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Extended abstract

In recent years, intelligent transportation systems made it possible for operators to adapt in real-time
the transportation supply to travel demand via new mobility services. Among these services, ride-
sharing is becoming popular. Ride-sharing is a transportation mode in which passengers can share
a car and travel costs. Dynamic ride-sharing refers to a system which supports an automatic ride-
matching process between participants on very short notice or even en-route (Agatz et al., 2012).
The dynamic ride-sharing problem involves two sub-problems: 1) How to serve the upcoming trips
(optimal fleet management) - 2) How to accurately predict the travel times to determine vehicles
availability and pick up/drop off times.

The first sub-problem is complex and has attracted a great number of research proposals (Ota
et al., 2017, Qian et al., 2017, Goel et al., 2017). Following this track of research, we express the
optimal fleet management problem as a constrained multi objective integer linear programming.

Many of the researches try to find the near-optimal solution to the matching problem in ride-
sharing systems considering some specific constraints like the vehicles capacity or the time window,
to minimize the total additional distance (Ota et al., 2017, Qian et al., 2017, d’Orey & Ferreira,
2014) or to maximize the matching between vehicles and passengers (Stiglic et al., 2016, Ma et al.,
2013, Goel et al., 2017). They usually rank the possible feasible matches for closed passengers and
cars based on the objective function and then choose the best match for the requests. Hyland &
Mahmassani (2018) assign the passenger to the vehicle only if the vehicle is 20% closer than any idle
shared vehicle to the passenger. The assignment problem is solved with different heuristic methods
in the literature. Herbawi & Weber (2012b) use a genetic algorithm to find a sub-optimal solution
for the ride-matching problem and then an insertion heuristic answers the newly received offer or
request by modifying the solution of genetic algorithm when possible. In our research, our aim is
to find the global optimal solution for the ride-sharing problem without uncertainty in demand to
have a vision of these services performance in optimal situation. Then we can compare the results
and experiments with the exact optimal condition. We have designed an algorithm to find the exact
solution for matching problem based on the branch and bound algorithm.

The second sub-problem is less studied in the literature but is very important for real field opera-
tions. Network congestion can have significant impacts on the ride-sharing service. The optimization
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system of the ride-sharing service uses estimates for the predicted travel time coming from a "predic-
tion model". When the rides are realized, a gap can exist between the estimation and the real traffic
condition, that is represented by the "plant model". This gap may require dynamic adjustment of
the initial assignment to fit with the observed conditions. When simulating a dynamic ride-sharing
service, it is important to properly distinguish the prediction and the plant model to propose a realistic
solver.

In most of the researches, the plant model and the prediction model are the same (Goel et al., 2017,
Ma et al., 2015). However, there are some researches that consider dynamic traffic conditions on ride-
sharing. Goel et al. (2017) consider an overhead randomly chosen of 10-20 percent to reflect different
traffic conditions when computing the end time for a driver in their proposed approach. Nevertheless,
They just use the prediction model and assume that the travel times used in the assignment process
stay the same during the execution of the vehicle schedules. In some researches, only the plant
model is considered. They use a simulator to assess the dynamic ride-sharing but it is not the optimal
matching (Linares et al., 2016, Ma et al., 2015, Jia et al., 2017). Other works use only static travel
times in the optimization process (Herbawi & Weber, 2012a).

In this paper, we define the plant model besides the prediction model to assess the impact of traffic
conditions on the dynamic ride-sharing system performance for large-scale problems. The considered
prediction model is based on the last observed travel times, while the considered plant model is a
trip-based Macroscopic Fundamental Diagram (MFD) model which is able to reproduce the time
evolution of mean traffic conditions for a full road network using the MFD as a global behavioral
curve (Lamotte & Geroliminis, 2016, Mariotte et al., 2017). In this paper, for a given urban network,
we are going to compare the reference situation where all trips are done with personal cars with a
situation where a fraction of the trips (market-share: 20%,60% and 100%) are served by a fleet of
vehicles with different levels of maximum sharing (1,2,3) for all passengers.

