree has to be re-inserted to the structure
3: at the insertion, spliting points into hypercube cluster
4: balance

Best for p “ 2: SL according [Jaszkiewicz and Lust 2016]
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Objectives of this study

• (re)visit the AVL trees for the identified problematic; to the best of
our knowledge, no such paper exists in the MCDM literature;

• propose “the AVL for non-dominated points on a dynamic set
(AVL ND) algorithm” with proofs and theoretical complexity results;

• experiment numerically the structures SL / QT / NDtree / AVL-ND
in practice.
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2. AVL ND
stands for

AVL tree for non-dominated points on a dynamic set
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Main phases of the algorithm

1 - Search for the position of y in the tree
2 - If y is not dominated, add it and refresh info at the node
3 - During the ascent, look for dominated points
4 - Balance all nodes for which we proceeded additions or deletions in

their subtrees
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Lexicographic order

When we introduce a point y in S we can say that :

• if y is dominated then it will be dominated by
maxlextx P SN |x ďlex yu

• if y dominates points then it will dominates minlextx P SN |x ělex yu
• all points dominated by y in SN are consecutive
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Phases 2 and 3

When we add a point we can quickly look at its father, and brother, to
determine whether they are dominated or not.
Furthermore, starting from the node of y and all left father of it :

• we may be able to delete the whole right subtree
• otherwise we have to dive into it. Then at each level we go in the

left subtree or in the right one (and we can delete the left one)
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Phase 4

We can balance a node a in Op|balancepaq|q.

Algorithm 1: Balancing algorithm
Function BALANCE pa, f q:
if |balancepaq| ą 1 then

∆ “ appropriated rotation
return BALANCE pa, ∆pa, f qq

Where a rotation returns the node which is now the father of a.
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Complexity

Let n be the number of element in our tree. The complexity of each
phase is :

1. Oplogpnqq because it a research into a binary search tree
2. Oplogpnqq because it is in Op1q or we dive into the right subtree
3. Oplogpnqq because we need to dive into a subtree at most once
4. Oplogpnqq because the number of created ”unbalancement” is

bounded by 9.logpnq

13



3. Numerical experiments
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Environment

Numerical instances:
• Dataset 1: random; clusters

(#S=100 000, 5 values for the parameter “quality of distribution”)
• Dataset 2: random; classic

(#S=100 000, 5 values for the parameter “quality of distribution”)
• Dataset 3: 2TSP, PLS

(#S=100 000)
• Dataset 4: S composed by only (supported) non-dominated points

(#S=100 000 to 1 000 000, 10 runs where S is randomly shaked)

Procedures:
• implemented in C and Julia programming languages,

Julia version of AVL-ND is integrated to vOptSolver
• C/C++ versions of SL, ND, AVL used here for comparisons needs

Datasets 1„3, ND-tree: from [Jaszkiewicz and Lust 2016]
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Results

Dataset 1: (clusters) Dataset 2: (classic)

Dataset 3: (PLS) Dataset 4:(SN)
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AVL-ND available within vOptSolver

http://voptsolver.github.io/vOptSolver/
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Follow/join/contribute to vOptSolver

Homepage of vOptSolver:
http://voptsolver.github.io/vOptSolver/

Repository of vOptSolver:
http://github.com/vOptSolver

Contact concerning vOptSolver:
vopt@univ-nantes.fr

Follow vOptSolver on Twitter:
@vOptSolver
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4. Discussion
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Conclusion and ongoing works

Ñ A new approach in this context
Ñ Introduction of a new rotation, allowing a quicker balancing of a

possibly very unbalanced tree
Ñ Best known theoretical complexity in the worst case

PROS:
• very good running time
• in practice, the algorithm is not sensitive to the distribution of y P S;

no pathologic case of the tree may appear
• not difficult to implement (codes in Julia and C are available)

CONS:
• up to now, limited to p “ 2

NOW:
• Careful analyse of the existing literature about Dynamic Algorithms

in Computational Geometry
• to study the case when p ě 3
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