Optimization problem design for dynamic ride-sharing

Our system has two main parts. The fleet management part works to assign the optimized match of
riders to the vehicles. Then the simulation part executes the optimal car schedule while considering
the complete dynamic traffic conditions. The main components of the system are shown in figure 1.

FIG. 1 – System components

In our problem, a system of cars works to serve the passengers that desire to share their trip with
other passengers. We have defined an algorithm to find the optimal schedule for the shared cars. The
algorithm solves a constrained optimization problem to minimize the total travel time and distance
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for vehicles and the total travel time and waiting time for passengers. The constraint functions in the
problem are on capacity, time window, number of sharing (a number defined by the passengers to
show their willingness to share their ride) and the quality of service. The optimized solution for the
model will be sent as the schedule to the fleet. Then the assigned cars leave their location or take a
detour to serve the new demands.

To solve the optimization problem efficiently, we could refer to heuristic methods, but we notice
that a proper exploitation of the constraints can help to narrow the search of feasible solutions even
if the size of the space is very large. This is why we design our own solution method based on
the classical branch and bound algorithm but with specific properties to fit with fleet management
problem. First, we solve the matching problem with the first part of our algorithm which is described
in the next paragraph, with all the demand. Then we can have the optimal situation for ride-sharing
system performance. Then to assess the system in real-time we optimize the matching in rolling
horizon.

The algorithm performs in two parts. In the beginning, when there is no en-route vehicle, the
first part of the algorithm builds a tree of routes and tries to add feasible points to the best branch of
the tree at each step. The feasibility of points is checked with respect to the model constraints. A
destination point can be added if and only if its origin has been added to the route before. When the
algorithm finds a feasible point for a route, it makes a new route by adding this feasible point and
put it in the previous routes set. In the following, the branches that cannot satisfy any of the model
constraints will be removed from the tree. In the end, the best route is the route that has a minimum
objective function. Then, if there are en-route cars in the system, when receiving new demands, the
second part of the algorithm starts to work. It checks the vehicles schedules remaining points to find
the routes that can still be feasible after adding a new demand to them. If the algorithm finds any
feasible route, then it adds the new demand to the route and if there are more than one feasible route,
it adds the demand to the route that leads to the minimum increase of the objective function. But if
it can not find such a feasible route, in the first part of the algorithm it assigns the optimal branch (as
explained before) to an empty car which is waiting in the nearest depot.

Figure 2 shows a small example of the algorithm functioning. At a specific time, the algorithm
receives 5 requests. Requests 2 and 5 can be added to the en-route vehicles in the first part of the
algorithm. But there are no feasible solutions for requests 1,3 and 4. So the second part of the
algorithm works to find the optimal route to serve these three requests. All these requests can be
served by just one vehicle. The car should pick up passenger 3 and then 4. After dropping off the
passenger 3, the car goes to the passengers 4 origins and then it drops off passenger 1 and finally
passenger 4.

Simulation models

A simulation platform is used as the plant model to simulate the function of the dynamic ride-sharing
service cars and personal cars that are in the network at the same time. This simulator should be able to
simulate the time evolution of traffic flows on the road network. In this research, we use the trip-based
MFD to accommodate individual trips while keeping a very simple description of traffic dynamics.
The general principle of this approach is to derive the inflow and outflow curves noting that the travel
distance L by a driver entering at time t − T (t) when n(t) is the number of en-route vehicles at time
t and the mean speed of travelers is V (n(t)) at every time t, should satisfy the following equation:

L =
∫ t

t−T (t)
V (n(s))ds (1)

In our research, the state of all the vehicles is clear for the system at every time t. The cars can
have two situations. They are waiting in depots for new passengers or they are servicing the assigned
passengers. In addition to the shared cars that are circulating to serve the passengers, there are other
cars that are serving the rides that are not shared in the network. So the accumulation at each time
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FIG. 2 – Optimization algorithm

t is the summation of the number of shared cars and number of what we call personal cars in the
system. Therefore, at each time t the mean speed of travelers can be computed. Both shared trips and
non-shared or personal trips can pass the length in a time period, based on the current mean speed at
that time. We use this principle in our plant model which is described in the next section.

At each time step, the simulator computes the current speed of the cars considering the current
traffic situation (the number of en-route vehicles). Then the vehicle can cover a distance based on the
current speed, every time step. So we update the situation of cars every time step, with computing the
speed on time. The time step that we use in our plant model is 10 seconds. So the state of en-route
cars is updated every 10 seconds in our simulation.

To make travel time prediction for the optimization part, In our prediction model, we predict the
traffic situation for the next assignment time horizon (every 10 minutes) and we assign the passengers
to the cars based on this prediction. So at each time step, the direct travel time from each point i to j
is computed based on the current mean speed and the shortest path between two points, for the next
10 minutes. Then the optimization algorithm assigns all the requests for the next 10 minutes to the
en-route cars or empty waiting cars.

Numerical experiments and conclusion

In the proposed research, we use a realistic O-D trip matrix for the city of Lyon in France. The
network is loaded with travelers of all ODs with given departure time in order to represent 4 hours
of the network with more than 62000 requests based on the study of Krug et al. (2017). 23 different
scenarios are defined with number of sharing 0,1,2 and 3 (Number of sharing 0 means that the car
serves just one passenger without sharing like traditional taxi services, number of sharing 1 means that
it is possible to share the passengers trip with 1 other passenger and so on), market shares 20%,60%
and 100% (Only the trips that are fully inside the studied area are considered as candidates for the
service. So the market share of 100% corresponds to 22% of all trips), two intervals for pick up and
drop off time window (5 minutes and 10 minutes). Here, we put a part of results to show the system
performance. Table 1 shows the cars travel time and number of cars for different numbers of sharing
when the market share is 100 percent comparing with the case that all the trips are done with personal
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cars. Results show that with sharing, the number of cars and total travel time is less than the case
without sharing or even the case with zero market rate.

When all the internal trips are served with service cars without any sharing, the number of needed
service cars is 10138 and the total travel time for shared trips is 1557 hours. But then with sharing the
ride between just two travelers, the number of needed cars decreases to 5433 and the total travel time
is 1331 hours. It means that with almost half number of cars, the travel time is 226 hours less than
before. With applying more sharing, the number of needed cars and the total travel time decrease then
for number of sharing 2 and 3, our proposed ride-sharing system works even better than the situation
that all the trips are done with personal cars. It should be mentioned that the increase in passengers
travel time and waiting time is negligible compared to the service improvements in our results.

Figure 3 shows the accumulation of cars in the network for different number of sharing compared
with the case that all the trips are done with private cars. When a fraction of trips are served with
service cars, the distance increases (because the car should also pass the distance between the waiting
point and the origin and also the distance between the destination to the next waiting point) so the
accumulation of cars moving in the system increases. But when we share the trips and increase the
number of sharing, the accumulation of cars decreases and we have better traffic condition and less
cars moving in the network. The results also show that for medium-scale network, the sharing cannot
improve the congestion comparing with the case that we have just private cars in the network.

TAB. 1 – Simulations results for market-share = 100%

Sharing properties Simulation results

Market
rate

Number
of sharing

Total travel time
for shared cars (h)

Total travel time
for personal cars (h)

Total travel time
for all cars (h)

Number of
shared cars

Number of
personal cars

Total number
of cars

0 0 0 10756 10756 0 62450 62450

100
0 1557 9480 11037 10138 51215 61353
1 1331 9386 10717 5433 51215 56648
2 1291 9356 10647 4327 51215 55542
3 1274 9345 10619 3833 51215 55048

FIG. 3 – Cars accumulation for different market shares

In future researches, we will implement our system on larger networks with more number of trips
to assess the effect of sharing on congestion in large-scale networks. We will improve the optimization
algorithm introducing spatial clustering on the network. Also we will try to switch the plant model to
a more refined one.
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